1
|
Gong Y, Li H, Cui H, Gong Y. Microglial Mechanisms and Therapeutic Potential in Brain Injury Post-Intracerebral Hemorrhage. J Inflamm Res 2025; 18:2955-2973. [PMID: 40026311 PMCID: PMC11872102 DOI: 10.2147/jir.s498809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly common public health problem with a high mortality and disability rate and no effective treatments to enhance clinical prognosis. The increased aging population, improved vascular prevention, and augmented use of antithrombotic agents have collectively contributed to the rise in ICH incidence over the past few decades. The exploration and understanding of mechanisms and intervention strategies has great practical significance for expanding treatments and improving prognosis of ICH. Microglia, as resident macrophages of central nervous system, are responsible for the first immune defense post-ICH. After ICH, M1 microglia is firstly activated by primary injury and thrombin; subsequently, reactive microglia can further amplify the immune response and exert secondary injury (eg, oxidative stress, neuronal damage, and brain edema). The pro-inflammatory phenotype transmits to M2 microglia within 7 days post-ICH, which plays a key role in erythrophagocytosis and limiting the inflammatory secondary injury. Microglial M2 polarization has significant implications for improving prognosis, this process can be mediated through crosstalk with other cells, metabolic changes, and microbiota interaction. Clarifying the effect, timing, and potential downstream effects of multiple mechanisms that synergistically trigger anti-inflammatory responses may be necessary for clinical translation. Analyses of such intricate interaction between microglia cells and brain injury/repair mechanisms will contribute to our understanding of the critical microglial responses to microenvironment and facilitating the discovery of appropriate intervention strategies. Here, we present a comprehensive overview of the latest evidences on microglial dynamics following ICH, their role in driving primary/secondary injury mechanisms as well as neurorepair/plasticity, and possible treatment strategies targeting microglia.
Collapse
Affiliation(s)
- Yuhua Gong
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, People’s Republic of China
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Hui Li
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, People’s Republic of China
| | - Huanglin Cui
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing, 401331, People’s Republic of China
| | - Yuping Gong
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
2
|
Qi L, Geng X, Feng R, Wu S, Fu T, Li N, Ji H, Cheng R, Wu H, Wu D, Huang L, Long Q, Wang X. Association of glycemic variability and prognosis in patients with traumatic brain injury: A retrospective study from the MIMIC-IV database. Diabetes Res Clin Pract 2024; 217:111869. [PMID: 39332533 DOI: 10.1016/j.diabres.2024.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Elevated glycemic variability (GV) often occurs in intensive care unit (ICU) patients and is associated with patient prognosis. However, the association between GV and prognosis in ICU patients with traumatic brain injury (TBI) remains unclear. METHOD Clinical data of ICU patients with TBI were obtained from the Medical Information Mart for Intensive Care (MIMIC) -IV database. The coefficient of variation (CV) was utilized to quantify GV, while the Glasgow Coma Scale (GCS) was employed to evaluate the consciousness status of TBI patients. Pearson linear correlation analysis, linear regression, COX regression and restricted cubic spline (RCS) were used to investigate the relationship between CV and consciousness impairment, as well as the risk of in-hospital mortality. RESULT A total of 1641 ICU patients with TBI were included in the study from the MIMIC-IV database. Pearson linear correlation and restricted cubic spline (RCS) analysis results showed a negative linear relationship between CV and the last GCS (P = 0.002) with no evidence of nonlinearity (P for nonlinear = 0.733). Multivariable linear regression suggested a higher CV was associated with a lower discharge GCS [β (95 %CI) = -1.86 (-3.08 ∼ -0.65), P = 0.003]. Furthermore, multivariable COX regression indicated that CV ≥ 0.3 was a risk factor for in-hospital death in TBI patients [HR (95 %CI) = 1.74 (1.15-2.62), P = 0.003], and this result was also consistent across sensitivity and subgroup analyses. CONCLUSION Higher GV is related to poorer consciousness outcomes and increased risk of in-hospital death in ICU patients with TBI. Additional research is needed to understand the logical relationship between GV and TBI progression.
Collapse
Affiliation(s)
- Linrui Qi
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Xin Geng
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Rongliang Feng
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurosurgery, the First People's Hospital of Zhaoqing City, Zhaoqing 526060, China.
| | - Shuaishuai Wu
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Tengyue Fu
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Ning Li
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Fifth Hospital of Shanxi Medical University, Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan 030012, China.
| | - Rui Cheng
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Fifth Hospital of Shanxi Medical University, Shanxi Provincial Key Laboratory of Intelligent, Big Data and Digital Neurosurgery, Shanxi Provincial Key Laboratory of Intelligent Brain Tumor, Taiyuan 030012, China.
| | - Hao Wu
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| | - Dan Wu
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China.
| | - Lian Huang
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Qingshan Long
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurosurgery, Zhongshan Torch Development Zone People's Hospital, Zhongshan 528400, China.
| | - Xiangyu Wang
- Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
3
|
Arai-Okuda M, Murai Y, Maeda H, Kanamori A, Miki T, Naito T, Sugihara K, Kono M, Tanito M, Onoe H, Hirooka K, Kiuchi Y, Shinohara M, Kusuhara S, Mori S, Ueda K, Sakamoto M, Yamada-Nakanishi Y, Nakamura M. Potentially compromised systemic and local lactate metabolic balance in glaucoma, which could increase retinal glucose and glutamate concentrations. Sci Rep 2024; 14:3683. [PMID: 38355836 PMCID: PMC10866861 DOI: 10.1038/s41598-024-54383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
To investigate the association between lactate metabolism and glaucoma, we conducted a multi-institutional cross-sectional clinical study and a retinal metabolomic analysis of mice with elevated intraocular pressure (IOP) induced by intracameral microbead injection. We compared lactate concentrations in serum and aqueous humor in age-matched 64 patients each with primary open-angle glaucoma (POAG) and cataract. Neither serum nor aqueous humor lactate concentrations differed between the two groups. Multiple regression analysis revealed that only body mass index showed a significant positive correlation with serum and aqueous humor lactate concentration in POAG patients (rs = 0.376, P = 0.002, and rs = 0.333, P = 0.007, respectively), but not in cataract patients. L-Lactic acid was one of the most abundantly detected metabolites in mouse retinas with gas chromatography and mass spectrometry, but there were no significant differences among control, 2-week, and 4-week IOP elevation groups. After 4 weeks of elevated IOP, D-glucose and L-glutamic acid ranked as the top two for a change in raised concentration, roughly sevenfold and threefold, respectively (ANOVA, P = 0.004; Tukey-Kramer, P < 0.05). Glaucoma may disrupt the systemic and intraocular lactate metabolic homeostasis, with a compensatory rise in glucose and glutamate in the retina.
Collapse
Affiliation(s)
- Mina Arai-Okuda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yusuke Murai
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | - Akiyasu Kanamori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Kanamori Eye Clinic, Akashi, Japan
| | | | | | - Kazunobu Sugihara
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Michihiro Kono
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Hiromitsu Onoe
- Department of Ophthalmology and Visual Science, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Kazuyuki Hirooka
- Department of Ophthalmology and Visual Science, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Department of Future Medical Sciences, Kobe University Graduate School of Medicine, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kaori Ueda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Mari Sakamoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuko Yamada-Nakanishi
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
4
|
Stovell MG, Howe DJ, Thelin EP, Jalloh I, Helmy A, Guilfoyle MR, Grice P, Mason A, Giorgi-Coll S, Gallagher CN, Murphy MP, Menon DK, Carpenter TA, Hutchinson PJ, Carpenter KLH. High-physiological and supra-physiological 1,2- 13C 2 glucose focal supplementation to the traumatised human brain. J Cereb Blood Flow Metab 2023; 43:1685-1701. [PMID: 37157814 PMCID: PMC10581237 DOI: 10.1177/0271678x231173584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/12/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023]
Abstract
How to optimise glucose metabolism in the traumatised human brain remains unclear, including whether injured brain can metabolise additional glucose when supplied. We studied the effect of microdialysis-delivered 1,2-13C2 glucose at 4 and 8 mmol/L on brain extracellular chemistry using bedside ISCUSflex, and the fate of the 13C label in the 8 mmol/L group using high-resolution NMR of recovered microdialysates, in 20 patients. Compared with unsupplemented perfusion, 4 mmol/L glucose increased extracellular concentrations of pyruvate (17%, p = 0.04) and lactate (19%, p = 0.01), with a small increase in lactate/pyruvate ratio (5%, p = 0.007). Perfusion with 8 mmol/L glucose did not significantly influence extracellular chemistry measured with ISCUSflex, compared to unsupplemented perfusion. These extracellular chemistry changes appeared influenced by the underlying metabolic states of patients' traumatised brains, and the presence of relative neuroglycopaenia. Despite abundant 13C glucose supplementation, NMR revealed only 16.7% 13C enrichment of recovered extracellular lactate; the majority being glycolytic in origin. Furthermore, no 13C enrichment of TCA cycle-derived extracellular glutamine was detected. These findings indicate that a large proportion of extracellular lactate does not originate from local glucose metabolism, and taken together with our earlier studies, suggest that extracellular lactate is an important transitional step in the brain's production of glutamine.
Collapse
Affiliation(s)
- Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosurgery, The Walton Centre, Liverpool, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Grice
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrew Mason
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Clare N Gallagher
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Gao Y, Liu N, Chen J, Zheng P, Niu J, Tang S, Peng X, Wu J, Yu J, Ma L. Neuropharmacological insight into preventive intervention in posttraumatic epilepsy based on regulating glutamate homeostasis. CNS Neurosci Ther 2023; 29:2430-2444. [PMID: 37309302 PMCID: PMC10401093 DOI: 10.1111/cns.14294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Posttraumatic epilepsy (PTE) is one of the most critical complications of traumatic brain injury (TBI), significantly increasing TBI patients' neuropsychiatric symptoms and mortality. The abnormal accumulation of glutamate caused by TBI and its secondary excitotoxicity are essential reasons for neural network reorganization and functional neural plasticity changes, contributing to the occurrence and development of PTE. Restoring glutamate balance in the early stage of TBI is expected to play a neuroprotective role and reduce the risk of PTE. AIMS To provide a neuropharmacological insight for drug development to prevent PTE based on regulating glutamate homeostasis. METHODS We discussed how TBI affects glutamate homeostasis and its relationship with PTE. Furthermore, we also summarized the research progress of molecular pathways for regulating glutamate homeostasis after TBI and pharmacological studies aim to prevent PTE by restoring glutamate balance. RESULTS TBI can lead to the accumulation of glutamate in the brain, which increases the risk of PTE. Targeting the molecular pathways affecting glutamate homeostasis helps restore normal glutamate levels and is neuroprotective. DISCUSSION Taking glutamate homeostasis regulation as a means for new drug development can avoid the side effects caused by direct inhibition of glutamate receptors, expecting to alleviate the diseases related to abnormal glutamate levels in the brain, such as PTE, Parkinson's disease, depression, and cognitive impairment. CONCLUSION It is a promising strategy to regulate glutamate homeostasis through pharmacological methods after TBI, thereby decreasing nerve injury and preventing PTE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Ning Liu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Juan Chen
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Ping Zheng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Xiaodong Peng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jing Wu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianqiang Yu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Lin Ma
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| |
Collapse
|
6
|
Nwafor D, Goeckeritz J, Hasanpour Z, Davidson C, Lucke-Wold B. Nutritional Support Following Traumatic Brain Injury: A Comprehensive Review. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2023; 8:236-247. [PMID: 37795213 PMCID: PMC10550050 DOI: 10.14218/erhm.2022.00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Traumatic brain injury (TBI) can contribute to extensive dysbiosis of the gastrointestinal system, leading to worsened outcomes. The importance of nutrition in recovery is underappreciated but highly important. In this focused review, we discuss the timing of nutritional interventions with supporting data. We highlight routes of administration that are important given the extent of injury often seen in TBI. The increased energy demands can be met through these approaches. Furthermore, patients need increased vitamins, minerals, and supplements. These interventions are constantly being refined. The current standards are reviewed with an emphasis on evidence-based practices.
Collapse
Affiliation(s)
- Divine Nwafor
- Department of Neurosurgery, West Virginia University, Morgantown, USA
| | - Joel Goeckeritz
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Zahra Hasanpour
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | | | |
Collapse
|
7
|
Dergunova LV, Filippenkov IB, Limborska SA, Myasoedov NF. Neuroprotective Peptides and New Strategies for Ischemic Stroke Drug Discoveries. Genes (Basel) 2023; 14:genes14050953. [PMID: 37239313 DOI: 10.3390/genes14050953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic stroke continues to be one of the leading causes of death and disability in the adult population worldwide. The currently used pharmacological methods for the treatment of ischemic stroke are not effective enough and require the search for new tools and approaches to identify therapeutic targets and potential neuroprotectors. Today, in the development of neuroprotective drugs for the treatment of stroke, special attention is paid to peptides. Namely, peptide action is aimed at blocking the cascade of pathological processes caused by a decrease in blood flow to the brain tissues. Different groups of peptides have therapeutic potential in ischemia. Among them are small interfering peptides that block protein-protein interactions, cationic arginine-rich peptides with a combination of various neuroprotective properties, shuttle peptides that ensure the permeability of neuroprotectors through the blood-brain barrier, and synthetic peptides that mimic natural regulatory peptides and hormones. In this review, we consider the latest achievements and trends in the development of new biologically active peptides, as well as the role of transcriptomic analysis in identifying the molecular mechanisms of action of potential drugs aimed at the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lyudmila V Dergunova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Ivan B Filippenkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Svetlana A Limborska
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
8
|
Venturini S, Bhatti F, Timofeev I, Carpenter KLH, Hutchinson PJ, Guilfoyle MR, Helmy A. Microdialysis-Based Classifications of Abnormal Metabolic States after Traumatic Brain Injury: A Systematic Review of the Literature. J Neurotrauma 2023; 40:195-209. [PMID: 36112699 DOI: 10.1089/neu.2021.0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
After traumatic brain injury (TBI), cerebral metabolism can become deranged, contributing to secondary injury. Cerebral microdialysis (CMD) allows cerebral metabolism assessment and is often used with other neuro-monitoring modalities. CMD-derived parameters such as the lactate/pyruvate ratio (LPR) show a failure of oxidative energy generation. CMD-based abnormal metabolic states can be described following TBI, informing the etiology of physiological derangements. This systematic review summarizes the published literature on microdialysis-based abnormal metabolic classifications following TBI. Original research studies in which the populations were patients with TBI were included. Studies that described CMD-based classifications of metabolic abnormalities were included in the synthesis of the narrative results. A total of 825 studies underwent two-step screening after duplicates were removed. Fifty-three articles that used CMD in TBI patients were included. Of these, 14 described abnormal metabolic states based on CMD parameters. Classifications were heterogeneous between studies. LPR was the most frequently used parameter in the classifications; high LPR values were described as metabolic crisis. Ischemia was consistently defined as high LPR with low CMD substrate levels (glucose or pyruvate). Mitochondrial dysfunction, describing inability to use energy substrate despite availability, was identified based on raised LPR with near-normal levels of pyruvate. This is the first systematic review summarizing the published literature on microdialysis-based abnormal metabolic states following TBI. Although variability exists among individual classifications, there is broad agreement about broad definitions of metabolic crisis, ischemia, and mitochondrial dysfunction. Identifying the etiology of deranged cerebral metabolism after TBI is important for targeting therapeutic interventions.
Collapse
Affiliation(s)
- Sara Venturini
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Faheem Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Omori NE, Woo GH, Mansor LS. Exogenous Ketones and Lactate as a Potential Therapeutic Intervention for Brain Injury and Neurodegenerative Conditions. Front Hum Neurosci 2022; 16:846183. [PMID: 36267349 PMCID: PMC9577611 DOI: 10.3389/fnhum.2022.846183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic dysfunction is a ubiquitous underlying feature of many neurological conditions including acute traumatic brain injuries and chronic neurodegenerative conditions. A central problem in neurological patients, in particular those with traumatic brain injuries, is an impairment in the utilization of glucose, which is the predominant metabolic substrate in a normally functioning brain. In such patients, alternative substrates including ketone bodies and lactate become important metabolic candidates for maintaining brain function. While the potential neuroprotective benefits of ketosis have been recognized for up to almost a century, the majority of work has focused on the use of ketogenic diets to induce such a state, which is inappropriate in cases of acute disease due to the prolonged periods of time (i.e., weeks to months) required for the effects of a ketogenic diet to be seen. The following review seeks to explore the neuroprotective effects of exogenous ketone and lactate preparations, which have more recently become commercially available and are able to induce a deep ketogenic response in a fraction of the time. The rapid response of exogenous preparations makes their use as a therapeutic adjunct more feasible from a clinical perspective in both acute and chronic neurological conditions. Potentially, their ability to globally moderate long-term, occult brain dysfunction may also be relevant in reducing lifetime risks of certain neurodegenerative conditions. In particular, this review explores the association between traumatic brain injury and contusion-related dementia, assessing metabolic parallels and highlighting the potential role of exogenous ketone and lactate therapies.
Collapse
|
10
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
11
|
Xie J, Kittur FS, Li PA, Hung CY. Rethinking the necessity of low glucose intervention for cerebral ischemia/reperfusion injury. Neural Regen Res 2021; 17:1397-1403. [PMID: 34916409 PMCID: PMC8771096 DOI: 10.4103/1673-5374.330592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Glucose is the essential and almost exclusive metabolic fuel for the brain. Ischemic stroke caused by a blockage in one or more cerebral arteries quickly leads to a lack of regional cerebral blood supply resulting in severe glucose deprivation with subsequent induction of cellular homeostasis disturbance and eventual neuronal death. To make up ischemia-mediated adenosine 5′-triphosphate depletion, glucose in the ischemic penumbra area rapidly enters anaerobic metabolism to produce glycolytic adenosine 5′-triphosphate for cell survival. It appears that an increase in glucose in the ischemic brain would exert favorable effects. This notion is supported by in vitro studies, but generally denied by most in vivo studies. Clinical studies to manage increased blood glucose levels after stroke also failed to show any benefits or even brought out harmful effects while elevated admission blood glucose concentrations frequently correlated with poor outcomes. Surprisingly, strict glycaemic control in clinical practice also failed to yield any beneficial outcome. These controversial results from glucose management studies during the past three decades remain a challenging question of whether glucose intervention is needed for ischemic stroke care. This review provides a brief overview of the roles of cerebral glucose under normal and ischemic conditions and the results of managing glucose levels in non-diabetic patients. Moreover, the relationship between blood glucose and cerebral glucose during the ischemia/reperfusion processes and the potential benefits of low glucose supplements for non-diabetic patients are discussed.
Collapse
Affiliation(s)
- Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
12
|
Lu P, Cui L, Wang Y, Kang K, Gu H, Li Z, Liu L, Wang Y, Zhao X. Relationship Between Glycosylated Hemoglobin and Short-Term Mortality of Spontaneous Intracerebral Hemorrhage. Front Neurol 2021; 12:648907. [PMID: 33935947 PMCID: PMC8085396 DOI: 10.3389/fneur.2021.648907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The relationship between glycosylated hemoglobin (HbA1c) and prognosis of spontaneous intracerebral hemorrhage (SICH) patients has not been fully elucidated. This study aimed to reveal the relationship between HbA1c levels and short-term mortality after patient admission with SICH. Methods: It was a large-scale, multicenter, cross-sectional study. From August 1, 2015, to July 31, 2019, a total of 41910 SICH patients were included in the study from the Chinese Stroke Center Alliance (CSCA) program. Finally, we comprehensively analyzed the data from 21,116 patients with SICH. HbA1c was categorized into four groups by quartile. Univariate and multivariate logistic regression analyses were used to assess the association between HbA1c levels and short-term mortality in SICH patients. Results: The average age of the 21,116 patients was 62.8 ± 13.2 years; 13,052 (61.8%) of them were male, and 507 (2.4%) of them died. Compared to the higher three quartiles of HbA1c, the lowest quartile (≤5.10%) had higher short-term mortality. In subgroup analysis with or without diabetes mellitus (DM) patients, the mortality of the Q3 group at 5.60-6.10% was significantly lower than that of the Q1 group at ≤5.10%. After adjustment for potential influencing factors, the ROC curve of HbA1c can better predict the short-term mortality of patients with SICH (AUC = 0.6286 P < 0.001). Conclusions: Therefore, we concluded that low or extremely low HbA1c levels (≤5.10%) after stroke were associated with higher short-term mortality in SICH patients, with or without DM.
Collapse
Affiliation(s)
- Ping Lu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lingyun Cui
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaijiang Kang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongqiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Jenie RP, Nurdin NM, Husein I, Alatas H. Sensitivity and Specificity of Non-Invasive Blood Glucose Level Measurement Optical Device to Detect Hypoglycaemia. J Nutr Sci Vitaminol (Tokyo) 2021; 66:S226-S229. [PMID: 33612600 DOI: 10.3177/jnsv.66.s226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hypoglycemia is related to lethargy, psychiatric disorders, and impaired brain metabolism. Hypoglycemia is one of the leading factors of death in blood glucose level (BGL) metabolism disorders. Optical methods have been heavily researched due to its potential to eliminate drawbacks of conventional hypoglycemia detection; however, clinical data are still scarce. This study objective was to measure the sensitivity and specificity of non-invasive BGL Measurement Optical Device (NI-BGL-MOD) to detect hypoglycemia. The reference standard is venipuncture spectrophotometry. Researcher has developed NI-BGL-MOD, which we have used in a clinical trial in December 2015. The researchers have used spectral data collected from the device to measure the BGL of randomly selected 110 participants who were older than 17 y old. Each participant was measured five times. There are a total of 550 data sets that were then compared to BGL measurement using the reference standard. The spectral data were optimized using Discrete Fourier Transform and inferred to BGL prediction using the Fast Artificial Neural Network. Researchers have defined hypoglycemia case with BGL level at 75 mg/dL or lower. The researchers have calculated sensitivity and specificity using epiR in Rstudio. Respondents' BGL values were between 67 to 96 mg/dL. Researchers have classified eighty-nine cases as hypoglycemia. There are 461 cases classified as not hypoglycemia. The sensitivity was 54%, and the specificity was 97%. Diagnostic accuracy was 86%, and the number to diagnose was 1.96. The newly developed method NI-BGL-MOD could be used to detect hypoglycemia.
Collapse
Affiliation(s)
- Renan Prasta Jenie
- Physics Department, Mathematics and Natural Sciences Faculty, IPB University.,Community Nutrition Department, Human Ecology Faculty, IPB University.,Public Health Department, Public Health Faculty, Binawan University
| | | | - Irzaman Husein
- Physics Department, Mathematics and Natural Sciences Faculty, IPB University
| | - Husin Alatas
- Physics Department, Mathematics and Natural Sciences Faculty, IPB University
| |
Collapse
|
14
|
Mens Sana in Corpore Sano: Does the Glycemic Index Have a Role to Play? Nutrients 2020; 12:nu12102989. [PMID: 33003562 PMCID: PMC7599769 DOI: 10.3390/nu12102989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Although diet interventions are mostly related to metabolic disorders, nowadays they are used in a wide variety of pathologies. From diabetes and obesity to cardiovascular diseases, to cancer or neurological disorders and stroke, nutritional recommendations are applied to almost all diseases. Among such disorders, metabolic disturbances and brain function and/or diseases have recently been shown to be linked. Indeed, numerous neurological functions are often associated with perturbations of whole-body energy homeostasis. In this regard, specific diets are used in various neurological conditions, such as epilepsy, stroke, or seizure recovery. In addition, Alzheimer’s disease and Autism Spectrum Disorders are also considered to be putatively improved by diet interventions. Glycemic index diets are a novel developed indicator expected to anticipate the changes in blood glucose induced by specific foods and how they can affect various physiological functions. Several results have provided indications of the efficiency of low-glycemic index diets in weight management and insulin sensitivity, but also cognitive function, epilepsy treatment, stroke, and neurodegenerative diseases. Overall, studies involving the glycemic index can provide new insights into the relationship between energy homeostasis regulation and brain function or related disorders. Therefore, in this review, we will summarize the main evidence on glycemic index involvement in brain mechanisms of energy homeostasis regulation.
Collapse
|
15
|
Kurtz P, Rocha EEM. Nutrition Therapy, Glucose Control, and Brain Metabolism in Traumatic Brain Injury: A Multimodal Monitoring Approach. Front Neurosci 2020; 14:190. [PMID: 32265626 PMCID: PMC7105880 DOI: 10.3389/fnins.2020.00190] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
The goal of neurocritical care in patients with traumatic brain injury (TBI) is to prevent secondary brain damage. Pathophysiological mechanisms lead to loss of body mass, negative nitrogen balance, dysglycemia, and cerebral metabolic dysfunction. All of these complications have been shown to impact outcomes. Therapeutic options are available that prevent or mitigate their negative impact. Nutrition therapy, glucose control, and multimodality monitoring with cerebral microdialysis (CMD) can be applied as an integrated approach to optimize systemic immune and organ function as well as adequate substrate delivery to the brain. CMD allows real-time bedside monitoring of aspects of brain energy metabolism, by measuring specific metabolites in the extracellular fluid of brain tissue. Sequential monitoring of brain glucose and lactate/pyruvate ratio may reveal pathologic processes that lead to imbalances in supply and demand. Early recognition of these patterns may help individualize cerebral perfusion targets and systemic glucose control following TBI. In this direction, recent consensus statements have provided guidelines and recommendations for CMD applications in neurocritical care. In this review, we summarize data from clinical research on patients with severe TBI focused on a multimodal approach to evaluate aspects of nutrition therapy, such as timing and route; aspects of systemic glucose management, such as intensive vs. moderate control; and finally, aspects of cerebral metabolism. Research and clinical applications of CMD to better understand the interplay between substrate supply, glycemic variations, insulin therapy, and their effects on the brain metabolic profile were also reviewed. Novel mechanistic hypotheses in the interpretation of brain biomarkers were also discussed. Finally, we offer an integrated approach that includes nutritional and brain metabolic monitoring to manage severe TBI patients.
Collapse
Affiliation(s)
- Pedro Kurtz
- Department of Neurointensive Care, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Department of Intensive Care Medicine, Hospital Copa Star, Rio de Janeiro, Brazil
| | - Eduardo E M Rocha
- Department of Intensive Care Medicine, Hospital Copa Star, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Zaulkffali AS, Md Razip NN, Syed Alwi SS, Abd Jalil A, Abd Mutalib MS, Gopalsamy B, Chang SK, Zainal Z, Ibrahim NN, Zakaria ZA, Khaza'ai H. Vitamins D and E Stimulate the PI3K-AKT Signalling Pathway in Insulin-Resistant SK-N-SH Neuronal Cells. Nutrients 2019; 11:nu11102525. [PMID: 31635074 PMCID: PMC6836113 DOI: 10.3390/nu11102525] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023] Open
Abstract
This study investigated the effects of vitamins D and E on an insulin-resistant model and hypothesized that this treatment would reverse the effects of Alzheimer’s disease (AD) and improves insulin signalling. An insulin-resistant model was induced in SK-N-SH neuronal cells with a treatment of 250 nM insulin and re-challenged with 100 nM at two different incubation time (16 h and 24 h). The effects of vitamin D (10 and 20 ng/mL), vitamin E in the form of tocotrienol-rich fraction (TRF) (200 ng/mL) and the combination of vitamins D and E on insulin signalling markers (IR, PI3K, GLUT3, GLUT4, and p-AKT), glucose uptake and AD markers (GSK3β and TAU) were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The results demonstrated an improvement of the insulin signalling pathway upon treatment with vitamin D alone, with significant increases in IR, PI3K, GLUT3, GLUT4 expression levels, as well as AKT phosphorylation and glucose uptake, while GSK3β and TAU expression levels was decreased significantly. On the contrary, vitamin E alone, increased p-AKT, reduced the ROS as well as GSK3β and TAU but had no effect on the insulin signalling expression levels. The combination of vitamins D and E only showed significant increase in GLUT4, p-AKT, reduced ROS as well as GSK3β and TAU. Thus, the universal role of vitamin D, E alone and in combinations could be the potential nutritional agents in restoring the sensitivity of neuronal cells towards insulin and delaying the pathophysiological progression of AD.
Collapse
Affiliation(s)
- Amirah Salwani Zaulkffali
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Nurliyana Najwa Md Razip
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Sharifah Sakinah Syed Alwi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Afifah Abd Jalil
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Mohd Sokhini Abd Mutalib
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Banulata Gopalsamy
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Sui Kiat Chang
- Department of Nutrition and Dietetics, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Zaida Zainal
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi 43000, Malaysia.
| | - Nafissa Nadia Ibrahim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Huzwah Khaza'ai
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| |
Collapse
|
17
|
Killen MJ, Giorgi-Coll S, Helmy A, Hutchinson PJ, Carpenter KL. Metabolism and inflammation: implications for traumatic brain injury therapeutics. Expert Rev Neurother 2019; 19:227-242. [PMID: 30848963 DOI: 10.1080/14737175.2019.1582332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Traumatic Brain Injury (TBI) is a leading cause of death and disability in young people, affecting 69 million people annually, worldwide. The initial trauma disrupts brain homeostasis resulting in metabolic dysfunction and an inflammatory cascade, which can then promote further neurodegenerative effects for months or years, as a 'secondary' injury. Effective targeting of the cerebral inflammatory system is challenging due to its complex, pleiotropic nature. Cell metabolism plays a key role in many diseases, and increased disturbance in the TBI metabolic state is associated with poorer patient outcomes. Investigating critical metabolic pathways, and their links to inflammation, can potentially identify supplements which alter the brain's long-term response to TBI and improve recovery. Areas covered: The authors provide an overview of literature on metabolism and inflammation following TBI, and from relevant pre-clinical and clinical studies, propose therapeutic strategies. Expert opinion: There is still no specific active drug treatment for TBI. Changes in metabolic and inflammatory states have been reported after TBI and appear linked. Understanding more about abnormal cerebral metabolism following TBI, and its relationship with cerebral inflammation, will provide essential information for designing therapies, with implications for neurocritical care and for alleviating long-term disability and neurodegeneration in post-TBI patients.
Collapse
Affiliation(s)
- Monica J Killen
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Susan Giorgi-Coll
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Adel Helmy
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Peter Ja Hutchinson
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK.,b Wolfson Brain Imaging Centre, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Keri Lh Carpenter
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK.,b Wolfson Brain Imaging Centre, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| |
Collapse
|
18
|
Stocker RA. Intensive Care in Traumatic Brain Injury Including Multi-Modal Monitoring and Neuroprotection. Med Sci (Basel) 2019; 7:medsci7030037. [PMID: 30813644 PMCID: PMC6473302 DOI: 10.3390/medsci7030037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Moderate to severe traumatic brain injuries (TBI) require treatment in an intensive care unit (ICU) in close collaboration of a multidisciplinary team consisting of different medical specialists such as intensivists, neurosurgeons, neurologists, as well as ICU nurses, physiotherapists, and ergo-/logotherapists. Major goals include all measurements to prevent secondary brain injury due to secondary brain insults and to optimize frame conditions for recovery and early rehabilitation. The distinction between moderate and severe is frequently done based on the Glascow Coma Scale and therefore often is just a snapshot at the early time of assessment. Due to its pathophysiological pathways, an initially as moderate classified TBI may need the same sophisticated surveillance, monitoring, and treatment as a severe form or might even progress to a severe and difficult to treat affection. As traumatic brain injury is rather a syndrome comprising a range of different affections to the brain and as, e.g., age-related comorbidities and treatments additionally may have a great impact, individual and tailored treatment approaches based on monitoring and findings in imaging and respecting pre-injury comorbidities and their therapies are warranted.
Collapse
Affiliation(s)
- Reto A Stocker
- Institute for Anesthesiology and Intensive Care Medicine, Klinik Hirslanden, CH-8032 Zurich, Switzerland.
| |
Collapse
|
19
|
Liang H, Bourdon AK, Chen LY, Phelix CF, Perry G. Gibbs Free-Energy Gradient along the Path of Glucose Transport through Human Glucose Transporter 3. ACS Chem Neurosci 2018; 9:2815-2823. [PMID: 29865792 PMCID: PMC6256350 DOI: 10.1021/acschemneuro.8b00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
![]()
Fourteen
glucose transporters (GLUTs) play essential roles in human
physiology by facilitating glucose diffusion across the cell membrane.
Due to its central role in the energy metabolism of the central nervous
system, GLUT3 has been thoroughly investigated. However, the Gibbs
free-energy gradient (what drives the facilitated diffusion of glucose)
has not been mapped out along the transport path. Some fundamental
questions remain. Here we present a molecular dynamics study of GLUT3
embedded in a lipid bilayer to quantify the free-energy profile along
the entire transport path of attracting a β-d-glucose
from the interstitium to the inside of GLUT3 and, from there, releasing
it to the cytoplasm by Arrhenius thermal activation. From the free-energy
profile, we elucidate the unique Michaelis–Menten characteristics
of GLUT3, low KM and high VMAX, specifically suitable for neurons’ high and
constant demand of energy from their low-glucose environments. We
compute GLUT3’s binding free energy for β-d-glucose
to be −4.6 kcal/mol in agreement with the experimental value
of −4.4 kcal/mol (KM = 1.4 mM).
We also compute the hydration energy of β-d-glucose,
−18.0 kcal/mol vs the experimental data, −17.8 kcal/mol.
In this, we establish a dynamics-based connection from GLUT3’s
crystal structure to its cellular thermodynamics with quantitative
accuracy. We predict equal Arrhenius barriers for glucose uptake and
efflux through GLUT3 to be tested in future experiments.
Collapse
Affiliation(s)
- Huiyun Liang
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249 United States
| | - Allen K. Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Liao Y. Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249 United States
| | - Clyde F. Phelix
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249 United States
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
20
|
Ngernsutivorakul T, White TS, Kennedy RT. Microfabricated Probes for Studying Brain Chemistry: A Review. Chemphyschem 2018; 19:1128-1142. [PMID: 29405568 PMCID: PMC6996029 DOI: 10.1002/cphc.201701180] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 12/13/2022]
Abstract
Probe techniques for monitoring in vivo chemistry (e.g., electrochemical sensors and microdialysis sampling probes) have significantly contributed to a better understanding of neurotransmission in correlation to behaviors and neurological disorders. Microfabrication allows construction of neural probes with high reproducibility, scalability, design flexibility, and multiplexed features. This technology has translated well into fabricating miniaturized neurochemical probes for electrochemical detection and sampling. Microfabricated electrochemical probes provide a better control of spatial resolution with multisite detection on a single compact platform. This development allows the observation of heterogeneity of neurochemical activity precisely within the brain region. Microfabricated sampling probes are starting to emerge that enable chemical measurements at high spatial resolution and potential for reducing tissue damage. Recent advancement in analytical methods also facilitates neurochemical monitoring at high temporal resolution. Furthermore, a positive feature of microfabricated probes is that they can be feasibly built with other sensing and stimulating platforms including optogenetics. Such integrated probes will empower researchers to precisely elucidate brain function and develop novel treatments for neurological disorders.
Collapse
Affiliation(s)
| | - Thomas S. White
- Macromolecular Science and Engineering, University of Michigan, 3003E, NCRC Building 28, 2800 Plymouth Rd., Ann Arbor, MI 48109
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| |
Collapse
|
21
|
Liraglutide Activates the Nrf2/HO-1 Antioxidant Pathway and Protects Brain Nerve Cells against Cerebral Ischemia in Diabetic Rats. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2018; 2018:3094504. [PMID: 29623090 PMCID: PMC5829331 DOI: 10.1155/2018/3094504] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 01/10/2023]
Abstract
This study aimed to determine the effect of liraglutide pretreatment and to elucidate the mechanism of nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1) signaling after focal cerebral ischemia injury in diabetic rats model. Adult male Sprague-Dawley rats were randomly divided into the sham-operated (S) group, diabetes mellitus ischemia (DM + MCAO) group, liraglutide pretreatment normal blood glucose ischemia (NDM+MCAO+L) group, and liraglutide pretreatment diabetes ischemia (DM + MCAO + L) group. At 48 h after middle cerebral artery occlusion (MCAO), neurological deficits and infarct volume of brain were measured. Oxidative stress brain tissue was determined by superoxide dismutase (SOD) and myeloperoxidase (MPO) activities. The expression levels of Nrf2 and HO-1 of brain tissue were analyzed by western blotting. In the DM + MCAO + L group, neurological deficits scores and cerebral infarct volume seemed to decrease at 48 h after MCAO cerebral ischemia compared with those in DM + MCAO group (P < 0.05). In addition, the expression of Nrf2 and HO-1 increased in 48 h at liraglutide pretreatment groups after MCAO cerebral ischemia if compared with those in the DM + MCAO group (P < 0.05). Furthermore, the DM + MCAO + L group has no significant difference compared with the NDM + MCAO + L group (P > 0.05). To sum up, alleviating effects of liraglutide on diabetes complicated with cerebral ischemia injury rats would be related to Nrf2/HO-1 signaling pathway.
Collapse
|
22
|
Plummer MP, Notkina N, Timofeev I, Hutchinson PJ, Finnis ME, Gupta AK. Cerebral metabolic effects of strict versus conventional glycaemic targets following severe traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:16. [PMID: 29368635 PMCID: PMC5784688 DOI: 10.1186/s13054-017-1933-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023]
Abstract
Background Optimal glycaemic targets for patients with severe traumatic brain injury remain unclear. The primary objective of this microdialysis study was to compare cerebral metabolism with strict versus conventional glycaemic control. Methods We performed a prospective single-centre randomised controlled within-subject crossover study of 20 adult patients admitted to an academic neurointensive care unit with severe traumatic brain injury. Patients underwent randomised, consecutive 24-h periods of strict (4–7 mmol/L; 72–126 mg/dl) and conventional (<10 mmol/L; 180 mg/dl) glycaemic control with microdialysis measurements performed hourly. The first 12 h of each study period was designated as a ‘washout’ period, with the subsequent 12 h being the period of interest. Results Cerebral glucose was lower during strict glycaemia than with conventional control (mean 1.05 [95% CI 0.58–1.51] mmol/L versus 1.28 [0.81–1.74] mmol/L; P = 0.03), as was lactate (3.07 [2.44–3.70] versus 3.56 [2.81–4.30]; P < 0.001). There were no significant differences in pyruvate or the lactate/pyruvate ratio between treatment phases. Strict glycaemia increased the frequency of low cerebral glucose (< 0.8 mmol/L; OR 1.91 [95% CI 1.01–3.65]; P < 0.05); however, there were no differences in the frequency of critically low glucose (< 0.2 mmol/L) or critically elevated lactate/pyruvate ratio between phases. Conclusions Compared with conventional glycaemic targets, strict blood glucose control was associated with lower mean levels of cerebral glucose and an increased frequency of abnormally low glucose levels. These data support conventional glycaemic targets following traumatic brain injury. Trial registration ISRCTN, ISRCTN19146279. Retrospectively registered on 2 May 2014. Electronic supplementary material The online version of this article (10.1186/s13054-017-1933-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark P Plummer
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Natalia Notkina
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Mark E Finnis
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Arun K Gupta
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK. .,Division of Anaesthesia, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
23
|
Tu TW, Ibrahim WG, Jikaria N, Munasinghe JP, Witko JA, Hammoud DA, Frank JA. On the detection of cerebral metabolic depression in experimental traumatic brain injury using Chemical Exchange Saturation Transfer (CEST)-weighted MRI. Sci Rep 2018; 8:669. [PMID: 29330386 PMCID: PMC5766554 DOI: 10.1038/s41598-017-19094-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Metabolic abnormalities are commonly observed in traumatic brain injury (TBI) patients exhibiting long-term neurological deficits. This study investigated the feasibility and reproducibility of using chemical exchange saturation transfer (CEST) MRI to detect cerebral metabolic depression in experimental TBI. Phantom and in vivo CEST experiments were conducted at 9.4 Tesla to optimize the selective saturation for enhancing the endogenous contrast-weighting of the proton exchanges over the range of glucose proton chemical shifts (glucoCEST) in the resting rat brain. The optimized glucoCEST-weighted imaging was performed on a closed-head model of diffuse TBI in rats with 2-deoxy-D-[14C]-glucose (2DG) autoradiography validation. The results demonstrated that saturation duration of 1‒2 seconds at pulse powers 1.5‒2µT resulted in an improved contrast-to-noise ratio between the gray and white matter comparable to 2DG autoradiographs. The intrasubject (n = 4) and intersubject (n = 3) coefficient of variations for repeated glucoCEST acquisitions (n = 4) ranged between 8‒16%. Optimization for the TBI study revealed that glucoCEST-weighted images with 1.5μT power and 1 s saturation duration revealed the greatest changes in contrast before and after TBI, and positively correlated with 2DG autoradiograph (r = 0.78, p < 0.01, n = 6) observations. These results demonstrate that glucoCEST-weighted imaging may be useful in detecting metabolic abnormalities following TBI.
Collapse
Affiliation(s)
- Tsang-Wei Tu
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States. .,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, United States. .,Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, United States.
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Neekita Jikaria
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, United States.,Acute Stroke Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jeeva P Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jaclyn A Witko
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Henry Jackson Foundation, Bethesda, MD, United States
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Joseph A Frank
- Frank Laboratory, Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Geeraerts T, Velly L, Abdennour L, Asehnoune K, Audibert G, Bouzat P, Bruder N, Carrillon R, Cottenceau V, Cotton F, Courtil-Teyssedre S, Dahyot-Fizelier C, Dailler F, David JS, Engrand N, Fletcher D, Francony G, Gergelé L, Ichai C, Javouhey É, Leblanc PE, Lieutaud T, Meyer P, Mirek S, Orliaguet G, Proust F, Quintard H, Ract C, Srairi M, Tazarourte K, Vigué B, Payen JF. Management of severe traumatic brain injury (first 24hours). Anaesth Crit Care Pain Med 2017; 37:171-186. [PMID: 29288841 DOI: 10.1016/j.accpm.2017.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The latest French Guidelines for the management in the first 24hours of patients with severe traumatic brain injury (TBI) were published in 1998. Due to recent changes (intracerebral monitoring, cerebral perfusion pressure management, treatment of raised intracranial pressure), an update was required. Our objective has been to specify the significant developments since 1998. These guidelines were conducted by a group of experts for the French Society of Anesthesia and Intensive Care Medicine (Société francaise d'anesthésie et de réanimation [SFAR]) in partnership with the Association de neuro-anesthésie-réanimation de langue française (ANARLF), The French Society of Emergency Medicine (Société française de médecine d'urgence (SFMU), the Société française de neurochirurgie (SFN), the Groupe francophone de réanimation et d'urgences pédiatriques (GFRUP) and the Association des anesthésistes-réanimateurs pédiatriques d'expression française (ADARPEF). The method used to elaborate these guidelines was the Grade® method. After two Delphi rounds, 32 recommendations were formally developed by the experts focusing on the evaluation the initial severity of traumatic brain injury, the modalities of prehospital management, imaging strategies, indications for neurosurgical interventions, sedation and analgesia, indications and modalities of cerebral monitoring, medical management of raised intracranial pressure, management of multiple trauma with severe traumatic brain injury, detection and prevention of post-traumatic epilepsia, biological homeostasis (osmolarity, glycaemia, adrenal axis) and paediatric specificities.
Collapse
Affiliation(s)
- Thomas Geeraerts
- Pôle anesthésie-réanimation, Inserm, UMR 1214, Toulouse neuroimaging center, ToNIC, université Toulouse 3-Paul Sabatier, CHU de Toulouse, 31059 Toulouse, France.
| | - Lionel Velly
- Service d'anesthésie-réanimation, Aix-Marseille université, CHU Timone, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Lamine Abdennour
- Département d'anesthésie-réanimation, groupe hospitalier Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Karim Asehnoune
- Service d'anesthésie et de réanimation chirurgicale, Hôtel-Dieu, CHU de Nantes, 44093 Nantes cedex 1, France
| | - Gérard Audibert
- Département d'anesthésie-réanimation, hôpital Central, CHU de Nancy, 54000 Nancy, France
| | - Pierre Bouzat
- Pôle anesthésie-réanimation, CHU Grenoble-Alpes, 38043 Grenoble cedex 9, France
| | - Nicolas Bruder
- Service d'anesthésie-réanimation, Aix-Marseille université, CHU Timone, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Romain Carrillon
- Service d'anesthésie-réanimation, hôpital neurologique Pierre-Wertheimer, groupement hospitalier Est, hospices civils de Lyon, 69677 Bron, France
| | - Vincent Cottenceau
- Service de réanimation chirurgicale et traumatologique, SAR 1, hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - François Cotton
- Service d'imagerie, centre hospitalier Lyon Sud, hospices civils de Lyon, 69495 Pierre-Bénite cedex, France
| | - Sonia Courtil-Teyssedre
- Service de réanimation pédiatrique, hôpital Femme-Mère-Enfant, hospices civils de Lyon, 69677 Bron, France
| | | | - Frédéric Dailler
- Service d'anesthésie-réanimation, hôpital neurologique Pierre-Wertheimer, groupement hospitalier Est, hospices civils de Lyon, 69677 Bron, France
| | - Jean-Stéphane David
- Service d'anesthésie réanimation, centre hospitalier Lyon Sud, hospices civils de Lyon, 69495 Pierre-Bénite, France
| | - Nicolas Engrand
- Service d'anesthésie-réanimation, Fondation ophtalmologique Adolphe de Rothschild, 75940 Paris cedex 19, France
| | - Dominique Fletcher
- Service d'anesthésie réanimation chirurgicale, hôpital Raymond-Poincaré, université de Versailles Saint-Quentin, AP-HP, Garches, France
| | - Gilles Francony
- Pôle anesthésie-réanimation, CHU Grenoble-Alpes, 38043 Grenoble cedex 9, France
| | - Laurent Gergelé
- Département d'anesthésie-réanimation, CHU de Saint-Étienne, 42055 Saint-Étienne, France
| | - Carole Ichai
- Service de réanimation médicochirurgicale, UMR 7275, CNRS, Sophia Antipolis, hôpital Pasteur, CHU de Nice, 06000 Nice, France
| | - Étienne Javouhey
- Service de réanimation pédiatrique, hôpital Femme-Mère-Enfant, hospices civils de Lyon, 69677 Bron, France
| | - Pierre-Etienne Leblanc
- Département d'anesthésie-réanimation, hôpital de Bicêtre, hôpitaux universitaires Paris-Sud, AP-HP, Le Kremlin-Bicêtre, France; Équipe TIGER, CNRS 1072-Inserm 5288, service d'anesthésie, centre hospitalier de Bourg en Bresse, centre de recherche en neurosciences, Lyon, France
| | - Thomas Lieutaud
- UMRESTTE, UMR-T9405, IFSTTAR, université Claude-Bernard de Lyon, Lyon, France; Service d'anesthésie-réanimation, hôpital universitaire Necker-Enfants-Malades, université Paris Descartes, AP-HP, Paris, France
| | - Philippe Meyer
- EA 08 Paris-Descartes, service de pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte, 75743 Paris cedex 15, France
| | - Sébastien Mirek
- Service d'anesthésie-réanimation, CHU de Dijon, Dijon, France
| | - Gilles Orliaguet
- EA 08 Paris-Descartes, service de pharmacologie et évaluation des thérapeutiques chez l'enfant et la femme enceinte, 75743 Paris cedex 15, France
| | - François Proust
- Service de neurochirurgie, hôpital Hautepierre, CHU de Strasbourg, 67098 Strasbourg, France
| | - Hervé Quintard
- Service de réanimation médicochirurgicale, UMR 7275, CNRS, Sophia Antipolis, hôpital Pasteur, CHU de Nice, 06000 Nice, France
| | - Catherine Ract
- Département d'anesthésie-réanimation, hôpital de Bicêtre, hôpitaux universitaires Paris-Sud, AP-HP, Le Kremlin-Bicêtre, France; Équipe TIGER, CNRS 1072-Inserm 5288, service d'anesthésie, centre hospitalier de Bourg en Bresse, centre de recherche en neurosciences, Lyon, France
| | - Mohamed Srairi
- Pôle anesthésie-réanimation, Inserm, UMR 1214, Toulouse neuroimaging center, ToNIC, université Toulouse 3-Paul Sabatier, CHU de Toulouse, 31059 Toulouse, France
| | - Karim Tazarourte
- SAMU/SMUR, service des urgences, hospices civils de Lyon, hôpital Édouard-Herriot, 69437 Lyon cedex 03, France
| | - Bernard Vigué
- Département d'anesthésie-réanimation, hôpital de Bicêtre, hôpitaux universitaires Paris-Sud, AP-HP, Le Kremlin-Bicêtre, France; Équipe TIGER, CNRS 1072-Inserm 5288, service d'anesthésie, centre hospitalier de Bourg en Bresse, centre de recherche en neurosciences, Lyon, France
| | - Jean-François Payen
- Pôle anesthésie-réanimation, CHU Grenoble-Alpes, 38043 Grenoble cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Buitrago Blanco MM, Prashant GN, Vespa PM. Cerebral Metabolism and the Role of Glucose Control in Acute Traumatic Brain Injury. Neurosurg Clin N Am 2017; 27:453-63. [PMID: 27637395 DOI: 10.1016/j.nec.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This article reviews key concepts of cerebral glucose metabolism, neurologic outcomes in clinical trials, the biology of the neurovascular unit and its involvement in secondary brain injury after traumatic brain insults, and current scientific and clinical data that demonstrate a better understanding of the biology of metabolic dysfunction in the brain, a concept now known as cerebral metabolic energy crisis. The use of neuromonitoring techniques to better understand the pathophysiology of the metabolic crisis is reviewed and a model that summarizes the triphasic view of cerebral metabolic disturbance supported by existing scientific data is outlined. The evidence is summarized and a template for future research provided.
Collapse
Affiliation(s)
- Manuel M Buitrago Blanco
- Division of Neurocritical Care, Department of Neurosurgery, University of California Los Angeles, 757 Westwood Boulevard, Los Angeles, CA 90095, USA.
| | - Giyarpuram N Prashant
- Division of Neurocritical Care, Department of Neurosurgery, University of California Los Angeles, 757 Westwood Boulevard, Los Angeles, CA 90095, USA
| | - Paul M Vespa
- Division of Neurocritical Care, Department of Neurosurgery, University of California Los Angeles, 757 Westwood Boulevard, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Sung JH, Koh PO. Hyperglycemia aggravates decreases of PEA-15 and its two phosphorylated forms in cerebral ischemia. J Vet Med Sci 2017; 79:654-660. [PMID: 28216548 PMCID: PMC5383193 DOI: 10.1292/jvms.16-0437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diabetes is a metabolic health disorder and an important risk factor for stroke. Phosphoprotein enriched in astrocytes 15 (PEA-15) is a multifunctional protein modulating cell proliferation, survival, apoptosis and glucose metabolism. This study investigated whether diabetes modulates the expression of PEA-15 and two phosphorylated forms (Ser 104 and Ser 116) in middle cerebral artery occlusion (MCAO)-induced brain injury. Male Sprague-Dawley rats were administrated with streptozotocin (40 mg/kg) and were underwent right middle cerebral artery occlusion (MCAO) 4 weeks after streptozotocin injection. Brain tissues were collected 24 hr after MCAO and stained using triphenyltetrazolium chloride. Western blot analysis was performed to elucidate the expression of PEA-15 and two phosphorylated forms (Ser 104 and Ser 116) in right cerebral cortex. Infarct volume during MCAO injury was severely increased in diabetic animals compared to non-diabetic animals. We identified the decrease in PEA-15 in animals that underwent MCAO using proteomic approach. PEA-15 expression during MCAO was strongly decreased in diabetic animals compared to non-diabetic animals. Western blots analysis confirmed that diabetes exacerbated the decrease in PEA-15 expression after MCAO. Moreover, decrease in expression of phospho-PEA-15 (Ser 104 and Ser 116) was greater in diabetic than in non-diabetic animals. These results suggested that a diabetic condition may aggravate brain damage through decreasing expression of PEA-15 and phospho-PEA-15 (Ser 104 and Ser 116) in ischemic brain injury.
Collapse
Affiliation(s)
- Jin-Hee Sung
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | | |
Collapse
|
28
|
|
29
|
Neurochemical changes following combined hypoxemia and hemorrhagic shock in a rat model of penetrating ballistic-like brain injury. J Trauma Acute Care Surg 2016; 81:860-867. [DOI: 10.1097/ta.0000000000001206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
A meta-analysis of the effect of different neuroprotective drugs in management of patients with traumatic brain injury. Neurosurg Rev 2016; 41:427-438. [PMID: 27539610 DOI: 10.1007/s10143-016-0775-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
Abstract
Traumatic brain injury is a major problem worldwide. Our objective is to synthesize available evidence in the literature concerning the effectiveness of neuroprotective drugs (cerebrolysin, citicoline, and piracetam) on Glasgow outcome score (GOS), cognitive performance, and survival in traumatic brain injury patients. Comprehensive search of electronic databases, search engines, and conferences proceedings; hand search journals; searching reference lists of relevant articles, theses, and local publications; and contact of authors for incomplete data were performed. Studies included patients in all age groups regardless of severity of trauma. There was no publication date restriction. Two reviewers independently extracted data from each study. Fixed effect or random effects model selection depends on results of statistical tests for heterogeneity. The literature search yielded 13 studies. Patients treated with cerebrolysin (n = 112) had favorable GOS three times more than controls (OR 3.019; 95 % CI 1.76 to 5.16; p = 0.003*). The odds of cognition improvement in the treatment group was 3.4 times more than controls (OR 3.4; 95 % CI 1.82 to 5.21; p < 0.001*). Survival of cerebrolysin-treated patients did not differ from controls (103 patients; OR = 2.81; 95 % CI 0.905 to 8.76). Citicoline did not improve GOS (1355 patients; OR 0.96; 95 % CI 0.830 to 1.129; p = 0.676), cognitive performance (4 studies; 1291 patients; OR 1.35; 95 % CI 0.58 to 3.16; p = 0.478), and survival (1037 patients; OR = 1.38; 95 % CI 0.855 to 2.239). One study showed a positive effect of piracetam on cognition. Further research with high validity is needed to reach a solid conclusion about the use of neuroprotective drugs in cases of brain injury.
Collapse
|
31
|
Han JQ, Liu CL, Wang ZY, Liu L, Cheng L, Fan YD. Anti-inflammatory properties of lipoxin A4 protect against diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury. Neural Regen Res 2016; 11:636-40. [PMID: 27212926 PMCID: PMC4870922 DOI: 10.4103/1673-5374.180750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lipoxin A4 can alleviate cerebral ischemia/reperfusion injury by reducing the inflammatory reaction, but it is currently unclear whether it has a protective effect on diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury. In this study, we established rat models of diabetes mellitus using an intraperitoneal injection of streptozotocin. We then induced focal cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours. After administration of lipoxin A4 via the lateral ventricle, infarction volume was reduced, the expression levels of pro-inflammatory factors tumor necrosis factor alpha and nuclear factor-kappa B in the cerebral cortex were decreased, and neurological functioning was improved. These findings suggest that lipoxin A4 has strong neuroprotective effects in diabetes mellitus complicated by focal cerebral ischemia/reperfusion injury and that the underlying mechanism is related to the anti-inflammatory action of lipoxin A4.
Collapse
Affiliation(s)
- Jiang-Quan Han
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical College, Zhuhai, Guangdong Province, China
| | - Cheng-Ling Liu
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical College, Zhuhai, Guangdong Province, China
| | - Zheng-Yuan Wang
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical College, Zhuhai, Guangdong Province, China
| | - Ling Liu
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical College, Zhuhai, Guangdong Province, China
| | - Ling Cheng
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical College, Zhuhai, Guangdong Province, China
| | - Ya-Dan Fan
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical College, Zhuhai, Guangdong Province, China
| |
Collapse
|
32
|
Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study. J Neurosurg Anesthesiol 2016; 27:187-93. [PMID: 25144502 DOI: 10.1097/ana.0000000000000107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (<1 mmol/L) and noncritical (>1 mmol/L) extracellular brain glucose levels. METHODS We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. RESULT Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (P<0.05). For critical brain glucose levels, extracellular brain glucose was unaffected by any type of sedative. CONCLUSIONS These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.
Collapse
|
33
|
Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA. Excitotoxicity and Metabolic Crisis Are Associated with Spreading Depolarizations in Severe Traumatic Brain Injury Patients. J Neurotrauma 2016; 33:1775-1783. [PMID: 26586606 DOI: 10.1089/neu.2015.4226] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cerebral microdialysis has enabled the clinical characterization of excitotoxicity (glutamate >10 μM) and non-ischemic metabolic crisis (lactate/pyruvate ratio [LPR] >40) as important components of secondary damage in severe traumatic brain injury (TBI). Spreading depolarizations (SD) are pathological waves that occur in many patients in the days following TBI and, in animal models, cause elevations in extracellular glutamate, increased anaerobic metabolism, and energy substrate depletion. Here, we examined the association of SD with changes in cerebral neurochemistry by placing a microdialysis probe alongside a subdural electrode strip in peri-lesional cortex of 16 TBI patients requiring neurosurgery. In 107 h (median; range: 76-117 h) of monitoring, 135 SDs were recorded in six patients. Glutamate (50 μmol/L) and lactate (3.7 mmol/L) were significantly elevated on day 0 in patients with SD compared with subsequent days and with patients without SD, whereas pyruvate was decreased in the latter group on days 0 and 1 (two-way analysis of variance [ANOVA], p values <0.05). In patients with SD, both glutamate and LPR increased in a dose-dependent manner with the number of SDs in the microdialysis sampling period (0, 1, ≥2 SD) [glutamate: 2.1→7.0→52.3 μmol/L; LPR: 27.8→29.9→45.0, p values <0.05]. In these patients, there was a 10% probability of SD occurring when glutamate and LPR were in normal ranges, but a 60% probability when both variables were abnormal (>10 μmol/L and >40 μmol/L, respectively). Taken together with previous studies, these preliminary clinical results suggest SDs are a key pathophysiological process of secondary brain injury associated with non-ischemic glutamate excitotoxicity and severe metabolic crisis in severe TBI patients.
Collapse
Affiliation(s)
- Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - J Adam Wilson
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio
| | - Anna Teresa Mazzeo
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,3 Department Anesthesia and Intensive Care, University of Torino , Torino, Italy
| | - M Ross Bullock
- 2 Division of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia.,4 Department of Neurosurgery, University of Miami , Miami, Florida
| | - Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine , Cincinnati, Ohio.,5 Neurotrauma Center, UC Neuroscience Institute , Cincinnati, Ohio.,6 Mayfield Clinic , Cincinnati, Ohio
| |
Collapse
|
34
|
Ferrando ML, Schultsz C. A hypothetical model of host-pathogen interaction of Streptococcus suis in the gastro-intestinal tract. Gut Microbes 2016; 7:154-62. [PMID: 26900998 PMCID: PMC4856463 DOI: 10.1080/19490976.2016.1144008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that can cause systemic infection in pigs and humans. The ingestion of contaminated pig meat is a well-established risk factor for zoonotic S. suis disease. In our studies, we provide experimental evidence that S. suis is capable to translocate across the host gastro-intestinal tract (GIT) using in vivo and in vitro models. Hence, S. suis should be considered an emerging foodborne pathogen. In this addendum, we give an overview of the complex interactions between S. suis and host-intestinal mucosa which depends on the host origin, the serotype and genotype of S. suis, as well as the presence and expression of virulence factors involved in host-pathogen interaction. Finally, we propose a hypothetical model of S. suis interaction with the host-GIT taking in account differences in conditions between the porcine and human host.
Collapse
Affiliation(s)
- Maria Laura Ferrando
- Department of Medical Microbiology; Center for Infection and Immunity,Department of Global Health-Amsterdam Institute for Global Health and Development; Academic Medical Center; University of Amsterdam, Amsterdam (NL)
| | - Constance Schultsz
- Department of Medical Microbiology; Center for Infection and Immunity,Department of Global Health-Amsterdam Institute for Global Health and Development; Academic Medical Center; University of Amsterdam, Amsterdam (NL)
| |
Collapse
|
35
|
Zhang S, Song XY, Xia CY, Ai QD, Chen J, Chu SF, He WB, Chen NH. Effects of cerebral glucose levels in infarct areas on stroke injury mediated by blood glucose changes. RSC Adv 2016. [DOI: 10.1039/c6ra19715a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Patet C, Quintard H, Suys T, Bloch J, Daniel RT, Pellerin L, Magistretti PJ, Oddo M. Neuroenergetic Response to Prolonged Cerebral Glucose Depletion after Severe Brain Injury and the Role of Lactate. J Neurotrauma 2015; 32:1560-6. [DOI: 10.1089/neu.2014.3781] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Camille Patet
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Hervé Quintard
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Tamarah Suys
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| | - Jocelyne Bloch
- Department of Clinical Neurosciences, University of Lausanne, Switzerland
| | - Roy T. Daniel
- Department of Clinical Neurosciences, University of Lausanne, Switzerland
| | - Luc Pellerin
- Departement of Physiology, University of Lausanne, Switzerland
| | - Pierre J. Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mauro Oddo
- Department of Intensive Care Medicine, University of Lausanne, Switzerland
| |
Collapse
|
37
|
Abstract
Objective: To analyze the mechanism of neuroprotection of insulin and which blood glucose range was benefit for insulin exerting neuroprotective action. Data Sources: The study is based on the data from PubMed. Study Selection: Articles were selected with the search terms “insulin”, “blood glucose”, “neuroprotection”, “brain”, “glycogen”, “cerebral ischemia”, “neuronal necrosis”, “glutamate”, “γ-aminobutyric acid”. Results: Insulin has neuroprotection. The mechanisms include the regulation of neurotransmitter, promoting glycogen synthesis, and inhibition of neuronal necrosis and apoptosis. Insulin could play its role in neuroprotection by avoiding hypoglycemia and hyperglycemia. Conclusions: Intermittent and long-term infusion insulin may be a benefit for patients with ischemic brain damage at blood glucose 6–9 mmol/L.
Collapse
Affiliation(s)
| | - Yu Pei
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
38
|
Finfer S, Chittock D, Li Y, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Hebert P, Henderson W, Heyland D, Higgins A, McArthur C, Mitchell I, Myburgh J, Robinson B, Ronco J. Intensive versus conventional glucose control in critically ill patients with traumatic brain injury: long-term follow-up of a subgroup of patients from the NICE-SUGAR study. Intensive Care Med 2015; 41:1037-47. [PMID: 26088909 DOI: 10.1007/s00134-015-3757-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/14/2015] [Indexed: 12/11/2022]
Abstract
PURPOSE To compare the effect of intensive versus conventional blood glucose control in patients with traumatic brain injury. METHODS In a large international randomized trial patients were randomly assigned to a target blood glucose (BG) range of either 4.5-6.0 mmol/L (intensive control) or <10 mmol/L (conventional control). Patients with traumatic brain injury (TBI) were identified at randomization and data were collected to examine the extended Glasgow outcome score (includes mortality) at 24 months. RESULTS Of the 6104 randomized patients, 391 satisfied diagnostic criteria for TBI; 203 (51.9%) were assigned to intensive and 188 (48.1%) to conventional control; the primary outcome was available for 166 (81.8%) and 149 (79.3%) patients, respectively. The two groups had similar baseline characteristics. At 2 years 98 (58.7%) patients in the intensive group and 79 (53.0%) in the conventional group had a favorable neurological outcome (odds ratio [OR] 1.26, 95% CI 0.81-1.97; P = 0.3); 35 patients (20.9%) in the intensive group and 34 (22.8%) in the conventional group had died (OR 0.90, 95% CI 0.53-1.53; P = 0.7); moderate hypoglycemia (BG 2.3-3.9 mmol/L; 41-70 mg/dL) occurred in 160/202 (79.2%) and 17/188 (9.0%), respectively (OR 38.3, 95% CI 21.0-70.1; P < 0.0001); severe hypoglycemia (BG ≤ 2.2 mmol/L; ≤40 mg/dL) in 10 (4.9%) and 0 (0.0%), respectively (OR 20.5 95% CI 1.2-351.6, P = 0.003). CONCLUSION Although patients with traumatic brain injury randomly assigned to intensive compared to conventional glucose control experienced moderate and severe hypoglycemia more frequently, we found no significant difference in clinically important outcomes.
Collapse
|
39
|
Jalloh I, Carpenter KLH, Helmy A, Carpenter TA, Menon DK, Hutchinson PJ. Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings. Metab Brain Dis 2015; 30:615-32. [PMID: 25413449 PMCID: PMC4555200 DOI: 10.1007/s11011-014-9628-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 11/03/2014] [Indexed: 02/02/2023]
Abstract
The pathophysiology of traumatic brain (TBI) injury involves changes to glucose uptake into the brain and its subsequent metabolism. We review the methods used to study cerebral glucose metabolism with a focus on those used in clinical TBI studies. Arterio-venous measurements provide a global measure of glucose uptake into the brain. Microdialysis allows the in vivo sampling of brain extracellular fluid and is well suited to the longitudinal assessment of metabolism after TBI in the clinical setting. A recent novel development is the use of microdialysis to deliver glucose and other energy substrates labelled with carbon-13, which allows the metabolism of glucose and other substrates to be tracked. Positron emission tomography and magnetic resonance spectroscopy allow regional differences in metabolism to be assessed. We summarise the data published from these techniques and review their potential uses in the clinical setting.
Collapse
Affiliation(s)
- Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167 Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK,
| | | | | | | | | | | |
Collapse
|
40
|
Medina-Torres CE, Underwood C, Pollitt CC, Castro-Olivera EM, Hodson MP, Richardson DW, van Eps AW. Microdialysis measurements of lamellar perfusion and energy metabolism during the development of laminitis in the oligofructose model. Equine Vet J 2015; 48:246-52. [DOI: 10.1111/evj.12417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/02/2015] [Indexed: 12/31/2022]
Affiliation(s)
- C. E. Medina-Torres
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| | - C. Underwood
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| | - C. C. Pollitt
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| | - E. M. Castro-Olivera
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| | - M. P. Hodson
- Metabolomics Australia - Queensland Node, Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia Queensland Australia
| | - D. W. Richardson
- New Bolton Center, Department of Clinical Studies, School of Veterinary Medicine; University of Pennsylvania; Kennett Square Philadelphia USA
| | - A. W. van Eps
- Australian Equine Laminitis Research Unit, School of Veterinary Science; The University of Queensland; Gatton Queensland Australia
| |
Collapse
|
41
|
Carpenter KLH, Czosnyka M, Jalloh I, Newcombe VFJ, Helmy A, Shannon RJ, Budohoski KP, Kolias AG, Kirkpatrick PJ, Carpenter TA, Menon DK, Hutchinson PJ. Systemic, local, and imaging biomarkers of brain injury: more needed, and better use of those already established? Front Neurol 2015; 6:26. [PMID: 25741315 PMCID: PMC4332345 DOI: 10.3389/fneur.2015.00026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/30/2015] [Indexed: 02/02/2023] Open
Abstract
Much progress has been made over the past two decades in the treatment of severe acute brain injury, including traumatic brain injury and subarachnoid hemorrhage, resulting in a higher proportion of patients surviving with better outcomes. This has arisen from a combination of factors. These include improvements in procedures at the scene (pre-hospital) and in the hospital emergency department, advances in neuromonitoring in the intensive care unit, both continuously at the bedside and intermittently in scans, evolution and refinement of protocol-driven therapy for better management of patients, and advances in surgical procedures and rehabilitation. Nevertheless, many patients still experience varying degrees of long-term disabilities post-injury with consequent demands on carers and resources, and there is room for improvement. Biomarkers are a key aspect of neuromonitoring. A broad definition of a biomarker is any observable feature that can be used to inform on the state of the patient, e.g., a molecular species, a feature on a scan, or a monitoring characteristic, e.g., cerebrovascular pressure reactivity index. Biomarkers are usually quantitative measures, which can be utilized in diagnosis and monitoring of response to treatment. They are thus crucial to the development of therapies and may be utilized as surrogate endpoints in Phase II clinical trials. To date, there is no specific drug treatment for acute brain injury, and many seemingly promising agents emerging from pre-clinical animal models have failed in clinical trials. Large Phase III studies of clinical outcomes are costly, consuming time and resources. It is therefore important that adequate Phase II clinical studies with informative surrogate endpoints are performed employing appropriate biomarkers. In this article, we review some of the available systemic, local, and imaging biomarkers and technologies relevant in acute brain injury patients, and highlight gaps in the current state of knowledge.
Collapse
Affiliation(s)
- Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,*Correspondence: Keri L. H. Carpenter, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK e-mail:
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Virginia F. J. Newcombe
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard J. Shannon
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Karol P. Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Angelos G. Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J. Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K. Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Donnelly J, Czosnyka M, Sudhan N, Varsos GV, Nasr N, Jalloh I, Liu X, Dias C, Sekhon MS, Carpenter KLH, Menon DK, Hutchinson PJ, Smielewski P. Increased blood glucose is related to disturbed cerebrovascular pressure reactivity after traumatic brain injury. Neurocrit Care 2015; 22:20-5. [PMID: 25124103 DOI: 10.1007/s12028-014-0042-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Increased blood glucose and impaired pressure reactivity (PRx) after traumatic brain injury (TBI) are both known to correlate with unfavorable patient outcome. However, the relationship between these two variables is unknown. METHODS To test the hypothesis that increased blood glucose leads to increased PRx, we retrospectively analyzed data from 86 traumatic brain injured patients admitted to the Neurocritical Care Unit. Data analyzed included arterial glucose concentration, intracranial pressure (ICP), cerebral perfusion pressure (CPP) and end-tidal CO2. PRx was calculated as the moving correlation coefficient between averaged (10 seconds) arterial blood pressure and ICP. One arterial glucose concentration and one time-aligned PRx value were obtained for each patient, during each day until the fifth day after ictus. RESULTS Mean arterial glucose concentrations during the first 5 days since ictus were positively correlated with mean PRx (Pearson correlation coefficient = 0.25, p = 0.02). The correlation was strongest on the first day after injury (Pearson correlation coefficient = 0.47, p = 0.008). CONCLUSION Our preliminary findings indicate that increased blood glucose may impair cerebrovascular reactivity, potentially contributing to a mechanistic link between increased blood glucose and poorer outcome after TBI.
Collapse
Affiliation(s)
- Joseph Donnelly
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Box 167, Cambridge, CB2 0QQ, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Welcome M, Pereverzev V. Glycemic Allostasis during Mental Activities on Fasting in Non-alcohol Users and Alcohol Users with Different Durations of Abstinence. Ann Med Health Sci Res 2014; 4:S199-207. [PMID: 25364589 PMCID: PMC4212377 DOI: 10.4103/2141-9248.141959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Glycemic allostasis is the process by which blood glucose stabilization is achieved through the balancing of glucose consumption rate and release into the blood stream under a variety of stressors. This paper reviews findings on the dynamics of glycemic levels during mental activities on fasting in non-alcohol users and alcohol users with different periods of abstinence. Referred articles for this review were searched in the databases of PubMed, Scopus, DOAJ and AJOL. The search was conducted in 2013 between January 20 and July 31. The following keywords were used in the search: alcohol action on glycemia OR brain glucose OR cognitive functions; dynamics of glycemia, dynamics of glycemia during mental activities; dynamics of glycemia on fasting; dynamics of glycemia in non-alcohol users OR alcohol users; glycemic regulation during sobriety. Analysis of the selected articles showed that glycemic allostasis during mental activities on fasting is poorly regulated in alcohol users even after a long duration of sobriety (1-4 weeks after alcohol consumption), compared to non-alcohol users. The major contributor to the maintenance of euglycemia during mental activities after the night's rest (during continuing fast) is gluconeogenesis.
Collapse
Affiliation(s)
- Mo Welcome
- Department of Normal Physiology, Belarusian State Medical University, Minsk, Belarus
| | - Va Pereverzev
- Department of Normal Physiology, Belarusian State Medical University, Minsk, Belarus
| |
Collapse
|
44
|
Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab 2014; 34:1736-48. [PMID: 25204393 PMCID: PMC4269761 DOI: 10.1038/jcbfm.2014.153] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022]
Abstract
Lactate is proposed to be generated by astrocytes during glutamatergic neurotransmission and shuttled to neurons as 'preferred' oxidative fuel. However, a large body of evidence demonstrates that metabolic changes during activation of living brain disprove essential components of the astrocyte-neuron lactate shuttle model. For example, some glutamate is oxidized to generate ATP after its uptake into astrocytes and neuronal glucose phosphorylation rises during activation and provides pyruvate for oxidation. Extension of the notion that lactate is a preferential fuel into the traumatic brain injury (TBI) field has important clinical implications, and the concept must, therefore, be carefully evaluated before implementation into patient care. Microdialysis studies in TBI patients demonstrate that lactate and pyruvate levels and lactate/pyruvate ratios, along with other data, have important diagnostic value to distinguish between ischemia and mitochondrial dysfunction. Results show that lactate release from human brain to blood predominates over its uptake after TBI, and strong evidence for lactate metabolism is lacking; mitochondrial dysfunction may inhibit lactate oxidation. Claims that exogenous lactate infusion is energetically beneficial for TBI patients are not based on metabolic assays and data are incorrectly interpreted.
Collapse
|
45
|
Equine lamellar energy metabolism studied using tissue microdialysis. Vet J 2014; 201:275-82. [DOI: 10.1016/j.tvjl.2014.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/18/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022]
|
46
|
Nägeli M, Fasshauer M, Sommerfeld J, Fendel A, Brandi G, Stover JF. Prolonged continuous intravenous infusion of the dipeptide L-alanine- L-glutamine significantly increases plasma glutamine and alanine without elevating brain glutamate in patients with severe traumatic brain injury. Crit Care 2014; 18:R139. [PMID: 24992948 PMCID: PMC4227121 DOI: 10.1186/cc13962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/02/2014] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. METHODS Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. RESULTS Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p < 0.05, ANOVA, post hoc Dunn's test). CONCLUSIONS High dose L-alanine-L-glutamine infusion (0.75 g/ kg/ d up to 5 days) increased plasma and brain glutamine and alanine levels. This was not associated with elevated glutamate or signs of potential glutamate-mediated cerebral injury. The increased nitrogen load should be considered in patients with renal and hepatic dysfunction. TRIAL REGISTRATION Clinicaltrials.gov NCT02130674. Registered 5 April 2014.
Collapse
Affiliation(s)
- Mirjam Nägeli
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - Mario Fasshauer
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - Jutta Sommerfeld
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - Angela Fendel
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - Giovanna Brandi
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| | - John F Stover
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich 8091, Switzerland
| |
Collapse
|
47
|
Jauch-Chara K, Oltmanns KM. Glycemic control after brain injury: boon and bane for the brain. Neuroscience 2014; 283:202-9. [PMID: 24814022 DOI: 10.1016/j.neuroscience.2014.04.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 01/10/2023]
Abstract
Hyperglycemia is a common phenomenon in the early phase of brain injury (BI). The management of blood glucose levels after BI, however, is subject of a growing debate. The occurrence of elevated blood glucose concentrations is linked to increased mortality and worse neurologic outcomes indicating the necessity for therapeutic glucose-lowering. Intensive glucose-lowering therapy, on the other hand, inevitably results in an increased rate of hypoglycemic episodes with detrimental effects on the injured brain. In this review, we give an overview on the current knowledge about causes and pathophysiological consequences of dysglycemia in patients with BI and offer some suggestions for clinical glucose management.
Collapse
Affiliation(s)
- K Jauch-Chara
- Division of Psychoneurobiology, Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany.
| | - K M Oltmanns
- Division of Psychoneurobiology, Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany
| |
Collapse
|
48
|
Bothe MK, Stover JF. Monitoring of acute traumatic brain injury in adults to prevent secondary brain damage. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Traumatic brain injury is typically characterized by the primary injury initiating a cascade of pathologic changes that then lead to secondary brain injury. Secondary brain injury is amenable to different therapeutic options. Monitoring of otherwise occult pathologic changes involving oxygenation and metabolism is crucial for treatment decisions. Currently, decision-making is mainly based on measuring intracranial pressure and cerebral perfusion pressure. Importantly, extending neuromonitoring by including parameters reflecting cerebral perfusion, oxygenation and metabolism may improve treatment of traumatic brain injury patients by detecting neuronal damage despite optimal intracranial pressure or cerebral perfusion pressure and preventing unnecessarily aggressive treatment potentially causing local and systemic harm. In this review, the authors describe the advantages and disadvantages of contemporary, extended neuromonitoring methods in traumatic brain injury patients aimed at unmasking secondary brain damage as early as possible.
Collapse
Affiliation(s)
- Melanie K Bothe
- Fresenius Kabi Deutschland GmbH, Rathausplatz 3, 61348 Bad Homburg, Germany
| | - John F Stover
- Fresenius Kabi Deutschland GmbH, Rathausplatz 3, 61348 Bad Homburg, Germany
| |
Collapse
|
49
|
Pandin P, Renard M, Bianchini A, Desjardin P, Obbergh LV. Monitoring Brain and Spinal Cord Metabolism and Function. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojanes.2014.46020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Jalloh I, Helmy A, Shannon RJ, Gallagher CN, Menon DK, Carpenter KLH, Hutchinson PJ. Lactate uptake by the injured human brain: evidence from an arteriovenous gradient and cerebral microdialysis study. J Neurotrauma 2013; 30:2031-7. [PMID: 23968221 DOI: 10.1089/neu.2013.2947] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lactate has been regarded as a waste product of anaerobic metabolism of glucose. Evidence also suggests, however, that the brain may use lactate as an alternative fuel. Our aim was to determine the extent of lactate uptake from the circulation into the brain after traumatic brain injury (TBI) and to compare it with levels of lactate in the brain extracellular fluid. We recruited 19 patients with diffuse TBI, monitored with cerebral microdialysis and jugular bulb catheters. Serial arteriovenous (AV) concentration differences of glucose and lactate were calculated from arterial and jugular blood samples, providing a measure of net uptake or export by the brain. Microdialysis was used to measure brain extracellular glucose and lactate. In 17/19 patients studied for 5 days post-injury, there were periods of net lactate uptake into the brain, most frequently on day 3 after injury. Brain microdialysate lactate had a median (interquartile range [IQR]) concentration of 2.5 (1.5-3.2) mmol/L during lactate uptake and 2.2 (1.7-3.0) mmol/L during lactate export. Lactate uptake into the brain occurred at a median (IQR) arterial lactate concentration of 1.6 (1.0-2.2) mmol/L. Lactate uptake was associated with significantly higher AV difference in glucose values with a median (IQR) of 0.4 (0.03-0.7) mmol/L during uptake and 0.1 (-0.2-0.3) mmol/L during lactate export (Mann-Whitney U p=0.003). Despite relatively high brain lactate compared with arterial lactate concentrations, the brain appears to up-regulate lactate transport into the brain after TBI. This may serve to satisfy greater demands for energy substrate from the brain after TBI.
Collapse
Affiliation(s)
- Ibrahim Jalloh
- 1 Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge , Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|