1
|
Protti A, Tonelli R, Dalla Corte F, Grieco DL, Spinelli E, Spadaro S, Piovani D, Menga LS, Schifino G, Vega Pittao ML, Umbrello M, Cammarota G, Volta CA, Bonovas S, Cecconi M, Mauri T, Clini E. Development of clinical tools to estimate the breathing effort during high-flow oxygen therapy: A multicenter cohort study. Pulmonology 2025; 31:2416837. [PMID: 38760225 DOI: 10.1016/j.pulmoe.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
INTRODUCTION AND OBJECTIVES Quantifying breathing effort in non-intubated patients is important but difficult. We aimed to develop two models to estimate it in patients treated with high-flow oxygen therapy. PATIENTS AND METHODS We analyzed the data of 260 patients from previous studies who received high-flow oxygen therapy. Their breathing effort was measured as the maximal deflection of esophageal pressure (ΔPes). We developed a multivariable linear regression model to estimate ΔPes (in cmH2O) and a multivariable logistic regression model to predict the risk of ΔPes being >10 cmH2O. Candidate predictors included age, sex, diagnosis of the coronavirus disease 2019 (COVID-19), respiratory rate, heart rate, mean arterial pressure, the results of arterial blood gas analysis, including base excess concentration (BEa) and the ratio of arterial tension to the inspiratory fraction of oxygen (PaO2:FiO2), and the product term between COVID-19 and PaO2:FiO2. RESULTS We found that ΔPes can be estimated from the presence or absence of COVID-19, BEa, respiratory rate, PaO2:FiO2, and the product term between COVID-19 and PaO2:FiO2. The adjusted R2 was 0.39. The risk of ΔPes being >10 cmH2O can be predicted from BEa, respiratory rate, and PaO2:FiO2. The area under the receiver operating characteristic curve was 0.79 (0.73-0.85). We called these two models BREF, where BREF stands for BReathing EFfort and the three common predictors: BEa (B), respiratory rate (RE), and PaO2:FiO2 (F). CONCLUSIONS We developed two models to estimate the breathing effort of patients on high-flow oxygen therapy. Our initial findings are promising and suggest that these models merit further evaluation.
Collapse
Affiliation(s)
- A Protti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - R Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy
| | - F Dalla Corte
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - D L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - E Spinelli
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - D Piovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - L S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - G Schifino
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
- Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - M L Vega Pittao
- Respiratory and Critical Care Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
- Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - M Umbrello
- SC Rianimazioine e Anestesia, ASST Ovest Milanese, Ospedale Civile di Legnano, Legnano, Milan, Italy
| | - G Cammarota
- Department of Traslational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - C A Volta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - S Bonovas
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - M Cecconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - T Mauri
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - E Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena-Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Zalucky AA, Dianti J, Neyton LPA, Sinha P, Liu KD, Matthay MA, Thompson BT, Goligher EC, Calfee CS. Elastance May Determine the Neuromuscular Blockade Effect on Mortality in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2025; 211:966-974. [PMID: 39998496 DOI: 10.1164/rccm.202406-1231oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/24/2025] [Indexed: 02/26/2025] Open
Abstract
Rationale: Patients with acute respiratory distress syndrome (ARDS) have a reduction in functional lung volume that results in increased respiratory system elastance (Ers); however, the extent of this increase varies by patient. Patients with high Ers are at risk of excess lung-distending pressures and may derive greater clinical benefit from neuromuscular blockade (NMB). Objectives: We sought to evaluate whether the effect of early NMB administration on mortality varies according to baseline physiological and biological biomarkers of lung injury, including Ers. Methods: We conducted a secondary analysis of the Reevaluation of Systemic Early Neuromuscular Blockade, or ROSE, trial. Bayesian logistic regression modeling was used to estimate the posterior probability of NMB effect moderation by baseline Ers, ventilatory ratio, and select ARDS plasma biomarkers on 90-day mortality. Measurements and Main Results: The probability of mortality benefit with NMB increased substantially with higher baseline Ers (posterior probability of interaction, 92%; interaction odds ratio = 0.76; 90% credible interval = 0.59-0.99). In patients with an Ers ⩾2 cm H2O/(ml/kg), the posterior probability of benefit was 96% (median absolute risk reduction, 9%; 90% credible interval = 0.5-17.9). The effect of NMB did not vary meaningfully according to ventilatory ratio (posterior probability of interaction, 62%) or baseline plasma levels of receptor for advanced glycation end-products, tumor necrosis factor receptor-1, IL-6, or IL-8 (posterior probabilities of interaction: 12%, 18%, 44%, and 22% respectively). Conclusions: These findings suggest that the mortality benefit of NMB varies with baseline Ers. High Ers may represent a physiological phenotype of acute respiratory distress syndrome. Future prospective testing to confirm benefit in this potentially treatment-responsive group is needed.
Collapse
Affiliation(s)
- Ann A Zalucky
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine and
- Department of Critical Care Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Foothills Medical Center, Alberta Health Services, Calgary, Alberta, Canada
| | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, Department of Medicine, Surgery, Anaesthesia, and Paediatrics, and
| | - Lucile P A Neyton
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine and
| | - Pratik Sinha
- Division of Clinical and Translational Research and Division of Critical Care, Department of Anaesthesiology, Washington University School of Medicine, Saint Louis, Missouri
| | | | - Michael A Matthay
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine and
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts; and
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, Department of Medicine, Surgery, Anaesthesia, and Paediatrics, and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine and
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
3
|
Fusina F, Albani F, de Vries HJ, Pisani L, Natalini G, Tuinman PR, Heunks L. Flow Index as a Noninvasive Method to Evaluate Inspiratory Effort in Patients on Pressure Support Ventilation. Respir Care 2025. [PMID: 40397651 DOI: 10.1089/respcare.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Background: The Flow Index was recently developed as a bedside method based on flow waveforms to assess patient inspiratory effort during invasive mechanical ventilation. The aim of this study is to externally validate the Flow Index by assessing its ability to identify low and high inspiratory effort breaths. Methods: Secondary analysis of a randomized controlled trial. The association between Flow Index and patient inspiratory effort (pressure generated by the respiratory muscles [ΔPmus] and pressure-time product from the start of inspiratory flow [PTPinsp]) was evaluated using linear mixed effects models. The discrimination capacity (area under the curve [AUC]) of the Flow Index to identify low and high inspiratory effort breaths was analyzed. Results: A total of 1,095 breaths from 38 subjects were included in the analysis. Flow Index had moderate discriminatory power in identifying low inspiratory effort breaths (AUC of 0.73 and 0.77 for low inspiratory effort defined with ΔPmus and PTPinsp, respectively). Discriminatory power in identifying high inspiratory effort breaths was low (AUC of 0.68 and 0.65 for ΔPmus and PTPinsp, respectively). Conclusions: Flow Index demonstrated moderate discriminatory power in identifying low inspiratory effort breaths, whereas discriminatory power in identifying high inspiratory effort breaths was low.
Collapse
Affiliation(s)
- Federica Fusina
- Drs. Fusina, Albani, and Natalini are affiliated with Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
- Dr. Fusina, Dr. de Vries, and Prof. Tuinman are affiliated with Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Filippo Albani
- Drs. Fusina, Albani, and Natalini are affiliated with Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Heder J de Vries
- Dr. Fusina, Dr. de Vries, and Prof. Tuinman are affiliated with Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Prof. Tuinman is affiliated with Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Luigi Pisani
- Dr. Pisani is affiliated with Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", Bari, Italy
- Dr. Pisani is affiliated with Mahidol Oxford Tropical Research Unit (MORU), Bangkok, Thailand
| | - Giuseppe Natalini
- Drs. Fusina, Albani, and Natalini are affiliated with Department of Anesthesia and Intensive Care, Fondazione Poliambulanza, Brescia, Italy
| | - Pieter R Tuinman
- Dr. Fusina, Dr. de Vries, and Prof. Tuinman are affiliated with Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, The Netherlands
- Prof. Tuinman is affiliated with Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Prof. Tuinman is affiliated with Amsterdam Leiden IC Focused Echography (ALIFE, http://www.alifeofpocus.com), Amsterdam, The Netherlands
- Prof. Tuinman is affiliated with Amsterdam Institute for Immunity and Infectious Diseases, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leo Heunks
- Prof. Heunks is affiliated withDepartment of Intensive Care Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Perez J, Brandan L, Telias I. Monitoring patients with acute respiratory failure during non-invasive respiratory support to minimize harm and identify treatment failure. Crit Care 2025; 29:147. [PMID: 40205493 PMCID: PMC11983977 DOI: 10.1186/s13054-025-05369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Non-invasive respiratory support (NRS), including high flow nasal oxygen therapy, continuous positive airway pressure and non-invasive ventilation, is a cornerstone in the management of critically ill patients who develop acute respiratory failure (ARF). Overall, NRS reduces the work of breathing and relieves dyspnea in many patients with ARF, sometimes avoiding the need for intubation and invasive mechanical ventilation with variable efficacy across diverse clinical scenarios. Nonetheless, prolonged exposure to NRS in the presence of sustained high respiratory drive and effort can result in respiratory muscle fatigue, cardiovascular collapse, and impaired oxygen delivery to vital organs, leading to poor outcomes in patients who ultimately fail NRS and require intubation. Assessment of patients' baseline characteristics before starting NRS, close physiological monitoring to evaluate patients' response to respiratory support, adjustment of device settings and interface, and, most importantly, early identification of failure or of paramount importance to avoid the negative consequences of delayed intubation. This review highlights the role of respiratory monitoring across various modalities of NRS in patients with ARF including dyspnea, general respiratory parameters, measures of drive and effort, and lung imaging. It includes technical specificities related to the target population and emphasizes the importance of clinicians' physiological understanding and tailoring clinical decisions to individual patients' needs.
Collapse
Affiliation(s)
- Joaquín Perez
- Department of Physical Therapy and Rehabilitation, Anchorena San Martín Clinic, Buenos Aires, Argentina
- Department of Emergency Medicine, Carlos G. Durand Hospital, Buenos Aires, Argentina
| | - Luciano Brandan
- Department of Physical Therapy and Rehabilitation, Clínica del Parque, Ciudad Autónoma de Buenos Aires, Argentina
- Department of Physical Therapy and Rehabilitation, Eva Perón Hospital, Buenos Aires, Argentina
| | - Irene Telias
- Division of Respirology and Critical Care Medicine, University Health Network and Sinai Health System, Toronto, Canada.
- Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, Toronto, Canada.
- Medical-Surgical-Neuro-Intensive Care Unit, Toronto Western Hospital, University Health Network, 399 Bathurst St., Room 2McL 411C, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
5
|
Combet M, Coman B, Telias I. Monitoring and preserving diaphragmatic function in mechanical ventilation. Curr Opin Crit Care 2025:00075198-990000000-00265. [PMID: 40205970 DOI: 10.1097/mcc.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
PURPOSE OF REVIEW This review summarizes the evidence on clinical outcomes related to diaphragm dysfunction, providing an overview on available monitoring tools and strategies for its prevention and treatment. RECENT FINDINGS Long-term adverse functional outcomes in intensive care survivors are well documented, especially in patients with prolonged mechanical ventilation. Because diaphragm weakness is highly prevalent and strongly associated with weaning failure, a link between diaphragm weakness and adverse functional outcomes is probable. Mechanisms of critical illness-associated diaphragm weakness are complex and include ventilator-related myotrauma through various pathways (i.e. over-assistance, under-assistance, eccentric, expiratory). Given this potential clinical impact, research on preventive and therapeutic strategies is growing including the development of ventilation strategies aiming at protecting both the lung and the diaphragm. Phrenic nerve stimulation and specific rehabilitation strategies also appear promising. SUMMARY Diaphragm dysfunction is associated with adverse clinical outcomes in ventilated patients; therefore, their inspiratory effort and function should be monitored. Whenever possible, and without compromising lung protection, moderate inspiratory effort should be targeted. Phrenic nerve stimulation and specific rehabilitation strategies are promising to prevent and treat diaphragm dysfunction, but further evidence is needed before widespread implementation.
Collapse
Affiliation(s)
- Margot Combet
- Médecine Intensive-Réanimation (Département "R3S"), Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Sorbonne Université, Paris
| | - Briar Coman
- Division of Respirology and Critical Care Medicine, University Health Network and Sinai Health System
- Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto
- Medical-Surgical-Neuro-Intensive Care Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Irene Telias
- Division of Respirology and Critical Care Medicine, University Health Network and Sinai Health System
- Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto
- Medical-Surgical-Neuro-Intensive Care Unit, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
6
|
Carteaux G, Coudroy R. Monitoring effort and respiratory drive in patients with acute respiratory failure. Curr Opin Crit Care 2025:00075198-990000000-00264. [PMID: 40205969 DOI: 10.1097/mcc.0000000000001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
PURPOSE OF REVIEW Accurate monitoring of respiratory drive and inspiratory effort is crucial for optimizing ventilatory support during acute respiratory failure. This review evaluates current and emerging bedside methods for assessing respiratory drive and effort. RECENT FINDINGS While electrical activity of the diaphragm and esophageal pressure remain the reference standards for assessing respiratory drive and effort, their clinical utility is largely limited to research. At the bedside, airway occlusion maneuvers are the most useful tools: P0.1 is a reliable marker of drive and detects abnormal inspiratory efforts, while occlusion pressure (Pocc) may outperform P0.1 in identifying excessive effort. The Pressure-Muscle-Index (PMI) can help detecting insufficient inspiratory effort, though its accuracy depends on obtaining a stable plateau pressure. Other techniques, such as central venous pressure swings (ΔCVP), are promising but require further investigation. Emerging machine learning and artificial intelligence based algorithms could play a pivotal role in automated respiratory monitoring in the near future. SUMMARY Although Pes and EAdi remain reference methods, airway occlusion maneuvers are currently the most practical bedside tools for monitoring respiratory drive and effort. Noninvasive alternatives such as ΔCVP deserve further evaluation. Artificial intelligence and machine learning may soon provide automated solutions for bedside monitoring of respiratory drive and effort.
Collapse
Affiliation(s)
- Guillaume Carteaux
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil
| | - Rémi Coudroy
- Service de Médecine Intensive Réanimation, CHU de Poitiers
- INSERM CIC1402, IS-ALIVE Research Group, Université de Poitiers, Poitiers, France
| |
Collapse
|
7
|
Gogniat E, Steinberg E, Tiribelli N, Setten M, Gutierrez FJ, Plotnikow GA. Validation of Airway Occlusion Pressure as a Method of Assessing Breathing Effort During Noninvasive Ventilation. Respir Care 2025; 70:368-376. [PMID: 39969921 DOI: 10.1089/respcare.12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Background: The airway-occlusion pressure is used to estimate the muscle pressure (P mus ) and the occlusion pressure at 100 ms (P 0 .1 ) to assess respiratory drive in patients on mechanical ventilation. However, the validity of these maneuvers during noninvasive ventilation (NIV) has not been evaluated. This study was designed to validate the airway-occlusion pressure and the P 0 .1 described for mechanical ventilation during NIV in a bench model. Methods: This was a bench observational prospective study carried out during January and February 2024 in the ICU laboratory of the Hospital Británico of Buenos Aires. Results: In the non-leakage NIV scenarios with oronasal and total face mask, the NIV-airway-occlusion pressure increased with greater P mus (P < .001). For a programmed P mus of 5 cm H2O, values around 4.5 cm H2O were recorded for both oronasal and total face masks. At 10 cm H2O, the values were ∼8 cm H2O, and at 15 cm H2O, they were ∼11 cm H2O. With leaks, this difference worsened as leakage increased and the effort decreased. In the Bland-Altman analysis between mechanical ventilation-airway-occlusion pressure and NIV-airway-occlusion pressure without leakage for oronasal and total face masks, we found a good agreement for the 3 levels of P mus with both types of masks. With regard to the values of NIV-airway-occlusion pressure with the helmet, Bland-Altman analysis showed a high bias and random error. Multivariate analysis found that NIV-airway-occlusion pressure depends on the type of interface, increased with P mus , and decreased as leakage increased. The agreement of NIV-P 0 .1 was not good across all noninvasive measurements. Conclusions: This study constitutes a relevant contribution in the validation of indices to assess P mus during NIV. In a laboratory setting, the measurement of airway-occlusion pressure in NIV may be used to assess effort estimation in the absence of leakage; however, it will likely be underestimated. P 0 .1 proved to be an unreliable method. These findings suggest the feasibility of assessing muscle effort during NIV.
Collapse
Affiliation(s)
- Emiliano Gogniat
- Messrs Gogniat and Plotnikow are affiliated with Servicio de Rehabilitación, Unidad de Terapia Intensiva, Hospital Británico de Buenos Aires, Buenos Aires City, Argentina
- Messrs Gogniat and Steinberg, Tiribelli, Setten, Dr. Gutierrez, and Mr. Plotnikow are affiliated with the Argentinian Critical Care Society, Buenos Aires City, Argentina
| | - Emilio Steinberg
- Messrs Gogniat and Steinberg, Tiribelli, Setten, Dr. Gutierrez, and Mr. Plotnikow are affiliated with the Argentinian Critical Care Society, Buenos Aires City, Argentina
- Mr. Steinberg is affiliated with Sección de Rehabilitación y Cuidados Respiratorios, Servicio de Kinesiología, Hospital Italiano de Buenos Aires, Buenos Aires City, Argentina
| | - Norberto Tiribelli
- Messrs Gogniat and Steinberg, Tiribelli, Setten, Dr. Gutierrez, and Mr. Plotnikow are affiliated with the Argentinian Critical Care Society, Buenos Aires City, Argentina
- Mr. Tiribelli is affiliated with the CMPFA Churruca Visca, Buenos Aires City, Argentina. Mr. Setten is affiliated with the Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" Buenos Aires City, Argentina
| | - Mariano Setten
- Messrs Gogniat and Steinberg, Tiribelli, Setten, Dr. Gutierrez, and Mr. Plotnikow are affiliated with the Argentinian Critical Care Society, Buenos Aires City, Argentina
| | - Facundo J Gutierrez
- Messrs Gogniat and Steinberg, Tiribelli, Setten, Dr. Gutierrez, and Mr. Plotnikow are affiliated with the Argentinian Critical Care Society, Buenos Aires City, Argentina
- Dr. Gutierrez is affiliated with the Unidad de Terapia Intensiva, Hospital Británico de Buenos Aires, Buenos Aires City, Argentina
| | - Gustavo A Plotnikow
- Messrs Gogniat and Plotnikow are affiliated with Servicio de Rehabilitación, Unidad de Terapia Intensiva, Hospital Británico de Buenos Aires, Buenos Aires City, Argentina
- Messrs Gogniat and Steinberg, Tiribelli, Setten, Dr. Gutierrez, and Mr. Plotnikow are affiliated with the Argentinian Critical Care Society, Buenos Aires City, Argentina
| |
Collapse
|
8
|
Rudolph MW, Sietses M, Koopman AA, Blokpoel RG, Kneyber MC. Airway Occlusion Pressure and P0.1 to Estimate Inspiratory Effort and Respiratory Drive in Ventilated Children. Pediatr Crit Care Med 2025; 26:e498-e506. [PMID: 39945574 PMCID: PMC11960681 DOI: 10.1097/pcc.0000000000003697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
OBJECTIVE To compare the level of agreement between proximal (near the subject) and distal (inside the ventilator) measured airway occlusion pressure at 100 ms (P0.1) and occlusion pressure (Δ Pocc ), and to study the correlation between Δ Pocc and peak-to-trough esophageal pressure (Δ Pes ). DESIGN Secondary analysis of prospectively collected physiology dataset (2021-2022). SETTING Medical-surgical 20-bed PICU. PATIENTS Children younger than 18 years with and without acute lung injury ventilated greater than 24 hours and spontaneously breathing with appropriate triggering of the ventilator. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Data from three expiratory hold maneuvers (with a maximum of three breaths during each maneuver) in 74 subjects (118 measurements) with median age 3 months (interquartile range 1-17), and primary respiratory failure due to a pulmonary infection in 41/74 (55.4%) were studied. The median proximal ∆ Pocc was 6.7 cm H 2 O (3.1-10.7) and median P0.1 4.9 cm H 2 O (4.1-6.0) for the first breath from the maneuver; both increased significantly ( p < 0.001) with the subsequent two breaths during the same maneuver. Median distal ∆ Pocc was 6.8 (2.9-10.8) and P0.1 4.6 (3.9-5.6) cm H 2 O; both increased significantly ( p < 0.001) with the two subsequent breaths. Proximal and distal Δ Pocc ( r > 0.99, p < 0.001) and P0.1 ( r > 0.80, p < 0.001) were correlated. Correlation between ventilator displayed and Y-piece measured Δ Pocc ( r > 0.99) and P0.1 ( r = 0.85) was good. Mean ( sd ) difference for Δ Pocc was 0.13 (0.21); levels of agreement were -0.28 and 0.54. For P0.1, mean ( sd ) difference was -0.36 (1.14) and levels of agreement -2.61 and 1.88. There was a high correlation between Δ Pes and ∆ Pocc ( r = 0.92) for the same breath and a good correlation with Δ Pes from the preceding breath ( r = 0.76). There was a poor correlation with the transpulmonary pressure ( r = 0.37). CONCLUSIONS Δ Pocc is not affected by measurement site, whereas P0.1 may be overestimated or underestimated. Δ Pocc was highly correlated with the peak-to-trough esophageal pressure, supporting the concept that inspiratory effort can also be quantified noninvasively by measuring Δ Pocc .
Collapse
Affiliation(s)
- Michelle W. Rudolph
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maaike Sietses
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alette A. Koopman
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert G.T. Blokpoel
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin C.J. Kneyber
- Department of Paediatrics, Division of Paediatric Critical Care Medicine, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Critical Care, Anaesthesiology, Peri-operative and Emergency Medicine (CAPE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Lv WY, Liu S, Zhang L, Zhou JX. Assessing agreement among non-invasive indicators for inspiratory effort during pressure support ventilation. Front Med (Lausanne) 2025; 12:1561017. [PMID: 40109733 PMCID: PMC11919886 DOI: 10.3389/fmed.2025.1561017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Background During pressure support ventilation (PSV), the accuracy of non-invasive indicators in diagnosing high or low inspiratory effort has been validated. However, the correlation and agreement of these indicators remain unclear. This study aims to investigate the correlation and agreement among non-invasive inspiratory effort indicators, and to compare characteristics of inspiratory effort in neurocritical and non-neurocritical patients. Methods This was a single-centre prospective observational study. We collected three non-invasive inspiratory effort indicators, pressure muscular index (PMI), the maximal negative swing of airway pressure during expiratory occlusion (ΔPocc), and the airway occlusion pressure during the first 100ms (P0.1). Cutoff values for these indicators derived from esophageal pressure-time product (PTPmus) were chosen for this study. The correlation and agreement of these indicators were analyzed using Spearman's rank correlation test and linear weighted Kappa analysis. Characteristics of PSV settings and inspiratory effort in neurocritical and non-neurocritical patients were compared. Results Ninety-seven patients were enrolled in this study. Correlation analysis showed a moderate correlation between PMI and ΔPocc (rho = -0.524, p < 0.001), ΔPocc and P0.1 (rho = 0.588, p < 0.001), while no correlation between PMI and P0.1 (rho = -0.140, p = 0.172). There was a moderate agreement between ΔPocc and P0.1 (k = 0.459, p < 0.001), a fair agreement between PMI and ΔPocc (k = 0.362, p < 0.001), but no agreement between PMI and P0.1 (k = 0.134, p = 0.072). The correlation of these indicators was similar in neurocritical patients compared with non-neurocritical patients, but agreement was poor. Conclusion The study showed that PMI and ΔPocc had moderate correlation and fair agreement, ΔPocc and P0.1 had moderate correlation and agreement, while PMI and P0.1 had no correlation and agreement.
Collapse
Affiliation(s)
- Wen-Yi Lv
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Emergency and Critical Care Center, Clinical and Research Center on Acute Lung Injury, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Emergency and Critical Care Center, Clinical and Research Center on Acute Lung Injury, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Su R, Zhang L, Wang YM, Miao MY, Wang S, Cao Y, Zhou JX. Effects of cipepofol on breathing patterns, respiratory drive, and inspiratory effort in mechanically ventilated patients. Front Med (Lausanne) 2025; 12:1539238. [PMID: 40070647 PMCID: PMC11893854 DOI: 10.3389/fmed.2025.1539238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Background Cipepofol is a highly selective gamma-aminobutyric acid A receptor potentiator. As a new sedative drug, detailed studies on its respiratory effects are further needed. The present study aims to investigate the effects of cipepofol on breathing patterns, respiratory drive, and inspiratory effort in mechanically ventilated patients. Methods In this one-arm physiological study, cipepofol was initiated at 0.3 mg/kg/h and increased by 0.1 mg/kg/h every 30 min until reaching 0.8 mg/kg/h. Discontinuation criteria were Richmond Agitation and Sedation Scale (RASS) score ≤ -4 or respiratory rate (RR) < 8 breaths/min or pulse oxygen saturation (SpO2) < 90%. The primary outcomes were changes from baseline in respiratory variables [RR, tidal volume (VT), minute ventilation (Vmin), airway occlusion pressure at 100 msec (P0.1), pressure muscle index (PMI), expiratory occlusion pressure (Pocc)] at 30 min after 0.3 mg/kg/h cipepofol infusion. The secondary outcomes included changes in respiratory variables, cardiorespiratory variables, and RASS scores at rates of cipepofol from 0.3 to 0.8 mg/kg/h. Results 20 patients were enrolled and all of them completed the cipepofol infusion rate at 0.3 mg/kg/h, achieving RASS score of -2 to +1. For the primary outcomes, there was a significant reduction in VT (390.9, [356.6-511.0] vs. 451.6 [393.5-565.9], p = 0.002), while changes in RR (16.7 ± 2.7 vs. 16.2 ± 3.4, p = 0.465) and Vmin (7.2 ± 1.8 vs. 7.5 ± 1.9, p = 0.154) were not significant. The reductions in P0.1 (p = 0.020), PMI (p = 0.019), and Pocc (p = 0.007) were significant. For secondary outcomes, as the infusion rate of cipepofol increased from 0.3 to 0.8 mg/kg/h, there was a further decrease in VT (p = 0.002) and an increase in RR (p < 0.001), while the change in Vmin (p = 0.430) was not significant. RASS score (p < 0.001) was further decreased. Conclusion Cipepofol demonstrates the capability to achieve RASS score -2 to +1 in mechanically ventilated adult patients. The effect of cipepofol on breathing patterns was a decrease in VT, while changes in RR and Vmin were insignificant. The effect on respiratory drive and inspiratory effort significantly reduced P0.1, PMI, and Pocc. Clinical trial registration ClinicalTrials.gov, identifier NCT06287138. https://clinicaltrials.gov/study/NCT06287138.
Collapse
Affiliation(s)
- Rui Su
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Yue Miao
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuya Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cao
- Haisco Pharmaceutical Group Co. Ltd., Chengdu, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center on Acute Lung Injury, Emergency and Critical Care Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Souza JMFD, Amato MBP, Costa ELV, Troster EJ. Are we prepared to monitor and prevent patient self-inflicted lung injury (P-SILI) during mechanical ventilation in pediatric patients? EINSTEIN-SAO PAULO 2025; 23:eCE1522. [PMID: 39969024 PMCID: PMC11869787 DOI: 10.31744/einstein_journal/2025ce1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 02/20/2025] Open
Affiliation(s)
| | | | | | - Eduardo Juan Troster
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| |
Collapse
|
12
|
van den Berg MJW, Heunks L, Doorduin J. Advances in achieving lung and diaphragm-protective ventilation. Curr Opin Crit Care 2025; 31:38-46. [PMID: 39560149 DOI: 10.1097/mcc.0000000000001228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
PURPOSE OF REVIEW Mechanical ventilation may have adverse effects on diaphragm and lung function. Lung- and diaphragm-protective ventilation is an approach that challenges the clinician to facilitate physiological respiratory efforts, while maintaining minimal lung stress and strain. Here, we discuss the latest advances in monitoring and interventions to achieve lung- and diaphragm protective ventilation. RECENT FINDINGS Noninvasive ventilator maneuvers (P0.1, airway occlusion pressure, pressure-muscle index) can accurately detect low and excessive respiratory efforts and high lung stress. Additional monitoring techniques include esophageal manometry, ultrasound, electrical activity of the diaphragm, and electrical impedance tomography. Recent trials demonstrate that a systematic approach to titrating inspiratory support and sedation facilitates lung- and diaphragm protective ventilation. Titration of positive-end expiratory pressure and, if available, veno-venous extracorporeal membrane oxygenation sweep gas flow may further modulate neural respiratory drive and effort to facilitate lung- and diaphragm protective ventilation. SUMMARY Achieving lung- and diaphragm-protective ventilation may require more than a single intervention; it demands a comprehensive understanding of the (neuro)physiology of breathing and mechanical ventilation, along with the application of a series of interventions under close monitoring. We suggest a bedside-approach to achieve lung- and diaphragm protective ventilation targets.
Collapse
Affiliation(s)
- Maarten J W van den Berg
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
13
|
He G, Han Y, Zhang L, He C, Cai H, Zheng X. Respiratory effort in mechanical ventilation weaning Prediction: An observational, case-control study. Intensive Crit Care Nurs 2025; 86:103831. [PMID: 39265413 DOI: 10.1016/j.iccn.2024.103831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The diaphragm is crucial for ventilator weaning, but its specific impact on weaning indicators needs further clarification. This study investigated the variability in weaning outcomes across different diaphragm function populations and the value of respiratory drive and inspiratory effort in weaning. METHODS This observational case-control study enrolled patients on mechanical ventilation for more than 48 h and completed a 30-minute spontaneous breathing trial (SBT) with pressure-support ventilation for the first time. After the SBT, airway pressure at 100 ms during occlusion (P0.1), inspiratory effort, and diaphragmatic ultrasound were evaluated to predict weaning outcomes. Weaning failure was defined as re-intubation within 48 h of weaning, the need for therapeutic non-invasive ventilation, or death. RESULTS 68 patients with a mean age of 63.21 ± 15.15 years were included. In patients with diaphragm thickness (DT) ≥ 2 mm, P0.1 (P=0.002), pressure-muscle index (PMI) (P=0.012), and occluded expiratory airway pressure swing (ΔPocc) (P=0.030) were significantly higher in those who failed weaning. Conversely, for patients with DT<2 mm, PMI (P=0.003) and ΔPocc (P=0.002) were lower in the weaning failure group. Additionally, within the DT≥2 mm group, P0.1 demonstrated a higher area under the curve (AUC) for weaning prediction (0.889 vs. 0.739) compared to those with DT<2 mm. CONCLUSIONS PMI and ΔPocc are predictive of weaning outcomes in patients with diaphragm thickness ≥ 2 mm, where the assessment value of P0.1 is notably higher. Diaphragm function significantly influences the accuracy of weaning predictions based on respiratory drive and inspiratory effort. IMPLICATIONS FOR CLINICAL PRACTICE Our findings indicate that the effectiveness of respiratory drive and inspiratory effort in predicting successful weaning from mechanical ventilation may vary across different patient populations. Diaphragm function plays a crucial role in weaning assessments, particularly when using P0.1, the pressure-muscle index (PMI), and occluded expiratory airway pressure swing (ΔPocc).
Collapse
Affiliation(s)
- Guojun He
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Yijiao Han
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Liang Zhang
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Chunfeng He
- Department of Respiratory Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Hongliu Cai
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| | - Xia Zheng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
14
|
van Oosten JP, Akoumianaki E, Jonkman AH. Monitoring respiratory muscles effort during mechanical ventilation. Curr Opin Crit Care 2025; 31:12-20. [PMID: 39560150 DOI: 10.1097/mcc.0000000000001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
PURPOSE OF REVIEW To summarize basic physiological concepts of breathing effort and outline various methods for monitoring effort of inspiratory and expiratory muscles. RECENT FINDINGS Esophageal pressure (Pes) measurement is the reference standard for respiratory muscle effort quantification, but various noninvasive screening tools have been proposed. Expiratory occlusion pressures (P0.1 and Pocc) could inform about low and high effort and the resulting lung stress, with Pocc outperforming P0.1 in identifying high effort. The pressure muscle index during an inspiratory hold could unveil inspiratory muscle effort, however obtaining a reliable inspiratory plateau can be difficult. Surface electromyography has the potential for inspiratory effort estimation, yet this is technically challenging for real-time assessment. Expiratory muscle activation is common in the critically ill warranting their assessment, that is, via gastric pressure monitoring. Expiratory muscle activation also impacts inspiratory effort interpretation which could result in both under- and overestimation of the resulting lung stress. There is likely a future role for machine learning applications to automate breathing effort monitoring at the bedside. SUMMARY Different tools are available for monitoring the respiratory muscles' effort during mechanical ventilation - from noninvasive screening tools to more invasive quantification methods. This could facilitate a lung and respiratory muscle-protective ventilation approach.
Collapse
Affiliation(s)
- Julien P van Oosten
- Intensive Care Volwassenen, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Evangelia Akoumianaki
- Adult Intensive Care Unit, University Hospital of Heraklion, Heraklion
- Medical School, University of Crete, Heraklion, Greece
| | - Annemijn H Jonkman
- Intensive Care Volwassenen, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Bassi T, Dianti J, Roman-Sarita G, Bellissimo C, Morris IS, Slutsky AS, Brochard L, Ferguson ND, Zhao Z, Yoshida T, Goligher EC. Effect of Higher or Lower PEEP on Pendelluft During Spontaneous Breathing Efforts in Acute Hypoxemic Respiratory Failure. Respir Care 2025; 70:126-133. [PMID: 39964850 DOI: 10.1089/respcare.12193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Background: In acute hypoxemic respiratory failure (AHRF), spontaneous breathing effort can generate excessive regional lung stress and strain manifesting as pendelluft. Higher PEEP may reduce pendelluft and reduce regional lung stress and strain during spontaneous breathing. This study aimed to establish whether higher or lower PEEP ameliorates pendelluft and to characterize factors determining the presence and magnitude of pendelluft during spontaneous breathing efforts. Methods: This study was a randomized crossover trial of higher versus lower PEEP applied after systematically initiating spontaneous breathing in subjects with moderate or severe AHRF. The presence and volume of pendelluft were assessed by electrical impedance tomography (EIT). Results: EIT recordings were available for 20 of 30 subjects enrolled in the trial. After initiating spontaneous breathing, 11/20 exhibited pendelluft (proportion 55% [95% CI 32-76]). Following PEEP titration, the prevalence of pendelluft was not different between higher versus lower PEEP levels (50% vs 50%, P = .55). When present, pendelluft volume was generally small (median 28 [interquartile range 8-93] mL) but ranged as high as 364 mL. Pendelluft was associated with higher respiratory effort (esophageal pressure [Pes] swing [ΔPes] median -15 cm H2O vs ΔPes median -8 cm H2O, P = .01), higher pulmonary flow resistance (median 8 cm H2O/L/s vs median 3 cm H2O/L/s, P < .001), and higher dynamic pulmonary elastance (median 5.0 cm H2O/mL/kg predicted body weight vs median 3.2 cm H2O/mL/kg predicted body weight, P = .03). Conclusions: Pendelluft reflecting increased regional lung stress and strain is likely common during spontaneous breathing effort in patients with AHRF but was not systematically affected by applying higher PEEP. The presence and magnitude of pendelluft depended on respiratory effort and lung mechanics.
Collapse
Affiliation(s)
- Thiago Bassi
- Drs Bassi, Slutsky, and Brochard are affiliated with Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jose Dianti
- Drs Dianti, Bellissimo, and Morris are affiliated with Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada
| | - Georgiana Roman-Sarita
- Ms Roman-Sarita is affiliated with Respiratory Therapy, Toronto General Hospital, Toronto, Ontario, Canada
| | - Catherine Bellissimo
- Drs Dianti, Bellissimo, and Morris are affiliated with Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada
| | - Idunn S Morris
- Drs Dianti, Bellissimo, and Morris are affiliated with Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; and Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada
| | - Arthur S Slutsky
- Drs Bassi, Slutsky, and Brochard are affiliated with Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Brochard
- Drs Bassi, Slutsky, and Brochard are affiliated with Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Drs Ferguson and Goligher are affiliated with Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, Toronto, Ontario, Canada; and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Zhanqi Zhao
- Dr Zhao is affiliated with School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China; and Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Takeshi Yoshida
- Dr Yoshida is affiliated with Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ewan C Goligher
- Drs Ferguson and Goligher are affiliated with Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada; Toronto General Hospital Research Institute, Toronto, Ontario, Canada; and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
von Düring S, Parhar KKS, Adhikari NKJ, Urner M, Kim SJ, Munshi L, Liu K, Fan E. Understanding ventilator-induced lung injury: The role of mechanical power. J Crit Care 2025; 85:154902. [PMID: 39241350 DOI: 10.1016/j.jcrc.2024.154902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Mechanical ventilation stands as a life-saving intervention in the management of respiratory failure. However, it carries the risk of ventilator-induced lung injury. Despite the adoption of lung-protective ventilation strategies, including lower tidal volumes and pressure limitations, mortality rates remain high, leaving room for innovative approaches. The concept of mechanical power has emerged as a comprehensive metric encompassing key ventilator parameters associated with the genesis of ventilator-induced lung injury, including volume, pressure, flow, resistance, and respiratory rate. While numerous animal and human studies have linked mechanical power and ventilator-induced lung injury, its practical implementation at the bedside is hindered by calculation challenges, lack of equation consensus, and the absence of an optimal threshold. To overcome the constraints of measuring static respiratory parameters, dynamic mechanical power is proposed for all patients, regardless of their ventilation mode. However, establishing a causal relationship is crucial for its potential implementation, and requires further research. The objective of this review is to explore the role of mechanical power in ventilator-induced lung injury, its association with patient outcomes, and the challenges and potential benefits of implementing a ventilation strategy based on mechanical power.
Collapse
Affiliation(s)
- Stephan von Düring
- Division of Critical Care Medicine, Department of Acute Medicine, Geneva University Hospitals (HUG) and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON, Canada.
| | - Ken Kuljit S Parhar
- Department of Critical Care Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada; O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada; Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada.
| | - Neill K J Adhikari
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.; Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON, Canada.
| | - Martin Urner
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Anesthesiology & Pain Medicine, University of Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada.
| | - S Joseph Kim
- Department of Medicine, University of Toronto, Toronto, ON, Canada; Division of Nephrology, University Health Network, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON, Canada.
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON, Canada.
| | - Kuan Liu
- Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON, Canada.
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
17
|
Bulleri E, Bambi S, Lucchini A. Quantifying inspiratory effort: a future challenge for ICU nurses? Intensive Crit Care Nurs 2025; 86:103844. [PMID: 39378528 DOI: 10.1016/j.iccn.2024.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Enrico Bulleri
- Intensive Care Unit, Department of Anaesthesiology, Emergency and Intensive Care Medicine (DAEICM), Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland.
| | - Stefano Bambi
- Department of Health Sciences, University of Florence, Florence, Italy.
| | - Alberto Lucchini
- General Adult and Paediatric Intensive Care Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| |
Collapse
|
18
|
Messina A, Grieco DL, Alicino V, Matronola GM, Brunati A, Antonelli M, Chew MS, Cecconi M. Assessing fluid responsiveness by using functional hemodynamic tests in critically ill patients: a narrative review and a profile-based clinical guide. J Clin Monit Comput 2025:10.1007/s10877-024-01255-x. [PMID: 39831948 DOI: 10.1007/s10877-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Fluids are given with the purpose of increasing cardiac output (CO), but approximately only 50% of critically ill patients are fluid responders. Since the effect of a fluid bolus is time-sensitive, it diminuish within few hours, following the initial fluid resuscitation. Several functional hemodynamic tests (FHTs), consisting of maneuvers affecting heart-lung interactions, have been conceived to discriminate fluid responders from non-responders. Three main variables affect the reliability of FHTs in predicting fluid responsiveness: (1) tidal volume; (2) spontaneous breathing activity; (3) cardiac arrythmias. Most FTHs have been validated in sedated or even paralyzed ICU patients, since, historically, controlled mechanical ventilation with high tidal volumes was the preferred mode of ventilatory support. The transition to contemporary methods of invasive mechanical ventilation with spontaneous breathing activity impacts heart-lung interactions by modifying intrathoracic pressure, tidal volumes and transvascular pressure in lung capillaries. These alterations and the heterogeneity in respiratory mechanics (that is present both in healthy and injured lungs) subsequently influence venous return and cardiac output. Cardiac arrythmias are frequently present in critically ill patients, especially atrial fibrillation, and intuitively impact on FHTs. This is due to the random CO fluctuations. Finally, the presence of continuous CO monitoring in ICU patients is not standard and the assessment of fluid responsiveness with surrogate methods is clinically useful, but also challenging. In this review we provide an algorithm for the use of FHTs in different subgroups of ICU patients, according to ventilatory setting, cardiac rhythm and the availability of continuous hemodynamic monitoring.
Collapse
Affiliation(s)
- Antonio Messina
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano - Milan, 20089, Italy.
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy.
| | - Domenico Luca Grieco
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Valeria Alicino
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano - Milan, 20089, Italy
| | - Guia Margherita Matronola
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| | - Andrea Brunati
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Michelle S Chew
- Department of Anaesthesia and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maurizio Cecconi
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano - Milan, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, via Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| |
Collapse
|
19
|
Phoophiboon V, Rodrigues A, Vieira F, Ko M, Madotto F, Schreiber A, Sun N, Sousa MLA, Docci M, Brault C, Menga LS, Telias I, Piraino T, Goligher EC, Brochard L. Ventilation distribution during spontaneous breathing trials predicts liberation from mechanical ventilation: the VISION study. Crit Care 2025; 29:11. [PMID: 39773268 PMCID: PMC11705700 DOI: 10.1186/s13054-024-05243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Predicting complete liberation from mechanical ventilation (MV) is still challenging. Electrical impedance tomography (EIT) offers a non-invasive measure of regional ventilation distribution and could bring additional information. RESEARCH QUESTION Whether the display of regional ventilation distribution during a Spontaneous Breathing Trial (SBT) could help at predicting early and successful liberation from MV. STUDY DESIGN AND METHODS Patients were monitored with EIT during the SBT. The tidal image was divided into ventral and dorsal regions and displayed simultaneously. We explored the ventral-to-dorsal ventilation difference in percentage, and its association with clinical outcomes. Liberation success was defined pragmatically as passing SBT followed by extubation within 24 h without reintubation for 7 days. Failure included use of rescue therapy, reintubation within 7 days, tracheostomy, and not being extubated within 24 h after succesful SBT. A training cohort was used for discovery, followed by a validation cohort. RESULTS Among a total of 98 patients analyzed, 85 passed SBT (87%), but rapid liberation success occurred only in 40; 13.5% of extubated patients required reintubation. From the first minutes to the entire SBT duration, the absolute ventral-to-dorsal difference was consistently smaller in liberation success compared to all subgroups of failure (p < 0.0001). An absolute difference at 5 min of SBT > 20% was associated with failure of liberation, with sensitivity and specificity of 71% and 78% and positive predictive value 81% in a validation cohort. CONCLUSION During SBT, a large ventral-to-dorsal difference in ventilation indicated by EIT may help to rapidly identify patients at risk of liberation failure.
Collapse
Affiliation(s)
- Vorakamol Phoophiboon
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Antenor Rodrigues
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando Vieira
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Matthew Ko
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Fabiana Madotto
- Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annia Schreiber
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Nannan Sun
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Mayson L A Sousa
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Mattia Docci
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Clement Brault
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Intensive Care Department, Amiens-Picardie University Hospital, Amiens, France
| | - Luca S Menga
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Irene Telias
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Medical Surgical Neuro ICU, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Thomas Piraino
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Laurent Brochard
- Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Cruces P. Status Asthmaticus: Approaches in Mechanical Ventilation. Pediatr Crit Care Med 2024:00130478-990000000-00408. [PMID: 39660971 DOI: 10.1097/pcc.0000000000003618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Affiliation(s)
- Pablo Cruces
- Unidad de Paciente Crítico Pediátrico, Departamento de Pediatría, Hospital El Carmen de Maipú, Santiago, Chile
- Centro de Investigación de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
21
|
Giosa L, Collins PD, Shetty S, Lubian M, Del Signore R, Chioccola M, Pugliese F, Camporota L. Bedside Assessment of the Respiratory System During Invasive Mechanical Ventilation. J Clin Med 2024; 13:7456. [PMID: 39685913 DOI: 10.3390/jcm13237456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Assessing the respiratory system of a patient receiving mechanical ventilation is complex. We provide an overview of an approach at the bedside underpinned by physiology. We discuss the importance of distinguishing between extensive and intensive ventilatory variables. We outline methods to evaluate both passive patients and those making spontaneous respiratory efforts during assisted ventilation. We believe a comprehensive assessment can influence setting mechanical ventilatory support to achieve lung and diaphragm protective ventilation.
Collapse
Affiliation(s)
- Lorenzo Giosa
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| | - Patrick D Collins
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| | - Sridevi Shetty
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Marta Lubian
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Riccardo Del Signore
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Mara Chioccola
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Francesca Pugliese
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Luigi Camporota
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
22
|
Battaglini D, Rocco PRM. Challenges in Transitioning from Controlled to Assisted Ventilation in Acute Respiratory Distress Syndrome (ARDS) Management. J Clin Med 2024; 13:7333. [PMID: 39685790 DOI: 10.3390/jcm13237333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) presents significant challenges in critical care, primarily due to its inflammatory nature, which leads to impaired gas exchange and respiratory mechanics. While mechanical ventilation (MV) is essential for patient support, the transition from controlled to assisted ventilation is complex and may be associated with intensive care unit-acquired weakness, ventilator-induced diaphragmatic dysfunction and patient self-inflicted lung injury. This paper explores the multifaceted challenges encountered during this transition, with a focus on respiratory effort, sedation management, and monitoring techniques, and investigates innovative approaches to enhance patient outcomes. The key strategies include optimizing sedation protocols, employing advanced monitoring methods like esophageal pressure measurements, and implementing partial neuromuscular blockade to prevent excessive respiratory effort. We also emphasize the importance of personalized treatment plans and the integration of artificial intelligence to facilitate timely transitions. By highlighting early rehabilitation techniques, continuously assessing the respiratory drive, and fostering collaboration among multidisciplinary teams, clinicians can improve the transition from controlled to assisted MV, ultimately enhancing recovery and long-term respiratory health in patients with ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro 21941-598, RJ, Brazil
| |
Collapse
|
23
|
Mauri T, Grieco DL, Spinelli E, Leali M, Perez J, Chiavieri V, Rosà T, Ferrara P, Scaramuzzo G, Antonelli M, Spadaro S, Grasselli G. Personalized positive end-expiratory pressure in spontaneously breathing patients with acute respiratory distress syndrome by simultaneous electrical impedance tomography and transpulmonary pressure monitoring: a randomized crossover trial. Intensive Care Med 2024; 50:2125-2137. [PMID: 39527121 PMCID: PMC11588931 DOI: 10.1007/s00134-024-07695-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Personalized positive end-expiratory pressure (PEEP) might foster lung and diaphragm protection in patients with acute respiratory distress syndrome (ARDS) who are undergoing pressure support ventilation (PSV). We aimed to compare the physiologic effects of personalized PEEP set according to synchronized electrical impedance tomography (EIT) and driving transpulmonary pressure (∆PL) monitoring against a classical lower PEEP/FiO2 table in intubated ARDS patients undergoing PSV. METHODS A cross-over randomized multicenter study was conducted in 30 ARDS patients with simultaneous recording of the airway, esophageal and transpulmonary pressure, together with EIT during PSV. Following a decremental PEEP trial (18 cmH2O to 4 cmH2O), PEEPEIT-∆PL was identified as the level with the smallest difference between lung overdistension and collapse. A low PEEP/FiO2 table was used to select PEEPTABLE. Each PEEP strategy was applied for 20 min, and physiologic data were collected at the end of each step. RESULTS The PEEP trial was well tolerated. Median PEEPEIT-∆PL was higher than PEEPTABLE (10 [8-12] vs. 8 [5-10] cmH2O; P = 0.021) and, at the individual patient level, PEEPEIT-∆PL level differed from PEEPTABLE in all patients. Overall, PEEPEIT-∆PL was associated with lower dynamic ∆PL (P < 0.001) and pressure-time product (P < 0.001), but there was variability among patients. PEEPEIT-∆PL also decreased respiratory drive and effort (P < 0.001), improved regional lung mechanics (P < 0.05) and reversed lung collapse (P = 0.007) without increasing overdistension (P = 0.695). CONCLUSION Personalized PEEP selected using synchronized EIT and transpulmonary pressure monitoring could be associated with reduced dynamic lung stress and metabolic work of breathing in ARDS patients undergoing PSV.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy.
| | - Domenico L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Joaquin Perez
- Department of Physical Therapy and Rehabilitation, Anchorena San Martín Clinic, Buenos Aires, Argentina
- Department of Emergency Medicine, Carlos G. Durand Hospital, Buenos Aires, Argentina
| | - Valentina Chiavieri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Pierluigi Ferrara
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, Sant'Anna University Hospital, Ferrara, Italy
| | - Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Morphology, Surgery and Experimental Medicine, Intensive Care Unit, Sant'Anna University Hospital, Ferrara, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency, Foundation IRCCS Ca' Granda Maggiore Policlinico Hospital, Milan, Italy
| |
Collapse
|
24
|
Sun J, Gao J, Huang GD, Zhu XG, Yang YP, Zhong WX, Geng L, Zhou MJ, Xu Q, Feng QM, Zhao G. The impact of a lung-protective ventilation mode using transpulmonary driving pressure titrated positive end-expiratory pressure on the prognosis of patients with acute respiratory distress syndrome. J Clin Monit Comput 2024; 38:1405-1414. [PMID: 39158781 DOI: 10.1007/s10877-024-01198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE This study aimed to assess the impact of a lung-protective ventilation strategy utilizing transpulmonary driving pressure titrated positive end-expiratory pressure (PEEP) on the prognosis [mechanical ventilation duration, hospital stay, 28-day mortality rate and incidence of ventilator-associated pneumonia (VAP), survival outcome] of patients with Acute Respiratory Distress Syndrome (ARDS). METHODS A total of 105 ARDS patients were randomly assigned to either the control group (n = 51) or the study group (n = 53). The control group received PEEP titration based on tidal volume [A tidal volume of 6 mL/kg, flow rate of 30-60 L/min, frequency of 16-20 breaths/min, constant flow rate, inspiratory-to-expiratory ratio of 1:1 to 1:1.5, and a plateau pressure ≤ 30-35 cmH2O. PEEP was adjusted to maintain oxygen saturation (SaO2) at or above 90%, taking into account blood pressure], while the study group received PEEP titration based on transpulmonary driving pressure (Esophageal pressure was measured as a surrogate for pleural pressure using an esophageal pressure measurement catheter connected to the ventilator. Tidal volume and PEEP were adjusted based on the observed end-inspiratory and end-expiratory transpulmonary pressures, aiming to maintain a transpulmonary driving pressure below 15 cmH2O during mechanical ventilation. Adjustments were made 2-4 times per day). Statistical analysis and comparison were conducted on lung function indicators [oxygenation index (OI), arterial oxygen tension (PaO2), arterial carbon dioxide tension (PaCO2)] as well as other measures such as heart rate, mean arterial pressure, and central venous pressure in two groups of patients after 48 h of mechanical ventilation. The 28-day mortality rate, duration of mechanical ventilation, length of hospital stay, and ventilator-associated pneumonia (VAP) incidence were compared between the two groups. A 60-day follow-up was performed to record the survival status of the patients. RESULTS In the control group, the mean age was (55.55 ± 10.51) years, with 33 females and 18 males. The pre-ICU hospital stay was (32.56 ± 9.89) hours. The mean Acute Physiology and Chronic Health Evaluation (APACHE) II score was (19.08 ± 4.67), and the mean Murray Acute Lung Injury score was (4.31 ± 0.94). In the study group, the mean age was (57.33 ± 12.21) years, with 29 females and 25 males. The pre-ICU hospital stay was (33.42 ± 10.75) hours. The mean APACHE II score was (20.23 ± 5.00), and the mean Murray Acute Lung Injury score was (4.45 ± 0.88). They presented a homogeneous profile (all P > 0.05). Following intervention, significant improvements were observed in PaO2 and OI compared to pre-intervention values. The study group exhibited significantly higher PaO2 and OI compared to the control group, with statistically significant differences (all P < 0.05). After intervention, the study group exhibited a significant increase in PaCO2 (43.69 ± 6.71 mmHg) compared to pre-intervention levels (34.19 ± 5.39 mmHg). The study group's PaCO2 was higher than the control group (42.15 ± 7.25 mmHg), but the difference was not statistically significant (P > 0.05). There were no significant differences in hemodynamic indicators between the two groups post-intervention (all P > 0.05). The study group demonstrated significantly shorter mechanical ventilation duration and hospital stay, while 28-day mortality rate and incidence of ventilator-associated pneumonia (VAP) showed no significant differences. Kaplan-Meier survival analysis revealed a significantly better survival outcome in the study group at the 60-day follow-up (HR = 0.565, 95% CI: 0.320-0.999). CONCLUSION Lung-protective mechanical ventilation using transpulmonary driving pressure titrated PEEP effectively improves lung function, reduces mechanical ventilation duration and hospital stay, and enhances survival outcomes in patients with ARDS. However, further study is needed to facilitate the wider adoption of this approach.
Collapse
Affiliation(s)
- Jian Sun
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Jing Gao
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Guan-Dong Huang
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xiao-Guang Zhu
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yan-Ping Yang
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Wei-Xi Zhong
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Lei Geng
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Min-Jie Zhou
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Qing Xu
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Qi-Ming Feng
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China.
| | - Gang Zhao
- Emergency Medicine Department, Shanghai Sixth People's Hospital, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China.
| |
Collapse
|
25
|
Castellví-Font A, Goligher EC, Dianti J. Lung and Diaphragm Protection During Mechanical Ventilation in Patients with Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:863-875. [PMID: 39443003 DOI: 10.1016/j.ccm.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Patients with acute respiratory distress syndrome often require mechanical ventilation to maintain adequate gas exchange and to reduce the workload of the respiratory muscles. Although lifesaving, positive pressure mechanical ventilation can potentially injure the lungs and diaphragm, further worsening patient outcomes. While the effect of mechanical ventilation on the risk of developing lung injury is widely appreciated, its potentially deleterious effects on the diaphragm have only recently come to be considered by the broader intensive care unit community. Importantly, both ventilator-induced lung injury and ventilator-induced diaphragm dysfunction are associated with worse patient-centered outcomes.
Collapse
Affiliation(s)
- Andrea Castellví-Font
- Critical Care Department, Hospital del Mar de Barcelona, Critical Illness Research Group (GREPAC), Hospital del Mar Research Institute (IMIM), Passeig Marítim de la Barceloneta 25-29, Ciutat Vella, 08003, Barcelona, Spain; Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada; University Health Network/Sinai Health System, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada; Toronto General Hospital Research Institute, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada; Department of Physiology, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| | - Jose Dianti
- Critical Care Medicine Department, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Av. E. Galván 4102, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
26
|
Bianquis C, De Leo G, Morana G, Duarte-Silva M, Nolasco S, Vilde R, Tripipitsiriwat A, Viegas P, Purenkovs M, Duiverman M, Karagiannids C, Fisser C. Highlights from the Respiratory Failure and Mechanical Ventilation Conference 2024. Breathe (Sheff) 2024; 20:240105. [PMID: 39534488 PMCID: PMC11555592 DOI: 10.1183/20734735.0105-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
The Respiratory Intensive Care Assembly of the European Respiratory Society gathered in Berlin to organise the third Respiratory Failure and Mechanical Ventilation Conference in February 2024. The conference covered key points of acute and chronic respiratory failure in adults. During the 3-day conference ventilatory strategies, patient selection, diagnostic approaches, treatment and health-related quality of life topics were addressed by a panel of international experts. In this article, lectures delivered during the event have been summarised by early career members of the Assembly and take-home messages highlighted.
Collapse
Affiliation(s)
- Clara Bianquis
- Sorbonne Université-APHP, URMS 1158, Department R3S, Hôpital Pitié-Salpétriêre, Paris, France
| | - Giancarlo De Leo
- Pulmonology Department, Regional General Hospital ‘F. Miulli’, Acquaviva delle Fonti, Italy
| | - Giorgio Morana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marta Duarte-Silva
- Pulmonology Department, Hospital Santa Marta, Unidade Local de Saúde São José, Lisboa, Portugal
| | - Santi Nolasco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Respiratory Medicine Unit, Policlinico ‘G. Rodolico-San Marco’ University Hospital, Catania, Italy
| | - Rūdolfs Vilde
- Centre of Lung disease and Thoracic surgery, Pauls Stradins clinical university hospital, Riga, Latvia
- Department of internal medicine, Riga Stradins University, Riga, Latvia
| | - Athiwat Tripipitsiriwat
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Bangkok, Thailand
| | - Pedro Viegas
- Departamento de Pneumonologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Porto, Portugal
| | - Martins Purenkovs
- Centre of Pulmonology and Thoracic surgery, Pauls Stradiņš Clinical university hospital, Riga, Latvia
- Riga Stradiņš University, Riga, Latvia
| | - Marieke Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Christian Karagiannids
- Department of Pneumology and Critical Care Medicine, ARDS and ECMO Centre, Cologne-Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Cologne, Germany
| | - Christoph Fisser
- Department of Internal Medicine II University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Poddighe D, Van Hollebeke M, Rodrigues A, Hermans G, Testelmans D, Kalkanis A, Clerckx B, Gayan-Ramirez G, Gosselink R, Langer D. Respiratory muscle dysfunction in acute and chronic respiratory failure: how to diagnose and how to treat? Eur Respir Rev 2024; 33:240150. [PMID: 39631928 PMCID: PMC11615664 DOI: 10.1183/16000617.0150-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024] Open
Abstract
Assessing and treating respiratory muscle dysfunction is crucial for patients with both acute and chronic respiratory failure. Respiratory muscle dysfunction can contribute to the onset of respiratory failure and may also worsen due to interventions aimed at treatment. Evaluating respiratory muscle function is particularly valuable for diagnosing, phenotyping and assessing treatment efficacy in these patients. This review outlines established methods, such as measuring respiratory pressures, and explores novel techniques, including respiratory muscle neurophysiology assessments using electromyography and imaging with ultrasound.Additionally, we review various treatment strategies designed to support and alleviate the burden on overworked respiratory muscles or to enhance their capacity through training interventions. These strategies range from invasive and noninvasive mechanical ventilation approaches to specialised respiratory muscle training programmes. By summarising both established techniques and recent methodological advancements, this review aims to provide a comprehensive overview of the tools available in clinical practice for evaluating and treating respiratory muscle dysfunction. Our goal is to present a clear understanding of the current capabilities and limitations of these diagnostic and therapeutic approaches. Integrating advanced diagnostic methods and innovative treatment strategies should help improve patient management and outcomes. This comprehensive review serves as a resource for clinicians, equipping them with the necessary knowledge to effectively diagnose and treat respiratory muscle dysfunction in both acute and chronic respiratory failure scenarios.
Collapse
Affiliation(s)
- Diego Poddighe
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
- D. Poddighe and M. Van Hollebeke contributed equally to the manuscript and are shared first authors
| | - Marine Van Hollebeke
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
- D. Poddighe and M. Van Hollebeke contributed equally to the manuscript and are shared first authors
| | - Antenor Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Greet Hermans
- University Hospitals Leuven, Department of General Internal Medicine, Medical Intensive Care Unit, Leuven, Belgium
- Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dries Testelmans
- University Hospitals Leuven, Department of Respiratory Medicine, Leuven, Belgium
| | - Alexandros Kalkanis
- University Hospitals Leuven, Department of Respiratory Medicine, Leuven, Belgium
| | - Beatrix Clerckx
- University Hospitals Leuven, Department of General Internal Medicine, Medical Intensive Care Unit, Leuven, Belgium
- Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- KU Leuven, Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium
| | - Rik Gosselink
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
- Department of Health and Rehabilitation Sciences - Faculty of Medicine, Stellenbosch University, South Africa
| | - Daniel Langer
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium
| |
Collapse
|
28
|
Rodrigues A, Vieira F, Sklar MC, Damiani LF, Piraino T, Telias I, Goligher EC, Reid WD, Brochard L. Post-insufflation diaphragm contractions in patients receiving various modes of mechanical ventilation. Crit Care 2024; 28:310. [PMID: 39294653 PMCID: PMC11411742 DOI: 10.1186/s13054-024-05091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND During mechanical ventilation, post-insufflation diaphragm contractions (PIDCs) are non-physiologic and could be injurious. PIDCs could be frequent during reverse-triggering, where diaphragm contractions follow the ventilator rhythm. Whether PIDCs happens with different modes of assisted ventilation is unknown. In mechanically ventilated patients with hypoxemic respiratory failure, we aimed to examine whether PIDCs are associated with ventilator settings, patients' characteristics or both. METHODS One-hour recordings of diaphragm electromyography (EAdi), airway pressure and flow were collected once per day for up to five days from intubation until full recovery of diaphragm activity or death. Each breath was classified as mandatory (without-reverse-triggering), reverse-triggering, or patient triggered. Reverse triggering was further subclassified according to EAdi timing relative to ventilator cycle or reverse triggering leading to breath-stacking. EAdi timing (onset, offset), peak and neural inspiratory time (Tineuro) were measured breath-by-breath and compared to the ventilator expiratory time. A multivariable logistic regression model was used to investigate factors independently associated with PIDCs, including EAdi timing, amplitude, Tineuro, ventilator settings and APACHE II. RESULTS Forty-seven patients (median[25%-75%IQR] age: 63[52-77] years, BMI: 24.9[22.9-33.7] kg/m2, 49% male, APACHE II: 21[19-28]) contributed 2 ± 1 recordings each, totaling 183,962 breaths. PIDCs occurred in 74% of reverse-triggering, 27% of pressure support breaths, 21% of assist-control breaths, 5% of Neurally Adjusted Ventilatory Assist (NAVA) breaths. PIDCs were associated with higher EAdi peak (odds ratio [OR][95%CI] 1.01[1.01;1.01], longer Tineuro (OR 37.59[34.50;40.98]), shorter ventilator inspiratory time (OR 0.27[0.24;0.30]), high peak inspiratory flow (OR 0.22[0.20;0.26]), and small tidal volumes (OR 0.31[0.25;0.37]) (all P ≤ 0.008). NAVA was associated with absence of PIDCs (OR 0.03[0.02;0.03]; P < 0.001). Reverse triggering was characterized by lower EAdi peak than breaths triggered under pressure support and associated with small tidal volume and shorter set inspiratory time than breaths triggered under assist-control (all P < 0.05). Reverse triggering leading to breath stacking was characterized by higher peak EAdi and longer Tineuro and associated with small tidal volumes compared to all other reverse-triggering phenotypes (all P < 0.05). CONCLUSIONS In critically ill mechanically ventilated patients, PIDCs and reverse triggering phenotypes were associated with potentially modifiable factors, including ventilator settings. Proportional modes like NAVA represent a solution abolishing PIDCs.
Collapse
Affiliation(s)
- Antenor Rodrigues
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- St. Michael's Hospital, Room 4-709, 36 Queens St E, Toronto, M5B 1W8, Canada.
| | - Fernando Vieira
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael C Sklar
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - L Felipe Damiani
- Escuela de Ciencias de La Salud, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Thomas Piraino
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Irene Telias
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Division of Respirology, Department of Medicine, University Health Network and Mount Sinai Hospital, Toronto, ON, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - W Darlene Reid
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Canada
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Bootjeamjai P, Dianti J, Goligher EC. Noninvasive Longitudinal Monitoring of Respiratory Effort. Am J Respir Crit Care Med 2024; 210:838-840. [PMID: 38941128 DOI: 10.1164/rccm.202401-0100rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Paweenuch Bootjeamjai
- Interdepartmental Division of Critical Care Medicine and
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine and
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Adult Intensive Care Unit, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Balzani E, Murgolo F, Pozzi M, Di Mussi R, Bartolomeo N, Simonetti U, Brazzi L, Spadaro S, Bellani G, Grasso S, Fanelli V. Respiratory Drive, Effort, and Lung-Distending Pressure during Transitioning from Controlled to Spontaneous Assisted Ventilation in Patients with ARDS: A Multicenter Prospective Cohort Study. J Clin Med 2024; 13:5227. [PMID: 39274439 PMCID: PMC11396025 DOI: 10.3390/jcm13175227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Objectives: To investigate the impact of patient characteristics and treatment factors on excessive respiratory drive, effort, and lung-distending pressure during transitioning from controlled to spontaneous assisted ventilation in patients with acute respiratory distress syndrome (ARDS). Methods: Multicenter cohort observational study of patients with ARDS at four academic intensive care units. Respiratory drive (P0.1), diaphragm electrical activity (EAdi), inspiratory effort derived from EAdi (∆PmusEAdi) and from occlusion of airway pressure (∆Pocc) (PmusΔPocc), and dynamic transpulmonary driving pressure (ΔPL,dyn) were measured at the first transition to assisted spontaneous breathing. Results: A total of 4171 breaths were analyzed in 48 patients. P0.1 was >3.5 cmH2O in 10%, EAdiPEAK > 15 µV in 29%, ∆PmusEAdi > 15 cmH2O in 28%, and ΔPL,dyn > 15 cmH2O in 60% of the studied breaths. COVID-19 etiology of ARDS was the strongest independent risk factor for a higher proportion of breaths with excessive respiratory drive (RR 3.00 [2.43-3.71], p < 0.0001), inspiratory effort (RR 1.84 [1.58-2.15], p < 0.0001), and transpulmonary driving pressure (RR 1.48 [1.36-1.62], p < 0.0001). The P/F ratio at ICU admission, days of deep sedation, and dose of steroids were additional risk factors for vigorous inspiratory effort. Age and dose of steroids were risk factors for high transpulmonary driving pressure. Days of deep sedation (aHR 1.15 [1.07-1.24], p = 0.0002) and COVID-19 diagnosis (aHR 6.96 [1-48.5], p = 0.05) of ARDS were independently associated with composite outcome of transitioning from light to deep sedation (RASS from 0/-3 to -4/-5) or return to controlled ventilation within 48 h of spontaneous assisted breathing. Conclusions: This study identified that specific patient characteristics, including age, COVID-19-related ARDS, and P/F ratio, along with treatment factors such as the duration of deep sedation and the dosage of steroids, are independently associated with an increased likelihood of assisted breaths reaching potentially harmful thresholds of drive, effort, and lung-distending pressure during the initial transition to spontaneous assisted breathing. It is noteworthy that patients who were subjected to prolonged deep sedation under controlled mechanical ventilation, as well as those with COVID-19, were more susceptible to failing the transition from controlled to assisted breathing.
Collapse
Affiliation(s)
- Eleonora Balzani
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Francesco Murgolo
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", 70010 Bari, Italy
| | - Matteo Pozzi
- Department of Emergency and Intensive Care, IRCCS San Gerardo dei Tintori Foundation, 20900 Monza, Italy
| | - Rossella Di Mussi
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", 70010 Bari, Italy
| | - Nicola Bartolomeo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Umberto Simonetti
- Department of Anesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Turin, 10126 Turin, Italy
| | - Luca Brazzi
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Department of Anesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Turin, 10126 Turin, Italy
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Azienda Ospedaliera-Universitaria di Ferrara, 44122 Ferrara, Italy
| | - Giacomo Bellani
- Centre for Medical Sciences-CISMed, University of Trento, 38122 Trento, Italy
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, 38122 Trento, Italy
| | - Salvatore Grasso
- Department of Precision-Regenerative Medicine and Jonic Area (DiMePRe-J), Section of Anesthesiology and Intensive Care Medicine, University of Bari "Aldo Moro", 70010 Bari, Italy
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Department of Anesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Turin, 10126 Turin, Italy
| |
Collapse
|
31
|
Panelli A, Grimm AM, Krause S, Verfuß MA, Ulm B, Grunow JJ, Bartels HG, Carbon NM, Niederhauser T, Weber-Carstens S, Brochard L, Schaller SJ. Noninvasive Electromagnetic Phrenic Nerve Stimulation in Critically Ill Patients: A Feasibility Study. Chest 2024; 166:502-510. [PMID: 38403186 PMCID: PMC11443241 DOI: 10.1016/j.chest.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Electromagnetic stimulation of the phrenic nerve induces diaphragm contractions, but no coils for clinical use have been available. We recently demonstrated the feasibility of ventilation using bilateral transcutaneous noninvasive electromagnetic phrenic nerve stimulation (NEPNS) before surgery in lung-healthy patients with healthy weight in a dose-dependent manner. RESEARCH QUESTION Is NEPNS feasible in critically ill patients in an ICU setting? STUDY DESIGN AND METHODS This feasibility nonrandomized controlled study aimed to enroll patients within 36 h of intubation who were expected to remain ventilated for ≥ 72 h. The intervention group received 15-min bilateral transcutaneous NEPNS bid, whereas the control group received standard care. If sufficient, NEPNS was used without pressure support to ventilate the patient; pressure support was added if necessary to ventilate the patient adequately. The primary outcome was feasibility, measured as time to find the optimal stimulation position. Further end points were sessions performed according to the protocol or allowing a next-day catch-up session and tidal volume achieved with stimulation reaching only 3 to 6 mL/kg ideal body weight (IBW). A secondary end point was expiratory diaphragm thickness measured with ultrasound from days 1 to 10 (or extubation). RESULTS The revised European Union regulation mandated reapproval of medical devices, prematurely halting the study. Eleven patients (five in the intervention group, six in the control group) were enrolled. The median time to find an adequate stimulation position was 23 s (interquartile range, 12-62 s). The intervention bid was executed in 87% of patients, and 92% of patients including a next-day catch-up session. Ventilation with 3 to 6 mL/kg IBW was achieved in 732 of 1,701 stimulations (43.0%) with stimulation only and in 2,511 of 4,036 stimulations (62.2%) with additional pressure support. A decrease in diaphragm thickness was prevented by bilateral NEPNS (P = .034) until day 10. INTERPRETATION Bilateral transcutaneous NEPNS was feasible in the ICU setting with the potential benefit of preventing diaphragm atrophy during mechanical ventilation. NEPNS ventilation effectiveness needs further assessment. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT05238753; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Alessandro Panelli
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Berlin, Germany
| | - Aline M Grimm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Berlin, Germany
| | - Sven Krause
- Institute for Human Centered Engineering, Bern University of Applied Sciences, Biel/Bienne, Switzerland
| | - Michael A Verfuß
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Berlin, Germany
| | - Bernhard Ulm
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Anesthesiology and Intensive Care, Munich, Germany; Department of Anaesthesiology and Intensive Care Medicine, School of Medicine, University of Ulm, Ulm, Germany
| | - Julius J Grunow
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Berlin, Germany
| | - Hermann G Bartels
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Berlin, Germany
| | - Niklas M Carbon
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Berlin, Germany; Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Uniklinikum Erlangen, Erlangen, Germany
| | - Thomas Niederhauser
- Institute for Human Centered Engineering, Bern University of Applied Sciences, Biel/Bienne, Switzerland
| | - Steffen Weber-Carstens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Berlin, Germany
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada; Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | - Stefan J Schaller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Berlin, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Anesthesiology and Intensive Care, Munich, Germany.
| |
Collapse
|
32
|
Parhar KKS, Doig C. Caution-Do Not Attempt This at Home. Airway Pressure Release Ventilation Should Not Routinely Be Used in Patients With or at Risk of Acute Respiratory Distress Syndrome Outside of a Clinical Trial. Crit Care Med 2024; 52:1451-1457. [PMID: 36661571 DOI: 10.1097/ccm.0000000000005776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ken Kuljit S Parhar
- Department of Critical Care Medicine, University of Calgary and Alberta Health Services, ICU Administration - Ground Floor - McCaig Tower, Foothills Medical Center, Calgary, AB, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Christopher Doig
- Department of Critical Care Medicine, University of Calgary and Alberta Health Services, ICU Administration - Ground Floor - McCaig Tower, Foothills Medical Center, Calgary, AB, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Goligher EC, Damiani LF, Patel B. Implementing diaphragm protection during invasive mechanical ventilation. Intensive Care Med 2024; 50:1509-1512. [PMID: 38801520 DOI: 10.1007/s00134-024-07472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
- Department of Physiology, University of Toronto, Toronto, Canada.
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Canada.
- Toronto General Hospital Research Institute, 585 University Ave., Toronto, ON, M5G 2N2, Canada.
| | - L Felipe Damiani
- Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bhakti Patel
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
34
|
Müller-Wirtz LM, O'Gara B, Gama de Abreu M, Schultz MJ, Beitler JR, Jerath A, Meiser A. Volatile anesthetics for lung- and diaphragm-protective sedation. Crit Care 2024; 28:269. [PMID: 39217380 PMCID: PMC11366159 DOI: 10.1186/s13054-024-05049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
This review explores the complex interactions between sedation and invasive ventilation and examines the potential of volatile anesthetics for lung- and diaphragm-protective sedation. In the early stages of invasive ventilation, many critically ill patients experience insufficient respiratory drive and effort, leading to compromised diaphragm function. Compared with common intravenous agents, inhaled sedation with volatile anesthetics better preserves respiratory drive, potentially helping to maintain diaphragm function during prolonged periods of invasive ventilation. In turn, higher concentrations of volatile anesthetics reduce the size of spontaneously generated tidal volumes, potentially reducing lung stress and strain and with that the risk of self-inflicted lung injury. Taken together, inhaled sedation may allow titration of respiratory drive to maintain inspiratory efforts within lung- and diaphragm-protective ranges. Particularly in patients who are expected to require prolonged invasive ventilation, in whom the restoration of adequate but safe inspiratory effort is crucial for successful weaning, inhaled sedation represents an attractive option for lung- and diaphragm-protective sedation. A technical limitation is ventilatory dead space introduced by volatile anesthetic reflectors, although this impact is minimal and comparable to ventilation with heat and moisture exchangers. Further studies are imperative for a comprehensive understanding of the specific effects of inhaled sedation on respiratory drive and effort and, ultimately, how this translates into patient-centered outcomes in critically ill patients.
Collapse
Affiliation(s)
- Lukas M Müller-Wirtz
- Department of Anesthesiology, Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA
- Department of Anesthesiology, Intensive Care and Pain Therapy, Faculty of Medicine, Saarland University Medical Center and Saarland University, Homburg, Saarland, Germany
- Department of Anesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Brian O'Gara
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Marcelo Gama de Abreu
- Department of Anesthesiology, Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA
- Division of Intensive Care and Resuscitation, Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, Division of Cardiac Thoracic Vascular Anesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Jeremy R Beitler
- Columbia Respiratory Critical Care Trials Group, New York-Presbyterian Hospital and Columbia University, New York, NY, USA
| | - Angela Jerath
- Department of Anesthesiology and Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Andreas Meiser
- Department of Anesthesiology, Intensive Care and Pain Therapy, Faculty of Medicine, Saarland University Medical Center and Saarland University, Homburg, Saarland, Germany.
| |
Collapse
|
35
|
Lee KG, Roca O, Casey JD, Semler MW, Roman-Sarita G, Yarnell CJ, Goligher EC. When to intubate in acute hypoxaemic respiratory failure? Options and opportunities for evidence-informed decision making in the intensive care unit. THE LANCET. RESPIRATORY MEDICINE 2024; 12:642-654. [PMID: 38801827 DOI: 10.1016/s2213-2600(24)00118-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024]
Abstract
The optimal timing of intubation in acute hypoxaemic respiratory failure is uncertain and became a point of controversy during the COVID-19 pandemic. Invasive mechanical ventilation is a potentially life-saving intervention but carries substantial risks, including injury to the lungs and diaphragm, pneumonia, intensive care unit-acquired muscle weakness, and haemodynamic impairment. In deciding when to intubate, clinicians must balance premature exposure to the risks of ventilation with the potential harms of unassisted breathing, including disease progression and worsening multiorgan failure. Currently, the optimal timing of intubation is unclear. In this Personal View, we examine a range of parameters that could serve as triggers to initiate invasive mechanical ventilation. The utility of a parameter (eg, the ratio of arterial oxygen tension to fraction of inspired oxygen) to predict the likelihood of a patient undergoing intubation does not necessarily mean that basing the timing of intubation on that parameter will improve therapeutic outcomes. We examine options for clinical investigation to make progress on establishing the optimal timing of intubation.
Collapse
Affiliation(s)
- Kevin G Lee
- Department of Physiology, Toronto, ON, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Oriol Roca
- Servei de Medicina Intensiva, Parc Taulí Hospital Universitari, Institut de Recerca Parc Taulí-I3PT, Sabadell, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain; Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Jonathan D Casey
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew W Semler
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Christopher J Yarnell
- Interdepartmental Division of Critical Care Medicine University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology, University Health Network, Toronto, ON, Canada; Institute of Health Policy, Management, and Evaluation at the University of Toronto, Toronto, ON, Canada; Scarborough Health Network, Department of Critical Care Medicine, Toronto, ON, Canada; Scarborough Health Network Research Institute, Toronto, ON, Canada.
| | - Ewan C Goligher
- Department of Physiology, Toronto, ON, Canada; Interdepartmental Division of Critical Care Medicine University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada
| |
Collapse
|
36
|
Wang CJ, Wang IT, Chen CH, Tang YH, Lin HW, Lin CY, Wu CL. Recruitment-Potential-Oriented Mechanical Ventilation Protocol and Narrative Review for Patients with Acute Respiratory Distress Syndrome. J Pers Med 2024; 14:779. [PMID: 39201971 PMCID: PMC11355260 DOI: 10.3390/jpm14080779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Even though much progress has been made to improve clinical outcomes, acute respiratory distress syndrome (ARDS) remains a significant cause of acute respiratory failure. Protective mechanical ventilation is the backbone of supportive care for these patients; however, there are still many unresolved issues in its setting. The primary goal of mechanical ventilation is to improve oxygenation and ventilation. The use of positive pressure, especially positive end-expiratory pressure (PEEP), is mandatory in this approach. However, PEEP is a double-edged sword. How to safely set positive end-inspiratory pressure has long been elusive to clinicians. We hereby propose a pressure-volume curve measurement-based method to assess whether injured lungs are recruitable in order to set an appropriate PEEP. For the most severe form of ARDS, extracorporeal membrane oxygenation (ECMO) is considered as the salvage therapy. However, the high level of medical resources required and associated complications make its use in patients with severe ARDS controversial. Our proposed protocol also attempts to propose how to improve patient outcomes by balancing the possible overuse of resources with minimizing patient harm due to dangerous ventilator settings. A recruitment-potential-oriented evaluation-based protocol can effectively stabilize hypoxemic conditions quickly and screen out truly serious patients.
Collapse
Affiliation(s)
- Chieh-Jen Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
| | - I-Ting Wang
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Chao-Hsien Chen
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taitung MacKay Memorial Hospital, Taitung 950408, Taiwan
| | - Yen-Hsiang Tang
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
- Department of Critical Care Medicine, MacKay Memorial Hospital, Tamsui 251020, Taiwan
| | - Hsin-Wei Lin
- Department of Chest Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
| | - Chang-Yi Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; (I.-T.W.); (Y.-H.T.)
| | - Chien-Liang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-Y.L.); (C.-L.W.)
| |
Collapse
|
37
|
Marongiu I, Slobod D, Leali M, Spinelli E, Mauri T. Clinical and Experimental Evidence for Patient Self-Inflicted Lung Injury (P-SILI) and Bedside Monitoring. J Clin Med 2024; 13:4018. [PMID: 39064059 PMCID: PMC11278124 DOI: 10.3390/jcm13144018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Patient self-inflicted lung injury (P-SILI) is a major challenge for the ICU physician: although spontaneous breathing is associated with physiological benefits, in patients with acute respiratory distress syndrome (ARDS), the risk of uncontrolled inspiratory effort leading to additional injury needs to be assessed to avoid delayed intubation and increased mortality. In the present review, we analyze the available clinical and experimental evidence supporting the existence of lung injury caused by uncontrolled high inspiratory effort, we discuss the pathophysiological mechanisms by which increased effort causes P-SILI, and, finally, we consider the measurements and interpretation of bedside physiological measures of increased drive that should alert the clinician. The data presented in this review could help to recognize injurious respiratory patterns that may trigger P-SILI and to prevent it.
Collapse
Affiliation(s)
- Ines Marongiu
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.M.)
| | - Douglas Slobod
- Department of Critical Care Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Marco Leali
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.M.)
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.M.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
38
|
Warnaar RSP, Cornet AD, Beishuizen A, Moore CM, Donker DW, Oppersma E. Advanced waveform analysis of diaphragm surface EMG allows for continuous non-invasive assessment of respiratory effort in critically ill patients at different PEEP levels. Crit Care 2024; 28:195. [PMID: 38851709 PMCID: PMC11162564 DOI: 10.1186/s13054-024-04978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Respiratory effort should be closely monitored in mechanically ventilated ICU patients to avoid both overassistance and underassistance. Surface electromyography of the diaphragm (sEMGdi) offers a continuous and non-invasive modality to assess respiratory effort based on neuromuscular coupling (NMCdi). The sEMGdi derived electrical activity of the diaphragm (sEAdi) is prone to distortion by crosstalk from other muscles including the heart, hindering its widespread use in clinical practice. We developed an advanced analysis as well as quality criteria for sEAdi waveforms and investigated the effects of clinically relevant levels of PEEP on non-invasive NMCdi. METHODS NMCdi was derived by dividing end-expiratory occlusion pressure (Pocc) by sEAdi, based on three consecutive Pocc manoeuvres at four incremental (+ 2 cmH2O/step) PEEP levels in stable ICU patients on pressure support ventilation. Pocc and sEAdi quality was assessed by applying a novel, automated advanced signal analysis, based on tolerant and strict cut-off criteria, and excluding inadequate waveforms. The coefficient of variations (CoV) of NMCdi after basic manual and automated advanced quality assessment were evaluated, as well as the effect of an incremental PEEP trial on NMCdi. RESULTS 593 manoeuvres were obtained from 42 PEEP trials in 17 ICU patients. Waveform exclusion was primarily based on low sEAdi signal-to-noise ratio (Ntolerant = 155, 37%, Nstrict = 241, 51% waveforms excluded), irregular or abrupt cessation of Pocc (Ntolerant = 145, 35%, Nstrict = 145, 31%), and high sEAdi area under the baseline (Ntolerant = 94, 23%, Nstrict = 79, 17%). Strict automated assessment allowed to reduce CoV of NMCdi to 15% from 37% for basic quality assessment. As PEEP was increased, NMCdi decreased significantly by 4.9 percentage point per cmH2O. CONCLUSION Advanced signal analysis of both Pocc and sEAdi greatly facilitates automated and well-defined identification of high-quality waveforms. In the critically ill, this approach allowed to demonstrate a dynamic NMCdi (Pocc/sEAdi) decrease upon PEEP increments, emphasising that sEAdi-based assessment of respiratory effort should be related to PEEP dependent diaphragm function. This novel, non-invasive methodology forms an important methodological foundation for more robust, continuous, and comprehensive assessment of respiratory effort at the bedside.
Collapse
Affiliation(s)
- R S P Warnaar
- Cardiovascular and Respiratory Physiology, Technical Medical Centre, University of Twente, Technohal 3184, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - A D Cornet
- Intensive Care Centre, Medisch Spectrum Twente, Enschede, The Netherlands
| | - A Beishuizen
- Intensive Care Centre, Medisch Spectrum Twente, Enschede, The Netherlands
| | - C M Moore
- Netherlands eScience Center, Amsterdam, The Netherlands
| | - D W Donker
- Cardiovascular and Respiratory Physiology, Technical Medical Centre, University of Twente, Technohal 3184, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- Intensive Care Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - E Oppersma
- Cardiovascular and Respiratory Physiology, Technical Medical Centre, University of Twente, Technohal 3184, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
39
|
Costa ELV, Alcala GC, Tucci MR, Goligher E, Morais CC, Dianti J, Nakamura MAP, Oliveira LB, Pereira SM, Toufen C, Barbas CSV, Carvalho CRR, Amato MBP. Impact of extended lung protection during mechanical ventilation on lung recovery in patients with COVID-19 ARDS: a phase II randomized controlled trial. Ann Intensive Care 2024; 14:85. [PMID: 38849605 PMCID: PMC11161454 DOI: 10.1186/s13613-024-01297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Protective ventilation seems crucial during early Acute Respiratory Distress Syndrome (ARDS), but the optimal duration of lung protection remains undefined. High driving pressures (ΔP) and excessive patient ventilatory drive may hinder lung recovery, resulting in self-inflicted lung injury. The hidden nature of the ΔP generated by patient effort complicates the situation further. Our study aimed to assess the feasibility of an extended lung protection strategy that includes a stepwise protocol to control the patient ventilatory drive, assessing its impact on lung recovery. METHODS We conducted a single-center randomized study on patients with moderate/severe COVID-19-ARDS with low respiratory system compliance (CRS < 0.6 (mL/Kg)/cmH2O). The intervention group received a ventilation strategy guided by Electrical Impedance Tomography aimed at minimizing ΔP and patient ventilatory drive. The control group received the ARDSNet low-PEEP strategy. The primary outcome was the modified lung injury score (mLIS), a composite measure that integrated daily measurements of CRS, along with oxygen requirements, oxygenation, and X-rays up to day 28. The mLIS score was also hierarchically adjusted for survival and extubation rates. RESULTS The study ended prematurely after three consecutive months without patient enrollment, attributed to the pandemic subsiding. The intention-to-treat analysis included 76 patients, with 37 randomized to the intervention group. The average mLIS score up to 28 days was not different between groups (P = 0.95, primary outcome). However, the intervention group showed a faster improvement in the mLIS (1.4 vs. 7.2 days to reach 63% of maximum improvement; P < 0.001), driven by oxygenation and sustained improvement of X-ray (P = 0.001). The intervention group demonstrated a sustained increase in CRS up to day 28 (P = 0.009) and also experienced a shorter time from randomization to room-air breathing (P = 0.02). Survival at 28 days and time until liberation from the ventilator were not different between groups. CONCLUSIONS The implementation of an individualized PEEP strategy alongside extended lung protection appears viable. Promising secondary outcomes suggested a faster lung recovery, endorsing further examination of this strategy in a larger trial. Clinical trial registration This trial was registered with ClinicalTrials.gov (number NCT04497454) on August 04, 2020.
Collapse
Affiliation(s)
- Eduardo L V Costa
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Research and Education Institute, Hospital Sírio-Libanes, Sao Paulo, Brazil
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Glasiele C Alcala
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Mauro R Tucci
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Ewan Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, Toronto, Canada
| | - Caio C Morais
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Departamento de Fisioterapia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, Toronto, Canada
| | - Miyuki A P Nakamura
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
| | - Larissa B Oliveira
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Sérgio M Pereira
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| | - Carlos Toufen
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Carmen S V Barbas
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
- Adult ICU Albert Einstein Hospital, São Paulo, Brazil
| | - Carlos R R Carvalho
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, 455 Dr Arnaldo Ave, Room 2144, São Paulo, SP, Brazil.
- Divisao de Pneumologia, Faculdade de Medicina, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
40
|
Bello G, Giammatteo V, Bisanti A, Delle Cese L, Rosà T, Menga LS, Montini L, Michi T, Spinazzola G, De Pascale G, Pennisi MA, Ribeiro De Santis Santiago R, Berra L, Antonelli M, Grieco DL. High vs Low PEEP in Patients With ARDS Exhibiting Intense Inspiratory Effort During Assisted Ventilation: A Randomized Crossover Trial. Chest 2024; 165:1392-1405. [PMID: 38295949 DOI: 10.1016/j.chest.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Positive end-expiratory pressure (PEEP) can potentially modulate inspiratory effort (ΔPes), which is the major determinant of self-inflicted lung injury. RESEARCH QUESTION Does high PEEP reduce ΔPes in patients with moderate-to-severe ARDS on assisted ventilation? STUDY DESIGN AND METHODS Sixteen patients with Pao2/Fio2 ≤ 200 mm Hg and ΔPes ≥ 10 cm H2O underwent a randomized sequence of four ventilator settings: PEEP = 5 cm H2O or PEEP = 15 cm H2O + synchronous (pressure support ventilation [PSV]) or asynchronous (pressure-controlled intermittent mandatory ventilation [PC-IMV]) inspiratory assistance. ΔPes and respiratory system, lung, and chest wall mechanics were assessed with esophageal manometry and occlusions. PEEP-induced alveolar recruitment and overinflation, lung dynamic strain, and tidal volume distribution were assessed with electrical impedance tomography. RESULTS ΔPes was not systematically different at high vs low PEEP (pressure support ventilation: median, 20 cm H2O; interquartile range (IQR), 15-24 cm H2O vs median, 15 cm H2O; IQR, 13-23 cm H2O; P = .24; pressure-controlled intermittent mandatory ventilation: median, 20; IQR, 18-23 vs median, 19; IQR, 17-25; P = .67, respectively). Similarly, respiratory system and transpulmonary driving pressures, tidal volume, lung/chest wall mechanics, and pendelluft extent were not different between study phases. High PEEP resulted in lower or higher ΔPes, respiratory system driving pressure, and transpulmonary driving pressure according to whether this increased or decreased respiratory system compliance (r = -0.85, P < .001; r = -0.75, P < .001; r = -0.80, P < .001, respectively). PEEP-induced changes in respiratory system compliance were driven by its lung component and were dependent on the extent of PEEP-induced alveolar overinflation (r = -0.66, P = .006). High PEEP caused variable recruitment and systematic redistribution of tidal volume toward dorsal lung regions, thereby reducing dynamic strain in ventral areas (pressure support ventilation: median, 0.49; IQR, 0.37-0.83 vs median, 0.96; IQR, 0.62-1.56; P = .003; pressure-controlled intermittent mandatory ventilation: median, 0.65; IQR, 0.42-1.31 vs median, 1.14; IQR, 0.79-1.52; P = .002). All results were consistent during synchronous and asynchronous inspiratory assistance. INTERPRETATION The impact of high PEEP on ΔPes and lung stress is interindividually variable according to different effects on the respiratory system and lung compliance resulting from alveolar overinflation. High PEEP may help mitigate the risk of self-inflicted lung injury solely if it increases lung/respiratory system compliance. TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT04241874; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Giuseppe Bello
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Giammatteo
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA
| | - Alessandra Bisanti
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Luca Montini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Giorgia Spinazzola
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Mariano Alberto Pennisi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Roberta Ribeiro De Santis Santiago
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS; Rome, Italy; Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore Rome, Italy.
| |
Collapse
|
41
|
Ball L, Talmor D, Pelosi P. Transpulmonary pressure monitoring in critically ill patients: pros and cons. Crit Care 2024; 28:177. [PMID: 38796447 PMCID: PMC11127359 DOI: 10.1186/s13054-024-04950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The use of transpulmonary pressure monitoring based on measurement of esophageal pressure has contributed importantly to the personalization of mechanical ventilation based on respiratory pathophysiology in critically ill patients. However, esophageal pressure monitoring is still underused in the clinical practice. This technique allows partitioning of the respiratory mechanics between the lungs and the chest wall, provides information on lung recruitment and risk of barotrauma, and helps titrating mechanical ventilation settings in patients with respiratory failure. In assisted ventilation modes and during non-invasive respiratory support, esophageal pressure monitoring provides important information on the inspiratory effort and work of breathing. Nonetheless, several controversies persist on technical aspects, interpretation and clinical decision-making based on values derived from this monitoring technique. The aim of this review is to summarize the physiological bases of esophageal pressure monitoring, discussing the pros and cons of its clinical applications and different interpretations in critically ill patients undergoing invasive and non-invasive respiratory support.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy.
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Daniel Talmor
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
42
|
Gao R, Zhou JX, Yang YL, Xu SS, Zhou YM, Zhang L, Miao MY. Use of pressure muscle index to predict the contribution of patient's inspiratory effort during pressure support ventilation: a prospective physiological study. Front Med (Lausanne) 2024; 11:1390878. [PMID: 38737762 PMCID: PMC11082330 DOI: 10.3389/fmed.2024.1390878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Background The successful implementation of assisted ventilation depends on matching the patient's effort with the ventilator support. Pressure muscle index (PMI), an airway pressure based measurement, has been used as noninvasive monitoring to assess the patient's inspiratory effort. The authors aimed to evaluate the feasibility of pressure support adjustment according to the PMI target and the diagnostic performance of PMI to predict the contribution of the patient's effort during ventilator support. Methods In this prospective physiological study, 22 adult patients undergoing pressure support ventilation were enrolled. After an end-inspiratory airway occlusion, airway pressure reached a plateau, and the magnitude of change in plateau from peak airway pressure was defined as PMI. Pressure support was adjusted to obtain the PMI which was closest to -1, 0, +1, +2, and + 3 cm H2O. Each pressure support level was maintained for 20 min. Esophageal pressure was monitored. Pressure-time products of respiratory muscle and ventilator insufflation were measured, and the fraction of pressure generated by the patient was calculated to represent the contribution of the patient's inspiratory effort. Results A total of 105 datasets were collected at different PMI-targeted pressure support levels. The differences in PMI between the target and the obtained value were all within ±1 cm H2O. As targeted PMI increased, pressure support settings decreased significantly from a median (interquartile range) of 11 (10-12) to 5 (4-6) cm H2O (p < 0.001), which resulted in a significant increase in pressure-time products of respiratory muscle [from 2.9 (2.1-5.0) to 6.8 (5.3-8.1) cm H2O•s] and the fraction of pressure generated by the patient [from 25% (19-31%) to 72% (62-87%)] (p < 0.001). The area under receiver operating characteristic curves for PMI to predict 30 and 70% contribution of patient's effort were 0.93 and 0.95, respectively. High sensitivity (all 1.00), specificity (0.86 and 0.78), and negative predictive value (all 1.00), but low positive predictive value (0.61 and 0.43) were obtained to predict either high or low contribution of patient's effort. Conclusion Our results preliminarily suggested the feasibility of pressure support adjustment according to the PMI target from the ventilator screen. PMI could reliably predict the high and low contribution of a patient's effort during assisted ventilation.Clinical trial registration: ClinicalTrials.gov, identifier NCT05970393.
Collapse
Affiliation(s)
- Ran Gao
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center on Acute Lung Injury, Emergency, and Critical Care Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Clinical and Research Center on Acute Lung Injury, Emergency, and Critical Care Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Xu
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-Yue Miao
- Clinical and Research Center on Acute Lung Injury, Emergency, and Critical Care Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Georgopoulos D, Bolaki M, Stamatopoulou V, Akoumianaki E. Respiratory drive: a journey from health to disease. J Intensive Care 2024; 12:15. [PMID: 38650047 PMCID: PMC11636889 DOI: 10.1186/s40560-024-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Respiratory drive is defined as the intensity of respiratory centers output during the breath and is primarily affected by cortical and chemical feedback mechanisms. During the involuntary act of breathing, chemical feedback, primarily mediated through CO2, is the main determinant of respiratory drive. Respiratory drive travels through neural pathways to respiratory muscles, which execute the breathing process and generate inspiratory flow (inspiratory flow-generation pathway). In a healthy state, inspiratory flow-generation pathway is intact, and thus respiratory drive is satisfied by the rate of volume increase, expressed by mean inspiratory flow, which in turn determines tidal volume. In this review, we will explain the pathophysiology of altered respiratory drive by analyzing the respiratory centers response to arterial partial pressure of CO2 (PaCO2) changes. Both high and low respiratory drive have been associated with several adverse effects in critically ill patients. Hence, it is crucial to understand what alters the respiratory drive. Changes in respiratory drive can be explained by simultaneously considering the (1) ventilatory demands, as dictated by respiratory centers activity to CO2 (brain curve); (2) actual ventilatory response to CO2 (ventilation curve); and (3) metabolic hyperbola. During critical illness, multiple mechanisms affect the brain and ventilation curves, as well as metabolic hyperbola, leading to considerable alterations in respiratory drive. In critically ill patients the inspiratory flow-generation pathway is invariably compromised at various levels. Consequently, mean inspiratory flow and tidal volume do not correspond to respiratory drive, and at a given PaCO2, the actual ventilation is less than ventilatory demands, creating a dissociation between brain and ventilation curves. Since the metabolic hyperbola is one of the two variables that determine PaCO2 (the other being the ventilation curve), its upward or downward movements increase or decrease respiratory drive, respectively. Mechanical ventilation indirectly influences respiratory drive by modifying PaCO2 levels through alterations in various parameters of the ventilation curve and metabolic hyperbola. Understanding the diverse factors that modulate respiratory drive at the bedside could enhance clinical assessment and the management of both the patient and the ventilator.
Collapse
Affiliation(s)
| | - Maria Bolaki
- Department of Intensive Care Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Vaia Stamatopoulou
- Department of Pulmonary Medicine, University Hospital of Heraklion, Heraklion , Crete, Greece
| | - Evangelia Akoumianaki
- Medical School, University of Crete, Heraklion, Crete, Greece
- Department of Intensive Care Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
44
|
Miles M, Davenport P, Mathur S, Goligher EC, Rozenberg D, Reid WD. Intermittent neck flexion induces greater sternocleidomastoid deoxygenation than inspiratory threshold loading. Eur J Appl Physiol 2024; 124:1151-1161. [PMID: 37923886 DOI: 10.1007/s00421-023-05338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/08/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE To compare deoxygenation of the sternocleidomastoid, scalenes, and diaphragm/intercostals (Dia/IC) during submaximal intermittent neck flexion (INF) versus submaximal inspiratory threshold loading (ITL) in healthy adults. METHODS Fourteen participants performed a randomized, cross-over, repeated measures design. After evaluation of maximal inspiratory pressures (MIP) and maximum voluntary contraction (MVC) for isometric neck flexion, participants were randomly assigned to submaximal ITL or INF until task failure. At least 2 days later, they performed the submaximal exercises in the opposite order. ITL or INF targeted 50 ± 5% of the MIP or MVC, respectively, until task failure. Near-infrared spectroscopy (NIRS) was applied to evaluate changes of deoxy-hemoglobin (ΔHHb), oxy-hemoglobin (ΔO2Hb), total hemoglobin (ΔtHb), and tissue saturation of oxygen (StO2) of the sternocleidomastoid, scalenes, and Dia/IC. Breathlessness and perceived exertion were evaluated using Borg scales. RESULTS Initially during INF, sternocleidomastoid HHb slope was greatest compared to the scalenes and Dia/IC. At isotime (6.5-7 min), ΔtHb (a marker of blood volume) and ΔO2Hb of the sternocleidomastoid were higher during INF than ITL. Sternocleidomastoid HHb, O2Hb, and tHb during INF also increased at quartile and task failure timepoints. In contrast, scalene ΔO2Hb was higher during ITL than INF at isotime. Further, Dia/IC O2Hb and tHb increased during ITL at the third quartile and at task failure. Borg scores were lower at task failure during INF compared to ITL. CONCLUSION Intermittent INF induces significant metabolic activity of the sternocleidomastoid and a lower perception of effort, which may provide an alternative inspiratory muscle training approach for mechanically ventilated patients.
Collapse
Affiliation(s)
- Melissa Miles
- Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada
| | - Paul Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Sunita Mathur
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queens University, Kingston, ON, Canada
| | - Ewan C Goligher
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Dmitry Rozenberg
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - W Darlene Reid
- Department of Physical Therapy, University of Toronto, 160-500 University Avenue, Toronto, ON, M5G 1V7, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- KITE Research Institute-Toronto Rehab, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
45
|
Cornejo R, Telias I, Brochard L. Measuring patient's effort on the ventilator. Intensive Care Med 2024; 50:573-576. [PMID: 38436722 DOI: 10.1007/s00134-024-07352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Rodrigo Cornejo
- Unidad de Pacientes Críticos, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Irene Telias
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network and Sinai Health System, Toronto, Canada
- Medical Surgical Neuro ICU, Toronto Western Hospital, University Health Network, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada.
| |
Collapse
|
46
|
Zaidi SF, Shaikh A, Khan DA, Surani S, Ratnani I. Driving pressure in mechanical ventilation: A review. World J Crit Care Med 2024; 13:88385. [PMID: 38633474 PMCID: PMC11019631 DOI: 10.5492/wjccm.v13.i1.88385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 03/05/2024] Open
Abstract
Driving pressure (∆P) is a core therapeutic component of mechanical ventilation (MV). Varying levels of ∆P have been employed during MV depending on the type of underlying pathology and severity of injury. However, ∆P levels have also been shown to closely impact hard endpoints such as mortality. Considering this, conducting an in-depth review of ∆P as a unique, outcome-impacting therapeutic modality is extremely important. There is a need to understand the subtleties involved in making sure ∆P levels are optimized to enhance outcomes and minimize harm. We performed this narrative review to further explore the various uses of ∆P, the different parameters that can affect its use, and how outcomes vary in different patient populations at different pressure levels. To better utilize ∆P in MV-requiring patients, additional large-scale clinical studies are needed.
Collapse
Affiliation(s)
- Syeda Farheen Zaidi
- Department of Medicine, Queen Mary University, London E1 4NS, United Kingdom
| | - Asim Shaikh
- Department of Medicine, Aga Khan University, Sindh, Karachi 74500, Pakistan
| | - Daniyal Aziz Khan
- Department of Medicine, Jinnah Postgraduate Medical Center, Sindh, Karachi 75510, Pakistan
| | - Salim Surani
- Department of Medicine and Pharmacology, Texas A and M University, College Station, TX 77843, United States
| | - Iqbal Ratnani
- Department of Anesthesiology and Critical Care, Houston Methodist Hospital, Houston, TX 77030, United States
| |
Collapse
|
47
|
Seubert ME, Goeijenbier M. Controlled Mechanical Ventilation in Critically Ill Patients and the Potential Role of Venous Bagging in Acute Kidney Injury. J Clin Med 2024; 13:1504. [PMID: 38592687 PMCID: PMC10934139 DOI: 10.3390/jcm13051504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024] Open
Abstract
A very low incidence of acute kidney injury (AKI) has been observed in COVID-19 patients purposefully treated with early pressure support ventilation (PSV) compared to those receiving mainly controlled ventilation. The prevention of subdiaphragmatic venous congestion through limited fluid intake and the lowering of intrathoracic pressure is a possible and attractive explanation for this observed phenomenon. Both venous congestion, or "venous bagging", and a positive fluid balance correlate with the occurrence of AKI. The impact of PSV on venous return, in addition to the effects of limiting intravenous fluids, may, at least in part, explain this even more clearly when there is no primary kidney disease or the presence of nephrotoxins. Optimizing the patient-ventilator interaction in PSV is challenging, in part because of the need for the ongoing titration of sedatives and opioids. The known benefits include improved ventilation/perfusion matching and reduced ventilator time. Furthermore, conservative fluid management positively influences cognitive and psychiatric morbidities in ICU patients and survivors. Here, it is hypothesized that cranial lymphatic congestion in relation to a more positive intrathoracic pressure, i.e., in patients predominantly treated with controlled mechanical ventilation (CMV), is a contributing risk factor for ICU delirium. No studies have addressed the question of how PSV can limit AKI, nor are there studies providing high-level evidence relating controlled mechanical ventilation to AKI. For this perspective article, we discuss studies in the literature demonstrating the effects of venous congestion leading to AKI. We aim to shed light on early PSV as a preventive measure, especially for the development of AKI and ICU delirium and emphasize the need for further research in this domain.
Collapse
Affiliation(s)
- Mark E. Seubert
- Department of Intensive Care, HagaZiekenhuis, 2725 NA Zoetermeer, The Netherlands
| | - Marco Goeijenbier
- Department of Intensive Care, Spaarne Gasthuis, 2035 RC Haarlem, The Netherlands;
- Department of Intensive Care, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
48
|
Keogh C, Saavedra F, Dubo S, Aqueveque P, Ortega P, Gomez B, Germany E, Pinto D, Osorio R, Pastene F, Poulton A, Jarvis J, Andrews B, FitzGerald JJ. Closed-loop parameter optimization for patient-specific phrenic nerve stimulation. Artif Organs 2024; 48:274-284. [PMID: 37246826 DOI: 10.1111/aor.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Ventilator-induced diaphragm dysfunction occurs rapidly following the onset of mechanical ventilation and has significant clinical consequences. Phrenic nerve stimulation has shown promise in maintaining diaphragm function by inducing diaphragm contractions. Non-invasive stimulation is an attractive option as it minimizes the procedural risks associated with invasive approaches. However, this method is limited by sensitivity to electrode position and inter-individual variability in stimulation thresholds. This makes clinical application challenging due to potentially time-consuming calibration processes to achieve reliable stimulation. METHODS We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. A closed-loop system recorded the respiratory flow produced by stimulation and automatically adjusted the electrode position and stimulation amplitude based on the respiratory response. By iterating over electrodes, the optimal electrode was selected. A binary search method over stimulation amplitudes was then employed to determine an individualized stimulation threshold. Pulse trains above this threshold were delivered to produce diaphragm contraction. RESULTS Nine healthy volunteers were recruited. Mean threshold stimulation amplitude was 36.17 ± 14.34 mA (range 19.38-59.06 mA). The threshold amplitude for reliable nerve capture was moderately correlated with BMI (Pearson's r = 0.66, p = 0.049). Repeating threshold measurements within subjects demonstrated low intra-subject variability of 2.15 ± 1.61 mA between maximum and minimum thresholds on repeated trials. Bilateral stimulation with individually optimized parameters generated reliable diaphragm contraction, resulting in significant inhaled volumes following stimulation. CONCLUSION We demonstrate the feasibility of a system for automatic optimization of electrode position and stimulation parameters using a closed-loop system. This opens the possibility of easily deployable individualized stimulation in the intensive care setting to reduce ventilator-induced diaphragm dysfunction.
Collapse
Affiliation(s)
- Conor Keogh
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Francisco Saavedra
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Electrical Engineering, Universidad de Concepcion, Concepcion, Chile
| | - Sebastian Dubo
- Department of Physiotherapy, Universidad de Concepcion, Concepcion, Chile
| | - Pablo Aqueveque
- Department of Electrical Engineering, Universidad de Concepcion, Concepcion, Chile
| | - Paulina Ortega
- Department of Physiotherapy, Universidad de Concepcion, Concepcion, Chile
| | - Britam Gomez
- Department of Electrical Engineering, Universidad de Concepcion, Concepcion, Chile
| | - Enrique Germany
- Department of Electrical Engineering, Universidad de Concepcion, Concepcion, Chile
| | - Daniela Pinto
- Department of Electrical Engineering, Universidad de Concepcion, Concepcion, Chile
| | - Rodrigo Osorio
- Department of Electrical Engineering, Universidad de Concepcion, Concepcion, Chile
| | - Francisco Pastene
- Department of Electrical Engineering, Universidad de Concepcion, Concepcion, Chile
| | - Adrian Poulton
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Jonathan Jarvis
- School of Sports and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Brian Andrews
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - James J FitzGerald
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Wennen M, Claassen W, Heunks L. Setting positive end-expiratory pressure: role in diaphragm-protective ventilation. Curr Opin Crit Care 2024; 30:61-68. [PMID: 38085880 DOI: 10.1097/mcc.0000000000001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW With mechanical ventilation, positive end-expiratory pressure (PEEP) is applied to improve oxygenation and lung homogeneity. However, PEEP setting has been hypothesized to contribute to critical illness associated diaphragm dysfunction via several mechanisms. Here, we discuss the impact of PEEP on diaphragm function, activity and geometry. RECENT FINDINGS PEEP affects diaphragm geometry: it induces a caudal movement of the diaphragm dome and shortening of the zone of apposition. This results in reduced diaphragm neuromechanical efficiency. After prolonged PEEP application, the zone of apposition adapts by reducing muscle fiber length, so-called longitudinal muscle atrophy. When PEEP is withdrawn, for instance during a spontaneous breathing trial, the shortened diaphragm muscle fibers may over-stretch which may lead to (additional) diaphragm myotrauma. Furthermore, PEEP may either increase or decrease respiratory drive and resulting respiratory effort, probably depending on lung recruitability. Finally, the level of PEEP can also influence diaphragm activity in the expiratory phase, which may be an additional mechanism for diaphragm myotrauma. SUMMARY Setting PEEP could play an important role in both lung and diaphragm protective ventilation. Both high and low PEEP levels could potentially introduce or exacerbate diaphragm myotrauma. Today, the impact of PEEP setting on diaphragm structure and function is in its infancy, and clinical implications are largely unknown.
Collapse
Affiliation(s)
- Myrte Wennen
- Department of Intensive Care, Erasmus Medical Center, Rotterdam
| | - Wout Claassen
- Department of Physiology, Amsterdam UMC, location VUmc, Amsterdam
| | - Leo Heunks
- Department of Intensive Care, Erasmus Medical Center, Rotterdam
- Department of intensive care medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Camporota L, Rose L, Andrews PL, Nieman GF, Habashi NM. Airway pressure release ventilation for lung protection in acute respiratory distress syndrome: an alternative way to recruit the lungs. Curr Opin Crit Care 2024; 30:76-84. [PMID: 38085878 DOI: 10.1097/mcc.0000000000001123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Airway pressure release ventilation (APRV) is a modality of ventilation in which high inspiratory continuous positive airway pressure (CPAP) alternates with brief releases. In this review, we will discuss the rationale for APRV as a lung protective strategy and then provide a practical introduction to initiating APRV using the time-controlled adaptive ventilation (TCAV) method. RECENT FINDINGS APRV using the TCAV method uses an extended inspiratory time and brief expiratory release to first stabilize and then gradually recruit collapsed lung (over hours/days), by progressively 'ratcheting' open a small volume of collapsed tissue with each breath. The brief expiratory release acts as a 'brake' preventing newly recruited units from re-collapsing, reversing the main drivers of ventilator-induced lung injury (VILI). The precise timing of each release is based on analysis of expiratory flow and is set to achieve termination of expiratory flow at 75% of the peak expiratory flow. Optimization of the release time reflects the changes in elastance and, therefore, is personalized (i.e. conforms to individual patient pathophysiology), and adaptive (i.e. responds to changes in elastance over time). SUMMARY APRV using the TCAV method is a paradigm shift in protective lung ventilation, which primarily aims to stabilize the lung and gradually reopen collapsed tissue to achieve lung homogeneity eliminating the main mechanistic drivers of VILI.
Collapse
Affiliation(s)
- Luigi Camporota
- Department of Critical Care, Guy's & St Thomas' NHS Foundation Trust
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences
| | - Louise Rose
- Department of Critical Care, Guy's & St Thomas' NHS Foundation Trust
- Florence Nightingale Faculty of Nursing, Midwifery, and Palliative Care, King's College London, London, UK
| | - Penny L Andrews
- Department of Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| | - Gary F Nieman
- Department of Surgery, Upstate Medical University, Syracuse, New York, USA
| | - Nader M Habashi
- Department of Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|