1
|
Castro-Trujillo S, Castro-Meneses J, Rojas MC, Castro-Amaya M, Lastra G, Narváez CF. Regulatory cytokines modulate early isotype-specific response associated with COVID-19 survival. Front Immunol 2025; 16:1543626. [PMID: 40342417 PMCID: PMC12058664 DOI: 10.3389/fimmu.2025.1543626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/01/2025] [Indexed: 05/11/2025] Open
Abstract
Identifying immune markers driving early and effective antibody response in patients with severe coronavirus disease 2019 (COVID-19) is critical due to the threat of future coronavirus pandemics, incomplete global vaccination, and suboptimal booster coverage. Patients with life-threatening severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by dysregulated thromboinflammation and cytokine storm that could influence the isotype virus-specific antibody response and the subsequent clinical outcome. We investigated the association between COVID-19-related mortality with the dynamics, magnitude, and relative avidity of nucleoprotein (N), spike (S), and receptor-binding domain (RBD)-specific IgM, IgA, and IgG in circulation. We also assessed the relationship between the virus-specific antibody responses and cytokine patterns, as well as systemic and pulmonary thromboinflammation markers. This multicenter study included COVID-19 patients hospitalized early in the pandemic, classified as survivors (n=62) and non-survivors (n=17). We developed indirect enzyme-linked immunosorbent assays (ELISAs) to evaluate each virus-specific isotype using well-characterized outpatient COVID-19 (n=180) and pre-pandemic cohorts (n=111). The pro-inflammatory interleukin (IL)-6 and tumor necrosis factor (TNF)-α, as well as the regulatory IL-10, transforming growth factor (TGF)-β1, and soluble tumor necrosis factor receptor I (sTNFRI) levels were evaluated. The ELISAs performed highly for all virus-specific isotypes, although modest for IgM-N. Non-survivors increased N-specific, but no S-specific, IgM and IgA responses throughout the disease course and, more notably, a delayed class switching to IgG-S and IgG-RBD compared to survivors. No differences were observed in the virus-specific IgG relative avidity. Survivors exhibited an antibody response proportional to the degree of systemic and pulmonary thromboinflammation, whereas non-survivors showed those dissociated because of their uncontrolled severe thromboinflammation. Only the survivors showed a dominant regulatory cytokine pattern in the early phase of infection (<10 days after symptoms onset), which strongly correlated with developing IgG-S and IgG-RBD protective antibodies. We developed easy-to-use immune assays that enable patient monitoring and identify at-risk populations in low- to middle-income regions. Non-survivors displayed an ineffective N-mediated antibody response, marked by an inability to control inflammation and a compromised time-dependent class switching toward S and RBD-specific IgG. The regulatory cytokine axis, including TGF-β1, maybe a critical immune correlate of effective antibody-mediated immunity in COVID-19.
Collapse
Affiliation(s)
- Sebastián Castro-Trujillo
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Juanita Castro-Meneses
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
- Programa de Biología Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - María Clemencia Rojas
- Dirección Laboratorio de Salud Pública, Secretaría de Salud Departamental, Gobernación del Huila, Neiva, Huila, Colombia
| | - Marcela Castro-Amaya
- Departamento de Medicina Interna, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Giovani Lastra
- Departamento de Medicina Interna, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva. Programa de Medicina, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Carlos F. Narváez
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
2
|
He MZ, Zhang HT, Yang Y, Fang Y, Zhang M, Deng SQ, Sun X. Coinfection of COVID-19 and malaria: clinical profiles, interactions, and strategies for effective control. Malar J 2025; 24:99. [PMID: 40133914 PMCID: PMC11938571 DOI: 10.1186/s12936-025-05315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Since SARS-CoV-2 has caused unprecedented changes in the epidemiology of other infectious diseases, investigations on coinfection between SARS-CoV-2 and one of the famous vector-borne diseases, malaria, are crucial for disease control, especially in malaria-endemic areas. The clinical profiles, possible mechanisms for interactions, and representative control measures of COVID-19 and malaria coinfections have recently garnered public attention. The overlap in epidemiology, infection incubation, and clinical symptoms between COVID-19 and malaria coinfections has been thoroughly discussed to provide a detailed diagnostic procedure for coinfections, thereby guiding appropriate clinical interventions. Immunological and genetic evidence has shown that previous malaria exposure may protect the body from the poor prognosis of COVID-19. ACE2 downregulation and TLR-induced pathways play a role in this protective effect, as do CD8 + and CD4 + T-cell activation and coinhibitory receptor upregulation, which help maintain a balance of immune reactions. Finally, multiple control measures for coinfections were discussed, and malaria control efforts were enriched in the context of COVID-19. These efforts included (1) developing vaccinations; (2) evaluating the efficacy of anti-malarial drugs in the SARS-CoV-2 treatment; (3) exploring recent advances in natural products that are potentially useful for coinfection treatment; (4) researching and implementing bioinsecticides for malaria control, such as gene-driven mosquitoes, fungi, and bacterial symbionts; and (5) improving national electronic disease surveillance platforms in malaria-endemic regions. At last, the above findings summarized valuable lessons about malaria and COVID-19 control and expedite further investigations on coinfections with complex clinical presentations.
Collapse
Affiliation(s)
- Mu-Zi He
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hai-Ting Zhang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yi Yang
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
| | - Yi Fang
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
| | - Mao Zhang
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| | - Xun Sun
- Gezhouba Central Hospital of Sinopharm, The Third Clinical Medical College of the Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
3
|
Figueroa AL, Torres D, Reyes-Acuna C, Matherne P, Yeakey A, Deng W, Xu W, Sigal Y, Chambers G, Olsen M, Girard B, Miller JM, Das R, Priddy F. Safety and immunogenicity of a single-dose omicron-containing COVID-19 vaccination in adolescents: an open-label, single-arm, phase 2/3 trial. THE LANCET. INFECTIOUS DISEASES 2025; 25:208-217. [PMID: 39332418 DOI: 10.1016/s1473-3099(24)00501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Most individuals show immunity to SARS-CoV-2 from vaccination or infection, or both. We aimed to determine the safety and immunogenicity of an omicron-containing COVID-19 vaccine (mRNA-1273.222) in vaccine-naive adolescents who were SARS-CoV-2 positive. METHODS Part 3 of the phase 2/3 TeenCOVE trial was a phase 3, open-label, single-arm part done in the USA and the Dominican Republic that enrolled healthy, vaccine-naive adolescents (aged 12-17 years) to receive two 50 μg doses of mRNA-1273.222 (ancestral strain Wuhan-Hu-1 and omicron subvariants BA.4 and BA.5), 6 months apart. Primary reactogenicity and safety outcomes included assessment of solicited local or systemic adverse reactions 7 days after vaccination, and unsolicited and prespecified adverse events throughout study participation. Inferred effectiveness (primary immunogenicity outcome) was established by comparing neutralising antibody responses 28 days after dose 1 of mRNA-1273.222 in SARS-CoV-2-positive adolescents with responses 28 days after dose 2 of mRNA-1273 100 μg primary series in SARS-CoV-2-negative young adults (aged 18-25 years) from the COVE trial. This study is registered with ClinicalTrials.gov (NCT04649151). FINDINGS Between Dec 21, 2022, and June 5, 2023, 379 adolescents (378 of whom were SARS-CoV-2 positive) received at least one mRNA-1273.222 dose and were included in the safety analysis set. The reactogenicity profile was favourable compared with the mRNA-1273 primary series, with no new safety concerns identified. Unsolicited adverse events were reported in 49 (13%) of 379 participants; no deaths or adverse events leading to study discontinuation were reported. The immunogenicity set included 245 adolescents from the per-protocol immunogenicity subset who were SARS-CoV-2 positive at baseline and 296 young adults who were SARS-CoV-2 negative. Compared with the mRNA-1273 primary series in SARS-CoV-2-negative young adults, a single dose of mRNA-1273.222 induced superior (geometric mean ratio [GMR] 95% CI lower bound >1) neutralising antibody responses against omicron BA.4 and BA.5 (GMR 48·95 [95% CI 44·21-54·21]) and non-inferior (GMR 95% CI lower bound >0·667) neutralising antibody responses against ancestral SARS-CoV-2 (GMR 4·25 [95% CI 3·69-4·88]) in SARS-CoV-2-positive adolescents. INTERPRETATION In vaccine-naive, SARS-CoV-2-positive adolescents, single-dose mRNA-1273.222 was effective against COVID-19 based on successful immunobridging to the two-dose mRNA-1273 primary series in young adults. The findings support a simplified single-dose vaccination schedule with variant-containing mRNA vaccines, regardless of previous vaccination status. FUNDING Moderna.
Collapse
Affiliation(s)
| | - Dania Torres
- Hospital General Regional Dr Marcelino Velez Santana, Santo Domingo, Dominican Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kimotho J, Sein Y, Sayed S, Shah R, Mwai K, Saleh M, Wanjiku P, Mwacharo J, Nyagwange J, Karanja H, Kutima B, Gitonga JN, Mugo D, Karanu A, Moranga L, Oluoch V, Shah J, Mutiso J, Mburu A, Nneka Z, Betti P, Usyu Mutinda W, Issak Abdi A, Bejon P, Isabella Ochola-Oyier L, M.Warimwe G, Nduati EW, M. Ndungu F. Kinetics of naturally induced binding and neutralising anti-SARS-CoV-2 antibody levels and potencies among SARS-CoV-2 infected Kenyans with diverse grades of COVID-19 severity: an observational study. Wellcome Open Res 2024; 8:350. [PMID: 39640868 PMCID: PMC11617823 DOI: 10.12688/wellcomeopenres.19414.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Given the low levels of coronavirus disease 2019 (COVID-19) vaccine coverage in sub-Saharan Africa (sSA), despite high levels of natural severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) exposures, strategies for extending the breadth and longevity of naturally acquired immunity are warranted. Designing such strategies will require a good understanding of naturally acquired immunity. Methods We measured whole-spike immunoglobulin G (IgG) and spike-receptor binding domain (RBD) total immunoglobulins (Igs) on 585 plasma samples collected longitudinally over five successive time points within six months of COVID-19 diagnosis in 309 COVID-19 patients. We measured antibody-neutralising potency against the wild-type (Wuhan) SARS-CoV-2 pseudovirus in a subset of 51 patients over three successive time points. Binding and neutralising antibody levels and potencies were then tested for correlations with COVID-19 severities. Results Rates of seroconversion increased from day 0 (day of PCR testing) to day 180 (six months) (63.6% to 100 %) and (69.3 % to 97%) for anti-spike-IgG and anti-spike-RBD binding Igs, respectively. Levels of these binding antibodies peaked at day 28 (p<0.01) and were subsequently maintained for six months without significant decay (p>0.99). Similarly, antibody-neutralising potencies peaked at day 28 (p<0.01) but declined by three-fold, six months after COVID-19 diagnosis (p<0.01). Binding antibody levels were highly correlated with neutralising antibody potencies at all the time points analysed (r>0.60, p<0.01). Levels and potencies of binding and neutralising antibodies increased with disease severity. Conclusions Most COVID-19 patients generated SARS-CoV-2 specific binding antibodies that remained stable in the first six months of infection. However, the respective neutralising antibodies decayed three-fold by month-six of COVID-19 diagnosis suggesting that they are short-lived, consistent with what has been observed elsewhere in the world. Thus, regular vaccination boosters are required to sustain the high levels of anti-SARS-CoV-2 naturally acquired neutralising antibody potencies in our population.
Collapse
Affiliation(s)
- John Kimotho
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
| | - Yiakon Sein
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Shahin Sayed
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Reena Shah
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Mansoor Saleh
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Perpetual Wanjiku
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Jedidah Mwacharo
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - James Nyagwange
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Henry Karanja
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Bernadette Kutima
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - John N. Gitonga
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Daisy Mugo
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Ann Karanu
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Linda Moranga
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
| | - Viviane Oluoch
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Jasmit Shah
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Julius Mutiso
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Alfred Mburu
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Zaitun Nneka
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | - Peter Betti
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
| | | | - Abdirahman Issak Abdi
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lynette Isabella Ochola-Oyier
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - George M.Warimwe
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eunice W. Nduati
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francis M. Ndungu
- KEMRI-Wellcome Trust Research Programme, KILIFI, Coast, 230-80108, Kenya
- Pwani University, KILIFI, 230-80108, Kenya
- Aga Khan University Hospital, 3rd Parklands Avenue, Nairobi, 30270 - 00100, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Secchi M, Garbelli A, Riva V, Deidda G, Santonicola C, Formica T, Sabbioneda S, Crespan E, Maga G. Synergistic action of human RNaseH2 and the RNA helicase-nuclease DDX3X in processing R-loops. Nucleic Acids Res 2024; 52:11641-11658. [PMID: 39189461 PMCID: PMC11514492 DOI: 10.1093/nar/gkae731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
R-loops are three-stranded RNA-DNA hybrid structures that play important regulatory roles, but excessive or deregulated R-loops formation can trigger DNA damage and genome instability. Digestion of R-loops is mainly relying on the action of two specialized ribonucleases: RNaseH1 and RNaseH2. RNaseH2 is the main enzyme carrying out the removal of misincorporated rNMPs during DNA replication or repair, through the Ribonucleotide Excision Repair (RER) pathway. We have recently shown that the human RNA helicase DDX3X possessed RNaseH2-like activity, being able to substitute RNaseH2 in reconstituted RER reactions. Here, using synthetic R-loop mimicking substrates, we could show that human DDX3X alone was able to both displace and degrade the ssRNA strand hybridized to DNA. Moreover, DDX3X was found to physically interact with human RNaseH2. Such interaction suppressed the nuclease and helicase activities of DDX3X, but stimulated severalfold the catalytic activity of the trimeric RNaseH2, but not of RNaseH1. Finally, silencing of DDX3X in human cells caused accumulation of RNA-DNA hybrids and phosphorylated RPA foci. These results support a role of DDX3X as a scaffolding protein and auxiliary factor for RNaseH2 during R-loop degradation.
Collapse
Affiliation(s)
- Massimiliano Secchi
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Anna Garbelli
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Valentina Riva
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Graziano Deidda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Carolina Santonicola
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Teresa Maria Formica
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Simone Sabbioneda
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR ‘Luigi Luca Cavalli-Sforza’, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
6
|
Noviello M, De Lorenzo R, Chimienti R, Maugeri N, De Lalla C, Siracusano G, Lorè NI, Rancoita PMV, Cugnata F, Tassi E, Dispinseri S, Abbati D, Beretta V, Ruggiero E, Manfredi F, Merolla A, Cantarelli E, Tresoldi C, Pastori C, Caccia R, Sironi F, Marzinotto I, Saliu F, Ghezzi S, Lampasona V, Vicenzi E, Cinque P, Manfredi AA, Scarlatti G, Dellabona P, Lopalco L, Di Serio C, Malnati M, Ciceri F, Rovere-Querini P, Bonini C. The longitudinal characterization of immune responses in COVID-19 patients reveals novel prognostic signatures for disease severity, patients' survival and long COVID. Front Immunol 2024; 15:1381091. [PMID: 39136010 PMCID: PMC11317765 DOI: 10.3389/fimmu.2024.1381091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/07/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction SARS-CoV-2 pandemic still poses a significant burden on global health and economy, especially for symptoms persisting beyond the acute disease. COVID-19 manifests with various degrees of severity and the identification of early biomarkers capable of stratifying patient based on risk of progression could allow tailored treatments. Methods We longitudinally analyzed 67 patients, classified according to a WHO ordinal scale as having Mild, Moderate, or Severe COVID-19. Peripheral blood samples were prospectively collected at hospital admission and during a 6-month follow-up after discharge. Several subsets and markers of the innate and adaptive immunity were monitored as putative factors associated with COVID-19 symptoms. Results More than 50 immunological parameters were associated with disease severity. A decision tree including the main clinical, laboratory, and biological variables at admission identified low NK-cell precursors and CD14+CD91+ monocytes, and high CD8+ Effector Memory T cell frequencies as the most robust immunological correlates of COVID-19 severity and reduced survival. Moreover, low regulatory B-cell frequency at one month was associated with the susceptibility to develop long COVID at six months, likely due to their immunomodulatory ability. Discussion These results highlight the profound perturbation of the immune response during COVID-19. The evaluation of specific innate and adaptive immune-cell subsets allows to distinguish between different acute and persistent COVID-19 symptoms.
Collapse
Affiliation(s)
- Maddalena Noviello
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Raniero Chimienti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Norma Maugeri
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia De Lalla
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriel Siracusano
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Ivan Lorè
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maria Vittoria Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Beretta
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Merolla
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Cantarelli
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastori
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Caccia
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sironi
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cinque
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Andrea Manfredi
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Mauro Malnati
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
O'Mahoney C, Watt I, Fiedler S, Devenish S, Srikanth S, Justice E, Dover T, Dean D, Peng C. Microfluidic Diffusional Sizing (MDS) Measurements of Secretory Neutralizing Antibody Affinity Against SARS-CoV-2. Ann Biomed Eng 2024; 52:1653-1664. [PMID: 38459195 PMCID: PMC11082020 DOI: 10.1007/s10439-024-03478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 has rampantly spread around the globe and continues to cause unprecedented loss through ongoing waves of (re)infection. Increasing our understanding of the protection against infection with SARS-CoV-2 is critical to ending the pandemic. Serological assays have been widely used to assess immune responses, but secretory antibodies, the essential first line of defense, have been studied to only a limited extent. Of particular interest and importance are neutralizing antibodies, which block the binding of the spike protein of SARS-CoV-2 to the human receptor angiotensin-converting enzyme-2 (ACE2) and thus are essential for immune defense. Here, we employed Microfluidic Diffusional Sizing (MDS), an immobilization-free technology, to characterize neutralizing antibody affinity to SARS-CoV-2 spike receptor-binding domain (RBD) and spike trimer in saliva. Affinity measurement was obtained through a contrived sample and buffer using recombinant SARS-CoV-2 RBD and monoclonal antibody. Limited saliva samples demonstrated that MDS applies to saliva neutralizing antibody measurement. The ability to disrupt a complex of ACE2-Fc and spike trimer is shown. Using a quantitative assay on the patient sample, we determined the affinity and binding site concentration of the neutralizing antibodies.
Collapse
Affiliation(s)
- Cara O'Mahoney
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ian Watt
- Fluidic Analytics, Cambridge, UK
| | | | | | - Sujata Srikanth
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Erica Justice
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Tristan Dover
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Congyue Peng
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA.
| |
Collapse
|
8
|
Mink S, Reimann P, Fraunberger P. Prognostic value of anti-SARS-CoV-2 antibodies: a systematic review. Clin Chem Lab Med 2024; 62:1029-1043. [PMID: 38349073 DOI: 10.1515/cclm-2023-1487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/02/2024] [Indexed: 04/30/2024]
Abstract
OBJECTIVES Globally, over 772 million cases of COVID-19 have been reported. New variants of interest with corresponding spikes in case numbers continue to be identified. Vulnerable patients, including older adults or patients with severe comorbidities, continue to be at risk. A large body of evidence has been accumulated regarding anti-SARS-CoV-2-antibodies and COVID-19 but the usefulness of antibody measurements remains unclear. This systematic review aims to assess the prognostic value of anti-SARS-CoV-2-antibodies and their usefulness for guiding booster vaccinations. METHODS Studies in English and published between January 2020 and October 2023 were included. Studies that relied on multiparameter-models or comprised fewer than 100 participants were excluded. PubMed and via the WHO COVID-19 research database, Embase and Medline databases were searched. Study selection and quality assessment was conducted independently by two researchers. RESULTS After screening 1,160 studies, 33 studies comprising >30 million individuals were included. Anti-SARS-CoV-2-antibodies were strongly associated with reduced risk of SARS-CoV-2-infection and better outcomes, including mortality. Risk of infection and COVID-19 severity decreased with increasing antibody levels. CONCLUSIONS Anti-SARS-CoV-2-antibodies are useful for early identification of high-risk patients and timely adjustment of therapy. Protective thresholds may be applied to advise booster vaccinations but verification in separate cohorts is required.
Collapse
Affiliation(s)
- Sylvia Mink
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| | - Patrick Reimann
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
- Department of Internal Medicine, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Peter Fraunberger
- Central Medical Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein, Triesen, Principality of Liechtenstein
| |
Collapse
|
9
|
Inoue W, Kimura Y, Okamoto S, Nogimori T, Sakaguchi-Mikami A, Yamamoto T, Tsunetsugu-Yokota Y. SARS-CoV-2-Specific Immune Responses in Vaccination and Infection during the Pandemic in 2020-2022. Viruses 2024; 16:446. [PMID: 38543812 PMCID: PMC10974545 DOI: 10.3390/v16030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
To gain insight into how immunity develops against SARS-CoV-2 from 2020 to 2022, we analyzed the immune response of a small group of university staff and students who were either infected or vaccinated. We investigated the levels of receptor-binding domain (RBD)-specific and nucleocapsid (N)-specific IgG and IgA antibodies in serum and saliva samples taken early (around 10 days after infection or vaccination) and later (around 1 month later), as well as N-specific T-cell responses. One patient who had been infected in 2020 developed serum RBD and N-specific IgG antibodies, but declined eight months later, then mRNA vaccination in 2021 produced a higher level of anti-RBD IgG than natural infection. In the vaccination of naïve individuals, vaccines induced anti-RBD IgG, but it declined after six months. A third vaccination boosted the IgG level again, albeit to a lower level than after the second. In 2022, when the Omicron variant became dominant, familial transmission occurred among vaccinated people. In infected individuals, the levels of serum anti-RBD IgG antibodies increased later, while anti-N IgG peaked earlier. The N-specific activated T cells expressing IFN γ or CD107a were detected only early. Although SARS-CoV-2-specific salivary IgA was undetectable, two individuals showed a temporary peak in RBD- and N-specific IgA antibodies in their saliva on the second day after infection. Our study, despite having a small sample size, revealed that SARS-CoV-2 infection triggers the expected immune responses against acute viral infections. Moreover, our findings suggest that the temporary mucosal immune responses induced early during infection may provide better protection than the currently available intramuscular vaccines.
Collapse
Affiliation(s)
- Wakana Inoue
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Yuta Kimura
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Shion Okamoto
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; (T.N.); (T.Y.)
| | - Akane Sakaguchi-Mikami
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; (T.N.); (T.Y.)
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Health Sciences and Graduate School of Medical Technology, Tokyo University of Technology, Tokyo 144-8535, Japan; (W.I.); (Y.K.); (S.O.); (A.S.-M.)
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; (T.N.); (T.Y.)
- Research Institute, The World New Prosperity (WNP), Tokyo 169-0075, Japan
| |
Collapse
|
10
|
Karthikeyan S, Vazquez-Zapien GJ, Martinez-Cuazitl A, Delgado-Macuil RJ, Rivera-Alatorre DE, Garibay-Gonzalez F, Delgado-Gonzalez J, Valencia-Trujillo D, Guerrero-Ruiz M, Atriano-Colorado C, Lopez-Reyes A, Lopez-Mezquita DJ, Mata-Miranda MM. Two-trace two-dimensional correlation spectra (2T2D-COS) analysis using FTIR spectra to monitor the immune response by COVID-19. J Mol Med (Berl) 2024; 102:53-67. [PMID: 37947852 DOI: 10.1007/s00109-023-02390-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
There is a growing trend in using saliva for SARS-CoV-2 detection with reasonable accuracy. We have studied the responses of IgA, IgG, and IgM in human saliva by directly comparing disease with control analyzing two-trace two-dimensional correlation spectra (2T2D-COS) employing Fourier transform infrared (FTIR) spectra. It explores the molecular-level variation between control and COVID-19 saliva samples. The advantage of 2T2D spectra is that it helps in discriminating remarkably subtle features between two simple pairs of spectra. It gives spectral information from highly overlapped bands associated with different systems. The clinical findings from 2T2D show the decrease of IgG and IgM salivary antibodies in the 50, 60, 65, and 75-years COVID-19 samples. Among the various COVID-19 populations studied the female 30-years group reveals defense mechanisms exhibited by IgM and IgA. Lipids and fatty acids decrease, resulting in lipid oxidation due to the SARS-CoV-2 in the samples studied. Study shows salivary thiocyanate plays defense against SARS-CoV-2 in the male population in 25 and 35 age groups. The receiver operation characteristics statistical method shows a sensitivity of 98% and a specificity of 94% for the samples studied. The measure of accuracy computed as F score and G score has a high value, supporting our study's validation. Thus, 2T2D-COS analysis can potentially monitor the progression of immunoglobulin's response function to COVID-19 with reasonable accuracy, which could help diagnose clinical trials. KEY MESSAGES: The molecular profile of salivary antibodies is well resolved and identified from 2T2D-COS FTIR spectra. The IgG antibody plays a significant role in the defense mechanism against SARS-CoV-2 in 25-40 years. 2T2D-COS reveals the absence of salivary thiocyanate in the 40-75 years COVID-19 population. The receiver operation characteristic (ROC) analysis validates our study with high sensitivity and specificity.
Collapse
Affiliation(s)
- Sivakumaran Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, Chennai, Tamil Nadu, 600039, India.
| | - Gustavo J Vazquez-Zapien
- Centro de Investigación y Desarrollo del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, 11400, Mexico.
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico.
| | - Adriana Martinez-Cuazitl
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | - Raul J Delgado-Macuil
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, 90700, Mexico
| | - Daniel E Rivera-Alatorre
- Centro de Investigación y Desarrollo del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, 11400, Mexico
| | - Francisco Garibay-Gonzalez
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
| | - Josemaria Delgado-Gonzalez
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
| | - Daniel Valencia-Trujillo
- Servicio de Microbiología Clínica, Instituto Nacional de Enfermedades Respiratorias, Mexico City, 14080, Mexico
| | - Melissa Guerrero-Ruiz
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
| | - Consuelo Atriano-Colorado
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
| | - Alberto Lopez-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, 14389, Mexico
| | | | - Monica M Mata-Miranda
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico.
| |
Collapse
|
11
|
Holdenrieder S, Dos Santos Ferreira CE, Izopet J, Theel ES, Wieser A. Clinical and laboratory considerations: determining an antibody-based composite correlate of risk for reinfection with SARS-CoV-2 or severe COVID-19. Front Public Health 2023; 11:1290402. [PMID: 38222091 PMCID: PMC10788057 DOI: 10.3389/fpubh.2023.1290402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Much of the global population now has some level of adaptive immunity to SARS-CoV-2 induced by exposure to the virus (natural infection), vaccination, or a combination of both (hybrid immunity). Key questions that subsequently arise relate to the duration and the level of protection an individual might expect based on their infection and vaccination history. A multi-component composite correlate of risk (CoR) could inform individuals and stakeholders about protection and aid decision making. This perspective evaluates the various elements that need to be accommodated in the development of an antibody-based composite CoR for reinfection with SARS-CoV-2 or development of severe COVID-19, including variation in exposure dose, transmission route, viral genetic variation, patient factors, and vaccination status. We provide an overview of antibody dynamics to aid exploration of the specifics of SARS-CoV-2 antibody testing. We further discuss anti-SARS-CoV-2 immunoassays, sample matrices, testing formats, frequency of sampling and the optimal time point for such sampling. While the development of a composite CoR is challenging, we provide our recommendations for each of these key areas and highlight areas that require further work to be undertaken.
Collapse
Affiliation(s)
- Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | | | - Jacques Izopet
- Laboratory of Virology, Toulouse University Hospital and INFINITY Toulouse Institute for Infections and Inflammatory Diseases, INSERM UMR 1291 CNRS UMR 5051, University Toulouse III, Toulouse, France
| | - Elitza S. Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- Faculty of Medicine, Max Von Pettenkofer Institute, LMU Munich, Munich, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich, Germany
| |
Collapse
|
12
|
Schoefbaenker M, Neddermeyer R, Guenther T, Mueller MM, Romberg ML, Classen N, Hennies MT, Hrincius ER, Ludwig S, Kuehn JE, Lorentzen EU. Surrogate Virus Neutralisation Test Based on Nanoluciferase-Tagged Antigens to Quantify Inhibitory Antibodies against SARS-CoV-2 and Characterise Omicron-Specific Reactivity in a Vaccination Cohort. Vaccines (Basel) 2023; 11:1832. [PMID: 38140236 PMCID: PMC10748151 DOI: 10.3390/vaccines11121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Virus-specific antibodies are crucial for protective immunity against SARS-CoV-2. Assessing functional antibodies through conventional or pseudotyped virus neutralisation tests (pVNT) requires high biosafety levels. Alternatively, the virus-free surrogate virus neutralisation test (sVNT) quantifies antibodies interfering with spike binding to angiotensin-converting enzyme 2. We evaluated secreted nanoluciferase-tagged spike protein fragments as diagnostic antigens in the sVNT in a vaccination cohort. Initially, spike fragments were tested in a capture enzyme immunoassay (EIA), identifying the receptor binding domain (RBD) as the optimal diagnostic antigen. The sensitivity of the in-house sVNT applying the nanoluciferase-labelled RBD equalled or surpassed that of a commercial sVNT (cPass, GenScript Diagnostics) and an in-house pVNT four weeks after the first vaccination (98% vs. 94% and 72%, respectively), reaching 100% in all assays four weeks after the second and third vaccinations. When testing serum reactivity with Omicron BA.1 spike, the sVNT and pVNT displayed superior discrimination between wild-type- and variant-specific serum reactivity compared to a capture EIA. This was most pronounced after the first and second vaccinations, with the third vaccination resulting in robust, cross-reactive BA.1 construct detection. In conclusion, utilising nanoluciferase-labelled antigens permits the quantification of SARS-CoV-2-specific inhibitory antibodies. Designed as flexible modular systems, the assays can be readily adjusted for monitoring vaccine efficacy.
Collapse
Affiliation(s)
- Michael Schoefbaenker
- Institute of Virology, Department of Molecular Virology, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (M.S.); (E.R.H.); (S.L.)
| | - Rieke Neddermeyer
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Theresa Guenther
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Marlin M. Mueller
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Marie-Luise Romberg
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Nica Classen
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
- Institute of Pharmaceutical Biology and Phytochemistry, University of Muenster, Corrensstr. 48, D-48149 Muenster, Germany
| | - Marc T. Hennies
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Eike R. Hrincius
- Institute of Virology, Department of Molecular Virology, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (M.S.); (E.R.H.); (S.L.)
| | - Stephan Ludwig
- Institute of Virology, Department of Molecular Virology, University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany; (M.S.); (E.R.H.); (S.L.)
| | - Joachim E. Kuehn
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| | - Eva U. Lorentzen
- Institute of Virology, Department of Clinical Virology, University of Muenster, Von-Stauffenberg-Str. 36, D-48151 Muenster, Germany; (R.N.); (T.G.); (M.M.M.); (M.-L.R.); (N.C.); (M.T.H.); (J.E.K.)
| |
Collapse
|
13
|
Servian CDP, Spadafora-Ferreira M, dos Anjos DCC, Guilarde AO, Gomes-Junior AR, Borges MASB, Masson LC, Silva JMM, de Lima MHA, Moraes BGN, Souza SM, Xavier LE, de Oliveira DCA, Batalha-Carvalho JV, Moro AM, Bocca AL, Pfrimer IAH, Costa NL, Feres VCDR, Fiaccadori FS, Souza M, Gardinassi LG, Durigon EL, Romão PRT, Jorge SAC, Coelho V, Botosso VF, Fonseca SG. Distinct anti-NP, anti-RBD and anti-Spike antibody profiles discriminate death from survival in COVID-19. Front Immunol 2023; 14:1206979. [PMID: 37876932 PMCID: PMC10591157 DOI: 10.3389/fimmu.2023.1206979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces rapid production of IgM, IgA, and IgG antibodies directed to multiple viral antigens that may have impact diverse clinical outcomes. Methods We evaluated IgM, IgA, and IgG antibodies directed to the nucleocapsid (NP), IgA and IgG to the Spike protein and to the receptor-binding domain (RBD), and the presence of neutralizing antibodies (nAb), in a cohort of unvaccinated SARS-CoV-2 infected individuals, in the first 30 days of post-symptom onset (PSO) (T1). Results This study included 193 coronavirus disease 2019 (COVID-19) participants classified as mild, moderate, severe, critical, and fatal and 27 uninfected controls. In T1, we identified differential antibody profiles associated with distinct clinical presentation. The mild group presented lower levels of anti-NP IgG, and IgA (vs moderate and severe), anti-NP IgM (vs severe, critical and fatal), anti-Spike IgA (vs severe and fatal), and anti-RBD IgG (vs severe). The moderate group presented higher levels of anti-RBD IgA, comparing with severe group. The severe group presented higher levels of anti-NP IgA (vs mild and fatal) and anti-RBD IgG (vs mild and moderate). The fatal group presented higher levels of anti-NP IgM and anti-Spike IgA (vs mild), but lower levels of anti-NP IgA (vs severe). The levels of nAb was lower just in mild group compared to severe, critical, and fatal groups, moreover, no difference was observed among the more severe groups. In addition, we studied 82 convalescent individuals, between 31 days to 6 months (T2) or more than 6 months (T3), PSO, those: 12 mild, 26 moderate, and 46 severe plus critical. The longitudinal analyzes, for the severe plus critical group showed lower levels of anti-NP IgG, IgA and IgM, anti-Spike IgA in relation T3. The follow-up in the fatal group, reveals that the levels of anti-spike IgG increased, while anti-NP IgM levels was decreased along the time in severe/critical and fatal as well as anti-NP IgG and IgA in several/critical groups. Discussion In summary, the anti-NP IgA and IgG lower levels and the higher levels of anti-RBD and anti-Spike IgA in fatal compared to survival group of individuals admitted to the intensive care unit (ICU). Collectively, our data discriminate death from survival, suggesting that anti-RBD IgA and anti-Spike IgA may play some deleterious effect, in contrast with the potentially protective effect of anti-NP IgA and IgG in the survival group.
Collapse
Affiliation(s)
- Carolina do Prado Servian
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Déborah Carolina Carvalho dos Anjos
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Adriana Oliveira Guilarde
- Departamento de Patologia Tropical e Dermatologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Antonio Roberto Gomes-Junior
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Moara Alves Santa Bárbara Borges
- Departamento de Patologia Tropical e Dermatologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Letícia Carrijo Masson
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - João Marcos Maia Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | - Sueli Meira Souza
- Laboratório Prof Margarida Dobler Komma, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luiz Eterno Xavier
- Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | - Ana Maria Moro
- Laboratório de Biofármacos, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia – Instituto Nacional de Ciências e Tecnologia (III-INCT), São Paulo, SP, Brazil
| | - Anamélia Lorenzetti Bocca
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Nádia Lago Costa
- Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Fabiola Souza Fiaccadori
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Menira Souza
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Edison Luiz Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Verônica Coelho
- Instituto de Investigação em Imunologia – Instituto Nacional de Ciências e Tecnologia (III-INCT), São Paulo, SP, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil
- Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas Hospital da Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | | | - Simone Gonçalves Fonseca
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Instituto de Investigação em Imunologia – Instituto Nacional de Ciências e Tecnologia (III-INCT), São Paulo, SP, Brazil
| |
Collapse
|
14
|
Lugar M, Eugster A, Achenbach P, von dem Berge T, Berner R, Besser REJ, Casteels K, Elding Larsson H, Gemulla G, Kordonouri O, Lindner A, Lundgren M, Müller D, Oltarzewski M, Rochtus A, Scholz M, Szypowska A, Todd JA, Ziegler AG, Bonifacio E. SARS-CoV-2 Infection and Development of Islet Autoimmunity in Early Childhood. JAMA 2023; 330:1151-1160. [PMID: 37682551 PMCID: PMC10523173 DOI: 10.1001/jama.2023.16348] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023]
Abstract
Importance The incidence of diabetes in childhood has increased during the COVID-19 pandemic. Elucidating whether SARS-CoV-2 infection is associated with islet autoimmunity, which precedes type 1 diabetes onset, is relevant to disease etiology and future childhood diabetes trends. Objective To determine whether there is a temporal relationship between SARS-CoV-2 infection and the development of islet autoimmunity in early childhood. Design, Setting, and Participants Between February 2018 and March 2021, the Primary Oral Insulin Trial, a European multicenter study, enrolled 1050 infants (517 girls) aged 4 to 7 months with a more than 10% genetically defined risk of type 1 diabetes. Children were followed up through September 2022. Exposure SARS-CoV-2 infection identified by SARS-CoV-2 antibody development in follow-up visits conducted at 2- to 6-month intervals until age 2 years from April 2018 through June 2022. Main Outcomes and Measures The development of multiple (≥2) islet autoantibodies in follow-up in consecutive samples or single islet antibodies and type 1 diabetes. Antibody incidence rates and risk of developing islet autoantibodies were analyzed. Results Consent was obtained for 885 (441 girls) children who were included in follow-up antibody measurements from age 6 months. SARS-CoV-2 antibodies developed in 170 children at a median age of 18 months (range, 6-25 months). Islet autoantibodies developed in 60 children. Six of these children tested positive for islet autoantibodies at the same time as they tested positive for SARS-CoV-2 antibodies and 6 at the visit after having tested positive for SARS-CoV-2 antibodies. The sex-, age-, and country-adjusted hazard ratio for developing islet autoantibodies when the children tested positive for SARS-CoV-2 antibodies was 3.5 (95% CI, 1.6-7.7; P = .002). The incidence rate of islet autoantibodies was 3.5 (95% CI, 2.2-5.1) per 100 person-years in children without SARS-CoV-2 antibodies and 7.8 (95% CI, 5.3-19.0) per 100 person-years in children with SARS-CoV-2 antibodies (P = .02). Islet autoantibody risk in children with SARS-CoV-2 antibodies was associated with younger age (<18 months) of SARS-CoV-2 antibody development (HR, 5.3; 95% CI, 1.5-18.3; P = .009). Conclusion and relevance In young children with high genetic risk of type 1 diabetes, SARS-CoV-2 infection was temporally associated with the development of islet autoantibodies.
Collapse
Affiliation(s)
- Marija Lugar
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Anne Eugster
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rachel E. J. Besser
- Department of Pediatrics, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, Oxford University, Oxford, United Kingdom
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Helena Elding Larsson
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Paediatrics, Skåne University Hospital, Malmö, Sweden
| | - Gita Gemulla
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Olga Kordonouri
- Kinder-und Jugendkrankenhaus AUF DER BULT, Hannover, Germany
| | - Annett Lindner
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Markus Lundgren
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - Denise Müller
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | - Anne Rochtus
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marlon Scholz
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | | - John A. Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, Oxford University, Oxford, United Kingdom
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ezio Bonifacio
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Germany
- Institute for Diabetes and Obesity, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| |
Collapse
|
15
|
Szardenings M, Delaroque N, Kern K, Ramirez-Caballero L, Puder M, Ehrentreich-Förster E, Beige J, Zürner S, Popp G, Wolf J, Borte S. Detection of Antibodies against Endemic and SARS-CoV-2 Coronaviruses with Short Peptide Epitopes. Vaccines (Basel) 2023; 11:1403. [PMID: 37766081 PMCID: PMC10535424 DOI: 10.3390/vaccines11091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Coronavirus proteins are quite conserved amongst endemic strains (eCoV) and SARS-CoV-2. We aimed to evaluate whether peptide epitopes might serve as useful diagnostic biomarkers to stratify previous infections and COVID-19. (2) Methods: Peptide epitopes were identified at an amino acid resolution that applied a novel statistical approach to generate data sets of potential antibody binding peptides. (3) Results: Data sets from more than 120 COVID-19 or eCoV-infected patients, as well as vaccinated persons, have been used to generate data sets that have been used to search in silico for potential epitopes in proteins of SARS-CoV-2 and eCoV. Peptide epitopes were validated with >300 serum samples in synthetic peptide micro arrays and epitopes specific for different viruses, in addition to the identified cross reactive epitopes. (4) Conclusions: Most patients develop antibodies against non-structural proteins, which are useful general markers for recent infections. However, there are differences in the epitope patterns of COVID-19, and eCoV, and the S-protein vaccine, which can only be explained by a high degree of cross-reactivity between the viruses, a pre-existing immune response against some epitopes, and even an alternate processing of the vaccine proteins.
Collapse
Affiliation(s)
- Michael Szardenings
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
- epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany;
| | - Nicolas Delaroque
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
| | - Karolin Kern
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
- epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany;
| | - Lisbeth Ramirez-Caballero
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
| | - Marcus Puder
- epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany;
| | - Eva Ehrentreich-Förster
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Am Mühlenberg 13, 14476 Potsdam, Germany;
| | - Joachim Beige
- Martin-Luther-University Halle/Wittenberg, Medical Clinic 2, 06112 Halle, Germany;
| | - Sebastian Zürner
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
- WINF/Informationsmanagement, University Leipzig, Grimmaische Straße 12, 04109 Leipzig, Germany
| | - Georg Popp
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
| | - Johannes Wolf
- Department of Laboratory Medicine, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany; (J.W.); (S.B.)
- ImmunoDeficiencyCenter Leipzig (IDCL), Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany; (J.W.); (S.B.)
- ImmunoDeficiencyCenter Leipzig (IDCL), Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany
| |
Collapse
|
16
|
Karthikeyan S, Mata-Miranda MM, Martinez-Cuazitl A, Delgado-Macuil RJ, Garibay-Gonzalez F, Sanchez-Monroy V, Lopez-Reyes A, Rojas-Lopez M, Rivera-Alatorre DE, Vazquez-Zapien GJ. Dynamic response antibodies SARS-CoV-2 human saliva studied using two-dimensional correlation (2DCOS) infrared spectral analysis coupled with receiver operation characteristics analysis. Biochim Biophys Acta Mol Basis Dis 2023:166799. [PMID: 37400001 DOI: 10.1016/j.bbadis.2023.166799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
COVID-19 has affected the entire world due to the rapid spread of SARS-CoV-2, mainly through airborne particles from saliva, which, being easily obtained, help monitor the progression of the disease. Fourier transform infrared (FTIR) spectra combined with chemometric analysis could increase the diagnostic efficiency of the disease. However, two-dimensional correlation spectroscopy (2DCOS) is superior to conventional spectra as it helps to resolve the minute overlapped peaks. In this work, we aimed to use 2DCOS and receiver operating characteristic (ROC) analyses to compare the immune response in saliva associated with COVID-19, which could be important in biomedical diagnosis. FTIR spectra of human saliva samples from male (575) and female (366) patients ranging from 20 to 82 ± 2 years of age were used for the study. Age groups were segregated as G1 (25-40 ± 2 years), G2 (45-60 ± 2 years), and G3 (65-80 ± 2 years). The results of the 2DCOS analysis showed biomolecular changes in response to SARS-CoV-2. 2DCOS analyses of the male G1 + (1579,1644) and -(1531,1598) crossover peaks evidenced changes such as amide I > IgG. Female G1 crossover peaks -(1504,1645), (1504,1545) and -(1391,1645) resulted in amide I > IgG > IgM. The asynchronous spectra in 1300-900 cm-1 of the G2 male group showed that IgM is more important in diagnosing infections than IgA. Female G2 asynchronous spectra -(1027,1242) and + (1068,1176) showed that IgA > IgM is produced against SARS-CoV-2. The G3 male group evidenced antibody changes in IgG > IgM. The absence of IgM in the female G3 population diagnoses a specifically targeted immunoglobulin associated with sex. Moreover, ROC analysis showed sensitivity (85-89 % men; 81-88 % women) and specificity (90-93 % men; 78-92 % women) for the samples studied. The general classification performance (F1 score) of the studied samples is high for the male (88-91 %) and female (80-90 %) populations. This high PPV (positive predictive value) and NPV (negative predictive value) verify our segregation of COVID-19 positive and negative sample groups. Therefore, 2DCOS with ROC analysis using FTIR spectra have the potential for a non-invasive approach to monitoring COVID-19.
Collapse
Affiliation(s)
- Sivakumaran Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, Chennai 600039, Tamil Nadu, India.
| | - Monica Maribel Mata-Miranda
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico
| | - Adriana Martinez-Cuazitl
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico; Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Raul Jacobo Delgado-Macuil
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, 90700, Mexico
| | - Francisco Garibay-Gonzalez
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico
| | | | - Alberto Lopez-Reyes
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, 14389, Mexico
| | - Marlon Rojas-Lopez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, 90700, Mexico
| | - Daniel Enrique Rivera-Alatorre
- Centro de Investigación y Desarrollo del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, 11400, Mexico
| | - Gustavo Jesus Vazquez-Zapien
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico; Centro de Investigación y Desarrollo del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, 11400, Mexico.
| |
Collapse
|
17
|
D'Souza F, Buzzetti R, Pozzilli P. Diabetes, COVID-19, and questions unsolved. Diabetes Metab Res Rev 2023:e3666. [PMID: 37209039 DOI: 10.1002/dmrr.3666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Recent evidence suggests a role for Diabetes Mellitus in adverse outcomes from COVID-19 infection; yet the underlying mechanisms are not clear. Moreover, attention has turned to prophylactic vaccination to protect the population from COVID-19-related illness and mortality. We performed a comprehensive peer-reviewed literature search on an array of key terms concerning diabetes and COVID-19 seeking to address the following questions: 1. What role does diabetes play as an accelerator for adverse outcomes in COVID-19?; 2. What mechanisms underlie the differences in outcomes seen in people with diabetes?; 3. Are vaccines against COVID-19 efficacious in people with diabetes? The current literature demonstrates that diabetes is associated with an increased risk of adverse outcomes from COVID-19 infection, and post-COVID sequelae. Potential mechanisms include dysregulation of Angiotensin Converting Enzyme 2, Furin, CD147, and impaired immune cell responses. Hyperglycaemia is a key exacerbator of these mechanisms. Limited studies are available on COVID-19 vaccination in people with diabetes; however, the current literature suggests that vaccination is protective against adverse outcomes for this population. In summary, people with diabetes are a high-risk group that should be prioritised in vaccination efforts. Glycaemic optimisation is paramount to protecting this group from COVID-19-associated risk. Unsolved questions remain as to the molecular mechanisms underlying the adverse outcomes seen in people with diabetes; the functional impact of post-COVID symptoms on people with diabetes, their persistence, and management; how long-term vaccine efficacy is affected by diabetes, and the antibody levels that confer protection from adverse outcomes in COVID-19.
Collapse
Affiliation(s)
- Felecia D'Souza
- University College London Hospitals NHS Trust, London, UK
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raffaella Buzzetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Pozzilli
- Department of Endocrinology & Diabetes, University Campus Bio-Medico, Rome, Italy
- Centre for Immunobiology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Vanetti C, Lampasona V, Stracuzzi M, Fenizia C, Biasin M, Saulle I, Limanaqi F, Abdelsalam A, Loretelli C, Paradiso L, Longoni E, Barcellini L, Piemonti L, Marzinotto I, Dispinseri S, Amendola A, Fappani C, Tanzi E, Clerici MS, Scarlatti G, Zuccotti GV, Giacomet V, Trabattoni D. The Immunological Profile of SARS-CoV-2 Infection in Children Is Linked to Clinical Severity and Age. Int J Mol Sci 2023; 24:ijms24076779. [PMID: 37047752 PMCID: PMC10095251 DOI: 10.3390/ijms24076779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19) is clinically less severe in children, even if the wide variety and degree of severity of symptoms reported in children pose a still-unresolved challenge for clinicians. We performed an in-depth analysis of the immunological profiles of 18 hospitalized SARS-CoV-2-infected children, whose results were compared to those obtained from 13 age- and sex-matched healthy controls (HC). The patients were categorized as paucisymptomatic/moderate (55.6%) or severe/critical (44.5%) according to established diagnostic criteria and further stratified into the categories of infants (1–12 months), children (1–12 years), and adolescents (>12 years). We assessed SARS-CoV-2-specific RBD antibodies (Ab), neutralizing antibodies (nAb), and circulating cytokines/chemokines in the plasma, and the SARS-CoV-2-specific immune response was measured in PBMCs by gene expression and secretome analyses. Our results showed peculiar circulating cytokine/chemokine profiles among patients sharing a similar clinical phenotype. A cluster of patients consisting of infants with severe symptoms presented hyperinflammatory profiles, together with extremely polarized antibody profiles. In a second cluster consisting of paucisymptomatic patients, a less pronounced increase in the level of inflammatory cytokines, together with an association between the selected cytokines and humoral responses, was observed. A third cluster, again consisting of paucisymptomatic patients, showed a circulating cytokine/chemokine profile which overlapped with that of the HC. The SARS-CoV-2-stimulated production of pro-inflammatory proteins, T lymphocyte activation, and migration-specific proteins, were significantly increased in SARS-CoV-2-infected children compared to the HC. Our findings suggest that immune response activation in the course of SARS-CoV-2 infection in children is directly correlated with clinical severity and, to a lesser extent, age.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Marta Stracuzzi
- Paediatric Infectious Disease Unit, Ospedale L. Sacco, 20157 Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Ahmed Abdelsalam
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- International Center for T1D, Paediatric Clinical Research Center Romeo ed Enrica Invernizzi, Università degli Studi di Milano, 20157 Milan, Italy
| | - Cristian Loretelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
- International Center for T1D, Paediatric Clinical Research Center Romeo ed Enrica Invernizzi, Università degli Studi di Milano, 20157 Milan, Italy
| | - Laura Paradiso
- Department of Paediatrics, Ospedale dei Bambini V. Buzzi, 20154 Milan, Italy
| | - Emma Longoni
- Department of Paediatrics, Ospedale dei Bambini V. Buzzi, 20154 Milan, Italy
| | - Lucia Barcellini
- Department of Paediatrics, Ospedale dei Bambini V. Buzzi, 20154 Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Antonella Amendola
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Clara Fappani
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elisabetta Tanzi
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mario Salvatore Clerici
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | | | - Vania Giacomet
- Paediatric Infectious Disease Unit, Ospedale L. Sacco, 20157 Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
19
|
Burbelo PD, Ji Y, Iadarola MJ. Advancing Luciferase-Based Antibody Immunoassays to Next-Generation Mix and Read Testing. BIOSENSORS 2023; 13:303. [PMID: 36979515 PMCID: PMC10046223 DOI: 10.3390/bios13030303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Antibody measurements play a central role in the diagnosis of many autoimmune and infectious diseases. One antibody detection technology, Luciferase Immunoprecipitation Systems (LIPS), utilizes genetically encoded recombinant luciferase antigen fusion proteins in an immunoglobulin capture format to generate robust antibody measurement with high diagnostic sensitivity and specificity. The LIPS technology has been highly useful in detecting antibodies for research diagnostics and the discovery of new autoantigens. The methodology of the assay requires immunoglobulin binding reagents such as protein A/G beads and washing steps to process the immune complex before antibody levels are measured by light production with a luminometer. Recently, simplified mix and read immunoassays based on split components of the nanoluciferase enzyme in a complementation format have been developed for antibody measurements without requiring immunoglobulin-capturing beads or washing steps. The mix and read immunoassays utilize two or three nanoluciferase fragments which when reconstituted via antigen-specific antibody binding generate a functional enzyme. At present, these split luciferase tests have been developed mainly for detecting SARS-CoV-2 antibodies. Here, we describe the traditional LIPS technology and compare it to the new split luciferase methodologies focusing on their technical features, strengths, limitations, and future opportunities for diagnostic research, and clinical applications.
Collapse
Affiliation(s)
- Peter D. Burbelo
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 202892, USA
| | - Youngmi Ji
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 202892, USA
| | - Michael J. Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 202892, USA
| |
Collapse
|
20
|
Sejdic A, Frische A, Jørgensen CS, Rasmussen LD, Trebbien R, Dungu A, Holler JG, Ostrowski SR, Eriksson R, Søborg C, Nielsen TL, Fischer TK, Lindegaard B, Franck KT, Harboe ZB. High titers of neutralizing SARS-CoV-2 antibodies six months after symptom onset are associated with increased severity in COVID-19 hospitalized patients. Virol J 2023; 20:14. [PMID: 36698135 PMCID: PMC9875770 DOI: 10.1186/s12985-023-01974-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Viral shedding and neutralizing antibody (NAb) dynamics among patients hospitalized with severe coronavirus disease 2019 (COVID-19) and immune correlates of protection have been key questions throughout the pandemic. We investigated the duration of reverse transcriptase-polymerase chain reaction (RT-PCR) positivity, infectious viral shedding and NAb titers as well as the association between NAb titers and disease severity in hospitalized COVID-19 patients in Denmark 2020-2021. MATERIALS AND METHODS Prospective single-center observational cohort study of 47 hospitalized COVID-19 patients. Oropharyngeal swabs were collected at eight time points during the initial 30 days of inclusion. Serum samples were collected after a median time of 7 (IQR 5 - 10), 37 (IQR 35 - 38), 97 (IQR 95 - 100), and 187 (IQR 185 - 190) days after symptom onset. NAb titers were determined by an in-house live virus microneutralization assay. Viral culturing was performed in Vero E6 cells. RESULTS Patients with high disease severity had higher mean log2 NAb titers at day 37 (1.58, 95% CI [0.34 -2.81]), 97 (2.07, 95% CI [0.53-3.62]) and 187 (2.49, 95% CI [0.20- 4.78]) after symptom onset, compared to patients with low disease severity. Peak viral load (0.072, 95% CI [- 0.627 - 0.728]), expressed as log10 SARS-CoV-2 copies/ml, was not associated with disease severity. Virus cultivation attempts were unsuccessful in almost all (60/61) oropharyngeal samples collected shortly after hospital admission. CONCLUSIONS We document an association between high disease severity and high mean NAb titers at days 37, 97 and 187 after symptom onset. However, peak viral load during admission was not associated with disease severity. TRIAL REGISTRATION The study is registered at https://clinicaltrials.gov/ (NCT05274373).
Collapse
Affiliation(s)
- Adin Sejdic
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark.
- Statens Serum Institut, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | - Arnold Dungu
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Jon G Holler
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Robert Eriksson
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Department of Infectious Diseases, Karolinska Institutet, Solna, Sweden
| | - Christian Søborg
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Thyge L Nielsen
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Thea K Fischer
- Department of Clinical Research, Copenhagen University Hospital - North Zealand, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Zitta Barrella Harboe
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
- Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Abebe EC, Dejenie TA. Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Front Immunol 2023; 14:1055457. [PMID: 36742320 PMCID: PMC9892939 DOI: 10.3389/fimmu.2023.1055457] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neutralizing antibodies (NAbs) are central players in the humoral immunity that defends the body from SARS-CoV-2 infection by blocking viral entry into host cells and neutralizing their biological effects. Even though NAbs primarily work by neutralizing viral antigens, on some occasions, they may also combat the SARS-CoV-2 virus escaping neutralization by employing several effector mechanisms in collaboration with immune cells like natural killer (NK) cells and phagocytes. Besides their prophylactic and therapeutic roles, antibodies can be used for COVID-19 diagnosis, severity evaluation, and prognosis assessment in clinical practice. Furthermore, the measurement of NAbs could have key implications in determining individual or herd immunity against SARS-CoV-2, vaccine effectiveness, and duration of the humoral protective response, as well as aiding in the selection of suitable individuals who can donate convalescent plasma to treat infected people. Despite all these clinical applications of NAbs, using them in clinical settings can present some challenges. This review discusses the protective functions, possible protective mechanisms against SARS-CoV-2, and potential clinical applications of NAbs in COVID-19. This article also highlights the possible challenges and solutions associated with COVID-19 antibody-based prophylaxis, therapy, and vaccination.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
22
|
Gregory DJ, Vannier A, Duey AH, Roady TJ, Dzeng RK, Pavlovic MN, Chapin MH, Mukherjee S, Wilmot H, Chronos N, Charles RC, Ryan ET, LaRocque RC, Miller TE, Garcia-Beltran WF, Thierauf JC, Iafrate AJ, Mullenbrock S, Stump MD, Wetzel RK, Polakiewicz RD, Naranbhai V, Poznansky MC. Repertoires of SARS-CoV-2 epitopes targeted by antibodies vary according to severity of COVID-19. Virulence 2022; 13:890-902. [PMID: 35587156 PMCID: PMC9122311 DOI: 10.1080/21505594.2022.2073025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Antibodies to SARS-CoV-2 are central to recovery and immunity from COVID-19. However, the relationship between disease severity and the repertoire of antibodies against specific SARS-CoV-2 epitopes an individual develops following exposure remains incompletely understood. Here, we studied seroprevalence of antibodies to specific SARS-CoV-2 and other betacoronavirus antigens in a well-annotated, community sample of convalescent and never-infected individuals obtained in August 2020. One hundred and twenty-four participants were classified into five groups: previously exposed but without evidence of infection, having no known exposure or evidence of infection, seroconverted without symptoms, previously diagnosed with symptomatic COVID-19, and recovered after hospitalization with COVID-19. Prevalence of IgGs specific to the following antigens was compared between the five groups: recombinant SARS-CoV-2 and betacoronavirus spike and nucleocapsid protein domains, peptides from a tiled array of 22-mers corresponding to the entire spike and nucleocapsid proteins, and peptides corresponding to predicted immunogenic regions from other proteins of SARS-CoV-2. Antibody abundance generally correlated positively with severity of prior illness. A number of specific immunogenic peptides and some that may be associated with milder illness or protection from symptomatic infection were identified. No convincing association was observed between antibodies to Receptor Binding Domain(s) (RBDs) of less pathogenic betacoronaviruses HKU1 or OC43 and COVID-19 severity. However, apparent cross-reaction with SARS-CoV RBD was evident and some predominantly asymptomatic individuals had antibodies to both MERS-CoV and SARS-CoV RBDs. Findings from this pilot study may inform development of diagnostics, vaccines, and therapeutic antibodies, and provide insight into viral pathogenic mechanisms.
Collapse
Affiliation(s)
- David J. Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
- Pediatric Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Augustin Vannier
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Akiro H. Duey
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Tyler J. Roady
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Richard K. Dzeng
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Maia N. Pavlovic
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael H. Chapin
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Sonia Mukherjee
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Richelle C. Charles
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital Boston, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward T. Ryan
- Cardiology Care Clinics, Eatonton, GA, USA
- Division of Infectious Diseases, Massachusetts General Hospital Boston, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Regina C. LaRocque
- Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital Boston, Boston, MA, USA
| | - Tyler E. Miller
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Wilfredo F. Garcia-Beltran
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Julia C. Thierauf
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - A. John Iafrate
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | - Vivek Naranbhai
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Park JH, Cha MJ, Choi H, Kim MC, Chung JW, Lee KS, Jeong DG, Baek MS, Kim WY, Lim Y, Yoon SW, Choi SH. Relationship between SARS-CoV-2 antibody titer and the severity of COVID-19. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1094-1100. [PMID: 35570185 PMCID: PMC9069977 DOI: 10.1016/j.jmii.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND It remains unclear whether high titers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies aggravate clinical manifestations in patients or whether severe clinical manifestations result in high antibody titers. Thus, we investigated the cause-effect relationship between SARS-CoV-2 antibody titers and disease severity. METHODS We prospectively enrolled patients admitted with the diagnosis of coronavirus disease-19 (COVID-19) from February 2020 to August 2020. We measured SARS-CoV-2 antibody titers, namely anti-receptor-binding domain (RBD) antibody and neutralizing antibody (NAb), from blood samples and calculated the chest radiograph (CXR) scores of the patients to evaluate the severity of COVID-19. RESULTS Overall, 40 patients with COVID-19 were enrolled. Pneumonia was observed in more than half of the patients (25/40, 60%). SARS-CoV-2 antibody titers were higher in patients who were aged >60 years (anti-RBD antibodies, P = 0.003 and NAb, P = 0.009), presented with pneumonia (P = 0.006 and 0.007, respectively), and required oxygen therapy (P = 0.003 and 0.004, respectively) than in those who were not. CXR scores peaked (at 15-21 days after the onset of symptoms) statistically significantly earlier than SARS-CoV-2 antibody titers (at 22-30 days for NAb and at 31-70 days for anti-RBD antibody). There was a close correlation between the maximum CXR score and the maximum SAR-CoV-2 antibody titer. CONCLUSIONS Based on the comparison of the peak time of SARS-CoV-2 antibody titers with the CXR score after symptom onset, we suggest that severe clinical manifestations result in high titers of SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Joung Ha Park
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, South Korea
| | - Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Seoul, South Korea
| | - Hyewon Choi
- Department of Radiology, Chung-Ang University Hospital, Seoul, South Korea
| | - Min-Chul Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, South Korea
| | - Jin-Won Chung
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea
| | - Kyu-Sun Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Moon Seong Baek
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea
| | - Won-Young Kim
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea
| | - Yaeji Lim
- Department of Applied Statistics, Chung-Ang University, Seoul, South Korea
| | - Sun Woo Yoon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea,Corresponding author. Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seong-Ho Choi
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea,Corresponding author. Fax: +82 2 6299 2064
| |
Collapse
|
24
|
Pourakbari B, Mirbeyk M, Mahmoudi S, Hosseinpour Sadeghi RH, Rezaei N, Ghasemi R, Esfandiari F, Mamishi S. Evaluation of response to different COVID-19 vaccines in vaccinated healthcare workers in a single center in Iran. J Med Virol 2022; 94:5669-5677. [PMID: 35883215 PMCID: PMC9353408 DOI: 10.1002/jmv.28029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023]
Abstract
Due to the recent coronavirus disease 2019 (COVID-19) pandemic and emergent administration of various vaccines worldwide, comprehensive studies on the different aspects of vaccines are in demand. This study evaluated antibody response after the second dose of the COVID-19 vaccine in the Children's Medical Center personnel. The blood samples of 174 healthcare workers were gathered at least 10 days after vaccination. The administered vaccines included Oxford/AstraZeneca, COVAXIN, Sinopharm, and Sputnik V. This study assessed all antibodies employing ELISA methods, including anti-SARS-CoV-2 neutralizing antibody by DiaZist and Pishtazteb kits, anti-SARS-CoV-2-nucleocapsid by Pishtazteb kit, and anti-SARS-CoV-2-Spike by Razi kit. The cutoff for the tests' results was calculated according to the instructions of each kit. Totally, 174 individuals with an average age of 40 ± 9 years participated in this study, the proportion of men was 31%, and the frequency of past COVID-19 infection was 66 (38%). Sixteen (9%) personnel received Oxford/AstraZeneca, 28 (16%) COVAXIN, 29 (17%) Sinopharm, and 101 (58%) Sputnik V. anti-SARS-CoV-2-nucleocapsid and anti-SARS-CoV-2-Spike were positive in 37 (21%), and 163 (94%) participants and their mean level were more in adenoviral-vectored vaccines (p value < 0.0001). Neutralizing antibody was positive in 74% using Pishtazteb kit while 87% using DiaZist kit. All antibodies' levels were significantly higher in those with a past COVID-19 infection (p value < 0.0001). In conclusion, Oxford/AstraZeneca and Sputnik V had a similar outcome of inducing high levels of anti-SARS-Cov-2-spike and neutralizing antibodies, which were more than Sinopharm and COVAXIN. The titers of Anti-SARS-CoV-2-nucleocapsid antibody were low in all of these four vaccines.
Collapse
Affiliation(s)
- Babak Pourakbari
- Pediatric Infectious Diseases Research CenterTehran University of Medical SciencesTehranIran
- Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | - Mona Mirbeyk
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | - Shima Mahmoudi
- Pediatric Infectious Diseases Research CenterTehran University of Medical SciencesTehranIran
- Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Division of Medical Research, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Raheleh Ghasemi
- Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | - Fatemeh Esfandiari
- Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research CenterTehran University of Medical SciencesTehranIran
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
25
|
Halliday A, Long AE, Baum HE, Thomas AC, Shelley KL, Oliver E, Gupta K, Francis O, Williamson MK, Di Bartolo N, Randell MJ, Ben-Khoud Y, Kelland I, Mortimer G, Ball O, Plumptre C, Chandler K, Obst U, Secchi M, Piemonti L, Lampasona V, Smith J, Gregorova M, Knezevic L, Metz J, Barr R, Morales-Aza B, Oliver J, Collingwood L, Hitchings B, Ring S, Wooldridge L, Rivino L, Timpson N, McKernon J, Muir P, Hamilton F, Arnold D, Woolfson DN, Goenka A, Davidson AD, Toye AM, Berger I, Bailey M, Gillespie KM, Williams AJK, Finn A. Development and evaluation of low-volume tests to detect and characterize antibodies to SARS-CoV-2. Front Immunol 2022; 13:968317. [PMID: 36439154 PMCID: PMC9682908 DOI: 10.3389/fimmu.2022.968317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.
Collapse
Affiliation(s)
- Alice Halliday
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anna E. Long
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Holly E. Baum
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Amy C. Thomas
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathryn L. Shelley
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kapil Gupta
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | | | - Natalie Di Bartolo
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Matthew J. Randell
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Yassin Ben-Khoud
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ilana Kelland
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Georgina Mortimer
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Olivia Ball
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Charlie Plumptre
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kyla Chandler
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ulrike Obst
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Massimiliano Secchi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Joyce Smith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Michaela Gregorova
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lea Knezevic
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Jane Metz
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Rachael Barr
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Begonia Morales-Aza
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jennifer Oliver
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lucy Collingwood
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Benjamin Hitchings
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Susan Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Nicholas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Jorgen McKernon
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Peter Muir
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David Arnold
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ashley M. Toye
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant Filton, Bristol, United Kingdom
| | - Imre Berger
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alistair J. K. Williams
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| |
Collapse
|
26
|
Jasim SA, Mahdi RS, Bokov DO, Najm MAA, Sobirova GN, Bafoyeva ZO, Taifi A, Alkadir OKA, Mustafa YF, Mirzaei R, Karampoor S. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J Med Virol 2022; 94:5128-5148. [PMID: 35835586 PMCID: PMC9350195 DOI: 10.1002/jmv.28000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/28/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The precise interaction between the immune system and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical in deciphering the pathogenesis of coronavirus disease 2019 (COVID-19) and is also vital for developing novel therapeutic tools, including monoclonal antibodies, antivirals drugs, and vaccines. Viral infections need innate and adaptive immune reactions since the various immune components, such as neutrophils, macrophages, CD4+ T, CD8+ T, and B lymphocytes, play different roles in various infections. Consequently, the characterization of innate and adaptive immune reactions toward SARS-CoV-2 is crucial for defining the pathogenicity of COVID-19. In this study, we explain what is currently understood concerning the conventional immune reactions to SARS-CoV-2 infection to shed light on the protective and pathogenic role of immune response in this case. Also, in particular, we investigate the in-depth roles of other immune mediators, including neutrophil elastase, serum amyloid A, and syndecan, in the immunopathogenesis of COVID-19.
Collapse
Affiliation(s)
| | - Roaa Salih Mahdi
- Department of Pathology, College of MedicineUniversity of BabylonHillaIraq
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | - Mazin A. A. Najm
- Pharmaceutical Chemistry Department, College of PharmacyAl‐Ayen UniversityThi‐QarIraq
| | - Guzal N. Sobirova
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | - Zarnigor O. Bafoyeva
- Department of Rehabilitation, Folk Medicine and Physical EducationTashkent Medical AcademyTashkentUzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of PharmacyUniversity of MosulMosulIraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
27
|
Välikangas T, Junttila S, Rytkönen KT, Kukkonen-Macchi A, Suomi T, Elo LL. COVID-19-specific transcriptomic signature detectable in blood across multiple cohorts. Front Genet 2022; 13:929887. [PMID: 35991542 PMCID: PMC9388772 DOI: 10.3389/fgene.2022.929887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading across the world despite vast global vaccination efforts. Consequently, many studies have looked for potential human host factors and immune mechanisms associated with the disease. However, most studies have focused on comparing COVID-19 patients to healthy controls, while fewer have elucidated the specific host factors distinguishing COVID-19 from other infections. To discover genes specifically related to COVID-19, we reanalyzed transcriptome data from nine independent cohort studies, covering multiple infections, including COVID-19, influenza, seasonal coronaviruses, and bacterial pneumonia. The identified COVID-19-specific signature consisted of 149 genes, involving many signals previously associated with the disease, such as induction of a strong immunoglobulin response and hemostasis, as well as dysregulation of cell cycle-related processes. Additionally, potential new gene candidates related to COVID-19 were discovered. To facilitate exploration of the signature with respect to disease severity, disease progression, and different cell types, we also offer an online tool for easy visualization of the selected genes across multiple datasets at both bulk and single-cell levels.
Collapse
Affiliation(s)
- Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kalle T. Rytkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anu Kukkonen-Macchi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Kolosova EA, Shaprova ON, Shanshin DV, Nesmeyanova VS, Merkuleva IA, Belenkaya SV, Isaeva AA, Nikitin AO, Volosnikova EA, Nikulina YA, Nikonorova MA, Shcherbakov DN, Elchaninova SA. Antibodies to the Spike Protein Receptor-Binding Domain of SARS-CoV-2 at 4-13 Months after COVID-19. J Clin Med 2022; 11:4053. [PMID: 35887818 PMCID: PMC9322357 DOI: 10.3390/jcm11144053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Identification of factors behind the level and duration of persistence of the SARS-CoV-2 antibodies in the blood is assumed to set the direction for studying humoral immunity mechanisms against COVID-19, optimizing the strategy for vaccine use, antibody-based drugs, and epidemiological control of COVID-19. Objective: This study aimed to study the relationship between clinical and demographic characteristics and the level of IgG antibodies to the RBD of SARS-CoV-2 spike protein after COVID-19 in the long term. Residents of the Altai Region of Western Siberia of Russia, Caucasians, aged from 27 to 93 years (median 53.0 years), who recovered from COVID-19 between May 2020 and February 2021 (n = 44) took part in this prospective observational study. The titer of IgG antibodies to the RBD of SARS-CoV-2 spike protein was measured repeatedly in the blood at 4-13 months from the beginning of the clinical manifestation of COVID-19 via the method of enzyme-linked immunosorbent assay. The antibody titer positively correlated with age (p = 0.013) and COVID-19 pneumonia (p = 0.002) at 20-40 and 20-24 weeks from the onset of COVID-19 symptoms, respectively. Age was positively associated with antibody titer regardless of history of COVID-19 pneumonia (beta regression coefficient p = 0.009). The antibody titer decreased in 15 (34.1%) patients, increased in 10 (22.7%) patients, and did not change in 19 (43.2%) patients from the baseline to 48-49 weeks from the onset of COVID-19 symptoms, with seropositivity persisting in all patients. Age and COVID-19 pneumonia are possibly associated with higher IgG antibodies to the spike protein RBD of SARS-CoV-2 following COVID-19 in the long term. Divergent trends of anti-RBD IgG levels in adults illustrate inter-individual differences at 4-13 months from the onset of COVID-19 symptoms.
Collapse
Affiliation(s)
- Evgeniia A. Kolosova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia
| | - Olga N. Shaprova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Svetlana V. Belenkaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Artem O. Nikitin
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
| | - Yuliya A. Nikulina
- Department of Infectious Diseases, Altai State Medical University, 656038 Barnaul, Russia; (Y.A.N.); (M.A.N.)
| | - Marina A. Nikonorova
- Department of Infectious Diseases, Altai State Medical University, 656038 Barnaul, Russia; (Y.A.N.); (M.A.N.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (O.N.S.); (D.V.S.); (V.S.N.); (I.A.M.); (S.V.B.); (A.A.I.); (A.O.N.); (E.A.V.); (D.N.S.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia
| | - Svetlana A. Elchaninova
- Department of Biochemistry and Clinical Laboratory Diagnostics, Altai State Medical University, 656038 Barnaul, Russia;
| |
Collapse
|
29
|
Costa BTD, Araújo GRL, da Silva Júnior RT, Santos LKDS, Lima de Souza Gonçalves V, Lima DBA, Cuzzuol BR, Santos Apolonio J, de Carvalho LS, Marques HS, Silva CS, Barcelos IDS, Oliveira MV, Freire de Melo F. Effects of nutrients on immunomodulation in patients with severe COVID-19: Current knowledge. World J Crit Care Med 2022; 11:201-218. [PMID: 36051942 PMCID: PMC9305681 DOI: 10.5492/wjccm.v11.i4.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that critically ill patients with coronavirus disease 2019 (COVID-19) show significant immune system dysregulation. Due to that, some nutrients that influence immunomodulation have been suggested as a form of treatment against the infection. This review collected the information on the impact of vitamins on the prognosis of COVID-19, with the intention of facilitating treatment and prevention of the disease risk status in patients. The collected information was obtained using the PubMed electronic database by searching for articles that relate COVID-19 and the mechanisms/effects of the nutrients: Proteins, glucose, lipids, vitamin B12, vitamin D, calcium, iron, copper, zinc, and magnesium, including prospective, retrospective, and support articles. The findings reveal an optimal response related mainly to omega-3, eicosapentaenoic acid, docosahexaenoic acid, calcium, and iron that might represent benefits in the treatment of critically ill patients. However, nutrient supplementation should be done with caution due to the limited availability of randomized controlled studies.
Collapse
Affiliation(s)
- Bruna Teixeira da Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Glauber Rocha Lima Araújo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Daniel Bastos Alves Lima
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Camilo Santana Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Isadora de Souza Barcelos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
30
|
Fovet CM, Pimienta C, Galhaut M, Relouzat F, Nunez N, Cavarelli M, Sconosciuti Q, Dhooge N, Marzinotto I, Lampasona V, Tolazzi M, Scarlatti G, Ho Tsong Fang R, Naninck T, Dereuddre-Bosquet N, Van Wassenhove J, Gallouët AS, Maisonnasse P, Le Grand R, Menu E, Seddiki N. A Case Study to Dissect Immunity to SARS-CoV-2 in a Neonate Nonhuman Primate Model. Front Immunol 2022; 13:855230. [PMID: 35603150 PMCID: PMC9114777 DOI: 10.3389/fimmu.2022.855230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Most children are less severely affected by coronavirus-induced disease 2019 (COVID-19) than adults, and thus more difficult to study progressively. Here, we provide a neonatal nonhuman primate (NHP) deep analysis of early immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in blood and mucosal tissues. In addition, we provide a comparison with SARS-CoV-2-infected adult NHP. Infection of the neonate resulted in a mild disease compared with adult NHPs that develop, in most cases, moderate lung lesions. In concomitance with the viral RNA load increase, we observed the development of an early innate response in the blood, as demonstrated by RNA sequencing, flow cytometry, and cytokine longitudinal data analyses. This response included the presence of an antiviral type-I IFN gene signature, a persistent and lasting NKT cell population, a balanced peripheral and mucosal IFN-γ/IL-10 cytokine response, and an increase in B cells that was accompanied with anti-SARS-CoV-2 antibody response. Viral kinetics and immune responses coincided with changes in the microbiota profile composition in the pharyngeal and rectal mucosae. In the mother, viral RNA loads were close to the quantification limit, despite the very close contact with SARS-CoV-2-exposed neonate. This pilot study demonstrates that neonatal NHPs are a relevant model for pediatric SARS-CoV-2 infection, permitting insights into the early steps of anti-SARS-CoV-2 immune responses in infants.
Collapse
Affiliation(s)
- Claire-Maëlle Fovet
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Camille Pimienta
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Mathilde Galhaut
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Francis Relouzat
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | | | - Mariangela Cavarelli
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Quentin Sconosciuti
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nina Dhooge
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raphaël Ho Tsong Fang
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Thibaut Naninck
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Jérôme Van Wassenhove
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Pauline Maisonnasse
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Elisabeth Menu
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France.,MISTIC Group, Department of Virology, Institut Pasteur, Paris, France
| | - Nabila Seddiki
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| |
Collapse
|
31
|
Štěpánek L, Janošíková M, Štěpánek L, Nakládalová M, Boriková A. The kinetics and predictors of anti-SARS-CoV-2 antibodies up to eight months after symptomatic COVID-19: a Czech cross-sectional study. J Med Virol 2022; 94:3731-3738. [PMID: 35419860 PMCID: PMC9088611 DOI: 10.1002/jmv.27784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022]
Abstract
The presence of neutralizing SARS‐CoV‐2‐specific antibodies indicates protection against (re)infection, however, the knowledge of their long‐term kinetics is limited. This study analyzed the presence of COVID‐19‐induced antibodies in unvaccinated healthcare workers (HCWs) over the period of 1–8 months post symptom onset (SO) and explored the determinants of persisting immunoglobulin (Ig) seropositivity. Six hundred sixty‐two HCWs were interviewed for anamnestic data and tested for IgG targeting the spike protein (S1 and S2) and IgM targeting the receptor‐binding domain. A Cox regression model was used to explore potential predictors of seropositivity with respect to the time lapse between SO and serology testing. 82.9% and 44.7% of HCWs demonstrated IgG and IgM seropositivity, respectively, with a mean interval of 83 days between SARS‐CoV‐2 detection and serology testing. On average, HCWs reported seven symptoms in the acute phase lasting 20 days. IgG seropositivity rates among HCWs decreased gradually to 80%, 50%, and 35% at 3, 6, and 8 months after SO, while IgM seropositivity fell rapidly to 60%, 15%, and 0% over the same time intervals. The number of symptoms was the only predictor of persisting IgG seropositivity (odds ratio [OR] 1.096, 95% confidence interval [CI] 1.003–1.199, p = 0.043) and symptom duration a predictor of IgM seropositivity (OR 1.011, 95% CI 1.004–1.017, p = 0.002). Infection‐induced anti‐SARS‐CoV‐2 IgG rates drop to a third in seropositive participants over the course of 8 months. Symptom count and duration in the acute phase of COVID‐19 are both relevant to the subsequent kinetics of antibody responses.
60% and 35% of subjects maintain IgG seropositivity 6‐ and 8‐month post COVID‐19. Characteristics of the acute phase of COVID‐19 are relevant for antibody responses. The number of symptoms of acute COVID‐19 predicts persisting IgG seropositivity. Symptom duration predicts persisting IgM seropositivity. Anamnestic data may serve as simple predictors of seropositivity post COVID‐19.
Collapse
Affiliation(s)
- Ladislav Štěpánek
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 185/6, 779 00, Olomouc, Czech Republic
| | - Magdaléna Janošíková
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 185/6, 779 00, Olomouc, Czech Republic
| | - Lubomír Štěpánek
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Praha 2, Czech Republic
| | - Marie Nakládalová
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 185/6, 779 00, Olomouc, Czech Republic
| | - Alena Boriková
- Department of Occupational Medicine, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 185/6, 779 00, Olomouc, Czech Republic
| |
Collapse
|
32
|
Best JR, Wang M, Lee T, Russell JA, DeMarco ML. Early increases in anti-SARS-CoV-2 antibody isotypes associated with organ dysfunction and mortality in patients hospitalized with COVID-19. Intensive Care Med 2022; 48:616-618. [PMID: 35364729 PMCID: PMC8975731 DOI: 10.1007/s00134-022-06662-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Affiliation(s)
- John R Best
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.,Gerontology Research Centre, Simon Fraser University, Burnaby, Canada
| | - Meng Wang
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Terry Lee
- Centre for Health Evaluation and Outcome Science, St. Paul's Hospital, Vancouver, Canada
| | - James A Russell
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada.,Division of Critical Care Medicine, St. Paul's Hospital, Vancouver, Canada
| | - Mari L DeMarco
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada. .,Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada. .,St Paul's Hospital, 1081 Burrard Street, Vancouver, V6Z 1Y6, Canada.
| | | |
Collapse
|
33
|
Dispinseri S, Marzinotto I, Brigatti C, Pirillo MF, Tolazzi M, Bazzigaluppi E, Canitano A, Borghi M, Gallinaro A, Caccia R, Vercesi R, McKay PF, Ciceri F, Piemonti L, Negri D, Cinque P, Cara A, Scarlatti G, Lampasona V. Seasonal Betacoronavirus Antibodies' Expansion Post-BNT161b2 Vaccination Associates with Reduced SARS-CoV-2 VoC Neutralization. J Clin Immunol 2022; 42:448-458. [PMID: 35000058 PMCID: PMC8742681 DOI: 10.1007/s10875-021-01190-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/28/2021] [Indexed: 01/21/2023]
Abstract
SARS-CoV-2 vaccination is known to induce antibodies that recognize also variants of concerns (VoCs) of the virus. However, epidemiological and laboratory evidences indicate that these antibodies have a reduced neutralization ability against VoCs. We studied binding and neutralizing antibodies against the Spike protein domains and subunits of the Wuhan-Hu-1 virus and its alpha, beta, delta VoCs and of seasonal betacoronaviruses (HKU1 and OC43) in a cohort of 31 health care workers prospectively followed post-vaccination with BNT162b2-Comirnaty. The study of sequential samples collected up to 64 days post-vaccination showed that serological assays measuring IgG against Wuhan-Hu-1 antigens were a poor proxy for VoC neutralization. In addition, in subjects who had asymptomatic or mild COVID-19 prior to vaccination, the loss of nAbs following disease could be rapid and accompanied by post-vaccination antibody levels similar to those of naïve vaccinees. Interestingly, in health care workers naïve for SARS-CoV-2 infection, vaccination induced a rapid and transient reactivation of pre-existing seasonal coronaviruses IgG responses that was associated with a subsequent reduced ability to neutralize alpha and beta VoCs.
Collapse
Affiliation(s)
- Stefania Dispinseri
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Cristina Brigatti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Maria Franca Pirillo
- National Center for Global Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Elena Bazzigaluppi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Alessandra Gallinaro
- National Center for Global Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Roberta Caccia
- Unit of Infectious Diseases, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Riccardo Vercesi
- Unit of Infectious Diseases, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Paul F McKay
- Department of Infectious Disease, Imperial College, London, UK
| | - Fabio Ciceri
- School of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- School of Medicine and Surgery, Università Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Paola Cinque
- Unit of Infectious Diseases, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore Di Sanità, 00161, Rome, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy.
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132, Milan, Italy.
| |
Collapse
|
34
|
Park U, Cho NH. Protective and pathogenic role of humoral responses in COVID-19. J Microbiol 2022; 60:268-275. [PMID: 35235178 PMCID: PMC8890013 DOI: 10.1007/s12275-022-2037-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022]
Abstract
Since the advent of SARS-CoV-2 in Dec. 2019, the global endeavor to identify the pathogenic mechanism of COVID-19 has been ongoing. Although humoral immunity including neutralizing activity play an important role in protection from the viral pathogen, dysregulated antibody responses may be associated with the pathogenic progression of COVID-19, especially in high-risk individuals. In addition, SARS-CoV-2 spike-specific antibodies acquired by prior infection or vaccination act as immune pressure, driving continuous population turnover by selecting for antibody-escaping mutations. Here, we review accumulating knowledge on the potential role of humoral immune responses in COVID-19, primarily focusing on their beneficial and pathogenic properties. Understanding the multifaceted regulatory mechanisms of humoral responses during SARS-CoV-2 infection can help us to develop more effective therapeutics, as well as protective measures against the ongoing pandemic.
Collapse
Affiliation(s)
- Uni Park
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
- Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
35
|
Laurenzi A, Caretto A, Molinari C, Mercalli A, Melzi R, Nano R, Tresoldi C, Rovere Querini P, Ciceri F, Lampasona V, Bosi E, Scavini M, Piemonti L. No Evidence of Long-Term Disruption of Glycometabolic Control After SARS-CoV-2 Infection. J Clin Endocrinol Metab 2022; 107:e1009-e1019. [PMID: 34718627 PMCID: PMC8691144 DOI: 10.1210/clinem/dgab792] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To assess whether dysglycemia diagnosed during severe acute respiratory syndrome coronavirus 2 pneumonia may become a potential public health problem after resolution of the infection. In an adult cohort with suspected coronavirus disease 2019 (COVID-19) pneumonia, we integrated glucose data upon hospital admission with fasting blood glucose (FBG) in the year prior to COVID-19 and during postdischarge follow-up. METHODS From February 25 to May 15, 2020, 660 adults with suspected COVID-19 pneumonia were admitted to the San Raffaele Hospital (Milan, Italy). Through structured interviews/ medical record reviews, we collected demographics, clinical features, and laboratory tests upon admission and additional data during hospitalization or after discharge and in the previous year. Upon admission, we classified participants according to American Diabetes Association criteria as having (1) preexisting diabetes, (2) newly diagnosed diabetes, (3) hyperglycemia not in the diabetes range, or (4) normoglycemia. FBG prior to admission and during follow-up were classified as normal or impaired fasting glucose and fasting glucose in the diabetes range. RESULTS In patients with confirmed COVID (n = 589), the proportion with preexisting or newly diagnosed diabetes, hyperglycemia not in the diabetes range and normoglycemia was 19.6%, 6.7%, 43.7%, and 30.0%, respectively. Patients with dysglycemia associated to COVID-19 had increased markers of inflammation and organs' injury and poorer clinical outcome compared to those with normoglycemia. After the infection resolved, the prevalence of dysglycemia reverted to preadmission frequency. CONCLUSIONS COVID-19-associated dysglycemia is unlikely to become a lasting public health problem. Alarmist claims on the diabetes risk after COVID-19 pneumonia should be interpreted with caution.
Collapse
Affiliation(s)
- Andrea Laurenzi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Amelia Caretto
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Molinari
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Mercalli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffaella Melzi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rita Nano
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cristina Tresoldi
- Molecular Hematology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Rovere Querini
- Unit of Internal Medicine and Endocrinology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Università Vita-Salute San Raffaele, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Marina Scavini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
- Correspondence: Lorenzo Piemonti, MD, Diabetes Research Institute, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
36
|
Cicalese MP, Ferrua F, Barzaghi F, Cerri F, Moro M, Aiuti A, Silvani P. Third cranial nerve palsy in an 88-year-old man after SARS-CoV-2 mRNA vaccination: change of injection site and type of vaccine resulted in an uneventful second dose with humoral immune response. BMJ Case Rep 2022; 15:15/2/e246485. [PMID: 35135792 PMCID: PMC8830097 DOI: 10.1136/bcr-2021-246485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vaccines for SARS-CoV-2 currently authorised by the European Medicine Agency are effective, safe and well tolerated in practice. Awareness of rare potential vaccine-related adverse effects (AEs) is important to improve their recognition, management and reporting. An 88-year-old man attended the emergency department with incomplete palsy of the right third cranial nerve 3 days after the first administration of Moderna mRNA-1273 SARS-CoV-2 vaccine. Imaging ruled out a vascular accident and a vaccine AE was hypothesised. Two weeks of oral steroids led to the patient's recovery, but without evidence of humoral immune response to vaccine. Thus, full immunisation with a dose of Pfizer mRNA-BNT162b2 SARS-CoV-2 vaccine in a different site was attempted. This was uneventful and followed by a robust antibody response. Empirical change of site and vaccine brand may represent a tailored option to obtain full immune protection in selected patients, after vaccine AEs.
Collapse
Affiliation(s)
- Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Federica Cerri
- Division of Neuroscience and Department of Neurology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Matteo Moro
- Infection Control Committee, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital, Milan, Italy .,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Silvani
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
37
|
Amin S, Aktar S, Rahman MM, Chowdhury MMH. NLRP3 inflammasome activation in COVID-19: an interlink between risk factors and disease severity. Microbes Infect 2022; 24:104913. [PMID: 34838941 PMCID: PMC8613976 DOI: 10.1016/j.micinf.2021.104913] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
NLRP3 inflammasome is a critical immune component that plays a crucial role in mounting innate immune responses. The deleterious effects of inflammasome activation have been correlated with the COVID-19 disease severity. In the presence of several underlying disorders, the immune components of our bodies are dysregulated, creating conditions that could adversely affect us other than providing a required level of protection. In this review, we focused on the occurrence of NLRP3 inflammasome activation in response to SARS-COV-2 infection, dysregulation of NLRP3 activation events in the presence of several comorbidities, the contribution of activated NLRP3 inflammasome to the severity of COVID-19, and available therapeutics for the treatment of such NLRP3 inflammasome related diseases based on current knowledge. The primed state of immunity in individuals with comorbidities (risk factors) could accelerate many deaths and severe COVID-19 cases via activation of NLRP3 inflammasome and the release of downstream inflammatory molecules. Therefore, a detailed understanding of the host-pathogen interaction is needed to clarify the pathophysiology and select a potential therapeutic approach.
Collapse
Affiliation(s)
- Saiful Amin
- Chittagong Medical University, Chattogram, Bangladesh
| | - Salma Aktar
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh.
| | - Md Mijanur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | | |
Collapse
|
38
|
Maciola AK, La Raja M, Pacenti M, Salata C, De Silvestro G, Rosato A, Pasqual G. Neutralizing Antibody Responses to SARS-CoV-2 in Recovered COVID-19 Patients Are Variable and Correlate With Disease Severity and Receptor-Binding Domain Recognition. Front Immunol 2022; 13:830710. [PMID: 35173741 PMCID: PMC8841804 DOI: 10.3389/fimmu.2022.830710] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) caused outbreaks of the pandemic starting from the end of 2019 and, despite ongoing vaccination campaigns, still influences health services and economic factors globally. Understanding immune protection elicited by natural infection is of critical importance for public health policy. This knowledge is instrumental to set scientific parameters for the release of “immunity pass” adopted with different criteria across Europe and other countries and to provide guidelines for the vaccination of COVID-19 recovered patients. Here, we characterized the humoral response triggered by SARS-CoV-2 natural infection by analyzing serum samples from 94 COVID-19 convalescent patients with three serological platforms, including live virus neutralization, pseudovirus neutralization, and ELISA. We found that neutralization potency varies greatly across individuals, is significantly higher in severe patients compared with mild ones, and correlates with both Spike and receptor-binding domain (RBD) recognition. We also show that RBD-targeting antibodies consistently represent only a modest proportion of Spike-specific IgG, suggesting broad specificity of the humoral response in naturally infected individuals. Collectively, this study contributes to the characterization of the humoral immune response in the context of natural SARS-CoV-2 infection, highlighting its variability in terms of neutralization activity, with implications for immune protection in COVID-19 recovered patients.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Maciola
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Massimo La Raja
- Department of Transfusion Medicine, Padua University Hospital, Padua, Italy
| | - Monia Pacenti
- Institute of Microbiology and Virology, Padua University Hospital, Padua, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Antonio Rosato
- Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- *Correspondence: Giulia Pasqual, ; Antonio Rosato,
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- *Correspondence: Giulia Pasqual, ; Antonio Rosato,
| |
Collapse
|
39
|
Lawrenz J, Xie Q, Zech F, Weil T, Seidel A, Krnavek D, van der Hoek L, Münch J, Müller JA, Kirchhoff F. SARS-CoV-2 Vaccination boosts Neutralizing Activity against Seasonal Human Coronaviruses. Clin Infect Dis 2022; 75:e653-e661. [PMID: 35079775 PMCID: PMC8807272 DOI: 10.1093/cid/ciac057] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Most of the millions of people that are vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), have previously been infected by related circulating human coronaviruses (hCoVs) causing common colds and will experience further encounters with these viruses in the future. Whether COVID-19 vaccinations impact neutralization of seasonal coronaviruses is largely unknown. Methods We analyzed the capacity of sera derived from 24 individuals before and after heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination to neutralize genuine OC43, NL63, and 229E hCoVs, as well as viral pseudoparticles carrying the SARS-CoV-1, SARS-CoV-2, Middle East Respiratory Syndrome (MERS)-CoV, and hCoV-OC43, hCoV-NL63, and hCoV-229E spike proteins. Genuine hCoVs or spike containing pseudovirions were incubated with different concentrations of sera and neutralization efficiencies were determined by measuring viral RNA yields, intracellular viral nucleocapsid expression, or reporter gene expression in Huh-7 cells. Results All individuals showed strong preexisting immunity against hCoV-OC43. Neutralization of hCoV-NL63 was more variable and all sera showed only modest inhibitory activity against genuine hCoV-229E. SARS-CoV-2 vaccination resulted in efficient cross-neutralization of SARS-CoV-1 but not of MERS-CoV. On average, vaccination significantly increased the neutralizing activity against genuine hCoV-OC43, hCoV-NL63, and hCoV-229E. Conclusions Heterologous COVID-19 vaccination may confer some cross-protection against endemic seasonal coronaviruses.
Collapse
Affiliation(s)
- Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Qinya Xie
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniela Krnavek
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
40
|
Qiang X, Zhu S, Li J, Chen W, Yang H, Wang P, Tracey KJ, Wang H. Monoclonal antibodies capable of binding SARS-CoV-2 spike protein receptor-binding motif specifically prevent GM-CSF induction. J Leukoc Biol 2022; 111:261-267. [PMID: 33759207 PMCID: PMC8251270 DOI: 10.1002/jlb.3covcra0920-628rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
A severe acute respiratory syndrome (SARS)-like coronavirus 2 (SARS-CoV-2) has recently caused a pandemic COVID-19 disease that infected approximately 94 million and killed more than 2,000,000 people worldwide. Like the SARS-CoV, SARS-CoV-2 also employs a receptor-binding motif (RBM) of its envelope spike protein for binding the host angiotensin-converting enzyme 2 (ACE2) to gain viral entry. Currently, extensive efforts are being made to produce vaccines against a surface fragment of a SARS-CoV-2, such as the spike protein, in order to boost protective antibodies that can inhibit virus-ACE2 interaction to prevent viral entry. It was previously unknown how spike protein-targeting antibodies would affect innate inflammatory responses to SARS-CoV-2 infections. Here we generated a highly purified recombinant protein corresponding to the RBM of SARS-CoV-2, and used it to screen for cross-reactive monoclonal antibodies (mAbs). We found two RBM-binding mAbs that competitively inhibited its interaction with human ACE2, and specifically blocked the RBM-induced GM-CSF secretion in both human peripheral blood mononuclear cells and murine macrophage cultures. Our findings have suggested a possible strategy to prevent SARS-CoV-2-elicited "cytokine storm," and revealed a potentially anti-inflammatory and protective mechanism for SARS-CoV-2 spike-based vaccines.
Collapse
Affiliation(s)
- Xiaoling Qiang
- The Feinstein Institutes for Medical ResearchNorthwell HealthManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| | - Shu Zhu
- The Feinstein Institutes for Medical ResearchNorthwell HealthManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| | - Jianhua Li
- The Feinstein Institutes for Medical ResearchNorthwell HealthManhassetNew YorkUSA
| | - Weiqiang Chen
- The Feinstein Institutes for Medical ResearchNorthwell HealthManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| | - Huan Yang
- The Feinstein Institutes for Medical ResearchNorthwell HealthManhassetNew YorkUSA
| | - Ping Wang
- The Feinstein Institutes for Medical ResearchNorthwell HealthManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical ResearchNorthwell HealthManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| | - Haichao Wang
- The Feinstein Institutes for Medical ResearchNorthwell HealthManhassetNew YorkUSA
- Donald and Barbara Zucker School of Medicine at Hofstra/NorthwellHempsteadNew YorkUSA
| |
Collapse
|
41
|
Caldara R, Maffi P, Costa S, Bazzigaluppi E, Brigatti C, Lampasona V, Magistretti P, Manenti F, Marzinotto I, Pellegrini S, Scavini M, Secchi A, Piemonti L. COVID-19 in Solid Organ Transplant Recipient: Exploring Cumulative Incidence, Seroprevalence and Risk Factors for Disease Severity. BIOLOGY 2021; 10:1349. [PMID: 34943264 PMCID: PMC8698537 DOI: 10.3390/biology10121349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Solid organ transplant (SOT) recipients may be at increased risk for severe disease and mortality from COVID-19 because of immunosuppression and prolonged end-stage organ disease. As a transplant center serving a diverse patient population, we report the cumulative incidence and outcomes of SARS-CoV-2 infection in our cohort of SOT recipients. METHODS We prospectively included in this observational study SOT recipients with a functioning kidney (n = 201), pancreas ± kidney (n = 66) or islet transplant (n = 24), attending outpatient regular follow-up at the San Raffaele Hospital from February 2020 to April 2021. Antibodies to SARS-CoV-2 were tested in all patients by a luciferase immunoprecipitation system assay. RESULTS Of the 291 SOT recipients, 30 (10.3%) tested positive for SARS-CoV-2 during the study period and prevalence was not different among different transplants. The SARS-CoV-2 antibody frequency was around 2.6-fold higher than the incidence of cases who tested positive for SARS-CoV-2 RT-PCR. As for the WHO COVID-19 severity classification, 19 (63.3%) SOT recipients were mild, nine (30%) were moderate, and two were critical and died yielding a crude mortality rate in our patient population of 6.7%. Kidney transplant (OR 12.9 (1.1-150) p = 0.041) was associated with an increased risk for moderate/critical disease, while statin therapy (OR 0.116 (0.015-0.926) p = 0.042) and pancreas/islet transplant (OR 0.077 (0.007-0.906) p = 0.041) were protective. CONCLUSIONS The incidence of SARS-CoV-2 infection in SOT recipients may be higher than previously described. Due to the relative high crude mortality, symptomatic SOT recipients must be considered at high risk in case of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rossana Caldara
- Clinical Transplant Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.C.); (P.M.); (A.S.)
| | - Paola Maffi
- Clinical Transplant Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.C.); (P.M.); (A.S.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Sabrina Costa
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| | - Elena Bazzigaluppi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| | - Cristina Brigatti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| | - Paola Magistretti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| | - Fabio Manenti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| | - Marina Scavini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| | - Antonio Secchi
- Clinical Transplant Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (R.C.); (P.M.); (A.S.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Lorenzo Piemonti
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (S.C.); (E.B.); (C.B.); (V.L.); (P.M.); (F.M.); (I.M.); (S.P.); (M.S.)
| |
Collapse
|
42
|
Abstract
The development of effective antiviral therapy for COVID-19 is critical for those awaiting vaccination, as well as for those who do not respond robustly to vaccination. This review summarizes 1 year of progress in the race to develop antiviral therapies for COVID-19, including research spanning preclinical and clinical drug development efforts, with an emphasis on antiviral compounds that are in clinical development or that are high priorities for clinical development. The review is divided into sections on compounds that inhibit SARS-CoV-2 enzymes, including its polymerase and proteases; compounds that inhibit virus entry, including monoclonal antibodies; interferons; and repurposed drugs that inhibit host processes required for SARS-CoV-2 replication. The review concludes with a summary of the lessons to be learned from SARS-CoV-2 drug development efforts and the challenges to continued progress.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
43
|
Jiang W, Shi L, Cai L, Wang X, Li J, Li H, Liang J, Gu Q, Ji G, Li J, Liu L, Sun M. A two-adjuvant multiantigen candidate vaccine induces superior protective immune responses against SARS-CoV-2 challenge. Cell Rep 2021; 37:110112. [PMID: 34863353 PMCID: PMC8610932 DOI: 10.1016/j.celrep.2021.110112] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/06/2021] [Accepted: 11/18/2021] [Indexed: 01/22/2023] Open
Abstract
An ideal vaccine against SARS-CoV-2 is expected to elicit broad immunity to prevent viral infection and disease, with efficient viral clearance in the upper respiratory tract (URT). Here, the N protein and prefusion-full S protein (SFLmut) are combined with flagellin (KF) and cyclic GMP-AMP (cGAMP) to generate a candidate vaccine, and this vaccine elicits stronger systemic and mucosal humoral immunity than vaccines containing other forms of the S protein. Furthermore, the candidate vaccine administered via intranasal route can enhance local immune responses in the respiratory tract. Importantly, human ACE2 transgenic mice given the candidate vaccine are protected against lethal SARS-CoV-2 challenge, with superior protection in the URT compared with that in mice immunized with an inactivated vaccine. In summary, the developed vaccine can elicit a multifaceted immune response and induce robust viral clearance in the URT, which makes it a potential vaccine for preventing disease and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Wenwen Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Li Shi
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Lukui Cai
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Xiaoyu Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Jingyan Li
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Heng Li
- Laboratory of Respiratory Infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Jiangli Liang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Qin Gu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Guang Ji
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Jing Li
- Laboratory of Respiratory Infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Longding Liu
- Laboratory of Respiratory Infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China.
| | - Mingbo Sun
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China; Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
44
|
SARS-CoV-2 and Variant Diagnostic Testing Approaches in the United States. Viruses 2021; 13:v13122492. [PMID: 34960762 PMCID: PMC8703625 DOI: 10.3390/v13122492] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose of Review Given the rapid development of diagnostic approaches to test for and diagnose infection with SARS-CoV-2 and its associated variants including Omicron (B.1.1.529), many options are available to diagnose infection. Multiple established diagnostic companies are now providing testing platforms whereas initially, testing was being performed with simple PCR-based tests using standard laboratory reagents. Recent Findings Additional testing platforms continue to be developed, including those to detect specific variants, but challenges with testing, including obtaining testing reagents and other related supplies, are frequently encountered. With time, the testing supply chain has improved, and more established companies are providing materials to support these testing efforts. In the United States (U.S.), the need for rapid assay development and subsequent approval through the attainment of emergency use authorization (EUA) has superseded the traditional arduous diagnostic testing approval workflow mandated by the FDA. Through these efforts, the U.S. has been able to continue to significantly increase its testing capabilities to address this pandemic; however, challenges still remain due to the diversity of the performance characteristics of tests being utilized and newly discovered viral variants. Summary This review provides an overview of the current diagnostic testing landscape, with pertinent information related to SARS-CoV-2 virology, variants and antibody responses that are available to diagnose infection in the U.S.
Collapse
|
45
|
Gilboa T, Cohen L, Cheng C, Lazarovits R, Uwamanzu‐Nna A, Han I, Griswold K, Barry N, Thompson DB, Kohman RE, Woolley AE, Karlson EW, Walt DR. A SARS‐CoV‐2 Neutralization Assay Using Single Molecule Arrays. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tal Gilboa
- Harvard Medical School Boston MA 02115 USA
- Brigham and Women's Hospital Department of Pathology Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Limor Cohen
- Harvard Medical School Boston MA 02115 USA
- Brigham and Women's Hospital Department of Pathology Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Chi‐An Cheng
- Harvard Medical School Boston MA 02115 USA
- Brigham and Women's Hospital Department of Pathology Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Roey Lazarovits
- Harvard Medical School Boston MA 02115 USA
- Brigham and Women's Hospital Department of Pathology Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Augusta Uwamanzu‐Nna
- Harvard Medical School Boston MA 02115 USA
- Brigham and Women's Hospital Department of Pathology Boston MA 02115 USA
| | - Isaac Han
- Harvard Medical School Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Kettner Griswold
- Harvard Medical School Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Nick Barry
- Harvard Medical School Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - David B. Thompson
- Harvard Medical School Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Richie E. Kohman
- Harvard Medical School Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Ann E. Woolley
- Harvard Medical School Boston MA 02115 USA
- Brigham and Women's Hospital Department of Medicine Boston MA 02115 USA
| | - Elizabeth W. Karlson
- Harvard Medical School Boston MA 02115 USA
- Brigham and Women's Hospital Department of Medicine Boston MA 02115 USA
| | - David R. Walt
- Harvard Medical School Boston MA 02115 USA
- Brigham and Women's Hospital Department of Pathology Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
46
|
Gilboa T, Cohen L, Cheng C, Lazarovits R, Uwamanzu‐Nna A, Han I, Griswold K, Barry N, Thompson DB, Kohman RE, Woolley AE, Karlson EW, Walt DR. A SARS-CoV-2 Neutralization Assay Using Single Molecule Arrays. Angew Chem Int Ed Engl 2021; 60:25966-25972. [PMID: 34534408 PMCID: PMC8653099 DOI: 10.1002/anie.202110702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 11/09/2022]
Abstract
Coronavirus disease 2019 (COVID-19) manifests with high clinical variability and warrants sensitive and specific assays to analyze immune responses in infected and vaccinated individuals. Using Single Molecule Arrays (Simoa), we developed an assay to assess antibody neutralization with high sensitivity and multiplexing capabilities based on antibody-mediated blockage of the ACE2-spike interaction. The assay does not require live viruses or cells and can be performed in a biosafety level 2 laboratory within two hours. We used this assay to assess neutralization and antibody levels in patients who died of COVID-19 and patients hospitalized for a short period of time and show that neutralization and antibody levels increase over time. We also adapted the assay for SARS-CoV-2 variants and measured neutralization capacity in pre-pandemic healthy, COVID-19 infected, and vaccinated individuals. This assay is highly adaptable for clinical applications, such as vaccine development and epidemiological studies.
Collapse
Affiliation(s)
- Tal Gilboa
- Harvard Medical SchoolBostonMA02115USA
- Brigham and Women's HospitalDepartment of PathologyBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Limor Cohen
- Harvard Medical SchoolBostonMA02115USA
- Brigham and Women's HospitalDepartment of PathologyBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Chi‐An Cheng
- Harvard Medical SchoolBostonMA02115USA
- Brigham and Women's HospitalDepartment of PathologyBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Roey Lazarovits
- Harvard Medical SchoolBostonMA02115USA
- Brigham and Women's HospitalDepartment of PathologyBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Augusta Uwamanzu‐Nna
- Harvard Medical SchoolBostonMA02115USA
- Brigham and Women's HospitalDepartment of PathologyBostonMA02115USA
| | - Isaac Han
- Harvard Medical SchoolBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Kettner Griswold
- Harvard Medical SchoolBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Nick Barry
- Harvard Medical SchoolBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - David B. Thompson
- Harvard Medical SchoolBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Richie E. Kohman
- Harvard Medical SchoolBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Ann E. Woolley
- Harvard Medical SchoolBostonMA02115USA
- Brigham and Women's HospitalDepartment of MedicineBostonMA02115USA
| | - Elizabeth W. Karlson
- Harvard Medical SchoolBostonMA02115USA
- Brigham and Women's HospitalDepartment of MedicineBostonMA02115USA
| | - David R. Walt
- Harvard Medical SchoolBostonMA02115USA
- Brigham and Women's HospitalDepartment of PathologyBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| |
Collapse
|
47
|
Cassone A, Cauda R. Multicomponent vaccines to fight SARS-CoV-2 variants of concern. Vaccine 2021; 39:6969-6971. [PMID: 34743927 PMCID: PMC8557988 DOI: 10.1016/j.vaccine.2021.10.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/06/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Antonio Cassone
- Polo d'innovazione della genomica, genetica e biologia, c/o Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy.
| | - Roberto Cauda
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
48
|
Persistence of SARS-CoV-2-Specific Antibodies for 13 Months after Infection. Viruses 2021; 13:v13112313. [PMID: 34835119 PMCID: PMC8622371 DOI: 10.3390/v13112313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dynamics of antibody responses were investigated after a SARS-CoV-2 outbreak in a private company during the first wave of the pandemic. METHODS Workers of a sewing company (Lithuania) with known SARS-CoV-2 RT-PCR result during the outbreak (April 2020) were invited to participate in the study. Virus-specific IgG and IgM were monitored 2, 6 and 13 months after the outbreak via rapid IgG/IgM serological test and SARS-CoV-2 S protein-specific IgG ELISA. RESULTS Six months after the outbreak, 95% (CI 86-99%) of 59 previously infected individuals had virus-specific antibodies irrespective of the severity of infection. One-third of seropositive individuals had virus-specific IgM along with IgG indicating that IgM may persist for 6 months. Serological testing 13 months after the outbreak included 47 recovered individuals that remained non-vaccinated despite a wide accessibility of COVID-19 vaccines. The seropositivity rate was 83% (CI 69-91%) excluding one case of confirmed asymptomatic reinfection in this group. Between months 6 and 13, IgG levels either declined or remained stable in 31 individual and increased in 7 individuals possibly indicating an exposure to SARS-CoV-2 during the second wave of the pandemic. CONCLUSIONS Detectable levels of SARS-CoV-2-specific antibodies persist up to 13 months after infection for the majority of the cases.
Collapse
|
49
|
Abstract
The SARS-CoV-2 infection spread rapidly throughout the world and appears to involve in both humoral and cell-mediated immunity. SARS-CoV-2 is attached to host cells via binding to the viral spike (S) proteins and its cellular receptors angiotensin-converting enzyme 2 (ACE2). Consequently, the S protein is primed with serine proteases TMPRSS2 and TMPRSS4, which facilitate the fusion of viral and cellular membranes result in the entry of viral RNA into the host cell. Vaccines are urgently required to combat the coronavirus disease 2019 (COVID-19) outbreak and aid in the recovery to pre-pandemic levels of normality. The long-term protective immunity is provided by the vaccine antigen (or pathogen)-specific immune effectors and the activation of immune memory cells that can be efficiently and rapidly reactivated upon pathogen exposure. Research efforts aimed towards the design and development of vaccines for SARS-CoV-2 are increasing. Numerous coronavirus disease 2019 (COVID-19) vaccines have passed late-stage clinical investigations with promising outcomes. This review focuses on the present state and future prospects of COVID-19 vaccines research and development, with a particular emphasis on immunological mechanisms of various COVID-19vaccines such as adenoviral vector-based vaccines, mRNA vaccines, and DNA vaccines that elicits immunological responses against SARS-CoV-2 infections in humans.
Collapse
|
50
|
Molinari C, Laurenzi A, Caretto A, Rovere-Querini P, Ciceri F, Lampasona V, Scavini M, Piemonti L. Dysglycemia after COVID-19 pneumonia: a six-month cohort study. Acta Diabetol 2021; 58:1481-1490. [PMID: 34089096 PMCID: PMC8177035 DOI: 10.1007/s00592-021-01751-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023]
Abstract
AIM The aim of this study was to understand whether the dysglycemia associated with SARS-CoV-2 infection persists or reverts when the viral infection resolves. METHODS We analyzed fasting blood glucose (FBG) after hospital discharge in a cohort of 621 adult cases with suspected COVID-19 pneumonia. RESULTS At admission, 18.8% of the patients in our cohort had pre-existing diabetes, 9.3% fasting glucose in the diabetes range without a prior diagnosis (DFG), 26% impaired fasting glucose (IFG), 44.9% normal fasting glucose (NFG), while 2% had no FBG available. FBG categories were similarly distributed in the 71 patients without confirmed COVID-19 pneumonia. During follow-up (median time 6 month) FBG was available for 321 out of the 453 (70.9%) surviving patients and showed a trend to a marginal increase [from 97 (87-116) to 100 (92-114) mg/dL; p = 0.071]. Transitions between FBG categories were analyzed in subjects without pre-existing diabetes (265 out of 321). We identified three groups: (i) patients who maintained or improved FBG during follow-up [Group A, n = 185; from 100 (86-109) to 94 (88-99) mg/dL; p < 0.001]; (ii) patients who moved from the NFG to IFG category [Group B, n = 66: from 89 (85-96) to 106 (102-113) mg/dl; p < 0.001]; (iii) patients who maintained or reached DFG during follow-up [Group C, n = 14: from 114 (94-138) to 134 (126-143) mg/dl; p = 0.035]. Male sex and ICU admission during the hospitalization were more prevalent in Group C compared to Group A or B. CONCLUSIONS Six months after the SARS-CoV-2 infection DFG was evident in only few patients who experienced severe COVID-19 pneumonia.
Collapse
Affiliation(s)
- Chiara Molinari
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Andrea Laurenzi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Amelia Caretto
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Patrizia Rovere-Querini
- Unit of Internal Medicine and Endocrinology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Fabio Ciceri
- Università Vita-Salute San Raffaele, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Marina Scavini
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|