1
|
Saugel B, Buhre W, Chew MS, Cholley B, Coburn M, Cohen B, De Hert S, Duranteau J, Fellahi JL, Flick M, Guarracino F, Joosten A, Jungwirth B, Kouz K, Longrois D, Buse GL, Meidert AS, Rex S, Romagnoli S, Romero CS, Sander M, Thomsen KK, Vos JJ, Zarbock A. Intra-operative haemodynamic monitoring and management of adults having noncardiac surgery: A statement from the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol 2025; 42:543-556. [PMID: 40308048 DOI: 10.1097/eja.0000000000002174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 05/02/2025]
Abstract
This article was developed by a diverse group of 25 international experts from the European Society of Anaesthesiology and Intensive Care (ESAIC), who formulated recommendations on intra-operative haemodynamic monitoring and management of adults having noncardiac surgery based on a review of the current evidence. We recommend basing intra-operative arterial pressure management on mean arterial pressure and keeping intra-operative mean arterial pressure above 60 mmHg. We further recommend identifying the underlying causes of intra-operative hypotension and addressing them appropriately. We suggest pragmatically treating bradycardia or tachycardia when it leads to profound hypotension or likely results in reduced cardiac output, oxygen delivery or organ perfusion. We suggest monitoring stroke volume or cardiac output in patients with high baseline risk for complications or in patients having high-risk surgery to assess the haemodynamic status and the haemodynamic response to therapeutic interventions. However, we recommend not routinely maximising stroke volume or cardiac output in patients having noncardiac surgery. Instead, we suggest defining stroke volume and cardiac output targets individually for each patient considering the clinical situation and clinical and metabolic signs of tissue perfusion and oxygenation. We recommend not giving fluids simply because a patient is fluid responsive but only if there are clinical or metabolic signs of hypovolaemia or tissue hypoperfusion. We suggest monitoring and optimising the depth of anaesthesia to titrate doses of anaesthetic drugs and reduce their side effects.
Collapse
Affiliation(s)
- Bernd Saugel
- From the Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (BS, MF, KK, KKT), the Outcomes Research Consortium, Houston, Texas, USA (BS, BCo, KK, KKT), the Department of Anesthesiology, Division of Vital Functions, University Medical Centre Utrecht, Utrecht, The Netherlands (WB), the Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital Huddinge, Huddinge, Sweden (MSC), the Department of Anesthesiology and Intensive Care Medicine, Hôpital européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris and Université Paris Cité, Paris, France (BCh), the Department of Anaesthesiology and Operative Intensive Care Medicine, University Hospital Bonn, Bonn, Germany (MC), the Division of Anesthesia, Intensive Care, and Pain, Tel-Aviv Medical Center, Tel-Aviv University, Tel-Aviv, Israel (BCo), the Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (SDH), the Department of Anesthesiology and Intensive Care, Paris-Saclay University, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France (JD), the Department of Cardiothoracic and Vascular Anaesthesia and Intensive Care, Louis Pradel University Hospital, Hospices Civils de Lyon, Bron, France (JLF), the Department of Cardiothoracic and Vascular Anaesthesia and Intensive Care, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy (FG), the Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, California, USA (AJ), the Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany (BJ), the Department of Anaesthesia and Intensive Care, Bichat-Claude Bernard and Louis Mourier Hospitals, Assistance Publique-Hôpitaux de Paris, Paris, France (DL), the Department of Anesthesiology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany (GLB), the Department of Anaesthesiology, University Hospital LMU Munich, Munich, Germany (ASM), the Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium (SRe), the Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium (SRe), the Department of Health Science, University of Florence, Florence, Italy (SRo), the Department of Anesthesia and Critical Care, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (SRo), the Department of Anaesthesiology and Critical Care, Hospital General Universitario de Valencia, Valencia, Spain (CSR), the Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Giessen, Justus-Liebig-University, Giessen, Germany (MS), the Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (JJV), the Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany (AZ)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Brunsch CL, Lahr BE, Kooi EMW. Cerebrovascular autoregulation and preterm brain injury: a systematic review and meta-analysis. Pediatr Res 2025:10.1038/s41390-025-04087-w. [PMID: 40316680 DOI: 10.1038/s41390-025-04087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Preterm neonates are vulnerable to impaired cerebrovascular autoregulation (CAR), with a risk of developing cerebral injury (intraventricular hemorrhage or periventricular leukomalacia). In this meta-analysis, we evaluate the association between the degree of CAR and cerebral injury in preterm neonates, using various CAR assessment techniques mainly based on near-infrared spectroscopy. METHODS We systematically searched PubMed and EMBASE between 01-05-2023 and 31-01-2024. We included original articles published between 2000-2023, reporting CAR and cerebral injury in preterm neonates. The study was registered in PROSPERO (ID: 427323). We assessed the standardized mean difference in degree of CAR in groups with and without cerebral injury, with a subgroup analysis of CAR measurement techniques. RESULTS Seventeen articles were included, encompassing 742 patients. The overall standardized mean difference of 0.59 (95%CI 0.30, 0.88) indicates more impaired CAR in neonates with cerebral injury. Time-domain analysis produced the least heterogeneous and most significant difference of 0.61 (95%CI 0.24, 0.98). Limitations include differences in measurement techniques and a lack of randomized controlled trials. CONCLUSION This meta-analysis showed an association between CAR and cerebral injury, highlighting the clinical relevance of CAR assessment in preterm neonates. Future randomized studies using standardized measurement techniques should assess the feasibility of CAR-guided hemodynamic management. IMPACT Cerebral injury and adverse neurological outcomes are prevalent in preterm neonates. Historically, immature cerebrovascular autoregulation was thought to be one of the main causes of cerebral injury in this patient population. This is the first study to systematically review and synthetize robust evidence on the relation between cerebrovascular autoregulation and preterm brain injury. This meta-analysis further adds to the existing literature by comparing different cerebrovascular autoregulation measurement techniques. The findings can help to standardize cerebrovascular autoregulation assessment and implement it in clinical practice using large, randomized trials.
Collapse
Affiliation(s)
- Celina L Brunsch
- Department of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands.
| | - Bineta E Lahr
- Department of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth M W Kooi
- Department of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Pezzato S, Govindan RB, Beqiri E, Smielewski P, Waberski A, Nuszkowski M, Licht DJ, du Plessis AJ, Munoz RA, Yerebakan C, Moscatelli A, d'Udekem Y. Intraoperative Assessment of Cerebral Autoregulation With Cerebral Oximetry Index in Neonates Undergoing Cardiac Surgery: A Pilot Study. J Cardiothorac Vasc Anesth 2025:S1053-0770(25)00327-1. [PMID: 40360297 DOI: 10.1053/j.jvca.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/07/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVE To investigate cerebral autoregulation impairment during neonatal cardiac surgery. DESIGN A retrospective observational study. SETTING Single-center, university teaching children's hospital. PARTICIPANTS Neonates undergoing surgery for critical congenital heart defects. INTERVENTIONS Calculation of the cerebral oximetry index (COx) and COx-derived parameters was performed by processing signals from intraoperative routine monitoring. MEASUREMENTS AND MAIN RESULTS High-resolution intraoperative data were retrieved from a cohort of 16 term neonates. COx was calculated as the linear correlation between mean arterial blood pressure and cerebral oximetry in a 5-minute moving time window. Averaged COx values were obtained before, during, and after cardiopulmonary bypass (CPB), and comparisons were made using the Kruskal-Wallis test. A linear mixed-effects model was used to examine the associations between COx and other intraoperative physiological variables. Intraoperative limits of autoregulation for a COx cut-off of 0.3 were identified by combining data from the entire cohort. The median COx was 0.02 (interquartile range [IQR], -0.08 to 0.13) pre-CPB, 0.34 (IQR, 0.18-0.43) during CPB, and 0.26 (IQR, 0.05-0.38) post-CPB. Intraoperative evolution of COx was linearly associated with changes in cerebral oximetry, pO2, and core temperature but not with mean arterial pressure and pCO2. For the entire cohort, the intraoperative lower and upper limits of autoregulation were 35 mmHg and 59 mmHg, respectively. CONCLUSIONS Cerebral autoregulation was impaired during CPB and remained altered after separation from bypass. Real-time monitoring of the COx may be useful for identifying autoregulation disturbances and providing a more individualized approach to CPB management.
Collapse
Affiliation(s)
- Stefano Pezzato
- Neonatal and Pediatric Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Division of Cardiac Surgery, Children's National Hospital, Washington, DC.
| | - Rathinaswamy B Govindan
- The Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC
| | - Erta Beqiri
- Brain Physics Laboratory Division of Neurosurgery Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Peter Smielewski
- Brain Physics Laboratory Division of Neurosurgery Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Andrew Waberski
- Division of Anesthesiology, Pain and Perioperative Medicine, Children's National Hospital, Washington, DC
| | - Mark Nuszkowski
- Division of Cardiac Surgery, Children's National Hospital, Washington, DC
| | - Daniel J Licht
- The Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC
| | - Adre J du Plessis
- The Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC
| | - Ricardo A Munoz
- Division of Cardiac Critical Care Medicine, Children's National Hospital, Washington, DC
| | - Can Yerebakan
- Division of Cardiac Surgery, Children's National Hospital, Washington, DC
| | - Andrea Moscatelli
- Neonatal and Pediatric Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Yves d'Udekem
- Division of Cardiac Surgery, Children's National Hospital, Washington, DC
| |
Collapse
|
4
|
Fakhari N, Aguet J, Howell A, Nguyen M, Mertens L, Crawford L, Venet M, Haller C, Barron D, Sled JG, Baranger J, Villemain O. Towards quantitative assessment of cerebrovascular autoregulation in human neonates using ultrafast ultrasound imaging. Sci Rep 2025; 15:12374. [PMID: 40211007 PMCID: PMC11985991 DOI: 10.1038/s41598-025-97292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Newborns with congenital heart diseases requiring cardiopulmonary bypass (CPB) are at risk of neurodevelopmental impairment. The impact of deep hypothermia cardiopulmonary bypass (DH-CPB) on cerebrovascular autoregulation (CAR) that controls brain perfusion in the presence of blood pressure variation is not well understood. Recently, ultrafast power Doppler (UPD) showed potential to study CAR in neonates based on cerebral blood volume (CBV). However, since CAR relies mainly on arterial vasoconstriction/vasodilation, monitoring of brain perfusion variation based on CBV requires the discrimination of arterial from venous CBV. This study aims to use UPD combined with an algorithm for the discrimination of arteries and veins to monitor CAR during DH-CPB in neonates. Transfontanellar ultrafast power Doppler was performed in two groups of newborns: those undergoing deep hypothermic cardiopulmonary bypass with circulatory arrest (18-20 °C, n = 6, "DH group") and those undergoing full-flow CPB at mild hypothermia (32-34 °C, n = 6, "non-DH group"). Blood flow directionality was used to differentiate arterial compartments of CBV from venous CBV in specific brain regions where arterial and venous flows exhibit opposite directions. To study CAR, a linear mixed effect model was used to find the association between arterial CBV and mean arterial blood pressure (MAP). In the "non-DH group", we found a negative association between arterial CBV and MAP, indicating that an increase in MAP is associated with a decrease in arterial CBV (slope = -0.020 [Formula: see text], p = 0.047). Conversely, in the "DH group" no significant association was found such that arterial CBV remained stable as MAP increased (p = 0.314). We interpret the reduction in arterial CBV with increasing MAP in the "non-DH group" as an active arterial vasoconstriction triggered by CAR, whereas the lack of variation of arterial CBV in the DH group suggests impaired CAR response. Our findings highlight the potential of ultrafast ultrasound imaging for intra-operative CAR monitoring, paving the way for a better understanding of the impact of different types of CPB on cerebral perfusion.
Collapse
Affiliation(s)
- Nikan Fakhari
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Translational Medicine, The Hospital for Sick Children research institute, Toronto, ON, Canada
| | - Julien Aguet
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alison Howell
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Minh Nguyen
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Luc Mertens
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lynn Crawford
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maelys Venet
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France
| | - Christoph Haller
- Department of Surgery, Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - David Barron
- Department of Surgery, Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - John G Sled
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jérôme Baranger
- Department of Translational Medicine, The Hospital for Sick Children research institute, Toronto, ON, Canada
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS FRE, PSL Research University, Paris, France
| | - Olivier Villemain
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.
| |
Collapse
|
5
|
Bögli SY, Olakorede I, Beqiri E, Cucciolini G, Motroni V, Smith CA, Cherchi MS, O'Leary R, Smielewski P. Untangling discrepancies between cerebrovascular autoregulation correlation coefficients: An exploration of filters, coherence and power. Physiol Rep 2025; 13:e70332. [PMID: 40243158 PMCID: PMC12004267 DOI: 10.14814/phy2.70332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Cerebrovascular autoregulation (CAR) maintains stable cerebral perfusion by adjusting arteriole diameters in response to slow pressure fluctuations. Various CAR correlation coefficients-PRx (based on intracranial pressure-ICP), Mx (based on transcranial doppler-TCD), and COx/THx (based on near-infrared spectroscopy-NIRS)-are used interchangeably despite fundamental differences. 566 hours of ICP, NIRS, and TCD data from 38 traumatic brain injury (TBI) patients were assessed. The intercorrelation between CAR correlation coefficients was compared in relation to: (1) The impact of different filtering methods (to minimize noise); (2) The impact of slow wave power (i.e., magnitude of incoming trigger); (3) The impact of coherence (i.e., to what extent can the power of slow waves explain the change in power within the cerebral biosignal). Only coherence stratification consistently increased the metric intercorrelation to PRx (high vs. low) when evaluating Mx (0.43 vs. 0.08, p < 0.01) and THx (0.36 vs. 0.05, p < 0.01). Additionally, high coherence and ABP power were associated with fewer correlation coefficients around 0. Coherence increases the intercorrelation between the different CAR metrics. These sections might be regarded as more reliable, since they are derived from different biosignals that are all affected by CAR through different mechanisms.
Collapse
Affiliation(s)
- Stefan Yu Bögli
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of Neurology and Neurocritical Care Unit, Clinical Neuroscience CenterUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Ihsane Olakorede
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Giada Cucciolini
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of Surgical, Medical, Molecular Pathology and Critical Care MedicineUniversity of PisaPisaItaly
| | - Virginia Motroni
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of Surgical, Medical, Molecular Pathology and Critical Care MedicineUniversity of PisaPisaItaly
- Departmental Structure of Neuroanesthesia and Critical CareAzienda Ospedaliero‐Universitaria PisanaPisaItaly
| | - Claudia Ann Smith
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Marina Sandra Cherchi
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of Critical CareMarques de Valdecilla University Hospital, and Biomedical Research Institute (IDIVAL)SantanderCantabriaSpain
| | - Ronan O'Leary
- Neurosciences and Trauma Critical Care UnitAddenbrooke's Hospital, Cambridge University HospitalsCambridgeUK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
6
|
Bourgoin P, Beqiri E, Smielewski P, Chenouard A, Gaultier A, Sadones F, Gouedard U, Joram N, Amedro P. Optimal brain perfusion pressure derived from the continuous monitoring of cerebral autoregulation status during neonatal heart surgery under cardiopulmonary bypass in relation to brain injury: An observational study. Anaesth Crit Care Pain Med 2025; 44:101509. [PMID: 40154883 DOI: 10.1016/j.accpm.2025.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Understanding cerebral blood flow regulation and later optimizing brain perfusion is part of neuroprotection during cardiopulmonary bypass (CPB) in neonates. METHODS A total of 38 neonates undergoing CPB were monitored using near-infrared spectrometry and mean arterial pressure (MAP). Cerebral autoregulation (CAR) was assessed through the continuous measurement of the Cerebral Oxygenation Index (COx), and CAR-derived metrics were determined by plotting averaged COx values by MAP: Optimal MAP (MAPopt), lower limit of CAR (LLA), upper limit of CAR (ULA). RESULTS Out of 38, 17 (45%) neonates exhibited moderate to severe brain lesions post-operatively. The onset of CPB was associated with CAR disruption (mean COx pre-CPB = 0.16 ± 0.11; during CPB: 0.39 ± 0.37, p < 0.001). A LLA was identified in 31 out of 38 (82%), 23 out of 38 (61%), and 14 out of 38 (37%) patients before, during, and after CPB, respectively. An ULA was identified in 29 out of 38 (76%), 22 out of 38 (58%), and 14 out of 38 (37%) patients in the same time frames. Patients with abnormal post-operative brain MRI spent more time below the LLA during CPB: 28.3% [17.1-32.9] versus 9.9% [6.9-18.5] in patients without detected brain injury, p = 0.039. No differences were observed regarding the time spent above the upper limit of autoregulation. CONCLUSION The study provides valuable insights into the intricate relationship between intraoperative cerebral hemodynamics and post-operative brain injury. Further research is warranted to explore potential interventions based on CAR-derived metrics during CPB in neonates. CLINICAL TRIAL REGISTRATION NUMBER Not applicable. PRIOR PRESENTATION Not applicable.
Collapse
Affiliation(s)
- Pierre Bourgoin
- IHU Liryc, Electrophysiology and Heart Modelling Institute, INSERM 1045, University of Bordeaux, Pessac, France; Pediatric Intensive Care Unit, Nantes University Hospital, Nantes, France; Department of Anesthesiology, Nantes University Hospital, Nantes, France.
| | - Erta Beqiri
- Brain Physics Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter Smielewski
- Brain Physics Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Alexis Chenouard
- Pediatric Intensive Care Unit, Nantes University Hospital, Nantes, France
| | | | - Flavie Sadones
- Department of Pediatric Radiology, Nantes University Hospital, Nantes, France
| | - Ugo Gouedard
- Department of Anesthesiology, Nantes University Hospital, Nantes, France
| | - Nicolas Joram
- Pediatric Intensive Care Unit, Nantes University Hospital, Nantes, France
| | - Pascal Amedro
- IHU Liryc, Electrophysiology and Heart Modelling Institute, INSERM 1045, University of Bordeaux, Pessac, France; Pediatric and Congenital Cardiology Department, M3C National Reference Center, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
7
|
Mladinov D, Godwin RC, Benz D, Folorunso IM, Berkowitz DE, Melvin RL. The Impact of Blood Pressure Below Personalized Lower Cerebral Autoregulation Limit on Outcomes After Cardiac Surgery: A Retrospective Study. J Cardiothorac Vasc Anesth 2025; 39:601-609. [PMID: 39794194 DOI: 10.1053/j.jvca.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE The clinical importance of individualized blood pressure management in optimizing cerebral perfusion during cardiac surgery has been well established. However, consensus on blood pressure goals is lacking. The authors studied the associations between cerebral autoregulation metrics, hemodynamic parameters, and postoperative outcomes, and hypothesized that increased time of mean arterial pressure (MAP) below the lower limit of autoregulation (LLA) is associated with major morbidity and mortality (MMOM) incidence. DESIGN A retrospective, observational study. SETTING A university hospital. PARTICIPANTS A total of 686 cardiovascular surgeries were included. INTERVENTION None. MEASUREMENT AND MAIN RESULTS The area under the time-pressure curve (AUC) for MAP < LLA and time below LLA (AUCABP 48 hours, and postoperative mortality (ie, MMOM). There was no significant association between AUCABP 0.05). Relationships were observed between components of MMOM-operative mortality (p < 0.05) and low cardiac output syndrome (p < 0.05)-and AUCABPCONCLUSIONS These findings indicate that LLA-related metrics have limited utility for predicting MMOM. Future research should explore their applicability in various contexts and patient cohorts.
Collapse
Affiliation(s)
- Domagoj Mladinov
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ryan C Godwin
- Department of Anesthesiology and Perioperative Medicine, Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - David Benz
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ibukun Mary Folorunso
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Dan E Berkowitz
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ryan L Melvin
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
8
|
Sainbhi AS, Froese L, Stein KY, Vakitbilir N, Gomez A, Islam A, Bergmann T, Silvaggio N, Hayat M, Zeiler FA. Commercial NIRS May Not Detect Hemispheric Regional Disparity in Continuously Measured COx/COx-a: An Exploratory Healthy and Cranial Trauma Time-Series Analysis. Bioengineering (Basel) 2025; 12:247. [PMID: 40150711 PMCID: PMC11939202 DOI: 10.3390/bioengineering12030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Continuous metrics of cerebral autoregulation (CA) assessment have been developed using various multimodal cerebral physiological monitoring devices. However, CA regional disparity remains unclear in states of health and disease. Leveraging existing archived data sources, we preliminarily evaluated regional hemispheric disparity in CA using the near infrared spectroscopy (NIRS)-derived cerebral oximetry index (COx/COx-a). Along with bilateral NIRS, regional cerebral oxygen saturation, arterial blood pressure, cerebral perfusion pressure, and bilateral COx/COx-a were derived using three different temporal resolutions-10 s, 1 min, and 5 min-based on non-overlapping mean values. The regional disparity between hemispheres was evaluated based on median and median absolute deviation. Further, patient-level autoregressive integrative moving average models were calculated for each signal stream and used to generate personalized vector autoregressive models. Multi-variate cerebral physiologic relationships between hemispheres were assessed via impulse response functions and Granger causality analyses. Data from 102 healthy control volunteers, 27 spinal surgery patients, and 95 TBI patients (varying in frontal lobe pathology impacting the optode path; 64 without bifrontal lobe pathology, 15 without left frontal lobe pathology, 11 without right frontal lobe pathology, and 5 with bifrontal lobe pathology) were retrospectively analyzed. For subjects with or without cranial pathology, no difference in COx/COx-a was found between hemispheres regardless of the analytic method. In TBI patients without pathology underneath the NIRS sensor, distant parenchymal injury does not seem to have an effect on the CA of uninjured frontal lobes. Further work is required to characterize regional disparities with multi-channel CA measurements in healthy and disease states.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (K.Y.S.); (N.V.); (A.I.); (T.B.)
| | - Logan Froese
- Department of Clinical Neurosciences, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Kevin Y. Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (K.Y.S.); (N.V.); (A.I.); (T.B.)
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (K.Y.S.); (N.V.); (A.I.); (T.B.)
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada; (A.G.); (M.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Abrar Islam
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (K.Y.S.); (N.V.); (A.I.); (T.B.)
| | - Tobias Bergmann
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (K.Y.S.); (N.V.); (A.I.); (T.B.)
| | - Noah Silvaggio
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Mansoor Hayat
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada; (A.G.); (M.H.)
| | - Frederick A. Zeiler
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (K.Y.S.); (N.V.); (A.I.); (T.B.)
- Department of Clinical Neurosciences, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada; (A.G.); (M.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Pan Am Clinic Foundation, Winnipeg, MB R3M 3E4, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
9
|
McClarty D, Froese L, Bergmann T, Stein KY, Sainbhi AS, Islam A, Vakitbilir N, Silvaggio N, Marquez I, Gomez A, Zeiler FA. High-Frequency Analysis of the Cerebral Physiological Impact of Ketamine in Acute Traumatic Neural Injury. Neurotrauma Rep 2025; 6:232-241. [PMID: 40129893 PMCID: PMC11931103 DOI: 10.1089/neur.2024.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Acute traumatic neural injury, also known as traumatic brain injury (TBI), is a leading cause of death. TBI treatment focuses on the use of sedatives, vasopressors, and invasive intracranial pressure (ICP) monitoring to mitigate ICP elevations and maintain cerebral perfusion pressure (CPP). While common sedatives such as propofol and fentanyl have significant side effects, ketamine is an attractive alternative due to its rapid onset and cardiovascular stability. Despite these benefits, ketamine's use remains controversial due to historical concerns about increasing ICP. Using high-frequency monitoring, this retrospective study compared cerebral pressure-flow dynamics in patients with moderate/severe TBI who received ketamine with those who did not. Statistical analysis included descriptive statistics, comparisons within and between patients receiving ketamine, and evaluation of physiological response around incremental dose changes in ketamine. Various cerebral physiological indices were analyzed, including ICP, CPP, regional cerebral oxygen delivery, intracranial compliance, and cardiovascular reactivity metrics. A total of 122 patients were studied, with 17 receiving ketamine (median age: 37 years) and 105 not receiving ketamine (median age: 42 years). Results indicated higher median ICP in the ketamine group compared with the no ketamine group (9.05 mmHg and 14.00 mmHg, respectively, p = 0.00017); however, this is likely due to differences in patient characteristics and injury severity between the groups. No significant differences were observed in any other index of cerebral pressure-flow dynamics or between any incremental dose change condition. These findings suggest that ketamine does not significantly impact cerebral pressure-flow dynamics, challenging historical concerns about its use in patients with TBI.
Collapse
Affiliation(s)
- Davis McClarty
- Undergraduate Medicine, College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Bergmann
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot S. Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abrar Islam
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Noah Silvaggio
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Izabella Marquez
- Undergraduate Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg,Manitoba, Canada
| |
Collapse
|
10
|
Li X, Zheng Y, Zhang J. Cerebral oxygenation and hemodynamic changes during ephedrine and phenylephrine administration for transient intraoperative hypotension in patients undergoing major abdominal surgery: a randomized controlled trial. BMC Anesthesiol 2025; 25:87. [PMID: 39979813 PMCID: PMC11841356 DOI: 10.1186/s12871-025-02944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Phenylephrine and ephedrine are frequently used vasopressors for treating intraoperative hypotension. However, their impact on cerebral oxygenation and blood flow remains a subject of debate. This study aims to understand their effects on cerebral oxygen saturation and hemodynamics when used for treatment of intraoperative hypotension. METHODS The adult patients undergoing major abdominal surgery under general anesthesia were randomly assigned into ephedrine (ED) group or phenylephrine (PE) group. They received an intravenous bolus of either ephedrine or phenylephrine for treating intraoperative transient hypotension. The primary outcome was their effects on regional cerebral oxygen saturation (rScO2). The secondary outcomes included cerebral hemodynamics middle cerebral artery velocity (MCAvm), pulsatility index (PI), and resistance index (RI), as well as systemic hemodynamics arterial blood pressure (ABP), heart rate (HR), cardiac output (CO), cardiac index (CI), stroke volume (SV) and stroke volume index (SVI). Additionally, two indices of cerebral autoregulation, mean flow index (Mxa) and cerebral oximetry index (COX), were calculated in real-time via ICM + software. RESULTS Forty patients were included in this study. The initial results showed ephedrine increased rScO2 (p < 0.001), while phenylephrine increased Mxa (p < 0.02) and COX (p < 0.007), respectively. However, upon further linear-mix model analysis, the effects of both drugs on rScO2 (p = 0.944), Mxa (p = 0.093) and COX (p = 0.084) were found to be non-significant. Compared with the hemodynamic parameters during hypotension, the systolic blood pressure (SBP) (p < 0.001), diastolic blood pressure (DBP) (p < 0.001), mean arterial pressure (MAP) (p < 0.001), and MCAvm (p < 0.001) significantly increased after both ephedrine and phenylephrine administration. However, no significant differences were found between the two groups in terms of the changes in MAP (p = 0.549) and MCAvm (p = 0.173). And there were significant increases in CO (p < 0.001), HR (p < 0.001), and CI (p < 0.001) following ephedrine administration, while decreases in HR (p < 0.001), CO (p < 0.001), and CI (p < 0.001) after phenylephrine administration. CONCLUSION In the management of intraoperative hypotension, both phenylephrine and ephedrine effectively increase MAP and MCAvm, albeit with their differential effects on CO and HR. It seems that neither vasopressor has a significant impact on cerebral oxygenation and cerebral autoregulation.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Anaesthesia and Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Yijun Zheng
- Department of Anaesthesia and Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
- Department of oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
- Department of Intensive Care Unit, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| | - Jun Zhang
- Department of Anaesthesia and Critical Care, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.
- Department of oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, and Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, P.R. China.
| |
Collapse
|
11
|
Li M, Ma T, Yin X, Zhang X, Long T, Zeng M, Wang J, Cui Q, Li S, Sessler DI, Wang R, Peng Y. Cerebral oximetry index indicates delirium or stroke after carotid endarterectomy: An observational study. J Clin Anesth 2025; 101:111733. [PMID: 39721162 DOI: 10.1016/j.jclinane.2024.111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUNDS The cerebral oximetry index (COx) uses near-infrared spectroscopy to estimate cerebral autoregulation during cardiac surgery. However, the relationship between intraoperative loss of cerebral autoregulation and postoperative delirium or stroke remains unclear in patients recovering from carotid endarterectomy (CEA). METHODS Our prospective observational cohort study enrolled patients scheduled for CEA. COx was estimated as the coefficient of a continuous, moving Spearman correlation between mean arterial pressure and cerebral oxygen saturation. A receiver operating characteristics curve with Youden's index identified the optimal COx threshold for predicting a composite of postoperative delirium or new-onset overt stroke. RESULTS One hundred and forty patients scheduled for CEA were enrolled. The incidence of delirium was 10.7 % (15/140) and the incidence of stroke was 3.6 % (5/140), including 1 patient who had both. The cumulative anesthesia time when COx exceeded 0.3 was longer in patients with complications than those without. When COx > 0.6, the corresponding predictive ability was AUC = 0.69, Youden index = 0.61, P = 0.0003, with a positive predictive value of 100 %. In the post hoc subgroup analyses, before clamping, the greatest increase in the risk was observed when COx > 0.7 for 20 min (Odds ratio = 3.10, 95 % CI 2.20, 3.78). In contrast, COx was not predictive during clamping. After clamping, the optimal COx threshold was 0.4 (AUC = 0.85, Youden index = 0.82, P < 0.0001), with the positive predictive value being 100 %. CONCLUSIONS COx is a promising metric for predicting postoperative delirium or new-onset overt stroke in patients having CEA. The optimal COx threshold was 0.7 in the pre-clamping phase and 0.4 in the post-clamping phase.
Collapse
Affiliation(s)
- Muhan Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Tingting Ma
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Xueke Yin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Xin Zhang
- Casibrain Technology Limited Company, Beijing 100190, China.
| | - Tenghai Long
- Casibrain Technology Limited Company, Beijing 100190, China.
| | - Min Zeng
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Juan Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Qianyu Cui
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Shu Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, TX, USA; Outcomes Research Consortium®, Houston, TX, USA.
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Yuming Peng
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Outcomes Research Consortium®, Houston, TX, USA.
| |
Collapse
|
12
|
Berger R, Ewert S, Sandoval Boburg R, Neunhoeffer F, Magunia H, Lescan M, Schlensak C, Mustafi M. Non-invasive cerebral autoregulation monitoring during paediatric cardiac surgery without cardiopulmonary bypass requiring intraoperative cross-clamping of one of the carotid arteries. Perfusion 2024:2676591241304100. [PMID: 39587901 DOI: 10.1177/02676591241304100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Neurologic complications remain one of the major risks after pediatric cardiac surgery. Cerebral autoregulation (CA) is a physiologic mechanism regulating cerebral perfusion. A dynamic intraoperative evaluation can possibly detect the impairment of the cerebral regulatory function during surgery. The aim of the present study was to evaluate the utility of dynamic cerebral blood perfusion monitoring using cerebral oxygenation index (COx) as CA parameter during pediatric cardiac surgery without cardiopulmonary bypass (CPB) requiring intraoperative cross-clamping of one carotid artery to perform the procedure. MATERIALS AND METHODS Prospective intraoperative autoregulation monitoring was performed in 14 children under the age of 1 year requiring elective cardiac surgery with intraoperative cross-clamping of one of carotid artery. Procedures requiring the use of CPB and redo surgeries were excluded. RESULTS Impaired CA could be measured during 33.8% of cross-clamping time on the ipsilateral side and 30.1% on the contralateral side. The difference in COx was not significant before (p = 0.7), during (p = 0.29) and after cross clamping (p = 0.63), but a significant difference in COx levels throughout the entire cohort was noted individually. The mean ABP during normal (COx <0.4) CA was 61.8 mmHg (95% CI 60.7 - 62.9) and 62.9 mmHg (95% CI 61.9 - 63.9) for cross clamped and opposite side. During impaired (COx >0.4) CA the ABP values were 58.9 mmHg (95% CI 57.7 - 60.1, p < 0.05) and 56 mmHg (95% CI 54.8 - 57.3, p < 0.05) respectively. CONCLUSIONS A dynamic intraoperative monitoring of CA during pediatric cardiac surgery is possible and allows to confirm the impairment of autoregulation during cross-clamping of one of the carotid arteries.
Collapse
Affiliation(s)
- Rafal Berger
- Department of Thoracic and Cardiovascular Surgery, University of Tuebingen, Tuebingen, Germany
| | - Sebastian Ewert
- Department of Thoracic and Cardiovascular Surgery, University of Tuebingen, Tuebingen, Germany
| | - Rodrigo Sandoval Boburg
- Department of Thoracic and Cardiovascular Surgery, University of Tuebingen, Tuebingen, Germany
| | - Felix Neunhoeffer
- Department of Pediatric Cardiology, Pulmonology and Intensive Care Medicine, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Harry Magunia
- Department of Anesthesiology and Intensive Care Medicine, University of Tuebingen, Tuebingen, Germany
| | - Mario Lescan
- Department of Thoracic and Cardiovascular Surgery, University of Tuebingen, Tuebingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University of Tuebingen, Tuebingen, Germany
| | - Migdat Mustafi
- Department of Thoracic and Cardiovascular Surgery, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
13
|
Davis KA, Bhuiyan NA, McIntyre BJ, Dinh VQ, Rickards CA. Induced blood flow oscillations at 0.1 Hz protects oxygenation of severely ischemic tissue in humans. J Appl Physiol (1985) 2024; 137:1243-1256. [PMID: 39298614 PMCID: PMC11563589 DOI: 10.1152/japplphysiol.00438.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Generating 10-s (∼0.1 Hz) fluctuations or "oscillations" in arterial pressure and blood flow blunts reductions in cerebral tissue oxygenation in response to 15%-20% reductions in cerebral blood flow. To examine the effect of 0.1 Hz hemodynamic oscillations on tissue oxygenation during severe ischemia, we developed a partial limb ischemia protocol targeting a 70%-80% reduction in blood flow. We hypothesized that 0.1 Hz hemodynamic oscillations would attenuate reductions in tissue oxygenation during severe ischemia. Thirteen healthy humans (6 M and 7 F; 27.3 ± 4.2 yr) completed two experimental protocols separated by ≥48 h. In both conditions, an upper arm cuff was used to decrease brachial artery (BA) blood velocity by ∼70%-80% from baseline. In the oscillation condition (0.1 Hz), 0.1 Hz hemodynamic oscillations were induced by intermittently inflating and deflating bilateral thigh cuffs every 5 s during forearm ischemia. In the control condition (0 Hz), the thigh cuffs were inactive. BA blood flow, forearm tissue oxygenation (SmO2), and arterial pressure were measured continuously. The initial reduction in BA blood velocity was tightly matched between protocols (0 Hz: -76.9 ± 7.9% vs. 0.1 Hz: -75.5 ± 7.4%, P = 0.49). Although 0.1 Hz oscillations during forearm ischemia had no effect on the reduction in BA velocity (0 Hz: -73.0 ± 9.9% vs. 0.1 Hz: -73.3 ± 8.2%, P = 0.91), the reduction in SmO2 was attenuated (0 Hz: -35.7 ± 8.6% vs. 0.1 Hz: -27.2 ± 8.9%, P = 0.01). These data provide further evidence for the use of 0.1 Hz hemodynamic oscillations as a potential therapeutic intervention for conditions associated with severe tissue ischemia (e.g., hemorrhage and stroke).NEW & NOTEWORTHY We investigated the effects of induced 10-s (0.1 Hz) oscillations in blood flow on forearm tissue oxygenation during severe ischemia. Intermittent inflation of bilateral thigh cuffs was used as a clinically applicable method to drive blood flow oscillations. In support of our hypothesis, 0.1 Hz oscillations in blood flow blunted reductions in forearm tissue oxygenation. These results further support the potential use of oscillatory hemodynamics as a therapeutic intervention for ischemic conditions.
Collapse
Affiliation(s)
- K Austin Davis
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nasrul A Bhuiyan
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Benjamin J McIntyre
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Viet Q Dinh
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Caroline A Rickards
- Cerebral & Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
14
|
Fedriga M, Martini S, Iodice FG, Sortica da Costa C, Pezzato S, Moscatelli A, Beqiri E, Czosnyka M, Smielewski P, Agrawal S. Cerebral autoregulation in pediatric and neonatal intensive care: A scoping review. J Cereb Blood Flow Metab 2024; 44:1208-1226. [PMID: 38867574 PMCID: PMC11542144 DOI: 10.1177/0271678x241261944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Deranged cerebral autoregulation (CA) is associated with worse outcome in adult brain injury. Strategies for monitoring CA and maintaining the brain at its 'best CA status' have been implemented, however, this approach has not yet developed for the paediatric population. This scoping review aims to find up-to-date evidence on CA assessment in children and neonates with a view to identify patient categories in which CA has been measured so far, CA monitoring methods and its relationship with clinical outcome if any. A literature search was conducted for studies published within 31st December 2022 in 3 bibliographic databases. Out of 494 papers screened, this review includes 135 studies. Our literature search reveals evidence for CA measurement in the paediatric population across different diagnostic categories and age groups. The techniques adopted, indices and thresholds used to assess and define CA are heterogeneous. We discuss the relevance of available evidence for CA assessment in the paediatric population. However, due to small number of studies and heterogeneity of methods used, there is no conclusive evidence to support universal adoption of CA monitoring, technique, and methodology. This calls for further work to understand the clinical impact of CA monitoring in paediatric and neonatal intensive care.
Collapse
Affiliation(s)
- Marta Fedriga
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOUBO, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca G Iodice
- Paediatric Cardiac Anaesthesia and Intensive Care Unit, IRCCS, Bambino Gesu’ Hospital, Rome, Italy
| | | | - Stefano Pezzato
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Andrea Moscatelli
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Shruti Agrawal
- Department of Paediatric Intensive Care, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Dar IA, Khan IR, Johnson TW, Helmy SM, Cardona JI, Escobar S, Selioutski O, Marinescu MA, Zhang CT, Proctor AR, AbdAllah N, Busch DR, Maddox RK, Choe R. Wavelet and time-based cerebral autoregulation analysis using diffuse correlation spectroscopy on adults undergoing extracorporeal membrane oxygenation therapy. PLoS One 2024; 19:e0299752. [PMID: 39471182 PMCID: PMC11521301 DOI: 10.1371/journal.pone.0299752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Adult patients who have suffered acute cardiac or pulmonary failure are increasingly being treated using extracorporeal membrane oxygenation (ECMO), a cardiopulmonary bypass technique. While ECMO has improved the long-term outcomes of these patients, neurological injuries can occur from underlying illness or ECMO itself. Cerebral autoregulation (CA) allows the brain to maintain steady perfusion during changes in systemic blood pressure. Dysfunctional CA is a marker of acute brain injury and can worsen neurologic damage. Monitoring CA using invasive modalities can be risky in ECMO patients due to the necessity of anticoagulation therapy. Diffuse correlation spectroscopy (DCS) measures cerebral blood flow continuously, noninvasively, at the bedside, and can monitor CA. In this study, we compare DCS-based markers of CA in veno-arterial ECMO patients with and without acute brain injury. METHODS Adults undergoing ECMO were prospectively enrolled at a single tertiary hospital and underwent DCS and arterial blood pressure monitoring during ECMO. Neurologic injuries were identified using brain computerized tomography (CT) scans obtained in all patients. CA was calculated over a twenty-minute window via wavelet coherence analysis (WCA) over 0.05 Hz to 0.1 Hz and a Pearson correlation (DCSx) between cerebral blood flow measured by DCS and mean arterial pressure. RESULTS Eleven ECMO patients who received CT neuroimaging were recruited. 5 (45%) patients were found to have neurologic injury. CA indices WCOH, the area under the curve of the WCA, were significantly higher for patients with neurological injuries compared to those without neurological injuries (right hemisphere p = 0.041, left hemisphere p = 0.041). %DCSx, percentage of time DCSx was above a threshold 0.4, were not significantly higher (right hemisphere p = 0.268, left hemisphere p = 0.073). CONCLUSION DCS can be used to detect differences in CA for ECMO patients with neurological injuries compared to uninjured patients using WCA.
Collapse
Affiliation(s)
- Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Imad R. Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thomas W. Johnson
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Marie Helmy
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jeronimo I. Cardona
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Escobar
- Clinical and Translational Sciences Program, University of Rochester, Rochester, New York, United States of America
| | - Olga Selioutski
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Neurology, University of Mississippi, Jackson, Mississippi, United States of America
| | - Mark A. Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chloe T. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Ashley R. Proctor
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Noura AbdAllah
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - David R. Busch
- Departments of Anesthesiology and Pain Management, Neurology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
16
|
Bergmann T, Vakitbilir N, Gomez A, Islam A, Stein KY, Sainbhi AS, Froese L, Zeiler FA. Artifact Management for Cerebral Near-Infrared Spectroscopy Signals: A Systematic Scoping Review. Bioengineering (Basel) 2024; 11:933. [PMID: 39329675 PMCID: PMC11428271 DOI: 10.3390/bioengineering11090933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Artifacts induced during patient monitoring are a main limitation for near-infrared spectroscopy (NIRS) as a non-invasive method of cerebral hemodynamic monitoring. There currently does not exist a robust "gold-standard" method for artifact management for these signals. The objective of this review is to comprehensively examine the literature on existing artifact management methods for cerebral NIRS signals recorded in animals and humans. A search of five databases was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The search yielded 806 unique results. There were 19 articles from these results that were included in this review based on the inclusion/exclusion criteria. There were an additional 36 articles identified in the references of select articles that were also included. The methods outlined in these articles were grouped under two major categories: (1) motion and other disconnection artifact removal methods; (2) data quality improvement and physiological/other noise artifact filtering methods. These were sub-categorized by method type. It proved difficult to quantitatively compare the methods due to the heterogeneity of the effectiveness metrics and definitions of artifacts. The limitations evident in the existing literature justify the need for more comprehensive comparisons of artifact management. This review provides insights into the available methods for artifact management in cerebral NIRS and justification for a homogenous method to quantify the effectiveness of artifact management methods. This builds upon the work of two existing reviews that have been conducted on this topic; however, the scope is extended to all artifact types and all NIRS recording types. Future work by our lab in cerebral NIRS artifact management will lie in a layered artifact management method that will employ different techniques covered in this review (including dynamic thresholding, autoregressive-based methods, and wavelet-based methods) amongst others to remove varying artifact types.
Collapse
Affiliation(s)
- Tobias Bergmann
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
| | - Nuray Vakitbilir
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Abrar Islam
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
| | - Kevin Y. Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
| | - Logan Froese
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Pan Am Clinic Foundation, Winnipeg, MB R3M 3E4, Canada
| |
Collapse
|
17
|
Gomez A, Marquez I, Froese L, Bergmann T, Sainbhi AS, Vakitbilir N, Islam A, Stein KY, Zeiler FA. The association of acute and chronic phase cerebrovascular reactivity with patient reported quality of life following moderate-to-severe traumatic brain injury. Sci Rep 2024; 14:20737. [PMID: 39237683 PMCID: PMC11377742 DOI: 10.1038/s41598-024-71843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024] Open
Abstract
Global outcomes have been reported to be associated with cerebrovascular reactivity (CVR) in the acute phase following moderate and severe traumatic brain injury (TBI). The association of CVR in the acute and chronic phase of injury with patient-reported health-related quality of life metrics (HRQOL) metrics has never been explored. The aim of this study is to examine the association of CVR, as measured by the cerebral oxygen indices (COx and COx_a), in the acute and chronic phase following moderate and severe TBI, with patient reported HRQOL. In this prospective cohort study, performed in a Canadian quaternary care center, the association between continuous acute and chronic phase CVR with patient reported HRQOL outcomes following moderate and severe TBI was examined. The main outcomes of interest of this study were validated measures of patient-reported HRQOL over various domains as measured by both the 12-Item Short-Form Health Survey (SF-12) and a Quality of Life after Brain Injury (QOLIBRI) questionnaire. In the 29 subjects of this cohort, acute phase CVR was found to be significantly more active in those with a favorable Mental Component Summary (MCS) scores of the SF-12 at early follow-up when measured by COx (-0.015 [IQR: -0.067 to 0.032] vs 0.040 [IQR: 0.019 to 0.137] for Favorable first MCS vs Unfavorable respectively; Mann-Whitney U test p-value = 0.046) and COx_a (0.038 [IQR: 0.009 to 0.062] vs 0.112 [IQR: 0.065 to 0.167] for Favorable first MCS vs Unfavorable respectively; Mann-Whitney U test p-value = 0.014). Further, multivariable logistic regression analysis found acute phase COx and COx_a to improve model performance when predicting favorable versus unfavorable early MCS scores over established parameters such as age and measures of injury severity. Associations between outcomes and chronic phase CVR were limited, potentially due to short recording periods. This is the first ever pilot study to identify a relationship between acute phase CVR following moderate-to-severe TBI with mental and cognitive outcomes as experienced by patients. Given the small cohort, these findings will need to be confirmed in a larger multicenter study. This highlights the need for additional examination of the role dysfunctional CVR may play in mental and cognitive outcomes, as well as patient-reported outcomes more generally following TBI.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Izabella Marquez
- Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neurosciences, Karolinksa Institutet, Stockholm, Sweden
| | - Tobias Bergmann
- Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Abrar Islam
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neurosciences, Karolinksa Institutet, Stockholm, Sweden
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| |
Collapse
|
18
|
Martini S, Thewissen L, Austin T, da Costa CS, de Boode WP, Dempsey E, Kooi E, Pellicer A, Rhee CJ, Riera J, Wolf M, Wong F. Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: where are we now? Pediatr Res 2024; 96:884-895. [PMID: 36997690 DOI: 10.1038/s41390-023-02574-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cerebrovascular reactivity defines the ability of the cerebral vasculature to regulate its resistance in response to both local and systemic factors to ensure an adequate cerebral blood flow to meet the metabolic demands of the brain. The increasing adoption of near-infrared spectroscopy (NIRS) for non-invasive monitoring of cerebral oxygenation and perfusion allowed investigation of the mechanisms underlying cerebrovascular reactivity in the neonatal population, confirming important associations with pathological conditions including the development of brain injury and adverse neurodevelopmental outcomes. However, the current literature on neonatal cerebrovascular reactivity is mainly still based on small, observational studies and is characterised by methodological heterogeneity; this has hindered the routine application of NIRS-based monitoring of cerebrovascular reactivity to identify infants most at risk of brain injury. This review aims (1) to provide an updated review on neonatal cerebrovascular reactivity, assessed using NIRS; (2) to identify critical points that need to be addressed with targeted research; and (3) to propose feasibility trials in order to fill the current knowledge gaps and to possibly develop a preventive or curative approach for preterm brain injury. IMPACT: NIRS monitoring has been largely applied in neonatal research to assess cerebrovascular reactivity in response to blood pressure, PaCO2 and other biochemical or metabolic factors, providing novel insights into the pathophysiological mechanisms underlying cerebral blood flow regulation. Despite these insights, the current literature shows important pitfalls that would benefit to be addressed in a series of targeted trials, proposed in the present review, in order to translate the assessment of cerebrovascular reactivity into routine monitoring in neonatal clinical practice.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | | | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, INFANT Centre, University College Cork, Cork, Ireland
| | - Elisabeth Kooi
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
| | - Christopher J Rhee
- Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Joan Riera
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Technology, Technical University, Madrid, Spain
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Flora Wong
- Monash Newborn, Monash Children's Hospital, Hudson Institute of Medical Research, Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Bögli SY, Cherchi MS, Beqiri E, Smielewski P. Association between EEG metrics and continuous cerebrovascular autoregulation assessment: a scoping review. Br J Anaesth 2024; 133:550-564. [PMID: 38644159 PMCID: PMC11347808 DOI: 10.1016/j.bja.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
OBJECTIVE Cerebrovascular autoregulation is defined as the capacity of cerebral blood vessels to maintain stable cerebral blood flow despite changing blood pressure. It is assessed using the pressure reactivity index (the correlation coefficient between mean arterial blood pressure and intracranial pressure). The objective of this scoping review is to describe the existing evidence concerning the association of EEG and cerebrovascular autoregulation in order to identify key concepts and detect gaps in the current knowledge. METHODS Embase, MEDLINE, SCOPUS, and Web of Science were searched considering articles between their inception up to September 2023. Inclusion criteria were human (paediatric and adult) and animal studies describing correlations between continuous EEG and cerebrovascular autoregulation assessments. RESULTS Ten studies describing 481 human subjects (67% adult, 59% critically ill) were identified. Seven studies assessed qualitative (e.g. seizures, epileptiform potentials) and five evaluated quantitative (e.g. bispectral index, alpha-delta ratio) EEG metrics. Cerebrovascular autoregulation was evaluated based on intracranial pressure, transcranial Doppler, or near infrared spectroscopy. Specific combinations of cerebrovascular autoregulation and EEG metrics were evaluated by a maximum of two studies. Seizures, highly malignant patterns or burst suppression, alpha peak frequency, and bispectral index were associated with cerebrovascular autoregulation. The other metrics showed either no or inconsistent associations. CONCLUSION There is a paucity of studies evaluating the link between EEG and cerebrovascular autoregulation. The studies identified included a variety of EEG and cerebrovascular autoregulation acquisition methods, age groups, and diseases allowing for few overarching conclusions. However, the preliminary evidence for the presence of an association between EEG metrics and cerebrovascular autoregulation prompts further in-depth investigations.
Collapse
Affiliation(s)
- Stefan Y Bögli
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Marina S Cherchi
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Department of Critical Care, Marqués de Valdecilla University Hospital, and Biomedical Research Institute (IDIVAL), Santander, Cantabria, Spain
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Kostoglou K, Bello-Robles F, Brassard P, Chacon M, Claassen JAHR, Czosnyka M, Elting JW, Hu K, Labrecque L, Liu J, Marmarelis VZ, Payne SJ, Shin DC, Simpson D, Smirl J, Panerai RB, Mitsis GD. Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet). J Cereb Blood Flow Metab 2024; 44:1480-1514. [PMID: 38688529 PMCID: PMC11418733 DOI: 10.1177/0271678x241249276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Felipe Bello-Robles
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Max Chacon
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Jurgen AHR Claassen
- Department of Geriatrics, Radboud University Medical Center, Research Institute for Medical Innovation and Donders Institute, Nijmegen, The Netherlands
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Neurosurgery Department, University of Cambridge, Cambridge, UK
| | - Jan-Willem Elting
- Department of Neurology and Clinical Neurophysiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Vasilis Z Marmarelis
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Dae Cheol Shin
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Jonathan Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation, Glenfield Hospital, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Petrovčič R, Rakusa M, Markota A. Monitoring of Cerebral Blood Flow Autoregulation after Cardiac Arrest. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1381. [PMID: 39336422 PMCID: PMC11433513 DOI: 10.3390/medicina60091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Background: Cardiac arrest remains one of the leading causes of death. After successful resuscitation of patients in cardiac arrest, post-cardiac arrest syndrome develops, part of it being an impaired cerebral blood flow autoregulation. Monitoring cerebral blood flow autoregulation after cardiac arrest is important for optimizing patient care and prognosticating patients' survival, yet remains a challenge. There are still gaps in clinical implications and everyday use. In this article, we present a systematic review of studies with different methods of monitoring cerebral blood flow autoregulation after non-traumatic cardiac arrest. Methods: A comprehensive literature search was performed from 1 June 2024 to 27 June 2024 by using multiple databases: PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials. Inclusion criteria were studies with an included description of the measurement of cerebral blood flow autoregulation in adult patients after non-traumatic cardiac arrest. Results: A total of 16 studies met inclusion criteria. Our data show that the most used methods in the reviewed studies were near-infrared spectroscopy and transcranial Doppler. The most used mathematical methods for calculating cerebral autoregulation were cerebral oximetry index, tissue oxygenation reactivity index, and mean flow index. Conclusions: The use of various monitoring and mathematical methods for calculating cerebral blood flow autoregulation poses a challenge for standardization, validation, and daily use in clinical practice. In the future studies, focus should be considered on clinical validation and transitioning autoregulation monitoring techniques to everyday clinical practice, which could improve the survival outcomes of patients after cardiac arrest.
Collapse
Affiliation(s)
- Rok Petrovčič
- Emergency Department, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Martin Rakusa
- Department of Neurologic Diseases, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Andrej Markota
- Department of Intensive Internal Medicine, Division of Internal Medicine, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| |
Collapse
|
22
|
Pezzato S, Govindan RB, Bagnasco F, Panagopoulos EM, Robba C, Beqiri E, Smielewski P, Munoz RA, d'Udekem Y, Moscatelli A, du Plessis A. Cerebral autoregulation monitoring using the cerebral oximetry index after neonatal cardiac surgery: A single-center retrospective cohort study. J Thorac Cardiovasc Surg 2024; 168:353-363.e4. [PMID: 38065519 DOI: 10.1016/j.jtcvs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
OBJECTIVE To investigate whether cerebral autoregulation is impaired after neonatal cardiac surgery and whether changes in autoregulation metrics are associated with different congenital heart defects or the incidence of postoperative neurologic events. METHODS This is a retrospective observational study of neonates undergoing monitoring during the first 72 hours after cardiac surgery. Archived data were processed to calculate the cerebral oximetry index (COx) and derived metrics. Acute neurologic events were identified by an electronic medical record review. The Skillings-Mack test and the Wilcoxon signed-rank test were used to analyze the evolution of autoregulation metrics over time; the Mann-Whitney U test was used for comparison between groups. RESULTS We included 28 neonates, 7 (25%) with hypoplastic left heart syndrome and 21 (75%) with transposition of the great arteries. Overall, the median percentage of time spent with impaired autoregulation, defined as percentage of time with a COx >0.3, was 31.6% (interquartile range, 21.1%-38.3%). No differences in autoregulation metrics between different cardiac defects subgroups were observed. Seven patients (25%) experienced a postoperative acute neurologic event. Compared to the neonates without an acute neurologic event, those with an acute neurologic event had a higher COx (0.16 vs 0.07; P = .035), a higher percentage of time with a COx >0.3 (39.4% vs 29.2%; P = .017), and a higher percentage of time with a mean arterial pressure below the lower limit of autoregulation (13.3% vs 6.9%; P = .048). CONCLUSIONS COx monitoring after cardiac surgery allowed for the detection of impaired cerebral autoregulation, which was more frequent in neonates with postoperative acute neurologic events.
Collapse
Affiliation(s)
- Stefano Pezzato
- Neonatal and Pediatric Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Division of Cardiovascular Surgery, Children's National Hospital, Washington, DC.
| | | | - Francesca Bagnasco
- Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Chiara Robba
- Anesthesia and Critical Care, IRCCS Policlinico San Martino, Genova, Italy
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ricardo A Munoz
- Division of Cardiac Critical Care Medicine, Children's National Hospital, Washington, DC
| | - Yves d'Udekem
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, DC
| | - Andrea Moscatelli
- Neonatal and Pediatric Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Adre du Plessis
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC
| |
Collapse
|
23
|
Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Marquez I, Amenta F, Park K, Stein KY, Berrington N, Dhaliwal P, Zeiler FA. Optimal bispectral index exists in healthy patients undergoing general anesthesia: A validation study. J Clin Monit Comput 2024; 38:791-802. [PMID: 38436898 DOI: 10.1007/s10877-024-01136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE Continuous cerebrovascular reactivity monitoring in both neurocritical and intra-operative care has gained extensive interest in recent years, as it has documented associations with long-term outcomes (in neurocritical care populations) and cognitive outcomes (in operative cohorts). This has sparked further interest into the exploration and evaluation of methods to achieve an optimal cerebrovascular reactivity measure, where the individual patient is exposed to the lowest insult burden of impaired cerebrovascular reactivity. Recent literature has documented, in neural injury populations, the presence of a potential optimal sedation level in neurocritical care, based on the relationship between cerebrovascular reactivity and quantitative depth of sedation (using bispectral index (BIS)) - termed BISopt. The presence of this measure outside of neural injury patients has yet to be proven. METHODS We explore the relationship between BIS and continuous cerebrovascular reactivity in two cohorts: (A) healthy population undergoing elective spinal surgery under general anesthesia, and (B) healthy volunteer cohort of awake controls. RESULTS We demonstrate the presence of BISopt in the general anesthesia population (96% of patients), and its absence in awake controls, providing preliminary validation of its existence outside of neural injury populations. Furthermore, we found BIS to be sufficiently separate from overall systemic blood pressure, this indicates that they impact different pathophysiological phenomena to mediate cerebrovascular reactivity. CONCLUSIONS Findings here carry implications for the adaptation of the individualized physiologic BISopt concept to non-neural injury populations, both within critical care and the operative theater. However, this work is currently exploratory, and future work is required.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Izabella Marquez
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kangyun Park
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Neil Berrington
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Perry Dhaliwal
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Hong E, Froese L, Pontén E, Fletcher-Sandersjöö A, Tatter C, Hammarlund E, Åkerlund CAI, Tjerkaski J, Alpkvist P, Bartek J, Raj R, Lindblad C, Nelson DW, Zeiler FA, Thelin EP. Critical thresholds of long-pressure reactivity index and impact of intracranial pressure monitoring methods in traumatic brain injury. Crit Care 2024; 28:256. [PMID: 39075480 PMCID: PMC11285281 DOI: 10.1186/s13054-024-05042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Moderate-to-severe traumatic brain injury (TBI) has a global mortality rate of about 30%, resulting in acquired life-long disabilities in many survivors. To potentially improve outcomes in this TBI population, the management of secondary injuries, particularly the failure of cerebrovascular reactivity (assessed via the pressure reactivity index; PRx, a correlation between intracranial pressure (ICP) and mean arterial blood pressure (MAP)), has gained interest in the field. However, derivation of PRx requires high-resolution data and expensive technological solutions, as calculations use a short time-window, which has resulted in it being used in only a handful of centers worldwide. As a solution to this, low resolution (longer time-windows) PRx has been suggested, known as Long-PRx or LPRx. Though LPRx has been proposed little is known about the best methodology to derive this measure, with different thresholds and time-windows proposed. Furthermore, the impact of ICP monitoring on cerebrovascular reactivity measures is poorly understood. Hence, this observational study establishes critical thresholds of LPRx associated with long-term functional outcome, comparing different time-windows for calculating LPRx as well as evaluating LPRx determined through external ventricular drains (EVD) vs intraparenchymal pressure device (IPD) ICP monitoring. METHODS The study included a total of n = 435 TBI patients from the Karolinska University Hospital. Patients were dichotomized into alive vs. dead and favorable vs. unfavorable outcomes based on 1-year Glasgow Outcome Scale (GOS). Pearson's chi-square values were computed for incrementally increasing LPRx or ICP thresholds against outcome. The thresholds that generated the greatest chi-squared value for each LPRx or ICP parameter had the highest outcome discriminatory capacity. This methodology was also completed for the segmentation of the population based on EVD, IPD, and time of data recorded in hospital stay. RESULTS LPRx calculated with 10-120-min windows behaved similarly, with maximal chi-square values ranging at around a LPRx of 0.25-0.35, for both survival and favorable outcome. When investigating the temporal relations of LPRx derived thresholds, the first 4 days appeared to be the most associated with outcomes. The segmentation of the data based on intracranial monitoring found limited differences between EVD and IPD, with similar LPRx values around 0.3. CONCLUSION Our work suggests that the underlying prognostic factors causing impairment in cerebrovascular reactivity can, to some degree, be detected using lower resolution PRx metrics (similar found thresholding values) with LPRx found clinically using as low as 10 min-by-minute samples of MAP and ICP. Furthermore, EVD derived LPRx with intermittent cerebrospinal fluid draining, seems to present similar outcome capacity as IPD. This low-resolution low sample LPRx method appears to be an adequate substitute for the clinical prognostic value of PRx and may be implemented independent of ICP monitoring method when PRx is not feasible, though further research is warranted.
Collapse
Affiliation(s)
- Erik Hong
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Logan Froese
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Emeli Pontén
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Tatter
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Södersjukhuset, Stockholm, Sweden
| | - Emma Hammarlund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia A I Åkerlund
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Peter Alpkvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Bartek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki, Helsinki, Finland
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - David W Nelson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Frederick A Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Lahr BE, Brunsch CL, Dikkers R, Bos AF, Kooi EMW. Cerebrovascular Autoregulation in Preterm Infants Using Heart Rate or Blood Pressure: A Pilot Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:765. [PMID: 39062215 PMCID: PMC11276379 DOI: 10.3390/children11070765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Cerebrovascular autoregulation (CAR) is often impaired in preterm infants but requires invasive mean arterial blood pressure (MABP) measurements for continuous assessment. We aimed to assess whether using heart rate (HR) results in different CAR assessment compared with using MABP. METHODS We compared CAR (moving window correlation-coefficient with cerebral oxygenation saturation (rcSO2)), and percentage of time with impaired CAR (%timeCARi) calculated by either HR (TOHRx, tissue oxygenation heart rate reactivity index) or MABP (COx, cerebral oximetry index) during the first 72 h after birth, and its association with short-term cerebral injury. RESULTS We included 32 infants, median gestational age of 25 + 5/7 weeks (interquartile range 24 + 6/7-27 + 5/7). COx and TOHRx correlation coefficients (cc) were significantly different in the first two days after birth (individual means ranging from 0.02 to 0.07 and -0.05 to 0.01). %TimeCARi using MABP (cc cut-off 0.3), was higher on day 1 (26.1% vs. 17.7%) and day 3 (23.4% vs. 16.9%) compared with HR (cc cutoff -0.3). During 65.7-69.6% of the time, both methods indicated impaired CAR simultaneously. The aforementioned calculations were not associated with early cerebral injury. CONCLUSIONS In conclusion, HR and MABP do not seem interchangeable when assessing CAR in preterm infants.
Collapse
Affiliation(s)
- Bineta E. Lahr
- Department of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (B.E.L.); (C.L.B.)
| | - Celina L. Brunsch
- Department of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (B.E.L.); (C.L.B.)
| | - Riksta Dikkers
- Department of Pediatric Radiology, Beatrix Children’s Hospital, University Medical Center of Groningen, 9713 GZ Groningen, The Netherlands
| | - Arend F. Bos
- Department of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (B.E.L.); (C.L.B.)
| | - Elisabeth M. W. Kooi
- Department of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (B.E.L.); (C.L.B.)
| |
Collapse
|
26
|
Srichawla BS. Future of neurocritical care: Integrating neurophysics, multimodal monitoring, and machine learning. World J Crit Care Med 2024; 13:91397. [PMID: 38855276 PMCID: PMC11155497 DOI: 10.5492/wjccm.v13.i2.91397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 06/03/2024] Open
Abstract
Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| |
Collapse
|
27
|
Beqiri E, García-Orellana M, Politi A, Zeiler FA, Placek MM, Fàbregas N, Tas J, De Sloovere V, Czosnyka M, Aries M, Valero R, de Riva N, Smielewski P. Cerebral autoregulation derived blood pressure targets in elective neurosurgery. J Clin Monit Comput 2024; 38:649-662. [PMID: 38238636 PMCID: PMC11164832 DOI: 10.1007/s10877-023-01115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/23/2023] [Indexed: 06/11/2024]
Abstract
Poor postoperative outcomes may be associated with cerebral ischaemia or hyperaemia, caused by episodes of arterial blood pressure (ABP) being outside the range of cerebral autoregulation (CA). Monitoring CA using COx (correlation between slow changes in mean ABP and regional cerebral O2 saturation-rSO2) could allow to individualise the management of ABP to preserve CA. We aimed to explore a continuous automated assessment of ABPOPT (ABP where CA is best preserved) and ABP at the lower limit of autoregulation (LLA) in elective neurosurgery patients. Retrospective analysis of prospectively collected data of 85 patients [median age 60 (IQR 51-68)] undergoing elective neurosurgery. ABPBASELINE was the mean of 3 pre-operative non-invasive measurements. ABP and rSO2 waveforms were processed to estimate COx-derived ABPOPT and LLA trend-lines. We assessed: availability (number of patients where ABPOPT/LLA were available); time required to achieve first values; differences between ABPOPT/LLA and ABP. ABPOPT and LLA availability was 86 and 89%. Median (IQR) time to achieve the first value was 97 (80-155) and 93 (78-122) min for ABPOPT and LLA respectively. Median ABPOPT [75 (69-84)] was lower than ABPBASELINE [90 (84-95)] (p < 0.001, Mann-U test). Patients spent 72 (56-86) % of recorded time with ABP above or below ABPOPT ± 5 mmHg. ABPOPT and ABP time trends and variability were not related to each other within patients. 37.6% of patients had at least 1 hypotensive insult (ABP < LLA) during the monitoring time. It seems possible to assess individualised automated ABP targets during elective neurosurgery.
Collapse
Affiliation(s)
- Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Marta García-Orellana
- Neuroanesthesia Division, Anesthesiology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Kepler Universitätsklinikum, Neuromed Campus, Linz, Austria
| | - Anna Politi
- Department of Anesthesiology, Intensive Care and Pain Medicine, Milano Bicocca University, San Gerardo Hospital, Monza, Italy
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Univesity of Manitoba, Winnipeg, Canada
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michal M Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Neus Fàbregas
- Neuroanesthesia Division, Anesthesiology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Jeanette Tas
- School for Mental Health and Neuroscience (MHeNS), University Maastricht, Maastricht, The Netherlands
- Department of Intensive Care, Maastricht UMC, Maastricht, The Netherlands
| | - Veerle De Sloovere
- Department of Anesthesiology, University Hospitals Leuven, Louvain, Belgium
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marcel Aries
- School for Mental Health and Neuroscience (MHeNS), University Maastricht, Maastricht, The Netherlands
- Department of Intensive Care, Maastricht UMC, Maastricht, The Netherlands
| | - Ricard Valero
- Neuroanesthesia Division, Anesthesiology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Nicolás de Riva
- Neuroanesthesia Division, Anesthesiology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Park S, Beqiri E, Smielewski P, Aries M. Inaugural State of the Union: Continuous Cerebral Autoregulation Monitoring in the Clinical Practice of Neurocritical Care and Anesthesia. Neurocrit Care 2024; 40:855-864. [PMID: 37853235 DOI: 10.1007/s12028-023-01860-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023]
Abstract
How continuous cerebral autoregulation (CCA) knowledge should be optimally gained and interpreted is still an active area of research and refinement. We now experience a unique situation of having indices clinically available before definitive evidence of benefit or practice guidelines, in a moment when high rates of institutional variability exist both in the application of monitoring as well as in monitoring-guided treatments. Responses from 47 international clinicians, experts in this field, were collected with polling and discussion of the results. The clinical use of CCA in critical illness was not universal among experts, with 34% not using it. Of those who use a CCA index in clinical practice, 64% use intracranial pressure-based Pressure Reactivity index (PRx). There seems to exist a considerable trust in the physiologic plausibility of CCA to guide individual arterial blood pressure and cerebral perfusion pressure therapy and provide benefit, regardless of the difficulty of proving this. A total of 59% feel the need for phase II and III prospective studies but would continue to use CCA information in their practice even if randomized controlled trials (RCTs) did not show clear clinical benefit. There was nearly universal interest to participate in an RCT, with agreement that the research community must together determine end points and interventions to reduce wasted effort and time, and that investigations should include the following: the most appropriate way of inclusion of CCA into the clinical workflow; whether CCA-guided interventions should be prophylactic, proactive; or reactive; and whether a CCA-centric (unimodal) or a multimodal monitoring-integrated tiered therapy approach should be adopted. Pediatric and neonatal populations were highlighted as having urgent need and even more plausibility than adults. On the whole, the initiative was enthusiastically embraced by the experts, with the general feeling that a strong push should be now made by the community to convert the plausible benefits of CCA monitoring, already implemented in some centers, into a more standardized and RCT-validated clinical reality.
Collapse
Affiliation(s)
- Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University Vagelos College of Physicians and Surgeons, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Marcel Aries
- School for Mental Health and Neuroscience, University Maastricht, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
29
|
Vu EL, Brown CH, Brady KM, Hogue CW. Monitoring of cerebral blood flow autoregulation: physiologic basis, measurement, and clinical implications. Br J Anaesth 2024; 132:1260-1273. [PMID: 38471987 DOI: 10.1016/j.bja.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
Cerebral blood flow (CBF) autoregulation is the physiologic process whereby blood supply to the brain is kept constant over a range of cerebral perfusion pressures ensuring a constant supply of metabolic substrate. Clinical methods for monitoring CBF autoregulation were first developed for neurocritically ill patients and have been extended to surgical patients. These methods are based on measuring the relationship between cerebral perfusion pressure and surrogates of CBF or cerebral blood volume (CBV) at low frequencies (<0.05 Hz) of autoregulation using time or frequency domain analyses. Initially intracranial pressure monitoring or transcranial Doppler assessment of CBF velocity was utilised relative to changes in cerebral perfusion pressure or mean arterial pressure. A more clinically practical approach utilising filtered signals from near infrared spectroscopy monitors as an estimate of CBF has been validated. In contrast to the traditional teaching that 50 mm Hg is the autoregulation threshold, these investigations have found wide interindividual variability of the lower limit of autoregulation ranging from 40 to 90 mm Hg in adults and 20-55 mm Hg in children. Observational data have linked impaired CBF autoregulation metrics to adverse outcomes in patients with traumatic brain injury, ischaemic stroke, subarachnoid haemorrhage, intracerebral haemorrhage, and in surgical patients. CBF autoregulation monitoring has been described in both cardiac and noncardiac surgery. Data from a single-centre randomised study in adults found that targeting arterial pressure during cardiopulmonary bypass to above the lower limit of autoregulation led to a reduction of postoperative delirium and improved memory 1 month after surgery compared with usual care. Together, the growing body of evidence suggests that monitoring CBF autoregulation provides prognostic information on eventual patient outcomes and offers potential for therapeutic intervention. For surgical patients, personalised blood pressure management based on CBF autoregulation data holds promise as a strategy to improve patient neurocognitive outcomes.
Collapse
Affiliation(s)
- Eric L Vu
- Department of Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Charles H Brown
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth M Brady
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Charles W Hogue
- The Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
30
|
Hori D, Yamamoto T, Kimura N, Yamaguchi A. Prevalence of carotid artery stenosis and intra-cranial lesions in patients with aortic arch aneurysm and its association with intraoperative regional cerebral oxygen saturation and postoperative neurological outcomes. J Thorac Dis 2024; 16:2713-2722. [PMID: 38883627 PMCID: PMC11170360 DOI: 10.21037/jtd-24-78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/15/2024] [Indexed: 06/18/2024]
Abstract
Background Although aortic aneurysm is associated with vascular aging and atherosclerosis, carotid and intracranial vascular disease prevalence in patients with aortic arch aneurysm remains unclear. Similarly, the effect of carotid and intracranial lesions on postoperative outcomes is unknown. This study aimed to investigate the prevalence of carotid artery stenosis and intracranial lesions in patients with aortic arch aneurysm and its association with intraoperative regional cerebral oxygen saturation (rScO2) and postoperative neurological outcomes, including delirium and cerebral infarction. Methods This retrospective observational study included 133 patients with true aortic arch aneurysm who underwent preoperative magnetic resonance imaging (MRI). We evaluated the prevalence of carotid and intracranial arterial lesions. Symptomatic cerebral infarction and delirium, defined by the confusion assessment method for the intensive care unit, were evaluated for their association with preoperative cerebrovascular lesions. Additionally, changes in regional saturation of the cerebral tissue at different surgical phases were evaluated for patients with and without cerebrovascular lesions. Results Fifteen (11.3%) patients experienced symptomatic cerebral infarction, and 64 (48.1%) had postoperative delirium. Preoperative MRI showed old infarction, microbleeds, significant carotid artery stenosis, and intracranial lesions in 21.1%, 14.3%, 10.5%, and 7.5% of the patients, respectively. White matter hyperintensities with Fazekas scale 2 were observed in 40.6% of the patients, while Fazekas scale 3 were observed in 18.8% of the patients. Preoperative MRI findings and postoperative neurological outcomes were not significantly different. Seventy-six patients underwent rScO2 monitoring intraoperatively. Changes in rScO2 in patients with and without carotid/cerebrovascular lesions were not significantly different. However, rScO2 was significantly lower in patients who developed cerebral infarction. Conclusions Significant carotid artery stenosis and intracranial lesions were observed in 10.5% and 7.5% of the patients, respectively. Although preoperative MRI findings and changes in rScO2 or postoperative outcomes showed no significant association, patients with postoperative cerebral infarction showed significantly lower rScO2 intraoperatively.
Collapse
Affiliation(s)
- Daijiro Hori
- Department of Cardiovascular Surgery, Ageo Central General Hospital, Saitama, Japan
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Takahiro Yamamoto
- Department of Cardiovascular Surgery, Ageo Central General Hospital, Saitama, Japan
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Naoyuki Kimura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
31
|
Smielewski P, Beqiri E, Mataczynski C, Placek M, Kazimierska A, Hutchinson P, Czosnyka M, Kasprowicz M. Advanced neuromonitoring powered by ICM+ and its place in the Brand New AI World, reflections at the 20th anniversary boundary. BRAIN & SPINE 2024; 4:102835. [PMID: 39071453 PMCID: PMC11278591 DOI: 10.1016/j.bas.2024.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 07/30/2024]
Abstract
Introduction Adoption of the ICM+® brain monitoring software by clinical research centres worldwide has been continuously growing over the past 20 years. This has necessitated ongoing updates to accommodate evolving neuromonitoring research needs, including recent explosion of artificial intelligence (AI). Research question We sought to provide an update on the current features of the software. In particular, we aimed to highlight the new options of integrating AI models. Material and methods We reviewed all currently available ICM+ analytical areas and discussed potential AI based extensions in each. We tested a proof-of-concept integration of an AI model and evaluated its performance for real-time data processing. Results ICM+ current analytical tools serve both real-time (bed-side) and offline (file based) analysis, including the calculation engine, Signal Calculator, Custom Statistics, Batch tools, ScriptLab and charting. The ICM+ Python plugin engine allows to execute custom Python scripts and take advantage of complex AI frameworks. For the proof-of-concept, we used a neural network convolutional model with 207,000 trainable parameters that classifies morphology of intracranial pressure (ICP) pulse waveform into 5 pulse categories (normal to pathological plus artefactual). When evaluated within ICM+ plugin script on a Windows 10 laptop the classification of a 5 min ICP waveform segment took only 0.19s with a 2.3s of initial, one-off, model loading time required. Conclusions Modernised ICM+ analytical tools, reviewed in this manuscript, include integration of custom AI models allowing them to be shared and run in real-time, facilitating rapid prototyping and validating of new AI ideas at the bed-side.
Collapse
Affiliation(s)
- P. Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - E. Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - C. Mataczynski
- Department of Computer Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - M. Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A. Kazimierska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - P.J. Hutchinson
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Computer Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
- Neurosurgery Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - M. Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M. Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
32
|
Nguyen T, Park S, Park J, Sodager A, George T, Gandjbakhche A. Application of the Single Source-Detector Separation Algorithm in Wearable Neuroimaging Devices: A Step toward Miniaturized Biosensor for Hypoxia Detection. Bioengineering (Basel) 2024; 11:385. [PMID: 38671806 PMCID: PMC11048477 DOI: 10.3390/bioengineering11040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Most currently available wearable devices to noninvasively detect hypoxia use the spatially resolved spectroscopy (SRS) method to calculate cerebral tissue oxygen saturation (StO2). This study applies the single source-detector separation (SSDS) algorithm to calculate StO2. Near-infrared spectroscopy (NIRS) data were collected from 26 healthy adult volunteers during a breath-holding task using a wearable NIRS device, which included two source-detector separations (SDSs). These data were used to derive oxyhemoglobin (HbO) change and StO2. In the group analysis, both HbO change and StO2 exhibited significant change during a breath-holding task. Specifically, they initially decreased to minimums at around 10 s and then steadily increased to maximums, which were significantly greater than baseline levels, at 25-30 s (p-HbO < 0.001 and p-StO2 < 0.05). However, at an individual level, the SRS method failed to detect changes in cerebral StO2 in response to a short breath-holding task. Furthermore, the SSDS algorithm is more robust than the SRS method in quantifying change in cerebral StO2 in response to a breath-holding task. In conclusion, these findings have demonstrated the potential use of the SSDS algorithm in developing a miniaturized wearable biosensor to monitor cerebral StO2 and detect cerebral hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-4480, USA; (T.N.); (S.P.); (J.P.); (A.S.); (T.G.)
| |
Collapse
|
33
|
Gomez A, Marquez I, Froese L, Bergmann T, Sainbhi AS, Vakitbilir N, Islam A, Stein KY, Ibrahim Y, Zeiler FA. Near-Infrared Spectroscopy Regional Oxygen Saturation Based Cerebrovascular Reactivity Assessments in Chronic Traumatic Neural Injury versus in Health: A Prospective Cohort Study. Bioengineering (Basel) 2024; 11:310. [PMID: 38671733 PMCID: PMC11047915 DOI: 10.3390/bioengineering11040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Near-infrared spectroscopy (NIRS) regional cerebral oxygen saturation (rSO2)-based cerebrovascular reactivity (CVR) monitoring has enabled entirely non-invasive, continuous monitoring during both acute and long-term phases of care. To date, long-term post-injury CVR has not been properly characterized after acute traumatic neural injury, also known as traumatic brain injury (TBI). This study aims to compare CVR in those recovering from moderate-to-severe TBI with a healthy control group. A total of 101 heathy subjects were recruited for this study, along with 29 TBI patients. In the healthy cohort, the arterial blood pressure variant of the cerebral oxygen index (COx_a) was not statistically different between males and females or in the dominant and non-dominant hemispheres. In the TBI cohort, COx_a was not statistically different between the first and last available follow-up or by the side of cranial surgery. Surprisingly, CVR, as measured by COx_a, was statistically better in those recovering from TBI than those in the healthy cohort. In this prospective cohort study, CVR, as measured by NIRS-based methods, was found to be more active in those recovering from TBI than in the healthy cohort. This study may indicate that in individuals that survive TBI, CVR may be enhanced as a neuroprotective measure.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Izabella Marquez
- Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Tobias Bergmann
- Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Abrar Islam
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Kevin Y. Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Younis Ibrahim
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Centre on Aging, Fort Garry Campus, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, Karolinksa Institutet, 171 77 Stockholm, Sweden
- Pan Am Clinic Foundation, Winnipeg, MB R3M 3E4, Canada
| |
Collapse
|
34
|
Gomez A, Froese L, Griesdale D, Thelin EP, Raj R, van Iperenburg L, Tas J, Aries M, Stein KY, Gallagher C, Bernard F, Kramer AH, Zeiler FA. Prognostic value of near-infrared spectroscopy regional oxygen saturation and cerebrovascular reactivity index in acute traumatic neural injury: a CAnadian High-Resolution Traumatic Brain Injury (CAHR-TBI) Cohort Study. Crit Care 2024; 28:78. [PMID: 38486211 PMCID: PMC10938687 DOI: 10.1186/s13054-024-04859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Near-infrared spectroscopy regional cerebral oxygen saturation (rSO2) has gained interest as a raw parameter and as a basis for measuring cerebrovascular reactivity (CVR) due to its noninvasive nature and high spatial resolution. However, the prognostic utility of these parameters has not yet been determined. This study aimed to identify threshold values of rSO2 and rSO2-based CVR at which outcomes worsened following traumatic brain injury (TBI). METHODS A retrospective multi-institutional cohort study was performed. The cohort included TBI patients treated in four adult intensive care units (ICU). The cerebral oxygen indices, COx (using rSO2 and cerebral perfusion pressure) as well as COx_a (using rSO2 and arterial blood pressure) were calculated for each patient. Grand mean thresholds along with exposure-based thresholds were determined utilizing sequential chi-squared analysis and univariate logistic regression, respectively. RESULTS In the cohort of 129 patients, there was no identifiable threshold for raw rSO2 at which outcomes were found to worsen. For both COx and COx_a, an optimal grand mean threshold value of 0.2 was identified for both survival and favorable outcomes, while percent time above - 0.05 was uniformly found to have the best discriminative value. CONCLUSIONS In this multi-institutional cohort study, raw rSO2was found to contain no significant prognostic information. However, rSO2-based indices of CVR, COx and COx_a, were found to have a uniform grand mean threshold of 0.2 and exposure-based threshold of - 0.05, above which clinical outcomes markedly worsened. This study lays the groundwork to transition to less invasive means of continuously measuring CVR.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Donald Griesdale
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Levi van Iperenburg
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Jeanette Tas
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Clare Gallagher
- Section of Neurosurgery, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Francis Bernard
- Section of Critical Care, Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Andreas H Kramer
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Cheng R, Bai X, Guo J, Huang L, Zhao D, Liu Z, Zhang W. Hyperspectral discrimination of ginseng variety and age from Changbai Mountain area. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123613. [PMID: 37976570 DOI: 10.1016/j.saa.2023.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The efficacy and market value of Panax ginseng Meyer are significantly influenced by its diversity and age. Traditional identification methods are prone to subjective biases and necessitate the use of destructive sample processing, leading to the loss and wastage of ginseng. Consequently, non-destructive in-situ identification has emerged as a crucial subject of interest for both researchers and the ginseng industry. The advancement of technology and the expansion of research have introduced spectral technology and image processing technology as novel approaches and concepts for non-destructive in-situ identification. METHODS Hyperspectral imaging (HSI) is a methodology that combines conventional spectroscopy and imaging to acquire comprehensive spectral and spatial data from various samples. In this study, we investigated the use of Support Vector Machine (SVM) and Spectral Angle Mapper (SAM) classifier algorithms, in conjunction with HSI classification technology, for quasi-Artificial Intelligence (quasi-AI) ginseng identification. To enhance the hyperspectral images prior to SVM classification, we compared the efficacy of Principal Component Analysis (PCA), Minimum Noise Fraction (MNF), and Independent Component Analysis (ICA). RESULTS The classification of ginseng based on age was accomplished through the utilization of Radial Basis Function (RBF) kernel SVM and SAM algorithm, which was trained on feature enhanced images. The classification of WMG, MCG, and GG is primarily based on age, with the endmember spectrum serving as the foundation for SAM and SVM. CONCLUSION The "endmember spectrum set" derived from the classification outcomes can serve as the "mutation point" for identifying ginseng of different ages.
Collapse
Affiliation(s)
- Ruiyang Cheng
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jianying Guo
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Luqi Huang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaojian Liu
- Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, China.
| | - Wei Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
36
|
Agrawal S, Abecasis F, Jalloh I. Neuromonitoring in Children with Traumatic Brain Injury. Neurocrit Care 2024; 40:147-158. [PMID: 37386341 PMCID: PMC10861621 DOI: 10.1007/s12028-023-01779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Traumatic brain injury remains a major cause of mortality and morbidity in children across the world. Current management based on international guidelines focuses on a fixed therapeutic target of less than 20 mm Hg for managing intracranial pressure and 40-50 mm Hg for cerebral perfusion pressure across the pediatric age group. To improve outcome from this complex disease, it is essential to understand the pathophysiological mechanisms responsible for disease evolution by using different monitoring tools. In this narrative review, we discuss the neuromonitoring tools available for use to help guide management of severe traumatic brain injury in children and some of the techniques that can in future help with individualizing treatment targets based on advanced cerebral physiology monitoring.
Collapse
Affiliation(s)
- Shruti Agrawal
- Department of Paediatric Intensive Care, Cambridge University Hospitals National Health Service Foundation Trust, Level 3, Box 7, Addenbrookes Hospital Hills Road, Cambridge, UK.
- University of Cambridge, Cambridge, UK.
| | - Francisco Abecasis
- Paediatric Intensive Care Unit, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Ibrahim Jalloh
- University of Cambridge, Cambridge, UK
- Department of Neurosurgery, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| |
Collapse
|
37
|
Gomez A, Froese L, Bergmann TJG, Sainbhi AS, Vakitbilir N, Islam A, Stein KY, Marquez I, Ibrahim Y, Zeiler FA. Non-Invasive Estimation of Intracranial Pressure-Derived Cerebrovascular Reactivity Using Near-Infrared Spectroscopy Sensor Technology in Acute Neural Injury: A Time-Series Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:499. [PMID: 38257592 PMCID: PMC10818714 DOI: 10.3390/s24020499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The contemporary monitoring of cerebrovascular reactivity (CVR) relies on invasive intracranial pressure (ICP) monitoring which limits its application. Interest is shifting towards near-infrared spectroscopic regional cerebral oxygen saturation (rSO2)-based indices of CVR which are less invasive and have improved spatial resolution. This study aims to examine and model the relationship between ICP and rSO2-based indices of CVR. Through a retrospective cohort study of prospectively collected physiologic data in moderate to severe traumatic brain injury (TBI) patients, linear mixed effects modeling techniques, augmented with time-series analysis, were utilized to evaluate the ability of rSO2-based indices of CVR to model ICP-based indices. It was found that rSO2-based indices of CVR had a statistically significant linear relationship with ICP-based indices, even when the hierarchical and autocorrelative nature of the data was accounted for. This strengthens the body of literature indicating the validity of rSO2-based indices of CVR and potential greatly expands the scope of CVR monitoring.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Tobias J. G. Bergmann
- Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (T.J.G.B.); (I.M.)
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Abrar Islam
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Kevin Y. Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Izabella Marquez
- Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (T.J.G.B.); (I.M.)
| | - Younis Ibrahim
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
| | - Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada;
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.Y.S.); (Y.I.)
- Centre on Aging, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, Karolinksa Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
38
|
Tabone L, El-Tannoury J, Levy M, Sauthier M, Joram N, Du Pont-Thibodeau G, Bourgoin P, Al-Omar S, Poirier N, Emeriaud G, Thibault C. Determining Optimal Mean Arterial Blood Pressure Based on Cerebral Autoregulation in Children after Cardiac Surgery. Pediatr Cardiol 2024; 45:81-91. [PMID: 37945783 DOI: 10.1007/s00246-023-03326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
To evaluate the feasibility of continuous determination of the optimal mean arterial blood pressure (opt-MAP) according to cerebral autoregulation and to describe the opt-MAP, the autoregulation limits, and the time spent outside these limits in children within 48 h of cardiac surgery. Cerebral autoregulation was assessed using the correlation coefficient (COx) between cerebral oxygenation and MAP in children following cardiac surgery. Plots depicting the COx according to the MAP were used to determine the opt-MAP using weighted multiple time windows. For each patient, we estimated (1) the time spent with MAP outside the autoregulation limits and (2) the burden of deviation, defined as the area between the MAP curve and the autoregulation limits when the MAP was outside these limits. Fifty-one patients with a median age of 7.1 (IQR 0.7-52.0) months old were included. The opt-MAP was calculated for 94% (IQR 90-96) of the monitored time. The opt-MAP was significantly lower in neonates < 1 month old. The patients spent 24% (18-31) of the time outside of the autoregulation limits, with no significant differences between age groups. Continuous determination of the opt-MAP is feasible in children within the first 48 h following cardiac surgery.
Collapse
Affiliation(s)
- Laurence Tabone
- Division of Critical Care Medicine, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Pediatric Intensive Care Unit and Pediatric Emergency Department, CHU Clocheville, Tours, France
| | - Jihad El-Tannoury
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Michael Levy
- Pediatric Intensive Care Unit, CHU Robert Debré, Paris, France
| | - Michael Sauthier
- Division of Critical Care Medicine, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Joram
- Pediatric Intensive Care Unit, CHU de Nantes, Nantes, France
| | - Geneviève Du Pont-Thibodeau
- Division of Critical Care Medicine, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Pierre Bourgoin
- Pediatric Intensive Care Unit, CHU de Nantes, Nantes, France
| | - Sally Al-Omar
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Nancy Poirier
- Department of Cardiac Surgery, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Guillaume Emeriaud
- Division of Critical Care Medicine, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Céline Thibault
- Division of Critical Care Medicine, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada.
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
39
|
Bergmann T, Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Islam A, Stein K, Marquez I, Amenta F, Park K, Ibrahim Y, Zeiler FA. Evaluation of Morlet Wavelet Analysis for Artifact Detection in Low-Frequency Commercial Near-Infrared Spectroscopy Systems. Bioengineering (Basel) 2023; 11:33. [PMID: 38247909 PMCID: PMC11154537 DOI: 10.3390/bioengineering11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Regional cerebral oxygen saturation (rSO2), a method of cerebral tissue oxygenation measurement, is recorded using non-invasive near-infrared Spectroscopy (NIRS) devices. A major limitation is that recorded signals often contain artifacts. Manually removing these artifacts is both resource and time consuming. The objective was to evaluate the applicability of using wavelet analysis as an automated method for simple signal loss artifact clearance of rSO2 signals obtained from commercially available devices. A retrospective observational study using existing populations (healthy control (HC), elective spinal surgery patients (SP), and traumatic brain injury patients (TBI)) was conducted. Arterial blood pressure (ABP) and rSO2 data were collected in all patients. Wavelet analysis was determined to be successful in removing simple signal loss artifacts using wavelet coefficients and coherence to detect signal loss artifacts in rSO2 signals. The removal success rates in HC, SP, and TBI populations were 100%, 99.8%, and 99.7%, respectively (though it had limited precision in determining the exact point in time). Thus, wavelet analysis may prove to be useful in a layered approach NIRS signal artifact tool utilizing higher-frequency data; however, future work is needed.
Collapse
Affiliation(s)
- Tobias Bergmann
- Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (I.M.); (F.A.)
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Nuray Vakitbilir
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Abrar Islam
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Kevin Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Izzy Marquez
- Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (I.M.); (F.A.)
| | - Fiorella Amenta
- Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (I.M.); (F.A.)
| | - Kevin Park
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Younis Ibrahim
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
40
|
Sjauw DJT, Dulfer K, van Hoorn CE, Buijs V, de Bruijn L, Reijtenbagh BWM, Tangel VE, de Graaff JC. The eXpectations of Parents regarding Anesthesiology Study (XPAS) from a parental perspective: a two-phase observational cross-sectional cohort study. Paediatr Anaesth 2023; 33:1034-1074. [PMID: 37650551 DOI: 10.1111/pan.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Uncertainty concerning anesthetic procedures and risks in children requiring anesthesia may cause concerns in parents and caregivers. AIMS To explore parental expectations and experiences regarding their child's anesthesia using questionnaires designed with parental input. METHODS This observational cross-sectional cohort study included parents (including caregivers) of children undergoing anesthesia in a tertiary pediatric referral university hospital. The study consisted of two phases. In Phase 1, we developed three questionnaires with parental involvement through a focus group discussion and individual interviews. The questionnaires focused on parental satisfaction, knowledge, concerns, and need for preparation regarding their child's anesthesia. In Phase 2, independent samples of parents completed the questionnaires at three time points: before the preanesthesia assessment (T1), 2 days after the preanesthesia assessment (T2), and 4 days after the anesthetic procedure (T3). RESULTS In Phase 1, 22 parents were involved in the development of the questionnaires. The three questionnaires contained 43 questions in total, of which 10 had been proposed by parents. In Phase 2, 78% (474 out of 934) parents participated at T1, 36% (610 out of 1705), at T2 and 34% (546 out of 1622) at T3. Parental satisfaction scores were rated on a visual analogue scale for the preanesthesia assessment with a median of 87/100, and with a median of 90/100 for the anesthetic procedure (0: not satisfied and 100: satisfied). Parental concerns were rated with a median of 50/100 (0: no concerns and 100: extremely concerned). Parental answers from the questionnaire at T2 revealed significant knowledge deficits, with only 73% reporting that the anesthesiologist was a physician. Parents preferred to receive more information about the procedure, especially regarding the intended effects and side effects of anesthesia. CONCLUSIONS Overall, parental satisfaction scores regarding the pediatric anesthesiology procedure were high, with a minority expressing concerns. Parents indicated a preference for their child's anesthesiologist to visit them both before and after the anesthetic procedure. Parental expectations regarding anesthesia did not completely correspond with the information provided; more information from the clinician about the intended effects and side effects of anesthesia was desired.
Collapse
Affiliation(s)
- Daphne J T Sjauw
- Department of Anesthesiology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Karolijn Dulfer
- Department of Pediatrics and Pediatric Surgery, Intensive Care Unit, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Camille E van Hoorn
- Department of Anesthesiology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vivi Buijs
- Department of Medical Care Management, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth de Bruijn
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bente W M Reijtenbagh
- Department of Anesthesiology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Virginia E Tangel
- Department of Anesthesiology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York, USA
| | - Jurgen C de Graaff
- Department of Anesthesiology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Anesthesiology, Admiraal de Ruyter Ziekenhuis-Erasmus MC, Goes, The Netherlands
| |
Collapse
|
41
|
Andersen L, Appelblad M, Wiklund U, Sundström N, Svenmarker S. Our initial experience of monitoring the autoregulation of cerebral blood flow during cardiopulmonary bypass. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2023; 55:209-217. [PMID: 38099638 PMCID: PMC10723576 DOI: 10.1051/ject/2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Cerebral blood flow (CBF) is believed to be relatively constant within an upper and lower blood pressure limit. Different methods are available to monitor CBF autoregulation during surgery. This study aims to critically analyze the application of the cerebral oxygenation index (COx), one of the commonly used techniques, using a reference to data from a series of clinical registrations. METHOD CBF was monitored using near-infrared spectroscopy, while cerebral blood pressure was estimated by recordings obtained from either the radial or femoral artery in 10 patients undergoing cardiopulmonary bypass. The association between CBF and blood pressure was calculated as a moving continuous correlation coefficient. A COx index > 0.4 was regarded as a sign of abnormal cerebral autoregulation (CA). Recordings were examined to discuss reliability measures and clinical feasibility of the measurements, followed by interpretation of individual results, identification of possible pitfalls, and suggestions of alternative methods. RESULTS AND CONCLUSION Monitoring of CA during cardiopulmonary bypass is intriguing and complex. A series of challenges and limitations should be considered before introducing this method into clinical practice.
Collapse
Affiliation(s)
- Leon Andersen
- Heart Centre, Department of Public Health and Clinical Medicine, Umeå University 901 87 Umeå Sweden
| | - Micael Appelblad
- Heart Centre, Department of Public Health and Clinical Medicine, Umeå University 901 87 Umeå Sweden
| | - Urban Wiklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University 901 87 Umeå Sweden
| | - Nina Sundström
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University 901 87 Umeå Sweden
| | - Staffan Svenmarker
- Heart Centre, Department of Public Health and Clinical Medicine, Umeå University 901 87 Umeå Sweden
| |
Collapse
|
42
|
Brassard P, Roy MA, Burma JS, Labrecque L, Smirl JD. Quantification of dynamic cerebral autoregulation: welcome to the jungle! Clin Auton Res 2023; 33:791-810. [PMID: 37758907 DOI: 10.1007/s10286-023-00986-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE Patients with dysautonomia often experience symptoms such as dizziness, syncope, blurred vision and brain fog. Dynamic cerebral autoregulation, or the ability of the cerebrovasculature to react to transient changes in arterial blood pressure, could be associated with these symptoms. METHODS In this narrative review, we go beyond the classical view of cerebral autoregulation to discuss dynamic cerebral autoregulation, focusing on recent advances pitfalls and future directions. RESULTS Following some historical background, this narrative review provides a brief overview of the concept of cerebral autoregulation, with a focus on the quantification of dynamic cerebral autoregulation. We then discuss the main protocols and analytical approaches to assess dynamic cerebral autoregulation, including recent advances and important issues which need to be tackled. CONCLUSION The researcher or clinician new to this field needs an adequate comprehension of the toolbox they have to adequately assess, and interpret, the complex relationship between arterial blood pressure and cerebral blood flow in healthy individuals and clinical populations, including patients with autonomic disorders.
Collapse
Affiliation(s)
- Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada.
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
43
|
Kahl U, Krause L, Amin S, Harler U, Beck S, Dohrmann T, Mewes C, Graefen M, Haese A, Zöllner C, Fischer M. Impact of Intraoperative Fluctuations of Cardiac Output on Cerebrovascular Autoregulation: An Integrative Secondary Analysis of Individual-level Data. J Neurosurg Anesthesiol 2023:00008506-990000000-00087. [PMID: 38011867 PMCID: PMC11377045 DOI: 10.1097/ana.0000000000000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Intraoperative impairment of cerebral autoregulation (CA) has been associated with perioperative neurocognitive disorders. We investigated whether intraoperative fluctuations in cardiac index are associated with changes in CA. METHODS We conducted an integrative explorative secondary analysis of individual-level data from 2 prospective observational studies including patients scheduled for radical prostatectomy. We assessed cardiac index by pulse contour analysis and CA as the cerebral oxygenation index (COx) based on near-infrared spectroscopy. We analyzed (1) the cross-correlation between cardiac index and COx, (2) the correlation between the time-weighted average (TWA) of the cardiac index below 2.5 L min-1 m-2, and the TWA of COx above 0.3, and (3) the difference in areas between the cardiac index curve and the COx curve among various subgroups. RESULTS The final analysis included 155 patients. The median cardiac index was 3.16 [IQR: 2.65, 3.72] L min-1 m-2. Median COx was 0.23 [IQR: 0.12, 0.34]. (1) The median cross-correlation between cardiac index and COx was 0.230 [IQR: 0.186, 0.287]. (2) The correlation (Spearman ρ) between TWA of cardiac index below 2.5 L min-1 m-2 and TWA of COx above 0.3 was 0.095 (P=0.239). (3) Areas between the cardiac index curve and the COx curve did not differ significantly among subgroups (<65 vs. ≥65 y, P=0.903; 0 vs. ≥1 cardiovascular risk factors, P=0.518; arterial hypertension vs. none, P=0.822; open vs. robot-assisted radical prostatectomy, P=0.699). CONCLUSIONS We found no meaningful association between intraoperative fluctuations in cardiac index and CA. However, it is possible that a potential association was masked by the influence of anesthesia on CA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
44
|
Peng L, Guo D, Shi Y, Yang J, Wei W. The incidence, risk factors and outcomes of impaired cerebral autoregulation in aortic arch surgery: a single-center, retrospective cohort study. J Cardiothorac Surg 2023; 18:312. [PMID: 37950284 PMCID: PMC10638741 DOI: 10.1186/s13019-023-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Impairment of cerebral autoregulation (CA) has been observed in patients undergoing cardiopulmonary bypass (CPB), but little is known about its risks and associations with outcomes. The cerebral oximetry index (COx), which is a moving linear correlation coefficient between regional cerebral oxygen saturation (rScO2) and mean blood pressure (MAP), may reflect CA function. When COx approaches 1, it implies that CA is damaged, whereas the CA is functional when the COx value approaches 0. The objective of this study was to analyze the incidence and risks of impaired CA, based on COx assessment, in patients undergoing total aortic arch replacement under systemic moderate hypothermia and circulatory arrest of the lower body (MHCA). We also evaluated the association between impaired CA and patient outcomes. METHODS One hundred and fifty-four adult patients who underwent total aortic arch replacement with stented elephant trunk implantation under MHCA at our hospital were retrospectively analyzed. Patients were defined as having new-onset impaired CA if pre-CPB COx < 0.3 and post-CPB COx > 0.3. Pre- and intraoperative factors were tested for independent association with impaired CA. Postoperative outcomes were compared between patients with normal and impaired CA. RESULTS In our 154 patients, 46(29.9%) developed new-onset impaired CA after CPB. Multivariable analysis revealed a prolonged low rScO2 (rScO2 < 55%) independently associated with onset of impaired CA, and receiver operating charactoristic curve showed a cutoff value at 40 min (sensitivity, 89.5%; specificity, 68.0%). Compared with normal CA patients, those with impaired CA showed a significantly higher rates of in-hospital mortality and postoperative complications. CONCLUSIONS Prolonged low rScO2 (rScO2 < 55%) during aortic arch surgery was closely related to onset of impaired CA. Impaired CA remained associated with the increased rates of postoperative complications and in-hospital mortality. TRIAL REGISTRATION ChiCTR1800014545 with registered date 20/01/2018.
Collapse
Affiliation(s)
- Ling Peng
- Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Dan Guo
- Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yinhui Shi
- Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Jiapei Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Wei Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China.
| |
Collapse
|
45
|
Tachino J, Nonomiya Y, Taniuchi S, Shintani A, Nakao S, Takegawa R, Hirose T, Sakai T, Ohnishi M, Shimazu T, Shiozaki T. Association between time-dependent changes in cerebrovascular autoregulation after cardiac arrest and outcomes: A prospective cohort study. J Cereb Blood Flow Metab 2023; 43:1942-1950. [PMID: 37377095 PMCID: PMC10676135 DOI: 10.1177/0271678x231185658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
This prospective observational single-center cohort study aimed to determine an association between cerebrovascular autoregulation (CVAR) and outcomes in hypoxic-ischemic brain injury post-cardiac arrest (CA), and assessed 100 consecutive post-CA patients in Japan between June 2017 and May 2020 who experienced a return of spontaneous circulation. Continuous monitoring was performed for 96 h to determine CVAR presence. A moving Pearson correlation coefficient was calculated from the mean arterial pressure and cerebral regional oxygen saturation. The association between CVAR and outcomes was evaluated using the Cox proportional hazard model; non-CVAR time percent was the time-dependent, age-adjusted covariate. The non-linear effect of target temperature management (TTM) was assessed using a restricted cubic spline. Of the 100 participants, CVAR was detected using the cerebral performance category (CPC) in all patients with a good neurological outcome (CPC 1-2) and in 65 patients (88%) with a poor outcome (CPC 3-5). Survival probability decreased significantly with increasing non-CVAR time percent. The TTM versus the non-TTM group had a significantly lower probability of a poor neurological outcome at 6 months with a non-CVAR time of 18%-37% (p < 0.05). Longer non-CVAR time may be associated with significantly increased mortality in hypoxic-ischemic brain injury post-CA.
Collapse
Affiliation(s)
- Jotaro Tachino
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuta Nonomiya
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satsuki Taniuchi
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shunichiro Nakao
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, USA
| | - Tomoya Hirose
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiko Sakai
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mitsuo Ohnishi
- Department of Acute Medicine and Critical Care Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | | | - Tadahiko Shiozaki
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
46
|
Hazenberg L, Aries M, Beqiri E, Mess WH, van Mook W, Delnoij T, Zeiler FA, van Kuijk S, Tas J. Are NIRS-derived cerebral autoregulation and ABPopt values different between hemispheres in hypoxic-ischemic brain injury patients following cardiac arrest? J Clin Monit Comput 2023; 37:1427-1430. [PMID: 37195622 DOI: 10.1007/s10877-023-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Near-infrared spectroscopy (NIRS) has been suggested as a non-invasive monitoring technique to set cerebral autoregulation (CA) guided ABP targets (ABPopt) in comatose patients with hypoxic-ischemic brain injury (HIBI) following cardiac arrest. We aimed to determine whether NIRS-derived CA and ABPopt values differ between left and right-sided recordings in these patients. METHODS Bifrontal regional oxygen saturation (rSO2) was measured using INVOS or Fore-Sight devices. The Cerebral Oximetry index (COx) was determined as a CA measure. ABPopt was calculated using a published algorithm with multi-window weighted approach. A paired Wilcoxon signed rank test and intraclass correlation coefficients (ICC) were used to compare (1) systematic differences and (2) degree of agreement between left and right-sided measurements. RESULTS Eleven patients were monitored. In one patient there was malfunctioning of the right-sided optode and in one patient not any ABPopt value was calculated. Comparison of rSO2 and COx was possible in ten patients and ABPopt in nine patients. The average recording time was 26 (IQR, 22-42) hours. The ABPopt values were not significantly different between the bifrontal recordings (80 (95%-CI 76-84) and 82 (95%-CI 75-84) mmHg) for the left and right recordings, p = 1.0). The ICC for ABPopt was high (0.95, 0.78-0.98, p < 0.001). Similar results were obtained for rSO2 and COx. CONCLUSION We found no differences between left and right-sided NIRS recordings or CA estimation in comatose and ventilated HIBI patients. This suggests that in these patients without signs of localized pathology unilateral recordings might be sufficient to estimate CA status or provide ABPopt targets.
Collapse
Affiliation(s)
- L Hazenberg
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Mjh Aries
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - E Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - W H Mess
- Department of Clinical Neurophysiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Wnka van Mook
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Academy for Postgraduate Training, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
| | - T Delnoij
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Manitoba, Canada
- Division of Anesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Smj van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Tas
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
47
|
Zhang LQ, Chang H, Kalra A, Humayun M, Rosenblatt KR, Shah VA, Geocadin RG, Brown CH, Kim BS, Whitman GJR, Rivera-Lara L, Cho SM. Continuous Monitoring of Cerebral Autoregulation in Adults Supported by Extracorporeal Membrane Oxygenation. RESEARCH SQUARE 2023:rs.3.rs-3300834. [PMID: 37790309 PMCID: PMC10543291 DOI: 10.21203/rs.3.rs-3300834/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Impaired cerebral autoregulation (CA) is one of several proposed mechanisms of acute brain injury in patients supported by extracorporeal membrane oxygenation (ECMO). The primary aim of this study was to determine the feasibility of continuous CA monitoring in adult ECMO patients. Our secondary aims were to describe changes in cerebral oximetry index (COx) and other metrics of CA over time and in relation to functional neurologic outcomes. Methods This is a single-center prospective observational study. We measured Cox, a surrogate measurement of cerebral blood flow, measured by near-infrared spectroscopy, which is an index of CA derived from the moving correlation between mean arterial pressure and slow waves of regional cerebral oxygen saturation. A COx value that approaches 1 indicates impaired CA. Using COx, we determined the optimal MAP (MAPOPT), lower and upper limits of autoregulation for individual patients. These measurements were examined in relation to modified Rankin Scale (mRS) scores. Results Fifteen patients (median age=57 years [IQR=47-69]) with 150 autoregulation measurements were included for analysis. Eleven were on veno-arterial ECMO and 4 on veno-venous. Mean COx was higher on post-cannulation day 1 than on day 2 (0.2 vs 0.09, p<0.01), indicating improved CA over time. COx was higher in VA-ECMO patients than in VV-ECMO (0.12 vs 0.06, p=0.04). Median MAPOPT for entire cohort was highly variable, ranging 55-110 mmHg. Patients with mRS 0-3 (good outcome) at 3 and 6 months spent less time outside of MAPOPT compared to patients with mRS 4-6 (poor outcome) (74% vs 82%, p=0.01). The percentage of time when observed MAP was outside the limits of autoregulation was higher on post-cannulation day 1 than on day 2 (18.2% vs 3.3%, p<0.01). Conclusions In ECMO patients, it is feasible to monitor CA continuously at the bedside. CA improved over time, most significantly between post-cannulation days 1 and 2. CA was more impaired in VA-ECMO than VV-ECMO. Spending less time outside of MAPOPT may be associated with achieving a good neurologic outcome.
Collapse
Affiliation(s)
- Lucy Q Zhang
- Johns Hopkins School of Medicine: The Johns Hopkins University School of Medicine
| | - Henry Chang
- Johns Hopkins School of Medicine: The Johns Hopkins University School of Medicine
| | - Andrew Kalra
- Johns Hopkins School of Medicine: The Johns Hopkins University School of Medicine
| | - Mariyam Humayun
- Johns Hopkins School of Medicine: The Johns Hopkins University School of Medicine
| | - Kathryn R Rosenblatt
- Johns Hopkins School of Medicine: The Johns Hopkins University School of Medicine
| | - Vishank A Shah
- Johns Hopkins School of Medicine: The Johns Hopkins University School of Medicine
| | | | - Charles H Brown
- Johns Hopkins School of Medicine: The Johns Hopkins University School of Medicine
| | - Bo Soo Kim
- Johns Hopkins School of Medicine: The Johns Hopkins University School of Medicine
| | - Glenn J R Whitman
- Johns Hopkins School of Medicine: The Johns Hopkins University School of Medicine
| | - Lucia Rivera-Lara
- Stanford University Department of Neurology and Neurological Sciences
| | - Sung-Min Cho
- Johns Hopkins Department of Anesthesiology and Critical Care Medicine: Johns Hopkins Medicine Department of Anesthesiology and Critical Care Medicine
| |
Collapse
|
48
|
Shen Y, Wang Q, Modi HR, Pathak AP, Geocadin RG, Thakor NV, Senarathna J. Quantification of Cerebral Vascular Autoregulation Immediately Following Resuscitation from Cardiac Arrest. Ann Biomed Eng 2023; 51:1847-1858. [PMID: 37184745 PMCID: PMC10760599 DOI: 10.1007/s10439-023-03210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Cerebral vascular autoregulation is impaired following resuscitation from cardiac arrest (CA), and its quantification may allow assessing CA-induced brain injury. However, hyperemia occurring immediately post-resuscitation limits the application of most metrics that quantify autoregulation. Therefore, to characterize autoregulation during this critical period, we developed three novel metrics based on how the cerebrovascular resistance (CVR) covaries with changes in cerebral perfusion pressure (CPP): (i) θCVR, which quantifies the CVR vs CPP gradient, (ii) a CVR-based transfer function analysis, and (iii) CVRx, the correlation coefficient between CPP and CVR. We tested these metrics in a model of asphyxia induced CA and resuscitation using seven adult male Wistar rats. Mean arterial pressure (MAP) and cortical blood flow recorded for 30 min post-resuscitation via arterial cannulation and laser speckle contrast imaging, were used as surrogates of CPP and cerebral blood flow (CBF), while CVR was computed as the CPP/CBF ratio. Using our metrics, we found that the status of cerebral vascular autoregulation altered substantially during hyperemia, with changes spread throughout the 0-0.05 Hz frequency band. Our metrics push the boundary of how soon autoregulation can be assessed, and if validated against outcome markers, may help develop a reliable metric of brain injury post-resuscitation.
Collapse
Affiliation(s)
- Yucheng Shen
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qihong Wang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hiren R Modi
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Traylor Bldg. 701, Baltimore, MD, 21205, USA
| | - Romergryko G Geocadin
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesia and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Traylor Bldg. 701, Baltimore, MD, 21205, USA.
- The Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
49
|
Merkel CA, Brady KM, Votava-Smith JK, Tran NN. A pilot study: Comparing a novel noninvasive measure of cerebrovascular stability index with an invasive measure of cerebral autoregulation in neonates with congenital heart disease. J Clin Transl Sci 2023; 7:e165. [PMID: 37588677 PMCID: PMC10425865 DOI: 10.1017/cts.2023.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 08/18/2023] Open
Abstract
Infants with congenital heart disease (CHD) may have impaired cerebral autoregulation (CA) associated with cerebral fractional tissue oxygen extraction (FTOE). We conducted a pilot study in nine CHD neonates to validate a noninvasive CA measure, cerebrovascular stability index (CSI), by eliciting responses to postural tilts. We compared CSI to an invasive measure of CA and to FTOE collected during tilts (FTOESpot). FTOESpot correlated with CSI, as did the change in FTOE during tilts, but CSI's correlation with impaired CA did not reach significance. Larger trials are indicated to validate CSI, allowing for noninvasive CA measurements and measurements in outpatient settings.
Collapse
Affiliation(s)
| | - Kenneth M. Brady
- Division of Cardiac Anesthesia, Northwestern University Feinberg School of Medicine and Ann & Robert H, Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Jodie K. Votava-Smith
- Keck School of Medicine, Los Angeles, CA, USA
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Nhu N. Tran
- Keck School of Medicine, Los Angeles, CA, USA
- Division of Neonatology, Department of Pediatrics, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
50
|
Sanford EL, Akorede R, Miller I, Morriss MC, Nandy K, Raman L, Busch DR. Association Between Disrupted Cerebral Autoregulation and Radiographic Neurologic Injury for Children on Extracorporeal Membrane Oxygenation: A Prospective Pilot Study. ASAIO J 2023; 69:e315-e321. [PMID: 37172001 DOI: 10.1097/mat.0000000000001970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Validation of a real-time monitoring device to evaluate the risk or occurrence of neurologic injury while on extracorporeal membrane oxygenation (ECMO) may aid clinicians in prevention and treatment. Therefore, we performed a pilot prospective cohort study of children under 18 years old on ECMO to analyze the association between cerebral blood pressure autoregulation as measured by diffuse correlation spectroscopy (DCS) and radiographic neurologic injury. DCS measurements of regional cerebral blood flow were collected on enrolled patients and correlated with mean arterial blood pressure to determine the cerebral autoregulation metric termed DCSx. The primary outcome of interest was radiographic neurologic injury on eligible computed tomography (CT) or magnetic resonance imaging (MRI) scored by a blinded pediatric neuroradiologist utilizing a previously validated scale. Higher DCSx scores, which indicate disruption of cerebral autoregulation, were associated with higher radiographic neurologic injury score (slope, 11.0; 95% confidence interval [CI], 0.29-22). Patients with clinically significant neurologic injury scores of 10 or more had higher median DCSx measures than patients with lower neurologic injury scores (0.48 vs . 0.13; p = 0.01). Our study indicates that obtaining noninvasive DCS measures for children on ECMO is feasible and disruption of cerebral autoregulation determined from DCS is associated with higher radiographic neurologic injury score.
Collapse
Affiliation(s)
- Ethan L Sanford
- From the Department of Anesthesiology and Pain Management, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
- Division of Pediatric Critical Care Medicine, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Rufai Akorede
- From the Department of Anesthesiology and Pain Management, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Isabel Miller
- UT Southwestern Medical Center Medical School, Dallas, Texas
| | - Michael Craig Morriss
- Department of Radiology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Karabi Nandy
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lakshmi Raman
- Division of Pediatric Critical Care Medicine, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - David R Busch
- From the Department of Anesthesiology and Pain Management, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|