1
|
Milton-Jones H, Soussi S, Davies R, Charbonney E, Charles WN, Cleland H, Dunn K, Gantner D, Giles J, Jeschke M, Lee N, Legrand M, Lloyd J, Martin-Loeches I, Pantet O, Samaan M, Shelley O, Sisson A, Spragg K, Wood F, Yarrow J, Vizcaychipi MP, Williams A, Leon-Villapalos J, Collins D, Jones I, Singh S. An international RAND/UCLA expert panel to determine the optimal diagnosis and management of burn inhalation injury. Crit Care 2023; 27:459. [PMID: 38012797 PMCID: PMC10680253 DOI: 10.1186/s13054-023-04718-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Burn inhalation injury (BII) is a major cause of burn-related mortality and morbidity. Despite published practice guidelines, no consensus exists for the best strategies regarding diagnosis and management of BII. A modified DELPHI study using the RAND/UCLA (University of California, Los Angeles) Appropriateness Method (RAM) systematically analysed the opinions of an expert panel. Expert opinion was combined with available evidence to determine what constitutes appropriate and inappropriate judgement in the diagnosis and management of BII. METHODS A 15-person multidisciplinary panel comprised anaesthetists, intensivists and plastic surgeons involved in the clinical management of major burn patients adopted a modified Delphi approach using the RAM method. They rated the appropriateness of statements describing diagnostic and management options for BII on a Likert scale. A modified final survey comprising 140 statements was completed, subdivided into history and physical examination (20), investigations (39), airway management (5), systemic toxicity (23), invasive mechanical ventilation (29) and pharmacotherapy (24). Median appropriateness ratings and the disagreement index (DI) were calculated to classify statements as appropriate, uncertain, or inappropriate. RESULTS Of 140 statements, 74 were rated as appropriate, 40 as uncertain and 26 as inappropriate. Initial intubation with ≥ 8.0 mm endotracheal tubes, lung protective ventilatory strategies, initial bronchoscopic lavage, serial bronchoscopic lavage for severe BII, nebulised heparin and salbutamol administration for moderate-severe BII and N-acetylcysteine for moderate BII were rated appropriate. Non-protective ventilatory strategies, high-frequency oscillatory ventilation, high-frequency percussive ventilation, prophylactic systemic antibiotics and corticosteroids were rated inappropriate. Experts disagreed (DI ≥ 1) on six statements, classified uncertain: the use of flexible fiberoptic bronchoscopy to guide fluid requirements (DI = 1.52), intubation with endotracheal tubes of internal diameter < 8.0 mm (DI = 1.19), use of airway pressure release ventilation modality (DI = 1.19) and nebulised 5000IU heparin, N-acetylcysteine and salbutamol for mild BII (DI = 1.52, 1.70, 1.36, respectively). CONCLUSIONS Burns experts mostly agreed on appropriate and inappropriate diagnostic and management criteria of BII as in published guidance. Uncertainty exists as to the optimal diagnosis and management of differing grades of severity of BII. Future research should investigate the accuracy of bronchoscopic grading of BII, the value of bronchial lavage in differing severity groups and the effectiveness of nebulised therapies in different severities of BII.
Collapse
Affiliation(s)
| | - Sabri Soussi
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris Cité, Paris, France
| | - Roger Davies
- Department of Intensive Care and Anaesthesia, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Emmanuel Charbonney
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Walton N Charles
- Department of Surgery and Cancer, Imperial College London, London, UK
- Intensive Care National Audit and Research Centre, London, UK
| | - Heather Cleland
- Victorian Adult Burns Service, Alfred Health, Melbourne, Australia
- Department of Surgery, Central Clinical School, Monash University, Melbourne, Australia
| | - Ken Dunn
- University Hospital South Manchester, Wythenshawe, UK
| | - Dashiell Gantner
- Department of Intensive Care, Alfred Health, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Julian Giles
- Department of Anaesthesia, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | - Marc Jeschke
- Ross Tilley Burn Center, Department of Surgery, Sunnybrook Health Science Center, Toronto, ON, Canada
- Departments of Surgery and Immunology, University of Toronto, Toronto, ON, Canada
| | - Nicole Lee
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, USA
- Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists Network, Nancy, France
| | - Joanne Lloyd
- Department of Anaesthesia and Burns Intensive Care, St Andrew's Centre for Burns and Plastic Surgery, Broomfield Hospital, Chelmsford, UK
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James Hospital, Dublin, Ireland
- Department of Respiratory Medicine, Hospital Clinic, IDIBAPS, CIBERes, Barcelona, Spain
- Universitat Barcelona, Barcelona, Spain
| | - Olivier Pantet
- Service of Adult Intensive Care, Lausanne University Hospital, Lausanne, Switzerland
| | - Mark Samaan
- Department of Gastroenterology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Odhran Shelley
- Trinity College, Dublin, Ireland
- Department of Plastic and Reconstructive Surgery, St James' Hospital, Dublin, Ireland
| | - Alice Sisson
- Department of Intensive Care and Anaesthesia, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Kaisa Spragg
- Burns Unit, Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK
| | - Fiona Wood
- Fiona Stanley Hospital, Perth, Australia
- Perth Children's Hospital, Perth, Australia
- University of Western Australia, Perth, Australia
| | - Jeremy Yarrow
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Marcela Paola Vizcaychipi
- Department of Intensive Care and Anaesthesia, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Andrew Williams
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Jorge Leon-Villapalos
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Declan Collins
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Isabel Jones
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Burns, Plastic and Reconstructive Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Suveer Singh
- Faculty of Medicine, Imperial College London, London, UK.
- Department of Intensive Care and Anaesthesia, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK.
- Department of Médicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada.
- Department of Research and Development, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK.
- Academic Department of Anaesthesia, Pain Management and Intensive Care (APMIC), Imperial College London, London, UK.
- Royal Brompton Hospital, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
2
|
O’Hara KC, Ranches J, Roche LM, Schohr TK, Busch RC, Maier GU. Impacts from Wildfires on Livestock Health and Production: Producer Perspectives. Animals (Basel) 2021; 11:ani11113230. [PMID: 34827962 PMCID: PMC8614491 DOI: 10.3390/ani11113230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Wildfires are increasing in frequency and severity across the Western United States. Efforts to understand the health impacts on humans are widespread and expanding; however, very little is known about the impact of wildfires and smoke exposure on livestock. This work presents the results of a survey of cattle, sheep, and goat producers in California, Oregon, and Nevada, on their experiences during the 2020 wildfire season. While few direct impacts of fires were reported among the 70 responses, 26% of respondents reported they had to evacuate livestock and 19% reported pasture losses. Indirect losses from smoke exposure, including pneumonia and reproductive losses were reported more broadly. This preliminary work highlights the need to better understand impacts of wildfires on livestock and how policy changes can help support the livestock production industry through these crises. Abstract Wildfires are increasing in frequency and severity across the Western United States. However, there is limited information available on the impacts these fires are having on the livelihood of livestock producers and their animals. This work presents the results of a survey evaluating the direct and indirect impacts of the 2020 wildfire season on beef cattle, dairy cattle, sheep, and goat, producers in California, Oregon, and Nevada. Seventy completed surveys were collected between May and July 2021. While dairy producers reported no direct impacts from the fires, beef, sheep, and goat producers were impacted by evacuations and pasture lost to fires. Only beef producers reported losses due to burns and burn-associated deaths or euthanasia. Dairy, beef, sheep, and goat producers observed reduced conception, poor weight gain, and drops in milk production. All but dairy producers also observed pneumonia. Lower birthweights, increased abortion rates, and unexplained deaths were reported in beef cattle, sheep, and goats. This work documents the wide-ranging impacts of wildfires on livestock producers and highlights the need for additional work defining the health impacts of fire and smoke exposure in livestock, as well as the policy changes needed to support producers experiencing direct and indirect losses.
Collapse
Affiliation(s)
- Kathleen C. O’Hara
- Center for Animal Disease Modeling and Surveillance (CADMS), School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center (EOARC), Oregon State University, Burns, OR 97720, USA;
| | - Leslie M. Roche
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA;
| | - Tracy Kay Schohr
- University of California Cooperative Extension, Plumas-Sierra-Butte Counties, Quincy, CA 96130, USA;
| | - Roselle C. Busch
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Gabriele U. Maier
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
- Correspondence:
| |
Collapse
|
3
|
Livingstone SA, Wildi KS, Dalton HJ, Usman A, Ki KK, Passmore MR, Li Bassi G, Suen JY, Fraser JF. Coagulation Dysfunction in Acute Respiratory Distress Syndrome and Its Potential Impact in Inflammatory Subphenotypes. Front Med (Lausanne) 2021; 8:723217. [PMID: 34490308 PMCID: PMC8417599 DOI: 10.3389/fmed.2021.723217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Acute Respiratory Distress Syndrome (ARDS) has caused innumerable deaths worldwide since its initial description over five decades ago. Population-based estimates of ARDS vary from 1 to 86 cases per 100,000, with the highest rates reported in Australia and the United States. This syndrome is characterised by a breakdown of the pulmonary alveolo-epithelial barrier with subsequent severe hypoxaemia and disturbances in pulmonary mechanics. The underlying pathophysiology of this syndrome is a severe inflammatory reaction and associated local and systemic coagulation dysfunction that leads to pulmonary and systemic damage, ultimately causing death in up to 40% of patients. Since inflammation and coagulation are inextricably linked throughout evolution, it is biological folly to assess the two systems in isolation when investigating the underlying molecular mechanisms of coagulation dysfunction in ARDS. Although the body possesses potent endogenous systems to regulate coagulation, these become dysregulated and no longer optimally functional during the acute phase of ARDS, further perpetuating coagulation, inflammation and cell damage. The inflammatory ARDS subphenotypes address inflammatory differences but neglect the equally important coagulation pathway. A holistic understanding of this syndrome and its subphenotypes will improve our understanding of underlying mechanisms that then drive translation into diagnostic testing, treatments, and improve patient outcomes.
Collapse
Affiliation(s)
- Samantha A Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Karin S Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Cardiovascular Research Institute Basel (CRIB), Basel, Switzerland
| | | | - Asad Usman
- Department of Anesthesiology and Critical Care, The University of Pennsylvania, Philadelphia, PA, United States
| | - Katrina K Ki
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Pulmonology and Critical Care, Hospital Clínic de Barcelona, Universitad de Barcelona and IDIBAPS, CIBERES, Barcelona, Spain
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
van Haren FMP, Page C, Laffey JG, Artigas A, Camprubi-Rimblas M, Nunes Q, Smith R, Shute J, Carroll M, Tree J, Carroll M, Singh D, Wilkinson T, Dixon B. Nebulised heparin as a treatment for COVID-19: scientific rationale and a call for randomised evidence. Crit Care 2020; 24:454. [PMID: 32698853 PMCID: PMC7374660 DOI: 10.1186/s13054-020-03148-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Nebulised unfractionated heparin (UFH) has a strong scientific and biological rationale and warrants urgent investigation of its therapeutic potential, for COVID-19-induced acute respiratory distress syndrome (ARDS). COVID-19 ARDS displays the typical features of diffuse alveolar damage with extensive pulmonary coagulation activation resulting in fibrin deposition in the microvasculature and formation of hyaline membranes in the air sacs. Patients infected with SARS-CoV-2 who manifest severe disease have high levels of inflammatory cytokines in plasma and bronchoalveolar lavage fluid and significant coagulopathy. There is a strong association between the extent of the coagulopathy and poor clinical outcomes.The anti-coagulant actions of nebulised UFH limit fibrin deposition and microvascular thrombosis. Trials in patients with acute lung injury and related conditions found inhaled UFH reduced pulmonary dead space, coagulation activation, microvascular thrombosis and clinical deterioration, resulting in increased time free of ventilatory support. In addition, UFH has anti-inflammatory, mucolytic and anti-viral properties and, specifically, has been shown to inactivate the SARS-CoV-2 virus and prevent its entry into mammalian cells, thereby inhibiting pulmonary infection by SARS-CoV-2. Furthermore, clinical studies have shown that inhaled UFH safely improves outcomes in other inflammatory respiratory diseases and also acts as an effective mucolytic in sputum-producing respiratory patients. UFH is widely available and inexpensive, which may make this treatment also accessible for low- and middle-income countries.These potentially important therapeutic properties of nebulised UFH underline the need for expedited large-scale clinical trials to test its potential to reduce mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Frank M P van Haren
- Australian National University, Medical School, Canberra, Australia.
- Intensive Care Unit, the Canberra Hospital, Canberra, Australia.
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, and Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland
- Department of Anaesthesia, University Hospital Galway, Saolta Hospital Group, Galway, Ireland
| | - Antonio Artigas
- Critical Center, Corporació Sanitaria Parc Tauli , CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Sabadell, Spain
| | - Marta Camprubi-Rimblas
- Institut d'Investigació I Innovació Parc Tauli (I3PT), CIBER de Enfermedades Respiratorias, Sabadell, Spain
| | - Quentin Nunes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Roger Smith
- Department of Critical Care Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Janis Shute
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Mary Carroll
- Department of Respiratory Medicine, University of Southampton, Southampton, UK
| | - Julia Tree
- National Infection Service, Public Health England, Porton Down, UK
| | - Miles Carroll
- National Infection Service, Public Health England, Porton Down, UK
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester, Manchester, UK
| | - Tom Wilkinson
- Department of Respiratory Medicine, University of Southampton, Southampton, UK
| | - Barry Dixon
- Department of Critical Care Medicine, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
5
|
Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J Thromb Haemost 2020; 18:1548-1555. [PMID: 32329246 PMCID: PMC7264738 DOI: 10.1111/jth.14872] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/10/2023]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) is associated with the development of acute respiratory distress syndrome (ARDS), which requires ventilation in critically ill patients. The pathophysiology of ARDS results from acute inflammation within the alveolar space and prevention of normal gas exchange. The increase in proinflammatory cytokines within the lung leads to recruitment of leukocytes, further propagating the local inflammatory response. A consistent finding in ARDS is the deposition of fibrin in the air spaces and lung parenchyma. COVID-19 patients show elevated D-dimers and fibrinogen. Fibrin deposits are found in the lungs of patients due to the dysregulation of the coagulation and fibrinolytic systems. Tissue factor (TF) is exposed on damaged alveolar endothelial cells and on the surface of leukocytes promoting fibrin deposition, while significantly elevated levels of plasminogen activator inhibitor 1 (PAI-1) from lung epithelium and endothelial cells create a hypofibrinolytic state. Prophylaxis treatment of COVID-19 patients with low molecular weight heparin (LMWH) is important to limit coagulopathy. However, to degrade pre-existing fibrin in the lung it is essential to promote local fibrinolysis. In this review, we discuss the repurposing of fibrinolytic drugs, namely tissue-type plasminogen activator (tPA), to treat COVID-19 associated ARDS. tPA is an approved intravenous thrombolytic treatment, and the nebulizer form has been shown to be effective in plastic bronchitis and is currently in Phase II clinical trial. Nebulizer plasminogen activators may provide a targeted approach in COVID-19 patients to degrade fibrin and improving oxygenation in critically ill patients.
Collapse
Affiliation(s)
- Claire S Whyte
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Aberdeen, UK
| | - Gael B Morrow
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Aberdeen, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joanne L Mitchell
- Institute of Cardiovascular and Metabolic Sciences, School of Biological Sciences, University of Reading, Reading, UK
| | - Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre Royal Free Hospital, London, UK
| | - Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Aberdeen, UK
| |
Collapse
|
6
|
Lan X, Huang Z, Tan Z, Huang Z, Wang D, Huang Y. Nebulized heparin for inhalation injury in burn patients: a systematic review and meta-analysis. BURNS & TRAUMA 2020; 8:tkaa015. [PMID: 32523966 PMCID: PMC7271764 DOI: 10.1093/burnst/tkaa015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
Abstract
Background Smoke inhalation injury increases overall burn mortality. Locally applied heparin attenuates lung injury in burn animal models of smoke inhalation. It is uncertain whether local treatment of heparin is benefit for burn patients with inhalation trauma. We systematically reviewed published clinical trial data to evaluate the effectiveness of nebulized heparin in treating burn patients with inhalation injury. Methods A systematic search was undertaken in PubMed, the Cochrane Library, Embase, Web of Science, the Chinese Journals Full-text Database, the China Biomedical Literature Database and the Wanfang Database to obtain clinical controlled trails evaluating nebulized heparin in the treatment of burn patients with inhalation injury. Patient and clinical characteristics, interventions and physiological and clinical outcomes were recorded. Cochrane Risk of Bias Evaluation Tool and the Newcastle–Ottawa Scale were used to evaluate data quality. Potential publication bias was assessed by Egger’s test. A sensitivity analysis was conducted to assess the stability of the results. The meta-analysis was conducted in R 3.5.1 software. Results Nine trials were eligible for the systematic review and meta-analysis. Nebulized heparin can reduce lung injury and improve lung function in burn patients with inhalation injury without abnormal coagulation or bleeding, but the findings are still controversial. Mortality in the heparin-treated group was lower than that of the traditional treatment group (relative risk (RR) 0.75). The duration of mechanical ventilation (DOMV) was shorter in the heparin-treated group compared to the traditional treatment group (standardized mean difference (SMD) −0.78). Length of hospital stay was significantly shorter than that in the traditional treatment group (SMD −0.42), but incidence rates of pneumonia and unplanned reintubation were not significantly different in the study groups (RRs 0.97 and 0.88, respectively). No statistically significant publication biases were detected for the above clinical endpoints (p > 0.05). Conclusions Based on conventional aerosol therapy, heparin nebulization can further reduce lung injury, improve lung function, shorten DOMV and length of hospital stay, and reduce mortality, although it does not reduce the incidence of pneumonia and/or the unplanned reintubation rate.
Collapse
Affiliation(s)
- Xiaodong Lan
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Zhiyong Huang
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Ziming Tan
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Zhenjia Huang
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Dehuai Wang
- Department of burn and plastic surgery, Chengdu Second People's Hospital, Chengdu, 610021, China
| | - Yuesheng Huang
- Department of Wound Repair, Institute of Wound Repair, Shenzhen People's Hospital, the First Affiliated Hospital of South University of Science and Technology, and the Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| |
Collapse
|
7
|
Mercel A, Tsihlis ND, Maile R, Kibbe MR. Emerging therapies for smoke inhalation injury: a review. J Transl Med 2020; 18:141. [PMID: 32228626 PMCID: PMC7104527 DOI: 10.1186/s12967-020-02300-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Smoke inhalation injury increases overall burn mortality by up to 20 times. Current therapy remains supportive with a failure to identify an optimal or targeted treatment protocol for smoke inhalation injury. The goal of this review is to describe emerging therapies that are being developed to treat the pulmonary pathology induced by smoke inhalation injury with or without concurrent burn injury. Main body A comprehensive literature search was performed using PubMed (1995–present) for therapies not approved by the U.S. Food and Drug Administration (FDA) for smoke inhalation injury with or without concurrent burn injury. Therapies were divided based on therapeutic strategy. Models included inhalation alone with or without concurrent burn injury. Specific animal model, mechanism of action of medication, route of administration, therapeutic benefit, safety, mortality benefit, and efficacy were reviewed. Multiple potential therapies for smoke inhalation injury with or without burn injury are currently under investigation. These include stem cell therapy, anticoagulation therapy, selectin inhibition, inflammatory pathway modulation, superoxide and peroxynitrite decomposition, selective nitric oxide synthase inhibition, hydrogen sulfide, HMG-CoA reductase inhibition, proton pump inhibition, and targeted nanotherapies. While each of these approaches shows a potential therapeutic benefit to treating inhalation injury in animal models, further research including mortality benefit is needed to ensure safety and efficacy in humans. Conclusions Multiple novel therapies currently under active investigation to treat smoke inhalation injury show promising results. Much research remains to be conducted before these emerging therapies can be translated to the clinical arena.
Collapse
Affiliation(s)
- Alexandra Mercel
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Rob Maile
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
8
|
Camprubí-Rimblas M, Tantinyà N, Guillamat-Prats R, Bringué J, Puig F, Gómez MN, Blanch L, Artigas A. Effects of nebulized antithrombin and heparin on inflammatory and coagulation alterations in an acute lung injury model in rats. J Thromb Haemost 2020; 18:571-583. [PMID: 31755229 PMCID: PMC9906372 DOI: 10.1111/jth.14685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND During acute respiratory distress syndrome, proinflammatory mediators inhibit natural anticoagulant factors, which alter the normal balance between coagulation and fibrinolysis leading to a procoagulant state. We hypothesize that pulmonary administration of anticoagulants might be beneficial to treat acute respiratory distress syndrome for their anticoagulant and antiinflammatory effects and reduce the risk of systemic bleeding. OBJECTIVES Our aim is to study the effects of nebulized antithrombin (AT) and combined AT and heparin in an animal model of acute lung injury. METHODS Acute lung injury was induced in rats by the intratracheal administration of hydrochloric acid and lipopolysaccharide. AT alone (500 IU/kg body weight) or combined with heparin (1000 IU/kg body weight) were nebulized after the injury. Control groups received saline instead. Blood, lung tissue, bronchoalveolar lavage, and alveolar macrophages (AM) isolated from bronchoalveolar lavage were collected after 48 hours and analyzed. RESULTS Nebulized anticoagulant treatments reduced protein concentration in the lungs and decreased injury-mediated coagulation factors (tissue factor, plasminogen activator inhibitor-1, plasminogen, and fibrinogen degradation product) and inflammation (tumor necrosis factor α and interleukin 1β) in the alveolar space without affecting systemic coagulation and no bleeding. AT alone reduced fibrin deposition and edema in the lungs. Heparin did not potentiate AT coagulant effect but promoted the reduction of macrophages infiltration into the alveolar compartment. Anticoagulants reduced nuclear factor-kB downstream effectors in AM. CONCLUSIONS Nebulized AT and heparin attenuate lung injury through decreasing coagulation and inflammation without altering systemic coagulation and no bleeding. However, combined AT and heparin did not produce a synergistic effect.
Collapse
Affiliation(s)
- Marta Camprubí-Rimblas
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Neus Tantinyà
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Guillamat-Prats
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Bringué
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ferranda Puig
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Lluís Blanch
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Critical Care Center, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| | - Antonio Artigas
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Critical Care Center, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| |
Collapse
|
9
|
Wolfson MR, Enkhbaatar P, Fukuda S, Nelson CL, Williams RO, Surasarang SH, Sahakijpijarn S, Calendo G, Komissarov AA, Florova G, Sarva K, Idell SI, Shaffer TH. Perfluorochemical-facilitated plasminogen activator delivery to the airways: A novel treatment for inhalational smoke-induced acute lung injury. Clin Transl Med 2020; 10:258-274. [PMID: 32508014 PMCID: PMC7240845 DOI: 10.1002/ctm2.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Effective clinical management of airway clot and fibrinous cast formation of severe inhalational smoke-induced acute lung injury (ISALI) is lacking. Aerosolized delivery of tissue plasminogen activator (tPA) is confounded by airway bleeding; single-chain urokinase plasminogen activator (scuPA) moderated this adverse effect and supported transient improvement in gas exchange and lung mechanics. However, neither aerosolized plasminogen activator (PA) yielded durable improvements in physiologic responses or reduction in cast burden. Here, we hypothesized that perfluorochemical (PFC) liquids would facilitate PA distribution and sustain improvements in physiologic outcomes in ISALI. METHODS Spontaneously breathing adult sheep (n = 36) received anesthesia and analgesia and were instrumented, exposed to cotton smoke inhalation, and supported by mechanical ventilation for 48 h. Groups (n = 6/group) were studied without supplemental treatment, or, starting 4 h post injury, they received intratracheal low volume (8 mL) PFC liquid alone or a dose range of tPA/PFC or scuPA/PFC suspensions (4 or 8 mg in 8 mL PFC) every 8 h. Outcomes were evaluated by sequential measurements of cardiopulmonary parameters, lung histomorphology, and biochemical analyses of bronchoalveolar lavage fluid. RESULTS Dose-response and PA-type comparisons of outcomes demonstrated sustained superiority with low-volume PFC suspensions of scuPA over tPA or PFC alone, favoring the highest dose of scuPA/PFC suspension over lower doses, without airway bleeding. CONCLUSIONS We propose that this improved profile over previously reported aerosolized delivery is likely related to improved dose distribution. Sustained salutary responses to scuPA/PFC suspension delivery in this translational model are encouraging and support the possibility that the observed outcomes could be of clinical importance.
Collapse
Affiliation(s)
- Marla R. Wolfson
- Department of Thoracic Medicine & Surgery, Physiology & Pediatrics, and Temple Lung CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Perenlei Enkhbaatar
- Department of AnesthesiologyThe University of Texas Medical BranchGalvestonTexasUSA
| | - Satoshi Fukuda
- Department of AnesthesiologyThe University of Texas Medical BranchGalvestonTexasUSA
| | - Christina L. Nelson
- Department of AnesthesiologyThe University of Texas Medical BranchGalvestonTexasUSA
| | | | | | | | - Gennaro Calendo
- Department of Thoracic Medicine & Surgery, Physiology & Pediatrics, and Temple Lung CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Andrey A. Komissarov
- Cellular and Molecular Biology and the Texas Lung InstituteThe University of Texas Health Science Center at TylerTylerTexasUSA
| | - Galina Florova
- Cellular and Molecular Biology and the Texas Lung InstituteThe University of Texas Health Science Center at TylerTylerTexasUSA
| | - Krishna Sarva
- Cellular and Molecular Biology and the Texas Lung InstituteThe University of Texas Health Science Center at TylerTylerTexasUSA
| | - Steven I. Idell
- Cellular and Molecular Biology and the Texas Lung InstituteThe University of Texas Health Science Center at TylerTylerTexasUSA
| | - Thomas H. Shaffer
- Department of Thoracic Medicine & Surgery, Physiology & Pediatrics, and Temple Lung CenterLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
- Biomedical ResearchSchool of Medicine Temple and Thomas Jefferson Schools of Medicine Alfred I. duPont Hospital for ChildrenWilmingtonDelawareUSA
| |
Collapse
|
10
|
Guo B, Bai Y, Ma Y, Liu C, Wang S, Zhao R, Dong J, Ji HL. Preclinical and clinical studies of smoke-inhalation-induced acute lung injury: update on both pathogenesis and innovative therapy. Ther Adv Respir Dis 2019; 13:1753466619847901. [PMID: 31068086 PMCID: PMC6515845 DOI: 10.1177/1753466619847901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Smoke-inhalation-induced acute lung injury (SI-ALI) is a leading cause of morbidity and mortality in victims of fire tragedies. SI-ALI contributes to an estimated 30% of burn-caused patient deaths, and recently, more attention has been paid to the specific interventions for this devastating respiratory illness. In the last decade, much progress has been made in the understanding of SI-ALI patho-mechanisms and in the development of new therapeutic strategies in both preclinical and clinical studies. This article reviews the recent progress in the treatment of SI-ALI, based on pathophysiology, thermal damage, airway obstruction, the nuclear-factor kappa-B signaling pathway, and oxidative stress. Preclinical therapeutic strategies include use of mesenchymal stem cells, hydrogen sulfide, peroxynitrite decomposition catalysts, and proton-pump inhibitors. Clinical interventions include high-frequency percussive ventilation, perfluorohexane, inhaled anticoagulants, and nebulized epinephrine. The animal model, dose, clinical application, and pharmacology of these medications are summarized. Future directions and further needs for developing innovative therapies are discussed.
Collapse
Affiliation(s)
- Bingxin Guo
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yichun Bai
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yana Ma
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Cong Liu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Song Wang
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jiaxing Dong
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Hong-Long Ji
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| |
Collapse
|
11
|
Hamblin MR. Novel pharmacotherapy for burn wounds: what are the advancements. Expert Opin Pharmacother 2019; 20:305-321. [PMID: 30517046 PMCID: PMC6364296 DOI: 10.1080/14656566.2018.1551880] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The prognosis for severe burns has improved significantly over the past 50 years. Meanwhile, burns have become an affliction mainly affecting the less well-developed regions of the world. Early excision and skin grafting has led to major improvements in therapeutic outcomes. AREAS COVERED The purpose of this article is to survey the use of pharmacotherapy to treat different pathophysiological complications of burn injury. The author, herein, discusses the use of drug treatments for a number of systemic metabolic disturbances including hyperglycemia, elevated catabolism, and gluconeogenesis. EXPERT OPINION Advancements in personalized and molecular medicine will make an impact on burn therapy. Similarities between severe burns and other critically ill patients will lead to cross-fertilization between different medical specialties. Furthermore, advances in stem cells and tissue regeneration will lead to improved healing and less lifelong disability. Indeed, research in new drug therapy for burns is actively progressing for many different complications.
Collapse
Affiliation(s)
- Michael R Hamblin
- a Wellman Center for Photomedicine , Massachusetts General Hospital , Boston , MA , USA
- b Department of Dermatology , Harvard Medical School , Boston , MA , USA
- c Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
12
|
Foncerrada G, Culnan DM, Capek KD, González-Trejo S, Cambiaso-Daniel J, Woodson LC, Herndon DN, Finnerty CC, Lee JO. Inhalation Injury in the Burned Patient. Ann Plast Surg 2018; 80:S98-S105. [PMID: 29461292 PMCID: PMC5825291 DOI: 10.1097/sap.0000000000001377] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inhalation injury causes a heterogeneous cascade of insults that increase morbidity and mortality among the burn population. Despite major advancements in burn care for the past several decades, there remains a significant burden of disease attributable to inhalation injury. For this reason, effort has been devoted to finding new therapeutic approaches to improve outcomes for patients who sustain inhalation injuries.The three major injury classes are the following: supraglottic, subglottic, and systemic. Treatment options for these three subtypes differ based on the pathophysiologic changes that each one elicits.Currently, no consensus exists for diagnosis or grading of the injury, and there are large variations in treatment worldwide, ranging from observation and conservative management to advanced therapies with nebulization of different pharmacologic agents.The main pathophysiologic change after a subglottic inhalation injury is an increase in the bronchial blood flow. An induced mucosal hyperemia leads to edema, increases mucus secretion and plasma transudation into the airways, disables the mucociliary escalator, and inactivates hypoxic vasocontriction. Collectively, these insults potentiate airway obstruction with casts formed from epithelial debris, fibrin clots, and inspissated mucus, resulting in impaired ventilation. Prompt bronchoscopic diagnosis and multimodal treatment improve outcomes. Despite the lack of globally accepted standard treatments, data exist to support the use of bronchoscopy and suctioning to remove debris, nebulized heparin for fibrin casts, nebulized N-acetylcysteine for mucus casts, and bronchodilators.Systemic effects of inhalation injury occur both indirectly from hypoxia or hypercapnia resulting from loss of pulmonary function and systemic effects of proinflammatory cytokines, as well as directly from metabolic poisons such as carbon monoxide and cyanide. Both present with nonspecific clinical symptoms including cardiovascular collapse. Carbon monoxide intoxication should be treated with oxygen and cyanide with hydroxocobalamin.Inhalation injury remains a great challenge for clinicians and an area of opportunity for scientists. Management of this concomitant injury lags behind other aspects of burn care. More clinical research is required to improve the outcome of inhalation injury.The goal of this review is to comprehensively summarize the diagnoses, treatment options, and current research.
Collapse
Affiliation(s)
- Guillermo Foncerrada
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Derek M. Culnan
- JMS Burn and Reconstructive Center at Merit Health Central, Jackson, MS, USA
| | - Karel D. Capek
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Sagrario González-Trejo
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Janos Cambiaso-Daniel
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Lee C. Woodson
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
- Department of Anesthesiology, University of Texas Medical Branch Galveston, Texas, USA
| | - David N. Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Celeste C. Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| | - Jong O. Lee
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
- Shriners Hospitals for Children - Galveston, Galveston, Texas, USA
| |
Collapse
|
13
|
Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Artigas A. Anticoagulant therapy in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:36. [PMID: 29430453 PMCID: PMC5799142 DOI: 10.21037/atm.2018.01.08] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/28/2017] [Indexed: 01/11/2023]
Abstract
Acute respiratory distress syndrome (ARDS) presents a complex pathophysiology characterized by pulmonary activated coagulation and reduced fibrinolysis. Despite advances in supportive care of this syndrome, morbidity and mortality remains high, leading to the need of novel therapies to combat this disease. Focus these therapies in the inhibition of ARDS development pathophysiology is essential. Beneficial effects of anticoagulants in ARDS have been proved in preclinical and clinical trials, thanks to its anticoagulant and anti-inflammatory properties. Moreover, local administration by nebulization in the alveolar compartment increases local efficacy and does not produce systemic bleeding. In this review the coagulation and fibrinolytic pathway and its pharmacological targets to treat ARDS are summarized.
Collapse
Affiliation(s)
- Marta Camprubí-Rimblas
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Tantinyà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Bringué
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Guillamat-Prats
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio Artigas
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Critical Care Center, Corporació Sanitària Universitaria Parc Taulí, Sabadell, Spain
| |
Collapse
|
14
|
Juschten J, Tuinman PR, Juffermans NP, Dixon B, Levi M, Schultz MJ. Nebulized anticoagulants in lung injury in critically ill patients-an updated systematic review of preclinical and clinical studies. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:444. [PMID: 29264361 DOI: 10.21037/atm.2017.08.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pneumonia, inhalation trauma and acute respiratory distress syndrome (ARDS), typical causes of lung injury in critically ill patients, are all three characterized by dysregulated inflammation and coagulation in the lungs. Nebulized anticoagulants are thought to have beneficial effects as they could attenuate pulmonary coagulopathy and maybe even affect pulmonary inflammation. A systematic search of the medical literature was performed using terms referring to aspects of the condition ('pneumonia', 'inhalation trauma' and 'ARDS'), the intervention ('nebulized', 'vaporized', and 'aerosolized') and anticoagulants limited to agents that are commercially available and frequently given or tested in critically ill patients ['heparin', 'danaparoid', 'activated protein C' (APC), 'antithrombin' (AT) and 'tissue factor pathway inhibitor' (TFPI)]. The systematic search identified 16 articles reporting on preclinical studies and 11 articles reporting on human trials. All nebulized anticoagulants attenuate pulmonary coagulopathy in preclinical studies using various models for lung injury, but the effects on inflammation are less consistent. Nebulized heparin, danaparoid and TFPI, but not APC and AT also reduced systemic coagulation. Nebulized heparin in lung injury patients shows contradictory results, and there is concern over systemic side effects of this strategy. Future studies need to focus on the way to nebulize anticoagulants, as well as on efficient but safe dosages, and other side effects.
Collapse
Affiliation(s)
- Jenny Juschten
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, the Netherlands.,Department of Intensive Care and Research VUmc Intensive Care (REVIVE), VU Medical Center, Amsterdam, the Netherlands.,Department of Intensive Care, Academic Medical Center, Amsterdam, the Netherlands
| | - Pieter R Tuinman
- Department of Intensive Care and Research VUmc Intensive Care (REVIVE), VU Medical Center, Amsterdam, the Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, the Netherlands.,Department of Intensive Care, Academic Medical Center, Amsterdam, the Netherlands
| | - Barry Dixon
- Department of Intensive Care Medicine, St. Vincent's Hospital, Melbourne, Australia
| | - Marcel Levi
- Department of Medicine, University College London Hospitals, London, UK
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, Amsterdam, the Netherlands.,Department of Intensive Care, Academic Medical Center, Amsterdam, the Netherlands.,Mahidol-Oxford Research Unit (MORU), Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Passmore MR, Fung YL, Simonova G, Foley SR, Diab SD, Dunster KR, Spanevello MM, McDonald CI, Tung JP, Pecheniuk NM, Hay K, Shekar K, Fraser JF. Evidence of altered haemostasis in an ovine model of venovenous extracorporeal membrane oxygenation support. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:191. [PMID: 28754139 PMCID: PMC5534117 DOI: 10.1186/s13054-017-1788-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Background Extracorporeal membrane oxygenation (ECMO) is a life-saving modality used in the management of cardiopulmonary failure that is refractory to conventional medical and surgical therapies. The major problems clinicians face are bleeding and clotting, which can occur simultaneously. To discern the impact of pulmonary injury and ECMO on the host’s haemostatic response, we developed an ovine model of smoke-induced acute lung injury (S-ALI) and ECMO. The aims of this study were to determine if the ECMO circuit itself altered haemostasis and if this was augmented in a host with pulmonary injury. Methods Twenty-seven South African meat merino/Border Leicester Cross ewes underwent instrumentation. Animals received either sham injury (n = 12) or S-ALI (n = 15). Control animal groups consisted of healthy controls (ventilation only for 24 h) (n = 4), ECMO controls (ECMO only for 24 h) (n = 8) and S-ALI controls (S-ALI but no ECMO for 24 h) (n = 7). The test group comprised S-ALI sheep placed on ECMO (S-ALI + ECMO for 24 h) (n = 8). Serial blood samples were taken for rotational thromboelastometry, platelet aggregometry and routine coagulation laboratory tests. Animals were continuously monitored for haemodynamic, fluid and electrolyte balances and temperature. Pressure-controlled intermittent mandatory ventilation was used, and mean arterial pressure was augmented by protocolised use of pressors, inotropes and balanced fluid resuscitation to maintain mean arterial pressure >65 mmHg. Results Rotational thromboelastometry, platelet aggregometry and routine coagulation laboratory tests demonstrated that S-ALI and ECMO independently induced changes to platelet function, delayed clot formation and reduced clot firmness. This effect was augmented with the combination of S-ALI and ECMO, with evidence of increased collagen-induced platelet aggregation as well as changes in factor VIII (FVIII), factor XII and fibrinogen levels. Conclusions The introduction of an ECMO circuit itself increases collagen-induced platelet aggregation, decreases FVIII and von Willebrand factor, and induces a transient decrease in fibrinogen levels and function in the first 24 h. These changes to haemostasis are amplified when a host with a pre-existing pulmonary injury is placed on ECMO. Because patients are often on ECMO for extended periods, longer-duration studies are required to characterise ECMO-induced haemostatic changes over the long term. The utility of point-of-care tests for guiding haemostatic management during ECMO also warrants further exploration.
Collapse
Affiliation(s)
- Margaret R Passmore
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia.
| | - Yoke L Fung
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia.,School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Australia
| | - Gabriela Simonova
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia.,Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - Samuel R Foley
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia
| | - Sara D Diab
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia
| | - Kimble R Dunster
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia
| | - Michelle M Spanevello
- Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Charles I McDonald
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia
| | - John-Paul Tung
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia.,Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Karen Hay
- QIMR Berghofer Metro North Hospital and Health Service Statistics Unit, Brisbane, Australia
| | - Kiran Shekar
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia
| | - John F Fraser
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, Australia
| |
Collapse
|
16
|
Enkhbaatar P, Pruitt BA, Suman O, Mlcak R, Wolf SE, Sakurai H, Herndon DN. Pathophysiology, research challenges, and clinical management of smoke inhalation injury. Lancet 2016; 388:1437-1446. [PMID: 27707500 PMCID: PMC5241273 DOI: 10.1016/s0140-6736(16)31458-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023]
Abstract
Smoke inhalation injury is a serious medical problem that increases morbidity and mortality after severe burns. However, relatively little attention has been paid to this devastating condition, and the bulk of research is limited to preclinical basic science studies. Moreover, no worldwide consensus criteria exist for its diagnosis, severity grading, and prognosis. Therapeutic approaches are highly variable depending on the country and burn centre or hospital. In this Series paper, we discuss understanding of the pathophysiology of smoke inhalation injury, the best evidence-based treatments, and challenges and future directions in diagnostics and management.
Collapse
Affiliation(s)
- Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Basil A Pruitt
- Department of Surgery, Division of Trauma, University of Texas Health Science Center, San Antonio, TX, USA
| | - Oscar Suman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| | - Ronald Mlcak
- Shriners Hospitals for Children, Galveston, TX, USA; Department of Respiratory Care, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| |
Collapse
|
17
|
Abstract
Children have unique physiologic, physical, psychological, and social needs compared with adults. Although adhering to the basic tenets of burn resuscitation, resuscitation of the burned child should be modified based on the child's age, physiology, and response to injury. This article outlines the unique characteristics of burned children and describes the fundamental principles of pediatric burn resuscitation in terms of airway, circulatory, neurologic, and cutaneous injury management.
Collapse
|
18
|
Glas GJ, Levi M, Schultz MJ. Coagulopathy and its management in patients with severe burns. J Thromb Haemost 2016; 14:865-74. [PMID: 26854881 DOI: 10.1111/jth.13283] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/26/2016] [Indexed: 11/30/2022]
Abstract
Severe burn injury is associated with systemic coagulopathy. The changes in coagulation described in patients with severe burns resemble those found patients with sepsis or major trauma. Coagulopathy in patients with severe burns is characterized by procoagulant changes, and impaired fibrinolytic and natural anticoagulation systems. Both the timing of onset and the severity of hemostatic derangements are related to the severity of the burn. The exact pathophysiology and time course of coagulopathy are uncertain, but, at least in part, result from hemodilution and hypothermia. As the occurrence of coagulopathy in patients with severe burns is associated with increased comorbidity and mortality, coagulopathy could be seen as a potential therapeutic target. Clear guidelines for the treatment of coagulopathy in patients with severe burns are lacking, but supportive measures and targeted treatments have been proposed. Supportive measures are aimed at avoiding preventable triggers such as tissue hypoperfusion caused by shock, or hemodilution and hypothermia following the usually aggressive fluid resuscitation in these patients. Suggested targeted treatments that could benefit patients with severe burns include systemic treatment with anticoagulants, but sufficient randomized controlled trial evidence is lacking.
Collapse
Affiliation(s)
- G J Glas
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, Amsterdam, the Netherlands
| | - M Levi
- Department of Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - M J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, Amsterdam, the Netherlands
- Department of Intensive Care, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Kowal-Vern A, Orkin BA. Antithrombin in the treatment of burn trauma. World J Crit Care Med 2016; 5:17-26. [PMID: 26855890 PMCID: PMC4733452 DOI: 10.5492/wjccm.v5.i1.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/19/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Antithrombin (AT) is a natural anticoagulant with anti-inflammatory properties that has demonstrated value in sepsis, disseminated intravascular coagulation and in burn and inhalation injury. With high doses, AT may decrease blood loss during eschar excision, reducing blood transfusion requirements. There are no human randomized, placebo-controlled studies, which have tested the true benefit of this agent in these conditions. Two main forms of AT are either plasma-derived AT (phAT) and recombinant AT (rhAT). Major ovine studies in burn and smoke inhalation injury have utilized rhAT. There have been no studies which have either translated the basic rhAT research in burn trauma, or determined the tolerance and pharmacokinetics of rhAT concentrate infusions in burn patients. Advantages of rhAT infusions are no risk of blood borne diseases and lower cost. However, the majority of human burn patient studies have been conducted utilizing phAT. Recent Japanese clinical trials have started using phAT in abdominal sepsis successfully. This review examines the properties of both phAT and rhAT, and analyzes studies in which they have been utilized. We believe that it is time to embark on a randomized placebo-controlled multi-center trial to establish the role of AT in both civilian and military patients with burn trauma.
Collapse
|
20
|
Walker PF, Buehner MF, Wood LA, Boyer NL, Driscoll IR, Lundy JB, Cancio LC, Chung KK. Diagnosis and management of inhalation injury: an updated review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:351. [PMID: 26507130 PMCID: PMC4624587 DOI: 10.1186/s13054-015-1077-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this article we review recent advances made in the pathophysiology, diagnosis, and treatment of inhalation injury. Historically, the diagnosis of inhalation injury has relied on nonspecific clinical exam findings and bronchoscopic evidence. The development of a grading system and the use of modalities such as chest computed tomography may allow for a more nuanced evaluation of inhalation injury and enhanced ability to prognosticate. Supportive respiratory care remains essential in managing inhalation injury. Adjuncts still lacking definitive evidence of efficacy include bronchodilators, mucolytic agents, inhaled anticoagulants, nonconventional ventilator modes, prone positioning, and extracorporeal membrane oxygenation. Recent research focusing on molecular mechanisms involved in inhalation injury has increased the number of potential therapies.
Collapse
Affiliation(s)
- Patrick F Walker
- Department of Surgery, Walter Reed National Military Medical Center, 8901 Wisconsin Ave, Bethesda, MD, 20889, USA
| | - Michelle F Buehner
- Department of General Surgery, San Antonio Military Medical Center, 3551 Roger Brooke Dr., Fort Sam Houston, TX, 78234, USA.
| | - Leslie A Wood
- Department of Medicine, San Antonio Military Medical Center, 3551 Roger Brooke Dr., Fort Sam Houston, TX, 78234, USA
| | - Nathan L Boyer
- Department of Medicine, San Antonio Military Medical Center, 3551 Roger Brooke Dr., Fort Sam Houston, TX, 78234, USA
| | - Ian R Driscoll
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA
| | - Jonathan B Lundy
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA
| | - Kevin K Chung
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, 78234, USA.,Department of Surgery, Uniformed Services University of the Health Sciences, Building A, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| |
Collapse
|
21
|
Does a Nebulized Heparin/N-acetylcysteine Protocol Improve Outcomes in Adult Smoke Inhalation? PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2014; 2:e165. [PMID: 25289358 PMCID: PMC4174237 DOI: 10.1097/gox.0000000000000121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 04/23/2014] [Indexed: 11/27/2022]
Abstract
Background: Smoke inhalation is a major source of morbidity and mortality. Heparin and N-acetylcysteine treatment has potential efficacy in inhalation injury. We investigated the impact of a heparin/N-acetylcysteine/albuterol nebulization protocol in adult patients with inhalation injury. Methods: A retrospective review was performed of adult inhalation injury patients, admitted to a regional burn center between January 2011 and July 2012, who underwent a protocol of alternating treatments of heparin and N-acetylcysteine/albuterol nebulization every 4 hours. The study cohort was matched 1:1 by age, sex, and burn size to a control cohort admitted within 5 years before protocol implementation. Results: The study (n = 20) and control cohorts (n = 20) were well matched, with nearly identical age (50 vs 49 years), sex distribution (70% male), burn size (total body surface area, 22% vs 21%), and inhalation injury, except grade I injuries (79% vs 47%, P = 0.01). The protocol did not change mortality (30% vs 25%, P = 0.72) or duration of mechanical ventilation (8.5 vs 8.8 days, P = 0.9). There was no difference in development of sepsis (40% vs 33%, P = 0.7) or acute respiratory distress syndrome (15% vs 10%, P = 1); however, those who received the protocol were more likely to develop pneumonia (45% vs 11%, P = 0.03). Conclusions: The implementation of a heparin/N-acetylcysteine/albuterol protocol did not reduce mortality or duration of mechanical ventilation in this cohort of adults with inhalation injury and resulted in a significant increase in pneumonia rates. Larger prospective studies are necessary, with close attention paid to minimizing the infection risk incurred from frequent administration of nebulized medications.
Collapse
|
22
|
Glas GJ, Muller J, Binnekade JM, Cleffken B, Colpaert K, Dixon B, Juffermans NP, Knape P, Levi MM, Loef BG, Mackie DP, Malbrain M, Schultz MJ, van der Sluijs KF. HEPBURN - investigating the efficacy and safety of nebulized heparin versus placebo in burn patients with inhalation trauma: study protocol for a multi-center randomized controlled trial. Trials 2014; 15:91. [PMID: 24661817 PMCID: PMC3987885 DOI: 10.1186/1745-6215-15-91] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 03/07/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pulmonary coagulopathy is a hallmark of lung injury following inhalation trauma. Locally applied heparin attenuates lung injury in animal models of smoke inhalation. Whether local treatment with heparin benefits patients with inhalation trauma is uncertain. The present trial aims at comparing a strategy using frequent nebulizations of heparin with standard care in intubated and ventilated burn patients with bronchoscopically confirmed inhalation trauma. METHODS The Randomized Controlled Trial Investigating the Efficacy and Safety of Nebulized HEParin versus Placebo in BURN Patients with Inhalation Trauma (HEPBURN) is an international multi-center, double-blind, placebo-controlled, two-arm study. One hundred and sixteen intubated and ventilated burn patients with confirmed inhalation trauma are randomized to nebulizations of heparin (the nebulized heparin strategy) or nebulizations of normal saline (the control strategy) every four hours for 14 days or until extubation, whichever comes first. The primary endpoint is the number of ventilator-free days, defined as days alive and breathing without assistance during the first 28 days, if the period of unassisted breathing lasts for at least 24 consecutive hours. DISCUSSION As far as the authors know, HEPBURN is the first randomized, placebo-controlled trial, powered to investigate whether local treatment with heparin shortens duration of ventilation of intubated and ventilated burn patients with inhalation trauma. TRIAL REGISTRATION NCT01773083 (http://www.clinicaltrials.gov), registered on 16 January 2013.Recruiting. Randomisation commenced on 1 January 2014.
Collapse
Affiliation(s)
- Gerie J Glas
- Laboratory of Experimental Intensive Care and Anesthesiology (L · E · I C · A), Department of Intensive Care Medicine, Academic Medical Center, M0-210, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Johannes Muller
- Department of Intensive Care, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jan M Binnekade
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Berry Cleffken
- Department of Intensive Care, Maasstad Hospital, Rotterdam, the Netherlands
| | - Kirsten Colpaert
- Department of Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Barry Dixon
- Department of Intensive Care, St Vincent’s Hospital, Melbourne, Australia
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology (L · E · I C · A), Department of Intensive Care Medicine, Academic Medical Center, M0-210, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Paul Knape
- Department of Intensive Care, Red Cross Hospital, Beverwijk, the Netherlands
| | - Marcel M Levi
- Department of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Bert G Loef
- Department of Intensive Care, Martini Hospital, Groningen, the Netherlands
| | - David P Mackie
- Department of Intensive Care, Red Cross Hospital, Beverwijk, the Netherlands
| | - Manu Malbrain
- Department of Intensive Care, Ziekenhuis Netwerk Antwerpen - Stuivenberg, Antwerp, Belgium
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology (L · E · I C · A), Department of Intensive Care Medicine, Academic Medical Center, M0-210, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Koenraad F van der Sluijs
- Laboratory of Experimental Intensive Care and Anesthesiology (L · E · I C · A), Department of Intensive Care Medicine, Academic Medical Center, M0-210, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
23
|
Inhaled anticoagulation regimens for the treatment of smoke inhalation-associated acute lung injury: a systematic review. Crit Care Med 2014; 42:413-9. [PMID: 24158173 DOI: 10.1097/ccm.0b013e3182a645e5] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Inhaled anticoagulation regimens are increasingly being used to manage smoke inhalation-associated acute lung injury. We systematically reviewed published and unpublished preclinical and clinical trial data to elucidate the effects of these regimens on lung injury severity, airway obstruction, ventilation, oxygenation, pulmonary infections, bleeding complications, and survival. DATA SOURCES PubMed, Scopus, EMBASE, and Web of Science were searched to identify relevant published studies. Relevant unpublished studies were identified by searching the Australian and New Zealand Clinical Trials Registry, World Health Organization International Clinical Trials Registry Platform, Cochrane Library, ClinicalTrials.gov, MINDCULL.com, Current Controlled Trials, and Google. STUDY SELECTION Inclusion criteria were any preclinical or clinical study in which 1) animals or subjects experienced smoke inhalation exposure, 2) they were treated with nebulized or aerosolized anticoagulation regimens, including heparin, heparinoids, antithrombins, or fibrinolytics (e.g., tissue plasminogen activator), 3) a control and/or sham group was described for preclinical studies, and 4) a concurrent or historical control group described for clinical studies. Exclusion criteria were 1) the absence of a group treated with a nebulized or aerosolized anticoagulation regimen, 2) the absence of a control or sham group, and 3) case reports. DATA EXTRACTION Ninety-nine potentially relevant references were identified. Twenty-seven references met inclusion criteria including 19 preclinical references reporting 18 studies and eight clinical references reporting five clinical studies. DATA SYNTHESIS A systematic review of the literature is provided. Both clinical and methodological diversity precluded combining these studies in a meta-analysis. CONCLUSIONS The high mortality associated with smoke inhalation-associated acute lung injury results from airway damage, mucosal dysfunction, neutrophil infiltration, airway coagulopathy with cast formation, ventilation-perfusion mismatching with shunt, and barotrauma. Inhaled anticoagulation regimens in both preclinical and clinical studies improve survival and decrease morbidity without altering systemic markers of clotting and anticoagulation. In some preclinical and clinical studies, inhaled anticoagulants were associated with a favorable effect on survival. This approach appears sufficiently promising to merit a well-designed prospective study to validate its use in patients with severe smoke inhalation-associated acute lung injury requiring mechanical ventilation.
Collapse
|
24
|
Advantages and pitfalls of combining intravenous antithrombin with nebulized heparin and tissue plasminogen activator in acute respiratory distress syndrome. J Trauma Acute Care Surg 2014; 76:126-33. [PMID: 24368367 DOI: 10.1097/ta.0b013e3182ab0785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pulmonary coagulopathy has become an important therapeutic target in adult respiratory distress syndrome (ARDS). We hypothesized that combining intravenous recombinant human antithrombin (rhAT), nebulized heparin, and nebulized tissue plasminogen activator (TPA) more effectively improves pulmonary gas exchange compared with a single rhAT infusion, while maintaining the anti-inflammatory properties of rhAT in ARDS. Therefore, the present prospective, randomized experiment was conducted using an established ovine model. METHODS Following burn and smoke inhalation injury (40% of total body surface area, third-degree flame burn, and 4 × 12 breaths of cold cotton smoke), 18 chronically instrumented sheep were randomly assigned to receive intravenous saline plus saline nebulization (control), intravenous rhAT (6 IU/kg/h) started 1 hour after injury plus saline nebulization (AT i.v.) or intravenous rhAT combined with nebulized heparin (10,000 IU every 4 hours, started 2 hours after injury), and nebulized TPA (2 mg every 4 hours, started 4 hours after injury) (triple therapy, n = 6 each). All animals were mechanically ventilated and fluid resuscitated according to standard protocols during the 48-hour study period. RESULTS Both treatment approaches attenuated ARDS compared with control animals. Notably, triple therapy was associated with an improved PaO2/FiO2 ratio (p = 0.007), attenuated pulmonary obstruction (p = 0.02) and shunting (p = 0.025), as well as reduced ventilatory pressures (p < 0.05 each) versus AT i.v. at 48 hours. However, the anti-inflammatory effects of sole AT i.v., namely, the inhibition of neutrophil activation (neutrophil count in the lymph and pulmonary polymorphonuclear cells, p < 0.05 vs. control each), pulmonary transvascular fluid flux (lymph flow, p = 0.004 vs. control), and systemic vascular leakage (cumulative net fluid balance, p < 0.001 vs. control), were abolished in the triple therapy group. CONCLUSION Combining intravenous rhAT with nebulized heparin and nebulized TPA more effectively restores pulmonary gas exchange, but the anti-inflammatory effects of sole rhAT are abolished with the triple therapy. Interferences between the different anticoagulants may represent a potential explanation for these findings.
Collapse
|
25
|
Dries DJ, Endorf FW. Inhalation injury: epidemiology, pathology, treatment strategies. Scand J Trauma Resusc Emerg Med 2013; 21:31. [PMID: 23597126 PMCID: PMC3653783 DOI: 10.1186/1757-7241-21-31] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/11/2013] [Indexed: 01/19/2023] Open
Abstract
Lung injury resulting from inhalation of smoke or chemical products of combustion continues to be associated with significant morbidity and mortality. Combined with cutaneous burns, inhalation injury increases fluid resuscitation requirements, incidence of pulmonary complications and overall mortality of thermal injury. While many products and techniques have been developed to manage cutaneous thermal trauma, relatively few diagnosis-specific therapeutic options have been identified for patients with inhalation injury. Several factors explain slower progress for improvement in management of patients with inhalation injury. Inhalation injury is a more complex clinical problem. Burned cutaneous tissue may be excised and replaced with skin grafts. Injured pulmonary tissue must be protected from secondary injury due to resuscitation, mechanical ventilation and infection while host repair mechanisms receive appropriate support. Many of the consequences of smoke inhalation result from an inflammatory response involving mediators whose number and role remain incompletely understood despite improved tools for processing of clinical material. Improvements in mortality from inhalation injury are mostly due to widespread improvements in critical care rather than focused interventions for smoke inhalation. Morbidity associated with inhalation injury is produced by heat exposure and inhaled toxins. Management of toxin exposure in smoke inhalation remains controversial, particularly as related to carbon monoxide and cyanide. Hyperbaric oxygen treatment has been evaluated in multiple trials to manage neurologic sequelae of carbon monoxide exposure. Unfortunately, data to date do not support application of hyperbaric oxygen in this population outside the context of clinical trials. Cyanide is another toxin produced by combustion of natural or synthetic materials. A number of antidote strategies have been evaluated to address tissue hypoxia associated with cyanide exposure. Data from European centers supports application of specific antidotes for cyanide toxicity. Consistent international support for this therapy is lacking. Even diagnostic criteria are not consistently applied though bronchoscopy is one diagnostic and therapeutic tool. Medical strategies under investigation for specific treatment of smoke inhalation include beta-agonists, pulmonary blood flow modifiers, anticoagulants and antiinflammatory strategies. Until the value of these and other approaches is confirmed, however, the clinical approach to inhalation injury is supportive.
Collapse
Affiliation(s)
- David J Dries
- Department of Surgery, Regions Hospital, St. Paul, MN 55101, USA.
| | | |
Collapse
|
26
|
Tuinman PR, Dixon B, Levi M, Juffermans NP, Schultz MJ. Nebulized anticoagulants for acute lung injury - a systematic review of preclinical and clinical investigations. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R70. [PMID: 22546487 PMCID: PMC3681399 DOI: 10.1186/cc11325] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/02/2012] [Accepted: 04/30/2012] [Indexed: 12/16/2022]
Abstract
Background Data from interventional trials of systemic anticoagulation for sepsis inconsistently suggest beneficial effects in case of acute lung injury (ALI). Severe systemic bleeding due to anticoagulation may have offset the possible positive effects. Nebulization of anticoagulants may allow for improved local biological availability and as such may improve efficacy in the lungs and lower the risk of systemic bleeding complications. Method We performed a systematic review of preclinical studies and clinical trials investigating the efficacy and safety of nebulized anticoagulants in the setting of lung injury in animals and ALI in humans. Results The efficacy of nebulized activated protein C, antithrombin, heparin and danaparoid has been tested in diverse animal models of direct (for example, pneumonia-, intra-pulmonary lipopolysaccharide (LPS)-, and smoke inhalation-induced lung injury) and indirect lung injury (for example, intravenous LPS- and trauma-induced lung injury). Nebulized anticoagulants were found to have the potential to attenuate pulmonary coagulopathy and frequently also inflammation. Notably, nebulized danaparoid and heparin but not activated protein C and antithrombin, were found to have an effect on systemic coagulation. Clinical trials of nebulized anticoagulants are very limited. Nebulized heparin was found to improve survival of patients with smoke inhalation-induced ALI. In a trial of critically ill patients who needed mechanical ventilation for longer than two days, nebulized heparin was associated with a higher number of ventilator-free days. In line with results from preclinical studies, nebulization of heparin was found to have an effect on systemic coagulation, but without causing systemic bleedings. Conclusion Local anticoagulant therapy through nebulization of anticoagulants attenuates pulmonary coagulopathy and frequently also inflammation in preclinical studies of lung injury. Recent human trials suggest nebulized heparin for ALI to be beneficial and safe, but data are very limited.
Collapse
Affiliation(s)
- Pieter R Tuinman
- Department of Intensive Care Medicine and Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Yamamoto Y, Enkhbaatar P, Sousse LE, Sakurai H, Rehberg SW, Asmussen S, Kraft ER, Wright CL, Bartha E, Cox RA, Hawkins HK, Traber LD, Traber MG, Szabo C, Herndon DN, Traber DL. Nebulization with γ-tocopherol ameliorates acute lung injury after burn and smoke inhalation in the ovine model. Shock 2012; 37:408-14. [PMID: 22266978 PMCID: PMC3306540 DOI: 10.1097/shk.0b013e3182459482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We hypothesize that the nebulization of γ-tocopherol (g-T) in the airway of our ovine model of acute respiratory distress syndrome will effectively improve pulmonary function following burn and smoke inhalation after 96 h. Adult ewes (n = 14) were subjected to 40% total body surface area burn and were insufflated with 48 breaths of cotton smoke under deep anesthesia, in a double-blind comparative study. A customized aerosolization device continuously delivered g-T in ethanol with each breath from 3 to 48 h after the injury (g-T group, n = 6), whereas the control group (n = 5) was nebulized with only ethanol. Animals were weaned from the ventilator when possible. All animals were killed after 96 h, with the exception of one untreated animal that was killed after 64 h. Lung g-T concentration significantly increased after g-T nebulization compared with the control group (38.5 ± 16.8 vs. 0.39 ± 0.46 nmol/g, P < 0.01). The PaO(2)/FIO(2) ratio was significantly higher after treatment with g-T compared with the control group (310 ± 152 vs. 150 ± 27.0, P < 0.05). The following clinical parameters were improved with g-T treatment: pulmonary shunt fraction, peak and pause pressures, lung bloodless wet-to-dry weight ratios (2.9 ± 0.87 vs. 4.6 ± 1.4, P < 0.05), and bronchiolar obstruction (2.0% ± 1.1% vs. 4.6% ± 1.7%, P < 0.05). Nebulization of g-T, carried by ethanol, improved pulmonary oxygenation and markedly reduced the time necessary for assisted ventilation in burn- and smoke-injured sheep. Delivery of g-T into the lungs may be a safe, novel, and efficient approach for management of acute lung injury patients who have sustained oxidative damage to the airway.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
- Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, 8-1 Kawata-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Linda E. Sousse
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women’s Medical University, 8-1 Kawata-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sebastian W. Rehberg
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Sven Asmussen
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Edward R. Kraft
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Charlotte L. Wright
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-6512, USA
| | - Eva Bartha
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Robert A. Cox
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Hal K. Hawkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Lillian D. Traber
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - Maret G. Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-6512, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| | - David N. Herndon
- Shriners Hospitals for Children, Burn Unit, Galveston, Texas 77555-0833
| | - Daniel L. Traber
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas 77555-0833, USA
| |
Collapse
|
28
|
Yamamoto Y, Enkhbaatar P, Sakurai H, Rehberg S, Asmussen S, Ito H, Sousse LE, Cox RA, Deyo DJ, Traber LD, Traber MG, Herndon DN, Traber DL. Development of a long-term ovine model of cutaneous burn and smoke inhalation injury and the effects of early excision and skin autografting. Burns 2012; 38:908-16. [PMID: 22459154 DOI: 10.1016/j.burns.2012.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Smoke inhalation injury frequently increases the risk of pneumonia and mortality in burn patients. The pathophysiology of acute lung injury secondary to burn and smoke inhalation is well studied, but long-term pulmonary function, especially the process of lung tissue healing following burn and smoke inhalation, has not been fully investigated. By contrast, early burn excision has become the standard of care in the management of major burn injury. While many clinical studies and small-animal experiments support the concept of early burn wound excision, and show improved survival and infectious outcomes, we have developed a new chronic ovine model of burn and smoke inhalation injury with early excision and skin grafting that can be used to investigate lung pathophysiology over a period of 3 weeks. MATERIALS AND METHODS Eighteen female sheep were surgically prepared for this study under isoflurane anesthesia. The animals were divided into three groups: an Early Excision group (20% TBSA, third-degree cutaneous burn and 36 breaths of cotton smoke followed by early excision and skin autografting at 24h after injury, n=6), a Control group (20% TBSA, third-degree cutaneous burn and 36 breaths of cotton smoke without early excision, n=6) and a Sham group (no injury, no early excision, n=6). After induced injury, all sheep were placed on a ventilator and fluid-resuscitated with Lactated Ringers solution (4 mL/% TBS/kg). At 24h post-injury, early excision was carried out to fascia, and skin grafting with meshed autografts (20/1000 in., 1:4 ratio) was performed under isoflurane anesthesia. At 48 h post-injury, weaning from ventilator was begun if PaO(2)/FiO(2) was above 250 and sheep were monitored for 3 weeks. RESULTS At 96 h post-injury, all animals were weaned from ventilator. There are no significant differences in PaO(2)/FiO(2) between Early Excision and Control groups at any points. All animals were survived for 3 weeks without infectious complication in Early Excision and Sham groups, whereas two out of six animals in the Control group had abscess in lung. The percentage of the wound healed surviving area (mean ± SD) was 74.7 ± 7.8% on 17 days post-surgery in the Early Excision group. Lung wet-to-dry weight ratio (mean ± SD) was significantly increased in the Early Excision group vs. Sham group (p<0.05). The calculated net fluid balance significantly increased in the early excision compared to those seen in the Sham and Control groups. Plasma protein, oncotic pressure, hematocrit of % baseline, hemoglobin of % baseline, white blood cell and neutrophil were significantly decreased in the Early Excision group vs. Control group. CONCLUSIONS The early excision model closely resembles practice in a clinical setting and allows long-term observations of pulmonary function following burn and smoke inhalation injury. Further studies are warranted to assess lung tissue scarring and measuring collagen deposition, lung compliance and diffusion capacity.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Department of Anesthesiology, Investigational Intensive Care Unit, The University of Texas Medical Branch, Shriners Burns Hospital for Children, 601 Harborside Drive, Galveston, TX 77555-1102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rancourt RC, Veress LA, Guo X, Jones TN, Hendry-Hofer TB, White CW. Airway tissue factor-dependent coagulation activity in response to sulfur mustard analog 2-chloroethyl ethyl sulfide. Am J Physiol Lung Cell Mol Physiol 2011; 302:L82-92. [PMID: 21964405 DOI: 10.1152/ajplung.00306.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute lung injury is a principal cause of morbidity and mortality in response to mustard gas (SM) inhalation. Obstructive, fibrin-containing airway casts have recently been reported in a rat inhalation model employing the SM analog 2-chloroethyl ethyl sulfide (CEES). The present study was designed to identify the mechanism(s) causing activation of the coagulation cascade after CEES-induced airway injury. Here we report that CEES inhalation elevates tissue factor (TF) activity and numbers of detached epithelial cells present in lavage fluid (BALF) from rats after exposure (18 h). In vitro studies using 16HBE cells, or with rat BALF, indicated that detached epithelial cells could convert factor X (FX) to the active form FXa when incubated with factor VII and could elicit rapid clotting of plasma. In addition, immunocytochemical analysis demonstrated elevated cell surface (TF) expression on CEES-exposed 16HBE cells as a function of time. However, total cell TF expression did not increase. Since membrane surfaces bearing TF are important determinants of clot initiation, anticoagulants directed against these entities were tested for ability to limit plasma clotting or FX activation capacity of BALF or culture media. Addition of tifacogin, a TF pathway inhibitor, effectively blocked either activity, demonstrating that the procoagulant actions of CEES were TF pathway dependent. Lactadherin, a protein capable of competing with clotting factors for phospholipid-binding sites, was partially effective in limiting these procoagulant actions. These findings indicate that TF pathway inhibition could be an effective strategy to prevent airway obstruction after SM or CEES inhalation.
Collapse
Affiliation(s)
- Raymond C Rancourt
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | | | | | |
Collapse
|
30
|
Midde KK, Batchinsky AI, Cancio LC, Shetty S, Komissarov AA, Florova G, Walker KP, Koenig K, Chroneos ZC, Allen T, Chung K, Dubick M, Idell S. Wood bark smoke induces lung and pleural plasminogen activator inhibitor 1 and stabilizes its mRNA in porcine lung cells. Shock 2011; 36:128-37. [PMID: 21478814 PMCID: PMC3139766 DOI: 10.1097/shk.0b013e31821d60a4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although aberrant fibrinolysis and plasminogen activator inhibitor 1 (PAI-1) are implicated in acute lung injury, the role of this serpin in the pathogenesis of wood bark smoke (WBS)-induced acute lung injury (SIALI) and its regulation in resident lung cells after exposure to smoke are unclear. A total of 22 mechanically ventilated pigs were included in this study. Immunohistochemical analyses were used to assess fibrin and PAI-1 in the lungs of pigs with SIALI in situ. Plasminogen activator inhibitor 1 was measured in bronchoalveolar lavage fluids by Western blotting. Induction of PAI-1 was determined at the protein and mRNA levels by Western and polymerase chain reaction analyses in primary porcine alveolar type II cells, fibroblasts, and pleural mesothelial cells. Plasminogen activator inhibitor 1 mRNA stability was determined by transcription chase studies. Gel shift analyses were used to characterize the mechanism regulating PAI-1 mRNA stability. Smoke-induced ALI induced PAI-1, with prominent extravascular fibrin deposition in large and small airways as well as alveolar and subpleural compartments. In pleural mesothelial cells, lung fibroblasts, and alveolar type II cells, PAI-1 mRNA was stabilized by WBS extract and contributed to induction of PAI-1. The mechanism involves dissociation of a novel 6-phospho-d-gluconate-NADP oxidoreductase-like PAI-1 mRNA binding protein from PAI-1 mRNA. Exposure to WBS induces prominent airway and mesothelial expression of PAI-1, associated with florid distribution of fibrin in SIALI in vivo Wood bark smoke components induce PAI-1 in vitro in part by stabilization of PAI-1 mRNA, a newly recognized pathway that may promote extravascular fibrin deposition and lung dysfunction in SIALI.
Collapse
Affiliation(s)
- Krishna K. Midde
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, TX
| | | | | | - Sreerama Shetty
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Andrey A. Komissarov
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Galina Florova
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, TX
| | | | - Kathy Koenig
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Zissis C. Chroneos
- Department of Biochemistry, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Tim Allen
- Department of Pathology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Kevin Chung
- US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Michael Dubick
- US Army Institute of Surgical Research, Fort Sam Houston, Texas
| | - Steven Idell
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
31
|
Morita N, Enkhbaatar P, Maybauer DM, Maybauer MO, Westphal M, Murakami K, Hawkins HK, Cox RA, Traber LD, Traber DL. Impact of bronchial circulation on bronchial exudates following combined burn and smoke inhalation injury in sheep. Burns 2011; 37:465-73. [PMID: 21195551 PMCID: PMC3056942 DOI: 10.1016/j.burns.2010.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 10/19/2010] [Accepted: 11/03/2010] [Indexed: 01/11/2023]
Abstract
UNLABELLED We previously reported bronchial circulation contributes to pulmonary edema and increases shunt fraction following smoke inhalation, and bronchial blood flow significantly increases in inhalation injury. We hypothesized reduction of bronchial blood flow reduces exudation to the airway and ameliorates lung injury from combined burn and smoke insults (B&S injury). METHOD Merino ewes (n=28) randomly divided into three groups: (1) bronchial artery ligated and injured (injury+ligation group); (2) bronchial artery left intact and injured (injury+no ligation group); (3) bronchial artery ligated but not injured (no injury+ligation group) were subjected to a flame burn and inhalation injury under halothane anesthesia. Parameters were analyzed using Scheffe's post hoc test (P<0.05). All Groups were resuscitated with Ringer lactate solution and placed on a ventilator for 48h. RESULTS Pulmonary gas exchange (PaO(2)/FiO(2)) improved in injury+ligation group. Further, obstruction score, an index of airway cast formation, significantly changed between injury+no ligation group compared to both ligation groups. CONCLUSION Bronchial circulation plays a significant role in lung injury after B&S injury, and reduction of bronchial blood flow by bronchial artery ligation reduces bronchial exudates, resulting in improved gas exchange.
Collapse
Affiliation(s)
- Naoki Morita
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Shriners Hospital for Children, Galveston, TX, 77555 USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Shriners Hospital for Children, Galveston, TX, 77555 USA
| | - Dirk M. Maybauer
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Shriners Hospital for Children, Galveston, TX, 77555 USA
| | - Marc O. Maybauer
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Shriners Hospital for Children, Galveston, TX, 77555 USA
| | - Martin Westphal
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Shriners Hospital for Children, Galveston, TX, 77555 USA
| | - Kazunori Murakami
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Shriners Hospital for Children, Galveston, TX, 77555 USA
| | - Hal K. Hawkins
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Shriners Hospital for Children, Galveston, TX, 77555 USA
| | - Robert A. Cox
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Shriners Hospital for Children, Galveston, TX, 77555 USA
| | - Lillian. D. Traber
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Shriners Hospital for Children, Galveston, TX, 77555 USA
| | - Daniel L. Traber
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston, TX, 77555 USA
| |
Collapse
|
32
|
The significance of reduced airway hyperemia and enhanced oxygenation after epinephrine nebulization in a preclinical evaluation*. Crit Care Med 2011; 39:891-3. [DOI: 10.1097/ccm.0b013e318211f8e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Markart P, Nass R, Ruppert C, Hundack L, Wygrecka M, Korfei M, Boedeker RH, Staehler G, Kroll H, Scheuch G, Seeger W, Guenther A. Safety and tolerability of inhaled heparin in idiopathic pulmonary fibrosis. J Aerosol Med Pulm Drug Deliv 2010; 23:161-72. [PMID: 20109123 DOI: 10.1089/jamp.2009.0780] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Abnormalities in alveolar coagulation occur in idiopathic pulmonary fibrosis (IPF). Anticoagulants attenuate bleomycin-induced lung fibrosis in animals. In this study, we first examined the pharmacokinetics of inhaled heparin in healthy subjects. Second, we investigated the safety and tolerability of heparin inhalation in IPF patients. METHODS Coagulation assays were performed in blood and bronchoalveolar lavage fluid samples from 19 healthy volunteers after inhalation of increasing amounts of unfractionated heparin. The acute effects of heparin inhalation on lung function and exercise capacity and the safety and tolerability of chronic heparin inhalation for 28 days were assessed in 20 IPF patients in an open-label exploratory pilot study. RESULTS In healthy subjects, inhalation of 150,000 IU heparin ("filled dose") significantly increased the partial thromboplastin time and anti-factor Xa activity in blood samples indicating the threshold dose. The local alveolar anticoagulant effect was detectable up to 72 h, and the alveolar half-life was estimated at 28 h. In IPF-patients, no acute deleterious effects on pulmonary function, gas exchange, or exercise capacity were noted after inhalation of the threshold dose. During chronic treatment, where one-fourth of the threshold dose was inhaled every 12 h for 28 days to obtain a steady-state anticoagulant activity in the alveolar space approximating the anticoagulant activity observed after threshold dose inhalation, no heparin-related side effects, such as hemoptysis or heparin-induced antibodies and thrombocytopenia, were detected in any patient, and median lung function values, exercise capacity, and quality of life scores appeared largely unaltered. Three adverse and one serious adverse events were noted; however, the relation of these events to the heparin inhalation was assessed as "unlikely" or "no relation" in each case. CONCLUSIONS Inhaled heparin appears to be safe and well tolerated in IPF patients. Future clinical trials are required to demonstrate the long-term safety and efficacy of inhaled heparin in IPF.
Collapse
Affiliation(s)
- Philipp Markart
- Department of Internal Medicine, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thaler U, Kraincuk P, Kamolz LP, Frey M, Metnitz PGH. [Inhalation injury--epidemiology, diagnosis and therapy]. Wien Klin Wochenschr 2010; 122:11-21. [PMID: 20177854 DOI: 10.1007/s00508-010-1303-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/13/2010] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Inhalation injury is a vitally threatening medical syndrome, which might appear in patients with or without burn injuries. Thus, knowledge about development, diagnosis and treatment of inhalation injury should be available for each physician working in an intensive care unit. METHODS This review starts with the causal and formal pathogenesis of inhalation injuries. Furthermore, diagnosis and treatment in the critical care setting are presented, followed by the discussion of possible complications. Specific intoxications such as carbon monoxide are due to their importance separately discussed. CONCLUSIONS Inhalation injury present with an attributable excess mortality and thus worsen the prognosis of burned patients. New insights into the pathogenesis of inhalation injury, however, have led to improved therapeutic possibilities with improved outcome. Necessary prerequisites are a timely diagnosis and restrictive volume management, especially in patients with extensive burns. Prospective studies are needed to be able to answer the many emerging questions.
Collapse
Affiliation(s)
- Ulrich Thaler
- Universitätsklinik für Anästhesie, Allgemeine Intensivmedizin und Schmerztherapie, Medizinische Universität Wien, Wien, Austria
| | | | | | | | | |
Collapse
|
35
|
Thai A, Xiao J, Ammit A, Rohanizadeh R. Development of inhalable formulations of anti-inflammatory drugs to potentially treat smoke inhalation injury in burn victims. Int J Pharm 2010; 389:41-52. [DOI: 10.1016/j.ijpharm.2010.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 12/01/2022]
|
36
|
Beattie JR, Schock BC. Identifying the spatial distribution of vitamin E, pulmonary surfactant and membrane lipids in cells and tissue by confocal Raman microscopy. Methods Mol Biol 2010; 579:513-35. [PMID: 19763493 DOI: 10.1007/978-1-60761-322-0_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Every organ compromises of several different cell types. When studying the effects of a chosen compound within this organ or tissue uptake, localisation, metabolism, and the effect itself can be expected to differ between cells. Using the example of Vitamin E in pulmonary tissue we introduce confocal Raman Microscopy as a superior method to localise lipid-soluble compounds within tissues and cells. We describe the analyses of vitamin E, its oxidation products, and metabolites as well as pulmonary surfactant phospholipids in fixed lung tissue sections. Examples of main structural membrane lipids (PC, cholesterol) and an example of a lipid-signalling molecule (ceramide) are also included. Confocal Raman microscopy is a non-destructive optical method of analysing chemical and physical composition of solids, liquids, gases, gels, and solutions. The method is rich in information allowing discrimination of chemically similar molecules (including geometric isomers) and sensitive monitoring of subtle physical interactions. Additionally, Raman spectroscopy is relatively insensitive to water allowing the analysis of aqueous solutions and suspensions typical in biochemistry. In contrast, Raman spectroscopy is sensitive to non-polar molecules making it ideal for lipidomics research.
Collapse
Affiliation(s)
- J Renwick Beattie
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | | |
Collapse
|
37
|
Update on Antithrombin for the Treatment of Burn Trauma and Smoke Inhalation Injury. Intensive Care Med 2010. [DOI: 10.1007/978-1-4419-5562-3_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Abstract
This review article describes the pathophysiological aspects of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), induced by combined burn and smoke inhalation and examines various therapeutic approaches. The injury results in a fall in arterial oxygenation as a result of airway obstruction, increased pulmonary transvascular fluid flux and loss of hypoxic pulmonary vasoconstriction. The changes in cardiopulmonary function are mediated by reactive oxygen and nitrogen species. Nitric oxide (NO) is generated by both inducible and constitutive isoforms of nitric oxide synthase (NOS). Recently, neuronal NOS emerged as a major component within the pathogenesis of ARDS. NO rapidly combines with the oxygen radical superoxide to form reactive and highly toxic nitrogen species such as peroxynitrite. The control of NO formation involves poly(ADP-ribose) polymerase and its ability to up-regulate the activity of nuclear transcription factors through ribosylation. In addition, present data support a major role of the bronchial circulation in the injury, as blockage of bronchial blood flow will also minimize the pulmonary injury. Current data suggest that cytotoxins and activated cells are formed in the airway and carried to the parenchyma.
Collapse
|
39
|
Rehberg S, Maybauer MO, Enkhbaatar P, Maybauer DM, Yamamoto Y, Traber DL. Pathophysiology, management and treatment of smoke inhalation injury. Expert Rev Respir Med 2009; 3:283-297. [PMID: 20161170 PMCID: PMC2722076 DOI: 10.1586/ers.09.21] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Smoke inhalation injury continues to increase morbidity and mortality in burn patients in both the third world and industrialized countries. The lack of uniform criteria for the diagnosis and definition of smoke inhalation injury contributes to the fact that, despite extensive research, mortality rates have changed little in recent decades. The formation of reactive oxygen and nitrogen species, as well as the procoagulant and antifibrinolytic imbalance of alveolar homeostasis, all play a central role in the pathogenesis of smoke inhalation injury. Further hallmarks include massive airway obstruction owing to cast formation, bronchospasm, the increase in bronchial circulation and transvascular fluid flux. Therefore, anticoagulants, antioxidants and bronchodilators, especially when administered as an aerosol, represent the most promising treatment strategies. The purpose of this review article is to provide an overview of the pathophysiological changes, management and treatment options of smoke inhalation injury based on the current literature.
Collapse
Affiliation(s)
- Sebastian Rehberg
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA, Tel.: +1 409 772 6405, ,
| | | | | | | | | | | |
Collapse
|