1
|
Bispo Matos JH, Bernardo de Lima Silva AH, Ferreira MV, Verri WA, da Cunha JM, Zanoveli JM. Sex-based differences in the prevention of stress-induced anxiety by Resolvin D5 and its precursor docosahexaenoic acid: A comparative study. Brain Res 2025; 1857:149612. [PMID: 40174854 DOI: 10.1016/j.brainres.2025.149612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Acute stress can cause emotional dysregulation and trigger various molecular changes, including increased neuroinflammation in limbic regions. These changes have the potential to induce anxiety by disrupting brain physiology and functional connectivity. In this study, we investigated whether an 8-day treatment with inflammation-resolving compounds, specifically Resolvin D5 (RvD5) and its precursor, the omega-3 fatty acid docosahexaenoic acid (DHA), could alleviate anxiety induced by acute restraint stress (ARS) in male and female rats. Additionally, we assessed whether these effects persisted one week after treatment cessation. Serum corticosterone levels and proinflammatory cytokine levels in the hippocampus (HIP) were also assessed. Our results confirmed that ARS induced significant anxiety-like behavior in both the short and long term, with females displaying greater exploratory activity than males. Both RvD5 and DHA prevented the development of pronounced anxiety-like behavior in stressed rats, without affecting anxiety levels in non-stressed rats. Notably, the effect persisted for at least one-week post-treatment in females. The treatments also prevented the elevation of TNF alpha and interleukin-1 beta levels in the HIP and serum corticosterone levels in stressed animals. In conclusion, our findings confirm the neuroprotective profile of these compounds and indicate that the continuous use of DHA or RvD5 may have promising effects in preventing anxiety responses triggered by acute stressful event, regardless of sex. Furthermore, this study is the first to demonstrate that RvD5 can downregulate corticosterone levels in stressed animals.
Collapse
Affiliation(s)
| | | | - Matheus Vinicius Ferreira
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Huang S, Zhang Y, Ma L, Wu B, Feng J, Cheng W, Yu J. Neuroticism is associated with future disease and mortality risks. Chin Med J (Engl) 2025; 138:1355-1366. [PMID: 40082259 DOI: 10.1097/cm9.0000000000003503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Neuroticism has been associated with numerous health outcomes. However, most research has focused on a single specific disorder and has produced controversial results, particularly regarding mortality risk. Here, we aimed to examine the association of neuroticism with morbidity and mortality and to elucidate how neuroticism affects trajectories from a healthy state, to one or more neuroticism-related disorders, and subsequent mortality risk. METHODS We included 483,916 participants from the UK Biobank at baseline (2006-2010). Neuroticism was measured using the Eysenck Personality Questionnaire. Three clusters were constructed, including worry, depressed affect, and sensitivity to environmental stress and adversity (SESA). Cox proportional hazards regression and multistate models were used. Linear regression was used to examine the association between neuroticism and immune parameters and neuroimaging measures. RESULTS High neuroticism was associated with 37 non-overlapping diseases, including increased risk of infectious, cardiometabolic, neuropsychiatric, digestive, and respiratory diseases, and decreased risk of cancer. After adjustment for sociodemographic variables, physical measures, healthy behaviors, and baseline diagnoses, moderate-to-high neuroticism was associated with a decreased risk of all-cause mortality. In multistate models, high neuroticism was associated with an increased risk of transitions from a healthy state to a first neuroticism-related disease (hazard ratio [HR] [95% confidence interval (CI)] = 1.09 [1.05-1.13], P <0.001) and subsequent transitions to multimorbidity (1.08 [1.02-1.14], P = 0.005), but was associated with a decreased risk of transitions from multimorbidity to death (0.90 [0.84-0.97], P for trend = 0.006). The leading neuroticism cluster showing a detrimental role in the health-illness transition was depressed affect, which correlated with higher amygdala volume and lower insula volume. The protective effect of neuroticism against mortality was mainly contributed by the SESA cluster, which, unlike the other two clusters, did not affect the balance between innate and adaptive immunity. CONCLUSION This study provides new insights into the differential role of neuroticism in health outcomes and into new perspectives for establishing mortality prevention programs for patients with multimorbidity.
Collapse
Affiliation(s)
- Shuyi Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yaru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Lingzhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266000, China
| | - Bangsheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200040, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200040, China
| | - Jintai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai 200040, China
| |
Collapse
|
3
|
Feng WJ, Huang PZ, Zhang LM, Ma Q, Hu HY, Gu Y, Li Y, Gao K. Anti-inflammatory sesquiterpenoids from Chloranthus japonicus. PHYTOCHEMISTRY 2025; 234:114433. [PMID: 39933600 DOI: 10.1016/j.phytochem.2025.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025]
Abstract
Ten undescribed sesquiterpenoids were isolated from Chloranthus japonicus Sieb., including (4R,5S,6R,8R,10R)-4-hydroxy-6-O-β-d-glucosyleudesman-7(11)-en-8,12-olide (1), (1R,4R,5R,8S,10R)-1,4-dihydroxy-15-(2-methylbutyryloxy)eudesman-7(11)-en-8,12-olide (2),(1R,4S,5R,8S,10R)-1,4-dihydroxy-15-(2-methylbutyryloxy)eudesman-7(11)-en-8,12-olide (3), (1R,3S,4R,5S,8S,9S,10S)-8,9-epoxy-15-hydroxylindenran-7(11)-en-8,12-olide (4), (1R,3S,4R,5S,8S,9S,10S)-8,9,15-trihydroxylindenran-7(11)-en-8,12-olide (5), (1R,3S,4R,5S,6R,8S,10S)-6-acetoxyl-4-hydroxy-15-O-β-d-glucosyllindenran-7(11)-en-8,12-olide (6), (1R,3S,4R,5S,6R,8S,10S)-15-hydroxy-4-O-β-d-glucosyllindenran-7(11),8(9)-dien-8,12-olide (7), japonilides A-C (8-10), along with 19 known compounds. Compounds 8-10 are rare 5,6-seco-germacrane-type sesquiterpenoids, and only one of this type sesquiterpenoid has been reported to be isolated from C. anhuiensis. 9-Ketocurzerene (27) was first reported from a natural source. The structures and absolute configurations of the compounds were elucidated through a combination of spectroscopic data interpretation, quantum-chemical calculation, DP4+ probability analysis, and single-crystal X-ray diffraction analysis. Compounds 8, 12, 16 and 22 exhibited significant inhibitory effects on NO production in lipopolysaccharide-stimulated RAW 264.7 macrophages, with IC50 values of 22.99 ± 2.71, 24.34 ± 1.36, 23.69 ± 2.83, and 21.23 ± 1.34 μmol/L, respectively. Western blotting studies demonstrated that compound 8 inhibited the expression of nitric oxide synthase and cyclooxygenase-2, which act as key mediators in the inflammatory response.
Collapse
Affiliation(s)
- Wei-Jiao Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Pei-Zhi Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Li-Mei Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Qian Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hong-Yu Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yue Gu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ya Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
4
|
Liao W, Hu R, Ji Y, Zhong Z, Huang X, Cai T, Zhou C, Wang Y, Ye Z, Yang P. Oleic acid regulates CD4+ T cells differentiation by targeting ODC1-mediated STAT5A phosphorylation in Vogt-Koyanagi-Harada disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156660. [PMID: 40203473 DOI: 10.1016/j.phymed.2025.156660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Vogt-Koyanagi-Harada (VKH) is a multisystemic autoimmune disorder characterized by bilateral panuveitis frequently accompanied by neurologic manifestations. While metabolic dysregulation is increasingly recognized in the context of autoimmune diseases, the role of specific metabolites in VKH disease remains unexplored. METHODS Non-targeted and targeted metabolomics analysis, phospho-antibody array, proteome microarray, surface plasmon resonance, and molecular simulation were used to identify molecular target of OA. RESULTS We investigated metabolic profile of VKH disease and found that oleic acid (OA) was enriched in this disease. A series of functional assays showed that OA could exacerbate experimental autoimmune uveitis (EAU) in association with increased frequency of Th1 and Th17 cells and decreased proportion of Treg cells in vitro. However, the specific molecular target of OA remains elusive. Through proteome microarrays, molecular simulations and surface plasmon resonance assays, Ornithine decarboxylase 1 (ODC1) was identified as target protein of OA. OA could bind to ODC1, increase ODC1 protein expression in both a time- and concentration-dependent manner and promote subsequently putrescine production. Phospho-antibody array analysis revealed that OA inhibited phosphorylation of STAT5A (Y694) in CD4+T cells, leading to imbalance of Th1/Th17 and Treg cells and decreased transcription of IL-10. OA upregulated ODC1 protein and putrescine levels through binding to LYS-78, inhibited phosphorylation of STAT5A protein and subsequently decreased binding of STAT5A at IL-10 promoter. CONCLUSION These results reveals that OA could be a crucial metabolite for modulation of CD4+T cell differentiation and that ODC1-mediated phosphorylation and transcriptional activity of STAT5A contributes to development of VKH disease progression, highlighting ODC1 as a novel therapeutic target in VKH disease.
Collapse
Affiliation(s)
- Weiting Liao
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Ruixue Hu
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Yan Ji
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Zhenyu Zhong
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Xinyue Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Jinfeng Laboratory, Chongqing, China
| | - Tao Cai
- The First Affiliated Hospital of Chongqing Medical University, department of Dermatology, Chongqing, China
| | - Chunjiang Zhou
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Yao Wang
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Zi Ye
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China.
| | - Peizeng Yang
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China.
| |
Collapse
|
5
|
Ye S, Ma L, Chi Y, Liu N, Liu Y, Wei W, Niu Y, Zheng P, Yu J, Hai D. Targeting neutrophil dysfunction in acute lung injury: Insights from active components of Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156664. [PMID: 40121883 DOI: 10.1016/j.phymed.2025.156664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUNDS Acute lung injury (ALI) is a lethal condition characterized by uncontrolled pulmonary inflammatory responses, with high morbidity and mortality rates that pose a significant threat to patient health. The persistent retention of neutrophils in lung tissue and subsequent inflammatory damage represents a primary mechanism underlying the early onset of ALI disorders. In recent years, pharmaceutical research targeting these pathological processes has garnered considerable attention. Traditional Chinese medicines (TCM) and their active ingredients, known for their safety and stability, show promising potential in treating ALI through their ability to modulate neutrophil function via multiple pathways. PURPOSE This review examines the mechanisms of neutrophil involvement in the pathogenesis of ALI, investigates potential therapeutic targets and pathways through which Chinese medicines and their active ingredients regulate neutrophil function, and provides a theoretical foundation for developing novel clinical treatment strategies. METHODS A comprehensive literature search was conducted using multiple databases, including Science Direct, PubMed, Google Scholar, and Web of Science. Search terms included 'lung injury,' 'acute lung injury,' 'inflammatory lung injury,' 'inflammation,' 'active ingredient,' 'herbal,' 'traditional Chinese medicine,' 'mechanism,' 'drug,' and 'neutrophils.' The selected literature was systematically categorized and analyzed. RESULTS Our review reveals that TCM and active ingredients influence neutrophil function through four primary mechanisms to impede ALI progression: 1) reduction of neutrophil-mediated uncontrolled inflammatory responses by suppressing neutrophil hyperactivation and inhibiting neutrophil migration and infiltration; 2) attenuation of lung tissue inflammatory damage by inhibiting neutrophil-produced cytotoxic substances, including elastase granules, neutrophil extracellular traps (NETs), and reactive oxygen species (ROS); 3) suppression of inflammatory responses by decreasing the secretion of neutrophil-derived cytokines, such as interleukin (IL) -1β, IL-6 and tumor necrosis factor-alpha (TNF-α); and 4) enhancement of neutrophil phagocytosis and accelerate the removal of apoptotic neutrophils to eliminate harmful pathogens and promote late-stage tissue repair. These findings demonstrate that Chinese medicines and their active ingredients exhibit significant therapeutic potential in ALI disorders through the modulation of neutrophil function, providing a robust theoretical framework for their clinical applications. CONCLUSION Traditional Chinese medicines and their active ingredients demonstrate significant anti-inflammatory efficacy through multiple mechanisms of neutrophil function regulation, showing considerable promise for the treatment of ALI with broad clinical applications.
Collapse
Affiliation(s)
- Saiya Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yannan Chi
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Wei Wei
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yang Niu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China.
| | - Dongmei Hai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China.
| |
Collapse
|
6
|
Francos-Quijorna I, López-González N, Caro-Canton M, Sánchez-Fernández A, Hernández-Mir G, López-Vales R. Lack of effects of Resolvin D1 after spinal cord injury in mice. Exp Neurol 2025; 388:115226. [PMID: 40120661 DOI: 10.1016/j.expneurol.2025.115226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Inflammation is a fundamental component of the body's response to injury or infection and is responsible for restoring tissue homeostasis and starting the wound healing process. To avoid excessive tissue damage, it is important to efficiently resolve inflammation once it is no longer necessary. In recent years, the discovery of pro-resolving lipid mediators derived from polyunsaturated fatty acids, such as Resolvin D1 (RvD1), has shed light on the resolution of inflammation. However, the impact of RvD1 on Spinal Cord Injury (SCI) remains unexplored. In this study, we provide direct evidence that the administration of RvD1 for one week after SCI fails to enhance resolution of inflammation and does not improve functional and histological outcomes. Our transcriptomic analysis reveals that RvD1 does not modulate inflammatory response pathways in the injured spinal cord but leads to significant changes in the expression of genes related to ribosomal function and extracellular matrix pathways. Unlike SCI, RvD1 treatment ameliorated neurological deficits in experimental autoimmune encephalomyelitis. Our findings represent the first report demonstrating that RvD1 treatment does not exert therapeutic actions in the context of SCI and suggest that this pro-resolving agonist may exert therapeutic actions in certain but not in all conditions involving an inflammatory component.
Collapse
Affiliation(s)
- Isaac Francos-Quijorna
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Néstor López-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Marc Caro-Canton
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Alba Sánchez-Fernández
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Gerard Hernández-Mir
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London E1 2AT, UK
| | - Rubèn López-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
7
|
Ortega Á, Duran P, Garrido B, Manzano A, Navarro C, Silva A, Rojas M, De Sanctis JB, Radzioch D, Rivera-Porras D, Paredes CS, Bermúdez V. Specialized Pro-Resolving Lipid Mediators in Pulmonary Diseases: Molecular and Therapeutic Implications. Molecules 2025; 30:2212. [PMID: 40430385 PMCID: PMC12114278 DOI: 10.3390/molecules30102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Inflammatory lung diseases (ILDs) represent a global public health crisis characterized by escalating prevalence, significant morbidity, and substantial mortality. In response to the complex immunopathogenic mechanisms driving these conditions, novel pharmacological strategies targeting resolution pathways have emerged throughout the discovery of specialized pro-resolving lipid mediator (SPM; resolvins, maresins, and protectins) dysregulation across the ILD spectra, positioning these endogenous molecules as promising therapeutic candidates for modulating maladaptive inflammation and promoting tissue repair. Over the past decade, this paradigm has catalyzed extensive translational research into SPM-based interventions as precision therapeutics for respiratory inflammation. In asthma, they reduce mucus hypersecretion, bronchial hyperreactivity, and airway inflammation, with prenatal SPM exposure potentially lowering offspring disease risk. In COPD, SPMs attenuate amyloid A-driven inflammation, normalizing cytokine/chemokine imbalances and oxidative stress and mitigating COVID-19-associated cytokine storm, enhancing survival. This review synthesizes SPMs' pharmacotherapeutic mechanisms in ILDs and evaluates current preclinical and clinical evidence.
Collapse
Affiliation(s)
- Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela; (Á.O.); (P.D.); (B.G.); (A.M.); (C.N.); (A.S.); (M.R.)
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela; (Á.O.); (P.D.); (B.G.); (A.M.); (C.N.); (A.S.); (M.R.)
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela; (Á.O.); (P.D.); (B.G.); (A.M.); (C.N.); (A.S.); (M.R.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela; (Á.O.); (P.D.); (B.G.); (A.M.); (C.N.); (A.S.); (M.R.)
| | - Carolina Navarro
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela; (Á.O.); (P.D.); (B.G.); (A.M.); (C.N.); (A.S.); (M.R.)
| | - Aljadis Silva
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela; (Á.O.); (P.D.); (B.G.); (A.M.); (C.N.); (A.S.); (M.R.)
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela; (Á.O.); (P.D.); (B.G.); (A.M.); (C.N.); (A.S.); (M.R.)
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 77900 Olomouc, Czech Republic;
| | - Danuta Radzioch
- The Research Institute of the McGill, University Health Center, McGill University, Montreal, QC H0H H9Z, Canada;
| | - Diego Rivera-Porras
- Universidad de la Costa, Departamento de Productividad e Innovación, Barranquilla 080001, Atlántico, Colombia;
| | - Carlos Silva Paredes
- Universidad del Zulia, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Maracaibo 4001, Venezuela;
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Barranquilla 080001, Atlántico, Colombia
| |
Collapse
|
8
|
Molfino A, Imbimbo G, Salerno G, Lionetto L, De Luca A, Simmaco M, Gallicchio C, Picconi O, Amabile MI, Muscaritoli M. Effects of DHA Oral Supplementation on Plasma Resolvin D1 and D2 Levels in Naïve Breast Cancer Patients. Cancers (Basel) 2025; 17:1694. [PMID: 40427191 PMCID: PMC12109739 DOI: 10.3390/cancers17101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/07/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Specialized pro-resolving lipid mediators, such as resolvins derived from omega-3 fatty acids, play a key role in resolving inflammation and restoring homeostasis. Resolvin D1 and D2, derived from docosahexaenoic acid (DHA), have demonstrated inflammation pro-resolving properties and potential anticancer effects. This study aimed to evaluate the effects of oral DHA supplementation on plasma resolvin D1 and D2 levels in breast cancer patients and in controls, and by stratifying the patients by disease presentation (sporadic, familial, BRCA1/2 mutated) and immunohistochemical characteristics. Methods: This is a single-center, interventional, controlled study conducted in women with breast cancer and women with benign breast disease, serving as controls. Participants consumed DHA (2 g/day) as algal oil syrup for 10 consecutive days. Plasma resolvin D1 and D2 levels were measured at baseline (T0) and after supplementation (T1) using ELISA kits. Results: At baseline, breast cancer patients exhibited higher plasma resolvin D1 levels compared to controls (median 21.3 vs. 7.3 pg/mL, p = 0.039), with no significant difference in resolvin D2. Following DHA supplementation, resolvin D1 and D2 significantly increased in BRCA1/2-mutated patients (+185.8% and +101.2%, p = 0.037, p = 0.028, respectively). Conversely, the familial breast cancer group showed a significant decrease in resolvin D1 (p = 0.015). Patients with low Ki67 expression showed greater increase over time of resolvin D2 levels compared to those with high Ki67 expression (p = 0.046). Conclusions: DHA supplementation modulated resolvin levels in breast cancer patients, with significant increase in BRCA1/2-mutated patients, suggesting enhanced inflammation pro-resolving responses. The reduction in resolvin D1 in the familial group highlights a potential dysregulated response. These findings indicate the potential of resolvins as biomarkers of resolution of inflammation and novel therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (C.G.); (M.M.)
| | - Giovanni Imbimbo
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (C.G.); (M.M.)
| | - Gerardo Salerno
- Analytical Laboratory Unit, Department NESMOS, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (L.L.); (M.S.)
| | - Luana Lionetto
- Analytical Laboratory Unit, Department NESMOS, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (L.L.); (M.S.)
| | - Alessandro De Luca
- Department of Surgical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (A.D.L.); (M.I.A.)
| | - Maurizio Simmaco
- Analytical Laboratory Unit, Department NESMOS, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (L.L.); (M.S.)
| | - Carmen Gallicchio
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (C.G.); (M.M.)
| | - Orietta Picconi
- National HIV/AIDS Center, Istituto Superiore Di Sanità, 00161 Rome, Italy;
| | - Maria Ida Amabile
- Department of Surgical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (A.D.L.); (M.I.A.)
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.I.); (C.G.); (M.M.)
| |
Collapse
|
9
|
Kirchhoff R, Chromik MA, Schebb NH. Phagocytosis is differentially regulated by LPS in M1- and M2-like macrophages via PGE 2 formation and EP4 signaling. Prostaglandins Other Lipid Mediat 2025; 178:106998. [PMID: 40383415 DOI: 10.1016/j.prostaglandins.2025.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Phagocytosis is a key process in human innate immune response. Human macrophages are important phagocytes engulfing and neutralizing pathogens and cell debris. In addition, they modulate the inflammatory process by releasing cytokines and lipid mediators. However, the link between oxylipins and phagocytosis in different macrophage phenotypes remains poorly understood. In order to better understand the link between phagocytosis and the arachidonic acid (ARA) cascade, we established a phagocytosis assay in primary human 'inflammatory' M1- and 'anti-inflammatory' M2-like macrophages from peripheral blood mononuclear cells (PBMC), representing extremes of macrophage phenotypes. The branches of the ARA cascade were investigated by quantitative targeted proteomics and metabolomics. M1-like macrophages show a higher abundance of cyclooxygenase (COX)-2 and its products particularly after LPS stimulus compared to M2-like macrophages. LPS increased phagocytosis in M2-like, but not in M1-like macrophages. We demonstrate that the COX product prostaglandin E2 (PGE2) modulates the differential effects of LPS on phagocytosis: Via the EP4 receptor PGE2 signaling suppresses phagocytosis in primary human macrophages. Thus, blockage of COX, e.g. by non-steroidal anti-inflammatory drugs (NSAID), leads to an increase of phagocytosis also in 'inflammatory' M1-like macrophages. This supports the well-described anti-inflammatory effects of these drugs and underscores the importance of the link between the COX branch of the ARA cascade and the regulation of phagocytosis in human macrophages.
Collapse
Affiliation(s)
- Rebecca Kirchhoff
- Chair of Food Chemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, Wuppertal 42119, Germany
| | - Michel André Chromik
- Chair of Food Chemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, Wuppertal 42119, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, Wuppertal 42119, Germany.
| |
Collapse
|
10
|
Kang Y, Jin Q, Zhou M, Zheng H, Li D, Wang X, Zhou J, Wang Y, Lv J. Specialized pro-resolving mediators in neutrophil apoptosis regulation: unlocking novel therapeutic potential in kidney diseases. Front Immunol 2025; 16:1589923. [PMID: 40443675 PMCID: PMC12119277 DOI: 10.3389/fimmu.2025.1589923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
Kidney diseases represent a diverse group of disorders with pathogenic mechanisms involving multiple pathological processes, including inflammation, immunity, and cell death. Neutrophils, as primary effector cells in inflammatory immune responses, participate in defending against renal infection and injury by releasing reactive oxygen species, proteases, and cytokines. However, persistent neutrophil activation is considered a crucial driver of kidney disease progression. Neutrophil apoptosis represents a critical turning point between inflammatory progression and resolution. Specialized pro-resolving mediators (SPMs) are endogenous anti-inflammatory mediators that play a critical role in resolving inflammation. They not only induce neutrophil programmed cell death and promote macrophage-mediated efferocytosis of apoptotic cells but also inhibit neutrophil infiltration and degranulation, ultimately facilitating the restoration of inflammatory microenvironment and tissue homeostasis. This review concentrates on elucidating the mechanisms by which SPMs regulate neutrophil apoptosis and systematically demonstrates their potential as novel therapeutic targets in kidney diseases.
Collapse
Affiliation(s)
- Yi Kang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Mengqi Zhou
- Department of Traditional Chinese Medicine, Beijing Puren Hospital, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Danwen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xuezhe Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lv
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Gomes-da-Silva NC, Xavier-de-Britto I, Soares MAG, Yoshihara NMA, Ilem Özdemir D, Ricci-Junior E, Fechine PBA, Alencar LMR, Henriques MDGMDO, Barja-Fidalgo TC, Follmer C, Santos-Oliveira R. Nanostructured Lipoxin A4: Understanding Its Biological Behavior and Impact on Alzheimer's Disease (Proof of Concept). Pharmaceutics 2025; 17:649. [PMID: 40430939 PMCID: PMC12114923 DOI: 10.3390/pharmaceutics17050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Lipoxins, particularly Lipoxin A4 (LXA4), are endogenous lipid mediators with potent anti-inflammatory and pro-resolving properties, making them promising candidates for the treatment of inflammatory and neurodegenerative disorders. However, their therapeutic application is limited by poor stability and bioavailability. This study aimed to develop and characterize nanomicelles encapsulating LXA4 (nano-lipoxin A4) to improve its pharmacological efficacy against Alzheimer's disease (AD), a neurodegenerative condition marked by chronic inflammation and beta-amyloid (Aβ) accumulation. Methods: Nano-lipoxin A4 was synthesized using Pluronic F-127 as a carrier and characterized in terms of morphology, physicochemical stability, and in vitro activity against Aβ fibrils. Dissociation of Aβ fibrils was assessed via Thioflavin-T fluorescence assays and transmission electron microscopy. In vivo biodistribution and pharmacokinetic profiles were evaluated using technetium-99m-labeled nano-lipoxin A4 in rodent models. Hepatic biochemical parameters were also measured to assess potential systemic effects. Results: In vitro studies demonstrated that nano-lipoxin A4 effectively dissociated Aβ fibrils at concentrations of 50 nM and 112 nM. Electron microscopy confirmed the disruption of fibrillar structures. In vivo imaging revealed predominant accumulation in the liver and spleen, consistent with reticuloendothelial system uptake. Pharmacokinetic analysis showed a prolonged half-life (63.95 h) and low clearance rate (0.001509 L/h), indicating sustained systemic presence. Biochemical assays revealed elevated liver enzyme levels, suggestive of increased hepatic metabolism or potential hepatotoxicity. Conclusions: Nano-lipoxin A4 exhibits significant therapeutic potential for Alzheimer's disease through effective modulation of Aβ pathology and favorable pharmacokinetic characteristics. However, the elevation in liver enzymes necessitates further investigation into systemic safety to support clinical translation.
Collapse
Affiliation(s)
- Natália Cristina Gomes-da-Silva
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, RJ, Brazil; (N.C.G.-d.-S.); (I.X.-d.-B.); (M.A.G.S.); (N.M.A.Y.)
| | - Isabelle Xavier-de-Britto
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, RJ, Brazil; (N.C.G.-d.-S.); (I.X.-d.-B.); (M.A.G.S.); (N.M.A.Y.)
| | - Marilia Amável Gomes Soares
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, RJ, Brazil; (N.C.G.-d.-S.); (I.X.-d.-B.); (M.A.G.S.); (N.M.A.Y.)
| | - Natalia Mayumi Andrade Yoshihara
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, RJ, Brazil; (N.C.G.-d.-S.); (I.X.-d.-B.); (M.A.G.S.); (N.M.A.Y.)
| | - Derya Ilem Özdemir
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir 35040, Turkey;
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941900, RJ, Brazil;
| | - Pierre Basílio Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará, Fortaleza 451970, CE, Brazil;
| | | | - Maria das Graças Muller de Oliveira Henriques
- Laboratory of Cellular & Molecular Pharmacology, Department of Cell Biology, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551030, RJ, Brazil; (M.d.G.M.d.O.H.); (T.C.B.-F.)
| | - Thereza Christina Barja-Fidalgo
- Laboratory of Cellular & Molecular Pharmacology, Department of Cell Biology, Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551030, RJ, Brazil; (M.d.G.M.d.O.H.); (T.C.B.-F.)
| | - Cristian Follmer
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Department of Physical Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941909, RJ, Brazil;
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, RJ, Brazil; (N.C.G.-d.-S.); (I.X.-d.-B.); (M.A.G.S.); (N.M.A.Y.)
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, RJ, Brazil
| |
Collapse
|
12
|
Bernier V, Chatelan A, Point C, Strauss M. Nutrition and Neuroinflammation: Are Middle-Aged Women in the Red Zone? Nutrients 2025; 17:1607. [PMID: 40431348 PMCID: PMC12113692 DOI: 10.3390/nu17101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Women exhibit unique vulnerabilities in health, especially regarding mental health and neurodegenerative diseases. Biological, hormonal, and metabolic differences contribute to sex-specific risks that remain underrepresented in clinical studies. Diseases such as major depressive disorder (MDD) and Alzheimer's disease (AD) are more prevalent in women and may be influenced by hormonal transitions, particularly during menopause. Chronic low-grade inflammation is emerging as a shared mechanism underlying both conditions, and this inflammatory state can be worsened by dietary habits. During menopause, mood and sleep disturbances can influence dietary behavior, leading to enhanced snacking and consumption of high-glycemic and comfort foods. Such foods, low in nutritional value, promote weight gain and elevated inflammatory markers. Their consumption combined (or not) with a preexisting Western diet pattern-already linked to inflammation-could reinforce systemic inflammation involving the gut-brain axis. Moreover, the symptoms "per se" could act on inflammation as well. Peripheral inflammation may cross the blood-brain barrier, sustaining mood disorders and promoting neurodegenerative changes. Finally, MDD and AD are both associated with conditions such as obesity and diabetes, which occur more frequently in women. The review highlights how menopause-related changes in mood, sleep, and diet may heighten susceptibility to mental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Veronique Bernier
- Department of Psychiatry, Brugmann University Hospital, Université Libre de Bruxelles—ULB, 1020 Brussels, Belgium
| | - Angeline Chatelan
- Department of Nutrition and Dietetics, Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, CH-1227 Geneva, Switzerland
| | - Camille Point
- Department of Psychiatry, Brugmann University Hospital, Université Libre de Bruxelles—ULB, 1020 Brussels, Belgium
| | - Mélanie Strauss
- Department of Neurology and Sleep Unit, Université Libre de Bruxelles—ULB, Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Erasme, Route de Lennik 808, 1070 Bruxelles, Belgium
- Laboratory of Experimental Neurology, Université Libre de Bruxelles—ULB, Route de Lennik 808, 1070 Bruxelles, Belgium
| |
Collapse
|
13
|
Cembellin-Prieto A, Luo Z, Kulaga H, Baumgarth N. B cells modulate lung antiviral inflammatory responses via the neurotransmitter acetylcholine. Nat Immunol 2025; 26:775-789. [PMID: 40263611 PMCID: PMC12043518 DOI: 10.1038/s41590-025-02124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The rapid onset of innate immune defenses is critical for early control of viral replication in an infected host and yet it can also lead to irreversible tissue damage, especially in the respiratory tract. Sensitive regulators must exist that modulate inflammation, while controlling the infection. In the present study, we identified acetylcholine (ACh)-producing B cells as such early regulators. B cells are the most prevalent ACh-producing leukocyte population in the respiratory tract demonstrated with choline acetyltransferase (ChAT)-green fluorescent protein (GFP) reporter mice, both before and after infection with influenza A virus. Mice lacking ChAT in B cells, disabling their ability to generate ACh (ChatBKO), but not those lacking ChAT in T cells, significantly, selectively and directly suppressed α7-nicotinic-ACh receptor-expressing interstitial, but not alveolar, macrophage activation and their ability to secrete tumor necrosis factor (TNF), while better controlling virus replication at 1 d postinfection. Conversely, TNF blockade via monoclonal antibody treatment increased viral loads at that time. By day 10 of infection, ChatBKO mice showed increased local and systemic inflammation and reduced signs of lung epithelial repair despite similar viral loads and viral clearance. Thus, B cells are key participants of an immediate early regulatory cascade that controls lung tissue damage after viral infection, shifting the balance toward reduced inflammation at the cost of enhanced early viral replication.
Collapse
Affiliation(s)
- Antonio Cembellin-Prieto
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Lyme and Tickborne Diseases Research and Education Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zheng Luo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Heather Kulaga
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Lyme and Tickborne Diseases Research and Education Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA.
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Lyme and Tickborne Diseases Research and Education Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Gibb M, Reinert AN, Schedin T, Merrick DT, Brown JM, Bauer AK. Mast cells are key mediators in the pulmonary inflammatory response to formaldehyde exposure. Toxicol Sci 2025; 205:180-190. [PMID: 39992237 PMCID: PMC12038249 DOI: 10.1093/toxsci/kfaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Formaldehyde (FA) is a common chemical linked to respiratory problems such as airway hyperresponsiveness and pulmonary inflammation. Due to its toxicological effects and ease of mass production, FA is also recognized as a significant chemical threat by the U.S. Department of Homeland Security. This study investigates the role of mast cells in the pulmonary inflammatory response to acute high-dose FA exposure. Using wild-type (C57BL/6J) and mast cell-deficient (KitW-sh) mouse models, we assessed the impact of oropharyngeal aspiration of FA on lung pathology. Our findings reveal that C57BL/6J mice experienced significant increases in cellular infiltration, altered immune cell populations, and changes in lipid mediator profiles. In contrast, KitW-sh mice exhibited significantly reduced inflammatory responses. Notably, the presence of mast cells was associated with enhanced dendritic cell migration and differential production of bioactive lipid mediators, such as specialized pro-resolving mediators and pro-inflammatory leukotrienes in C57BL/6J mice. These results highlight the crucial role of mast cells in the immune response to FA and suggest they could be therapeutic targets for treating FA-induced lung inflammation.
Collapse
Affiliation(s)
- Matthew Gibb
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Angela N Reinert
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Troy Schedin
- Department of Immunology and Microbiology, Human Immune Monitoring Shared Resource, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Daniel T Merrick
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
15
|
Patra V, Woltsche N, Bordag N, Cerpes U, Bokanovic D, Repelnig M, Clement Y, Perchthaler I, Köfeler H, Fischl M, Legat F, Wedrich A, Horwath-Winter J, Ayciriex S, Wolf P. Metabolomic and Lipidomic Alterations in Patients with Atopic Dermatitis with Dupilumab-Associated Ocular Surface Disease. JID INNOVATIONS 2025; 5:100361. [PMID: 40242789 PMCID: PMC12002936 DOI: 10.1016/j.xjidi.2025.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 04/18/2025] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease characterized by chronic pruritic eczema with an estimated prevalence of 10% in adults and 50% of them suffering from moderate-to-severe manifestations. Dupilumab, an IL-4/IL-13 inhibitor, is approved for treating moderate-to-severe AD. However, dupilumab-associated ocular surface disease (DAOSD) emerges in up to 60% of dupilumab-treated patients, constituting a major AD-specific adverse event. DAOSD pathogenesis has not been fully understood yet. To elucidate the metabolic changes occurring after dupilumab treatment in patients with AD, we focused in this prospective single-center cohort study particularly on patients who developed DAOSD. In total, 20 patients with AD underwent dupilumab therapy, with 6 developing DAOSD. Plasma and serum samples were collected at baseline, 4 and 16 weeks after treatment initiation, and during the conjunctivitis episode. In addition, 10 age- and sex-matched healthy controls were sampled solely at baseline. High-resolution mass spectrometry was employed for metabolomic and lipidomic analysis of all blood samples. Targeted metabolomics and lipidomic with multivariate analysis unveiled significant metabolic and lipidic disparities (such as increased activity of benzoic acid, tyrosine and indole metabolism, and others) between AD patients with and those without DAOSD. Metabolomics and lipidomic analysis further deepen our comprehension of DAOSD pathogenesis.
Collapse
Affiliation(s)
- VijayKumar Patra
- Department of Dermatology, Medical University of Graz, Graz, Austria
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Nora Woltsche
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Natalie Bordag
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Urban Cerpes
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | | | - Maria Repelnig
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Yohann Clement
- Institut des Sciences Analytiques, CNRS UMR 5280, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | | | - Harald Köfeler
- Core Facility for Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Manuela Fischl
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Franz Legat
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Andreas Wedrich
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | | | - Sophie Ayciriex
- Institut des Sciences Analytiques, CNRS UMR 5280, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
16
|
Balice G, Paolantonio M, Murmura G, Serroni M, Di Gregorio S, Femminella B. The Influence of Diet and Physical Activity on Periodontal Health: A Narrative Review. Dent J (Basel) 2025; 13:200. [PMID: 40422620 DOI: 10.3390/dj13050200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Periodontal diseases, including gingivitis and periodontitis, are chronic inflammatory conditions that compromise the supporting structures of the teeth, often leading to tooth loss and contributing to systemic comorbidities. Increasing evidence underscores the critical role of modifiable lifestyle factors, particularly diet and physical activity, in influencing periodontal health. This narrative review critically evaluates the current body of literature regarding the impact of dietary constituents and physical activity on the periodontium, with a focus on the molecular mechanisms, key biomarkers, and clinical implications. It aims to provide a deeper understanding of the complex interactions between nutrition, exercise, and periodontal health with potential implications for clinical management and preventive strategies.
Collapse
Affiliation(s)
- Giuseppe Balice
- Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University, 66100 Chieti-Pescara, Italy
| | - Michele Paolantonio
- Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University, 66100 Chieti-Pescara, Italy
| | - Giovanna Murmura
- Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University, 66100 Chieti-Pescara, Italy
| | - Matteo Serroni
- Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University, 66100 Chieti-Pescara, Italy
| | - Stefania Di Gregorio
- Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University, 66100 Chieti-Pescara, Italy
| | - Beatrice Femminella
- Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University, 66100 Chieti-Pescara, Italy
| |
Collapse
|
17
|
Nip J, Hermanson K, Lee JM. n-3 PUFAs docosahexaenoic acid and eicosapentaenoic acid are effective natural pro-resolution ingredients for topical skin applications. Int J Cosmet Sci 2025. [PMID: 40274542 DOI: 10.1111/ics.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Skin encounters many challenges that lead to an inflammatory response. Resolution of this inflammation is needed to return the skin to a healthy state. A review of the role of topical n-3 PUFAs, particularly DHA and EPA, in resolving skin inflammation and promoting skin health is presented. A review of the literature and Unilever data on DHA/EPA pro-resolution skin benefits. PubMed/MEDLINE, Google search of external literature as well as Unilever data relating to skin inflammation, pro-resolution, and the role of DHA and EPA. Evidence of DHA and EPA in providing pro-resolution of skin inflammation are summarized. DHA and EPA, and their derived specialized pro-resolving mediators (SPMs), can attenuate the skin inflammatory response induced by various stressors and maintain skin health.
Collapse
Affiliation(s)
- John Nip
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Kevin Hermanson
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Jian-Ming Lee
- Unilever Research and Development, Trumbull, Connecticut, USA
| |
Collapse
|
18
|
Kshirsagar S, Deshmukh H, Reddy AP, Reddy AP, Reddy PH. Grounding as a complementary intervention for Alzheimer's disease: Mechanisms, evidence, and potential therapeutic applications. J Alzheimers Dis 2025:13872877251334666. [PMID: 40262107 DOI: 10.1177/13872877251334666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, neuroinflammation, oxidative stress, and mitochondrial dysfunction. Despite extensive research efforts, effective curative treatments remain elusive, emphasizing the need for innovative therapeutic strategies. Grounding, or earthing, involves direct physical contact with the Earth's surface to facilitate the absorption of negatively charged electrons into the body. This practice has gained attention for its potential to reduce inflammation, oxidative stress, and cortisol dysregulation, which are significant contributors to AD pathology. This review examines the biological mechanisms by which grounding may influence AD, including its antioxidative effects that mitigate oxidative stress and its anti-inflammatory properties that reduce neuroinflammation. Grounding may also improve sleep quality and stress management, factors known to exacerbate AD progression. Evidence from preclinical and clinical studies highlights its potential to protect neuronal health by targeting oxidative and inflammatory pathways. Additionally, the safety, feasibility, and cost-effectiveness of grounding are discussed, making it a practical complementary approach to existing AD therapies. While the preliminary evidence is promising, the review emphasizes the need for robust clinical trials to validate grounding's efficacy specifically in AD populations. By integrating grounding into standard care protocols, it may be possible to enhance the overall therapeutic outcomes and improve the quality of life for individuals with AD. Grounding represents a novel, non-pharmacological intervention that could complement existing treatments by addressing both the physiological and psychological aspects of this complex disease.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas TechUniversity Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
19
|
Iwaki T, Kurano M, Sumitani M, Niimi A, Nomiya A, Kamei J, Taguchi S, Yamada Y, Sato Y, Nakamura M, Yamada D, Minagawa T, Fukuhara H, Kume H, Homma Y, Akiyama Y. Lipidomic analysis coupled with machine learning identifies unique urinary lipid signatures in patients with interstitial cystitis/bladder pain syndrome. World J Urol 2025; 43:233. [PMID: 40249505 PMCID: PMC12008056 DOI: 10.1007/s00345-025-05628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
PURPOSE To identify biomarkers for diagnosis and classification of interstitial cystitis/bladder pain syndrome (IC/BPS) by urinary lipidomics coupled with machine learning. METHODS Urine samples from 138 patients with IC/BPS, including 116 with Hunner lesion (HL) and 22 with no HL, and 71 controls were assessed by lipid chromatography-tandem mass spectrometry. Single and paired lipid analyses of differentially expressed lipids in each group were conducted to assess their diagnostic ability. Machine learning models were constructed based on the identified urinary lipids and patient demographic data, and a five-fold cross-validation method was applied for internal validation. Levels of urinary lipids were adjusted to account for urinary creatinine levels. RESULTS A total of 218 urinary lipids were identified. Single lipid analysis revealed that urinary levels of C24 ceramide and LPC (14:0) distinguished HL and no HL, with an area under the receiver operating characteristics curve of 0.792 and 0.656, respectively. Paired lipid analysis revealed that summed urinary levels of C24 ceramide and LPI (18:3), and subtraction of PG (36:5) from PC (38:2) distinguished HL and no HL even more accurately, with an area under the curve of 0.805 and 0.752, respectively. A machine learning model distinguished HL and no HL, with the highest area under the curve being 0.873 and 0.750, respectively. Limitations include the opaque black box nature of machine learning techniques. CONCLUSIONS Urinary levels of C24 ceramide, along with those of C24 ceramide plus LPI (18:3), could be potential biomarkers for HL. Machine learning-coupled urinary lipidomics may play an important role in the next-generation AI- driven diagnostic systems for IC/BPS.
Collapse
Affiliation(s)
- Takuya Iwaki
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Urology, Chiba Tokushukai Hospital, Chiba, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Aya Niimi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Nomiya
- Department of Urology, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, Kanagawa, Japan
| | - Jun Kamei
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoru Taguchi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Yamada
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sato
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Urology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Masaki Nakamura
- Department of Urology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Daisuke Yamada
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomonori Minagawa
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Interstitial Cystitis Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Akiyama
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Urology, Shinshu University School of Medicine, Nagano, Japan.
| |
Collapse
|
20
|
Alrumaih S, Alshibani N, Khounganian R, Alshehri FA, Allam E, Alkattan R. Resolvin E1 and calvarial defects in rats: a comprehensive histological analysis. Saudi Dent J 2025; 37:2. [PMID: 40397041 DOI: 10.1007/s44445-025-00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/23/2025] [Indexed: 05/22/2025] Open
Abstract
Bone loss, linked with numerous oral conditions such as periodontal diseases and periimplantitis, poses a significant challenge for dental clinicians. The current study evaluated the in vivo effects of local application of Resolvin E1 (RvE1) on bone regeneration in critical size calvarial defects in rats. Thirty female Wistar rats with 5 mm induced calvarial defects were randomly allocated into four groups: no treatment (negative control, n = 5), treatment using bovine bone grafts (positive control, n = 5), treatment using local delivery of RvE1 (n = 11) and treatment using RvE1 mixed with bovine bone graft (n = 9). After 12 weeks, the animals were sacrificed and the calvarial defects with the adjacent tissues were sectioned en-bloc and prepared for histological examination. A comprehensive qualitative and quantitative histological examination was performed to assess bone regeneration and its relation to the defect, the presence of remnant bone and RvE1 particles, the integration of the native bone with the newly formed bone, bone density and bony trabeculae, the inflammatory reaction, the connective tissue bridging in the defect, and the encapsulating fibrous tissue. Signs of neovascularization, increased cellularity, lack of the organized lamellated appearance of mature bone, disorganized arrangement of osteocytes, osteoblasts and osteoclasts were also assessed. Comparisons of the quantitative values between all studied groups indicated statistically significant differences (p ≤ 0.05) in all parameters except for the increased cellularity and granulation tissue. Histological findings indicate that RvE1 with adjunct bone graft significantly enhanced the bone formation compared to RvE1 or bovine graft alone.
Collapse
Affiliation(s)
- Sara Alrumaih
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
- Hail Health Cluster, Ministry of Health, Hail, Saudi Arabia
| | - Nouf Alshibani
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| | - Rita Khounganian
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A Alshehri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Eman Allam
- Research and Graduate Studies Department, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Reem Alkattan
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Biagini D, Di Franco C, Lazzarini G, Miragliotta V, Lomonaco T, Di Francesco F, Briganti A. Oxylipins as canine sepsis indicators in vivo and in ex vivo skin organ culture model. Sci Rep 2025; 15:12483. [PMID: 40216925 PMCID: PMC11992227 DOI: 10.1038/s41598-025-97460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Sepsis, a life-threatening condition characterized by a dysregulated immune response to infection, remains a significant cause of mortality in both humans and veterinary patients. This study explores oxylipins as potential indicators of sepsis in dogs through in vivo plasma analysis and an ex vivo lipopolysaccharide (LPS)-treated skin organ culture model. By employing a robust analytical platform, 52 oxylipins and 4 polyunsaturated fatty acids were profiled in plasma and skin cultures. Results revealed distinct biochemical and morphological changes, with LPS triggering capillary vasodilation and time-dependent increases in pro-inflammatory mediators such as PGE2 and isoprostanes. Importantly, PGE2 exhibited consistent trends across both models, highlighting its potential as a diagnostic biomarker. This study underscores the utility of the skin organ culture model in mimicking early inflammatory events, offering novel insights into oxylipin dynamics during sepsis and their implications for disease resolution.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Chiara Di Franco
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Angela Briganti
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Zhu X. Revisiting lipid dysregulation in colorectal cancer: critical appraisal of pro-inflammatory bias and therapeutic implications. Gut 2025:gutjnl-2025-335153. [PMID: 40175069 DOI: 10.1136/gutjnl-2025-335153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Precision Medicine for Malignant Tumors, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
23
|
Dos S Silva P, Butenko Y, Kra G, Malitsky S, Itkin M, Levin Y, Moallem U, Zachut M. Omega-3 fatty acid supplementation from late pregnancy to early lactation attenuates the endocannabinoid system and immune proteome in preovulatory follicles and endometrium of Holstein dairy cows. J Dairy Sci 2025; 108:4299-4317. [PMID: 39824496 DOI: 10.3168/jds.2024-25409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Supplementation with n-3 fatty acid (FA) lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium. Twenty-four multiparous Holstein dairy cows were supplemented from d 256 of pregnancy to d 70 postpartum as follows: (1) control (CTL; n = 12), prepartum with 250 g/d per cow calcium salts of FA and postpartum at 1.6% of the diet (DM basis); or (2) extruded flaxseed (FLX; n = 12) supplement rich in α-linolenic acid (C18:3n-3), prepartum with 700 g/d per cow and postpartum at 6.4% of diet (DM basis). Ovaries were monitored at 30 DIM, and following estrous cycle synchronization we aspirated the follicular fluids (FF) of follicles ≥7 mm, separated the granulosa cells (GRC), and performed endometrium biopsies at 58 ± 5 DIM. The FF were analyzed for concentrations of estradiol (E2) and progesterone (P4), and E2-active follicles were declared when E2/P4 was >1. The FA and endocannabinoid (eCB) profiles were determined in plasma and in the reproductive tissues. Proteomic analyses and mRNA abundances were determined in GRC and endometrium. Supplementation of n-3 FA increased the proportion of total n-3 FA and decreased the ratio of n-6 to n-3 ratio in plasma, FF and GRC compared with CTL. In plasma and FF, n-3 FA supplementation decreased the proportion of the n-6 FA eCB precursor arachidonic acid (ARA; C20:4n-6), and increased the abundance of the n-3 FA-derived eCB eicosapentaenoyl ethanolamide compared with CTL. In the endometrium, n-3 FA supplementation reduced the abundance of the n-6 FA-derived eCB 2-arachidonoylglycerol (2-AG) compared with CTL. Proteomic analysis of GRC showed that n-3 FA supplementation increased the abundance of FA-binding-protein-5, which is involved in intracellular transport of eCB, as well as the abundances of the cytokine receptor like factor-2 and glutathione-S-transferase-LANCL1, whereas it reduced the abundances of several complement proteins: complement factors I, D, H, complement components C7 chain and C8 β chain, and complement component 1 Q subcomponent-binding protein, mitochondrial (C1QBP). In addition, the abundance of superoxide dismutase (SOD3) was lower in FLX GRC than in CTL. In the endometrium, n-3 FA supplementation decreased the abundance of a few immune-related proteins. In the GRC, n-3 FA supplementation reduced the relative mRNA abundances of cannabinoid receptors 1 and 2 compared with CTL. Across treatments, a positive correlation was found between the relative abundance in FF of the eCB anandamide with C7, C1QBP, and SOD3 in GRC, whereas FF 2-AG had a negative correlation with them. Overall, in line with our premise, dietary n-3 FA supplementation attenuated the levels of some eCB and reduced the expression of several proteins and genes related to the ECS and immune system in the preovulatory follicle and in the endometrium, which may be part of the etiology of the positive effects of n-3 FA on the reproductive system in dairy cows.
Collapse
Affiliation(s)
- P Dos S Silva
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| | - Y Butenko
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel
| | - G Kra
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| | - S Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - M Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Y Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - U Moallem
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel
| | - M Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel.
| |
Collapse
|
24
|
Geertsema J, Franßen MA, Barban F, Šarauskytė L, Giera M, Kooij G, Korosi A. Brain region and sex-dependent heterogeneity of PUFA/oxylipin profile, microglia morphology and their relationship. Prostaglandins Leukot Essent Fatty Acids 2025; 204:102662. [PMID: 39718073 DOI: 10.1016/j.plefa.2024.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Lipid dyshomeostasis and neuroinflammation are key hallmarks of neuropsychiatric and neurodegenerative disorders, including major depressive disorder and Alzheimer's disease. In particular, polyunsaturated fatty acids (PUFAs) and their derivatives called oxylipins gained specific interest in this context, especially considering their capacity to orchestrate neuroinflammatory responses via direct modulation of microglia. The hippocampus and hypothalamus are crucial brain regions for regulating mood and cognition that are implicated in a variety of neuropsychiatric and neurodegenerative disorders and there is ample evidence for the sex-bias in risks for the development as well as sex-bias in the presentation of such psychiatric diseases, including the neuroinflammatory response. To better understand the local PUFA/oxylipin profiles and microglia responses in disease, we here assessed their brain region and sex-dependent profiles in homeostatic brains. In 2-month-old male and female mice, we measured non-esterified (free) PUFA/oxylipin profiles using liquid chromatography-tandem mass spectrometry and characterized microglia morphology via immunohistochemistry. The hypothalamus and hippocampus exhibit a different free PUFA/oxylipin profile, independent of sex. The hippocampus was characterized by a higher density of complex Iba1+ microglial cells than the hypothalamus, without sex effects. Hypothalamic microglial morphology correlated more strongly with free PUFA- and oxylipin species than hippocampal microglia, correlating with species from both the N-3 and N-6 PUFA metabolization pathways, while hippocampal microglial parameters correlated only with N-6 pathway-related species. Our findings provide a basis for future studies to investigate the relationship between PUFAs, their derivatives and neuroinflammation in the context of diseases.
Collapse
Affiliation(s)
- J Geertsema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, , Netherlands
| | - M A Franßen
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, , Netherlands
| | - F Barban
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, , Netherlands
| | - L Šarauskytė
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, , Netherlands
| | - M Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, Netherlands
| | - G Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, , Netherlands
| | - A Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, , Netherlands.
| |
Collapse
|
25
|
Zang H, Ji X, Yao W, Wan L, Zhang C, Zhu C, Liu T. Role of efferocytosis in chronic pain -- From molecular perspective. Neurobiol Dis 2025; 207:106857. [PMID: 40015655 DOI: 10.1016/j.nbd.2025.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
The complex nature of pain pathophysiology complicates the establishment of objective diagnostic criteria and targeted treatments. The heterogeneous manifestations of pain stemming from various primary diseases contribute to the complexity and diversity of underlying mechanisms, leading to challenges in treatment efficacy and undesirable side effects. Recent evidence suggests the presence of apoptotic cells at injury sites, the distal dorsal root ganglia (DRG), spinal cord, and certain brain regions, indicating a potential link between the ineffective clearance of dead cells and debris and pain persistence. This review highlights recent research findings indicating that efferocytosis plays a significant yet often overlooked role in lesion expansion while also representing a potentially reversible impairment that could be targeted therapeutically to mitigate chronic pain progression. We examine recent advances into how efferocytosis, a process by which phagocytes clear apoptotic cells without triggering inflammation, influences pain initiation and intensity in both human diseases and animal models. This review summarizes that efferocytosis contributes to pain progression from the perspective of defective and inefficient efferocytosis and its subsequent secondary necrocytosis, cascade inflammatory response, and the shift of phenotypic plasticity and metabolism. Additionally, we investigate the roles of newly discovered genetic alterations or modifications in biological signaling pathways in pain development and chronicity, providing insights into innovative treatment strategies that modulate efferocytosis, which are promising candidates and potential avenues for further research in pain management and prevention.
Collapse
Affiliation(s)
- Hu Zang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenlong Yao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Wan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Zhu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Tongtong Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
26
|
El-Tahan HM, Lim CI, Alhimaidi AR, Ammari AA, Cho S, Kim IH, El-Tahan HM. Fish oil a source of omega-3 fatty acids affects hypothalamus heat resistance genes expressions and fatty acid composition in heat-stressed chicks. Domest Anim Endocrinol 2025; 91:106915. [PMID: 39892223 DOI: 10.1016/j.domaniend.2025.106915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
This study investigated the effects of fish oil (FO) supplementation on the hypothalamus heat resistance gene expressions and fatty acid composition of chicks under acute high-temperature stress, for treating Cholestasis. A total of 48 chicks (Ross 308) at age of 14 days were acclimatized to corn oil or FO (n = 24 for each) by oral gavaging for 10 days, and then subjected to heat stress (35 ± 1 °C, HT) for 3 h or maintained at the normal temperature (26 ± 1 °C, NT) as grouped as NT and FO-NT control and HT and FO-HT (n = 12 for each).. The results showed that FO supplementation had no significant (P > 0.05) effect on feed intake or body weight. The FO-HT group exhibited (P<0.05) a lower rectal temperature, and plasma interleukin-6 (IL-6), triglyceride and corticosterone levels, in accompany with lower expressions of hypothalamic adenine nucleotide translocators (ANT) and uncoupling protein (UCP) but increased (P<0.05) plasma superoxide dismutase activity and hypothalamic neuropeptide-Y (NPY) and heat shock protein-70 (HSP-70) expressions.. Additionally, the FO-HT group (P < 0.05) demonstrated a higher unsaturated fatty acid/saturated fatty acid (UFA/SFA) ratio in the breast muscle. These findings suggest that FO supplementation can enhance the heat resistance of broiler chicks under acute heat stress and alter the fatty acid composition of their breast muscle. However, further studies are needed to determine whether desirable fatty acids can cross the blood-brain barrier and their implications for human health.
Collapse
Affiliation(s)
- Hatem M El-Tahan
- Animal Production Research Institute, Ministry of Agriculture, Giza, 12619, Egypt; Department of Animal Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Chun Ik Lim
- Department of Animal Science, Jeonbuk National University, Jeonju, 54896, South Korea; Poultry Research Institute, National Institute of Animal Science, RDA, Pyeongchang, 25342, South Korea
| | - Ahmad R Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aiman A Ammari
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sungbo Cho
- Animal Resource and Science Department, Dankook University, Cheonan, 31116, South Korea
| | - In Ho Kim
- Animal Resource and Science Department, Dankook University, Cheonan, 31116, South Korea; Smart Animal Bio Institute, Dankook University, Cheonan, South Korea.
| | - Hossam M El-Tahan
- Animal Production Research Institute, Ministry of Agriculture, Giza, 12619, Egypt; Animal Resource and Science Department, Dankook University, Cheonan, 31116, South Korea; Smart Animal Bio Institute, Dankook University, Cheonan, South Korea
| |
Collapse
|
27
|
Salamin O, Carrard J, Teav T, Borreggine R, Medina J, Nicoli R, Kuuranne T, Saugy M, Pitteloud N, Gallart-Ayala H, Ivanisevic J. Circulatory lipid signature in response to short-term testosterone gel treatment of healthy young females. Sci Rep 2025; 15:10870. [PMID: 40157992 PMCID: PMC11955001 DOI: 10.1038/s41598-025-92690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025] Open
Abstract
The impact of testosterone administration on the circulating lipidome in females remains unexplored, despite its relevance to understanding metabolic disorders like polycystic ovary syndrome (PCOS). This study addresses this gap by examining the effects of testosterone gel on the plasma lipidome of healthy women over three menstrual cycles. A cohort of 14 women aged 22-37 years with regular cycles was analyzed, with plasma samples collected at baseline, during peak testosterone levels (D45), and post-treatment (D59, D80). Testosterone gel treatment lasted 28 days, administered between day 29 and day 57 of the study. Using a deep-targeted lipidomic approach, 597 lipids were quantified to provide a detailed profile of the lipidome and capture subtle changes in lipid species and their associations with testosterone fluctuations. Extensive profiling revealed a significant decrease in 17 lipid species, especially ether- and ester-linked lysophosphatidylcholines (LPC), at peak testosterone. These lipid reductions were strongly negatively correlated with free and total testosterone, as well as dihydrotestosterone (DHT), and positively correlated with SHBG levels. Notably, intra-individual lipid variability was consistently lower than inter-individual variability, indicating a highly personalized lipidome regulation. Despite testosterone-induced changes, overall plasma lipidome alterations were minimal, suggesting mechanisms that maintain lipid homeostasis. This study highlights the complex interplay between testosterone and lipid metabolism in women. The minimal overall lipidome changes and high inter-individual variability point to the need for further research to assess the clinical relevance of these findings, particularly in hyperandrogenic conditions like PCOS. Clinical Trial Registration number: This study was registered on https://www.isrctn.com/ (ISRCTN10122130) on 09/01/2019.
Collapse
Affiliation(s)
- Olivier Salamin
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Justin Carrard
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Grosse Allee 6, 4052, Basel, Switzerland
- SportAdo Centre, Children and Adolescent Surgery, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Toni Teav
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Rebecca Borreggine
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Jessica Medina
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martial Saugy
- Center of Research and Expertise in Anti-Doping Sciences - REDs, Institute of Sport Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| |
Collapse
|
28
|
de Almeida JM, Turini HD, Matheus HR, Vitória OAP, Piovezan BR, Dalmonica RHB, de Abreu Furquim EM, Ervolino E. Omega-3 attenuates the severity of medication-related osteonecrosis of the jaws in rats treated with zoledronate. PLoS One 2025; 20:e0320413. [PMID: 40138277 PMCID: PMC11940605 DOI: 10.1371/journal.pone.0320413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
This study aimed to evaluate the ability of ω-3 to modulate the tissue response in rats with MRONJ, focusing on histopathological and immunohistochemical parameters. Forty Wistar rats were subjected to bilateral ovariectomy and, three months later, the medication regimen with ZOL (100μg/kg; groups ZOL and ZOL-ω3) of vehicle (VEH and VEH-ω3) was initiated. Following 3 weeks of ZOL or VEH, experimental periodontitis was induced around the mandibular left first molars of all animals. Then, 14 days later (one day before tooth extraction), daily dietary supplementation with ω-3 was given to animals belonging to groups VEH-ω3 or ZOL-ω3. Euthanasia was performed 21 days after tooth extraction. Histologic, histometric (newly-formed bone tissue [NFBT] and non-vital bone tissue [NVBT]), and immunohistochemical (TNF-α, α-SMA, ALP, IL-1β, VEGF, OCN, and TRAP) analyses were performed. Dietary supplementation with ω-3 reduced the amount of NVBT and controlled the intensity and extension of the inflammatory infiltrate in ZOL-ω3, as compared with ZOL. Osteoclast and osteoblast activity were not statistically different between groups ZOL and ZOL-ω3. The structure of the epithelium and the underlining connective tissue were improved by the supplementation with ω-3 in animals under ZOL therapy. Oral supplementation with omega-3 controlled the inflammation and reduced the amount of non-vital bone at the tooth extraction site of ovariectomized rats treated with ZOL and attenuating the severity of MRONJ.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Halef Diego Turini
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Henrique Rinaldi Matheus
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Division of Periodontology, College of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Otávio Augusto Pacheco Vitória
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Bianca Rafaeli Piovezan
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Ruan Henrique Barra Dalmonica
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Elisa Mara de Abreu Furquim
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Edilson Ervolino
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| |
Collapse
|
29
|
Liu T, Ai D. Roles of Lipoxygenases in Cardiovascular Diseases. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10605-2. [PMID: 40133736 DOI: 10.1007/s12265-025-10605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Lipoxygenases (LOXs) are a family of dioxygenases that catalyze the peroxidation of polyunsaturated fatty acids, such as linoleic acid and arachidonic acid, initiating the synthesis of bioactive lipid mediators. The LOX-mediated production of these bioactive molecules in various cell types plays a critical role in the pathophysiology of cardiovascular diseases, including atherosclerosis, hypertension, and myocardial ischemia-reperfusion injury. In this review, we summarize the roles of LOXs and their products in different cardiovascular cells and conditions, offering valuable insights may contribute to the development of novel therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
- Department of Cardiology, Tianjin Medical University General Hospital, 154, Anshan Road, Heping District, Tianjin Heping District, Tianjin, 300052, China
| | - Ding Ai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
30
|
Chambers JP, Daum LT, Arulanandam BP, Valdes JJ. Polyunsaturated Fatty Acid Imbalance-A Contributor to SARS CoV-2 Disease Severity. J Nutr Metab 2025; 2025:7075883. [PMID: 40166706 PMCID: PMC11957867 DOI: 10.1155/jnme/7075883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/18/2025] [Indexed: 04/02/2025] Open
Abstract
Overview: SARS CoV-2 infection is accompanied by the development of acute inflammation, resolution of which determines the course of infection and its outcome. If not resolved (brought back to preinjury status), the inflamed state progresses to a severe clinical presentation characterized by uncontrolled cytokine release, systemic inflammation, and in some death. In severe CoV-2 disease, the required balance between protective inflammation and its resolution appears missing, suggesting that the ω-3-derived specialized proresolving mediators (SPMs) needed for resolution are either not present or present at ineffective levels compared to competing ω-6 polyunsaturated fatty acid (PUFA) metabolic derivatives. Aim: To determine whether ω-6 PUFA linoleic acid (LA) metabolites increased in those infected with severe disease compared to uninfected controls. Findings: Increased levels of ω-6 LA metabolites, e.g., arachidonic acid (AA), epoxyeicosatrienoic (EET) acid derivatives of AA (8,9-, 11,12-, and 14,15-EETs), AA-derived hydroxyeicosatetraenoic (HETE) acid, dihydroxylated diols (leukotoxin and isoleukotoxin), and prostaglandin E2 with decreased levels of ω-3-derived inflammation resolving SPMs. Therapeutic treatment of SARS CoV-2 patients with ω-3 PUFA significantly increased 18-HEPE (SPM precursor) and EPA-derived diols (11,12- and 14,15-diHETE), while toxic 9,10- and 12,13-diHOMEs (leukotoxin and iosleukotoxin, respectively) decreased. Conclusion: Unbalanced dietary intake of ω-6/ω-3 PUFAs contributed to SARS CoV-2 disease severity by decreasing ω-3-dependent SPM resolution of inflammation and increasing membrane-associated ferroptotic AA peroxidation.
Collapse
Affiliation(s)
- James P. Chambers
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Luke T. Daum
- Lujo BioScience Laboratory, San Antonio, Texas 78209, USA
| | - Bernard P. Arulanandam
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
31
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2025; 20:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
32
|
Ressurreição S, Salgueiro L, Figueirinha A. Diplotaxis muralis as an Emerging Food Crop: Chemical Composition, Nutritional Profile and Antioxidant Activities. PLANTS (BASEL, SWITZERLAND) 2025; 14:844. [PMID: 40265798 PMCID: PMC11944458 DOI: 10.3390/plants14060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Diplotaxis muralis (L.) DC (Brassicaceae) is an edible plant commonly used in Mediterranean diets. This study investigates its nutritional composition, secondary metabolites, and antioxidant activity. The results show that this plant is rich in fibre and essential minerals. Analysis of amino acids shows a diverse profile, with glutamic acid and aspartic acid being the most abundant. Regarding fatty acids, α-linolenic acid was identified as predominant. Importantly, levels of toxic metals such as cadmium, lead, and mercury were found to be within established safety limits, confirming the plant's suitability for consumption. A leaf decoction using 80% methanol exhibited the highest concentrations of total phenolic compounds (68.36 mg eq. gallic acid g-1), total flavonoids (3.50 mg eq. quercetin g-1), and antioxidant activity (IC₅₀ of 78.87 µg mL-1 for ABTS, 392.95 µg mL-1 for DPPH, and a FRAP value of 731.20 µmol Fe(II) g-1). HPLC-PDA-ESI-MSⁿ characterization identified flavonols as the main polyphenols. Additionally, several glucosinolates were identified. These compounds, along with their hydrolysis products, not only contribute to the health benefits of D. muralis, but also impart its distinctive pungent and spicy notes, playing a crucial role in shaping its unique sensory profile. These findings highlight the contribution of phenolic compounds and glucosinolates to the health benefits of D. muralis, reinforcing its potential as a promising plant for the development of new functional foods.
Collapse
Affiliation(s)
- Sandrine Ressurreição
- University of Coimbra, Faculty of Pharmacy 3000-548 Coimbra, Portugal; (S.R.); (L.S.)
- Polytechnic of Coimbra, Coimbra Agriculture School, 3045-601 Coimbra, Portugal
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Lígia Salgueiro
- University of Coimbra, Faculty of Pharmacy 3000-548 Coimbra, Portugal; (S.R.); (L.S.)
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy 3000-548 Coimbra, Portugal; (S.R.); (L.S.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
33
|
Soundararajan R, Maurin MM, Rodriguez-Silva J, Upadhyay G, Alden AJ, Gowda SGB, Schell MJ, Yang M, Levine NJ, Gowda D, Sundaraswamy PM, Hui SP, Pflieger L, Wang H, Marcet J, Martinez C, Bennett RD, Chudzinski A, Karachristos A, Nywening TM, Cavallaro PM, Anderson ML, Coffey RJ, Nebozhyn MV, Loboda A, Coppola D, Pledger WJ, Halade GV, Yeatman TJ. Integration of lipidomics with targeted, single cell, and spatial transcriptomics defines an unresolved pro-inflammatory state in colon cancer. Gut 2025; 74:586-602. [PMID: 39658263 PMCID: PMC11885055 DOI: 10.1136/gutjnl-2024-332535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Over a century ago, Virchow proposed that cancer represents a chronically inflamed, poorly healing wound. Normal wound healing is represented by a transitory phase of inflammation, followed by a pro-resolution phase, with prostaglandin (PGE2/PGD2)-induced 'lipid class switching' producing inflammation-quenching lipoxins (LXA4, LXB4). OBJECTIVE We explored if lipid dysregulation in colorectal cancers (CRCs) is driven by a failure to resolve inflammation. DESIGN We performed liquid chromatography and tandem mass spectrometry (LC-MS/MS) untargeted analysis of 40 human CRC and normal paired samples and targeted, quantitative analysis of 81 human CRC and normal paired samples. We integrated analysis of lipidomics, quantitative reverse transcription-PCR, large scale gene expression, and spatial transcriptomics with public scRNASEQ data to characterize pattern, expression and cellular localisation of genes that produce and modify lipid mediators. RESULTS Targeted, quantitative LC-MS/MS demonstrated a marked imbalance of pro-inflammatory mediators, with a dearth of resolving lipid mediators. In tumours, we observed prominent over-expression of arachidonic acid derivatives, the genes encoding their synthetic enzymes and receptors, but poor expression of genes producing pro-resolving synthetic enzymes and resultant lipoxins (LXA4, LXB4) and associated receptors. These results indicate that CRC is the product of defective lipid class switching likely related to inadequate or ineffective levels of PGE2/PGD2. CONCLUSION We show that the lipidomic profile of CRC tumours exhibits a distinct pro-inflammatory bias with a deficiency of endogenous resolving mediators secondary to defective lipid class switching. These observations pave the way for 'resolution medicine', a novel therapeutic approach for inducing or providing resolvins to mitigate the chronic inflammation driving cancer growth and progression.
Collapse
Affiliation(s)
| | - Michelle M Maurin
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| | | | - Gunjan Upadhyay
- Department of Internal Medicine, University of South Florida Health, Tampa, Florida, USA
| | - Ashley J Alden
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| | | | - Michael J Schell
- Biostatistics and Bioinformatics Department, Moffitt Cancer Center, Tampa, Florida, USA
| | - Mingli Yang
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| | - Noah Jhad Levine
- Center for Phenom Health, Buck Institute for Research on Aging, Novato, California, USA
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sappora, Japan
| | - Punith M Sundaraswamy
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sappora, Japan
| | - Lance Pflieger
- Center for Phenom Health, Buck Institute for Research on Aging, Novato, California, USA
| | - Heiman Wang
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| | - Jorge Marcet
- Department of Surgery, Tampa General Hospital, Tampa, Florida, USA
| | | | | | - Allen Chudzinski
- Department of Surgery, Tampa General Hospital, Tampa, Florida, USA
| | | | - Timothy M Nywening
- Division of Surgical Oncology, Department of Surgery, Tampa General Hospital, Tampa, Florida, USA
| | - Paul M Cavallaro
- Department of Surgery, Tampa General Hospital, Tampa, Florida, USA
| | | | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Andrey Loboda
- Merck Research Laboratories Boston, Boston, Massachusetts, USA
| | - Domenico Coppola
- Department of Pathology, Florida Digestive Health Specialists LLP, Bradenton, Florida, USA
| | - Warren Jackson Pledger
- Tampa General Hospital, Tampa, Florida, USA
- Department of Molecular Medicine, University of South Florida Health, Tampa, Florida, USA
| | - Ganesh V Halade
- Department of Internal Medicine, University of South Florida Health, Tampa, Florida, USA
| | - Timothy J Yeatman
- Department of Surgery, University of South Florida Health, Tampa, Florida, USA
| |
Collapse
|
34
|
Mu M, Inoue H, Mao D, Sougawa N, Goda S. β1 Integrin/FAK signaling regulates interleukin-8 production in human gingival epithelial Ca9-22 cells. J Oral Biosci 2025; 67:100615. [PMID: 39826873 DOI: 10.1016/j.job.2025.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVES Interleukin-8 (IL-8), a proinflammatory factor in human tissues, plays an important role in inflammation. Type IV collagen, a key component of the basement membrane, interacts with integrins, which are primary receptors in the extracellular matrix (ECM). Integrins are essential for the regulation of various cellular behaviors and signal transduction pathways. However, the relationship between type IV collagen, β1 integrin, and gingival epithelial cells is poorly understood. The aim in this study was to elucidate the effect of the interaction between type IV collagen and β1 integrin on IL-8 secretion in human gingival epithelial cells (Ca9-22). METHODS Ca9-22 cells were treated with or without type IV collagen, and IL-8 production was assessed using an enzyme-linked immunosorbent assay (ELISA). The role of β1 integrin was investigated using a β1 integrin-neutralizing antibody. Western blotting was performed to measure the phosphorylation levels of the relevant proteins. The effects of the focal adhesion kinase (FAK) inhibitor Y15 and the MEK inhibitor U0126 on β1 integrin/FAK and Erk1/2 MAPK pathways in IL-8 production were evaluated to explore the involvement of these signaling pathways. RESULTS β1 integrin induced IL-8 secretion in the Ca9-22 cells by regulating FAK, Erk1/2, and p130Cas proteins. p130Cas was independent of FAK, whereas Erk1/2 functioned downstream of FAK. Inhibition of FAK or Erk1/2 substantially reduced IL-8 secretion, highlighting their pivotal roles in this signaling pathway. CONCLUSION β1 integrin promotes IL-8 secretion in Ca9-22 cells via the β1 integrin/FAK/Erk1/2 signaling pathway. These findings elucidate the pathogenesis of periodontitis and provide a foundation for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Meili Mu
- Graduate School of Dentistry, Department of Physiology, Osaka Dental University, Osaka, Japan
| | - Hiroshi Inoue
- Department of Physiology, Osaka Dental University, Osaka, Japan.
| | - Dan Mao
- Department of Physiology, Osaka Dental University, Osaka, Japan
| | - Nagako Sougawa
- Department of Physiology, Osaka Dental University, Osaka, Japan
| | - Seiji Goda
- Department of Physiology, Osaka Dental University, Osaka, Japan.
| |
Collapse
|
35
|
Kelliher JC, Maric I, Engeland CG, Shearer GC, Skibicka KP. Sex differences in the central and peripheral omega 3 oxylipin response to acute systemic inflammation. Am J Physiol Regul Integr Comp Physiol 2025; 328:R341-R351. [PMID: 39718589 DOI: 10.1152/ajpregu.00242.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
High-density lipoprotein (HDL) oxylipins regulate inflammation, and acute systemic inflammation can precipitate cognitive impairment. Females have more HDL and stronger immune responses than males, yet higher dementia risk. Little is known about sex differences in oxylipin responses to inflammatory stimuli and potential crosstalk between acute systemic inflammation and central oxylipin signaling in either sex. In this targeted lipidomics study, we used liquid chromatography with tandem mass spectrometry (LC/MS/MS) to characterize oxylipin profiles in plasma HDL and cerebrospinal fluid (CSF) of male and female rats following an intraperitoneal interleukin-1β (IL-1β)-induced inflammatory challenge to determine whether and how peripheral and central oxylipins respond to acute systemic inflammation in both sexes. We hypothesized that females mount a greater oxylipin response to IL-1β than males and that acute activation of peripheral inflammatory pathways changes central oxylipin concentrations. We found that IL-1β altered the abundance of omega (ω)6 and ω3 oxylipins in plasma HDL and CSF of both sexes. However, IL-1β reduced global concentrations of peripheral and central oxylipins in plasma HDL and CSF, respectively, in female rats only. Reduced oxylipin concentrations in IL-1β-treated females were driven by a loss of anti-inflammatory ω3 eicosapentaenoic acid (EPA)-derived dihydroxyeicosatetraenoic acids (DiHETEs) in plasma HDL and CSF. Interestingly, plasma HDL and CSF concentrations of EPA-derived DiHETEs were only correlated in IL-1β-treated rats, suggesting increased periphery-brain crosstalk during acute systemic inflammation. Overall, the sexually dimorphic responses of peripheral and central oxylipins to acute systemic inflammation provide molecular insight into sex differences in both innate immunity and neuroinflammatory responses.NEW & NOTEWORTHY This study examines previously unexplored sex differences in oxylipin signaling cascade activation in the central nervous system and periphery during the acute phase response. This is the first study to assess and correlate oxylipins in plasma HDL and CSF in males and females following an acute systemic inflammatory challenge. This work showing reduced concentrations of anti-inflammatory ω3 EPA-derived DiHETEs in acutely inflamed females provides molecular insight into sex differences in immunity and inflammation-induced neurological changes.
Collapse
Affiliation(s)
- Julia C Kelliher
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Ivana Maric
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christopher G Engeland
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, United States
- Ross and Carol Nese College of Nursing, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Gregory C Shearer
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Nutritional Sciences Department, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Karolina P Skibicka
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Nutritional Sciences Department, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
36
|
Fisk M, Gomez EA, Sun Y, Mickute M, McEniery C, Cockcroft JR, Bolton C, Fuld J, Cheriyan J, Yasmin, MacNee W, Tal-Singer R, Polkey M, Wilkinson I, Dalli J. Dysregulation of lipid mediators in patients with frequent exacerbations of COPD. ERJ Open Res 2025; 11:00950-2023. [PMID: 40129548 PMCID: PMC11931572 DOI: 10.1183/23120541.00950-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/15/2024] [Indexed: 03/26/2025] Open
Abstract
Introduction Specialised pro-resolving mediators (SPMs) are endogenously produced lipid mediators (LMs) that regulate the propagation of inflammation and promote tissue repair. We hypothesised that SPM production is dysregulated in COPD and is associated with disease severity, defined by patients with stable COPD (no exacerbations) versus patients with frequent exacerbations. Methods LMs were measured in plasma samples from patients with COPD (stable patients and patients with frequent exacerbations) and from healthy controls, matched for age, sex and body mass index, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LM profiles of controls were compared with those of stable COPD patients, and the LM profiles of stable COPD patients were compared with those of COPD patients with frequent exacerbations. We explored whether or not there was an association between LM profile and ever having a severe COPD exacerbation over 4.1 years of follow-up. Data are presented as mean±sem in pg·mL-1 for LMs, or mean±sd. Results 49 stable COPD patients had increased levels of pro-inflammatory mediators and some SPMs, compared with 28 controls (prostaglandin (PG)D2: 13.97±2.44 versus 0.53±0.13; p<0.001; lipoxins: 226.83±23.84 versus 59.84±20.25; p<0.01, respectively). 52 patients with frequent exacerbations had lower levels of PGD2 (3.07±0.97 versus 13.97±2.44; p<0.01) and SPMs (D-resolvins: 8.73±1.25 versus 34.53±8.95; p<0.01; lipoxins: 53.93±9.23 versus 226.83±23.84; p<0.01) than stable COPD patients, despite having a higher neutrophil count (5.28±2.16×109 L-1 versus 4.28±1.60×109 L-1; p=0.004). Among patients with frequent exacerbations, D-resolvin levels were independently inversely associated with occurrence of severe exacerbation (OR 0.88, 95% confidence interval (CI) 0.79-0.97; p=0.03) during follow-up. Conclusion These findings demonstrate distinct LM profiles of stable COPD patients and patients with frequent exacerbations. In those with exacerbations, D-resolvins were downregulated, compared with stable COPD patients, and associated with future risk of severe exacerbations during follow-up. Further work is needed to understand these findings.
Collapse
Affiliation(s)
- Marie Fisk
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- University of Cambridge, Cambridge, UK
| | - Esteban A. Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Yuan Sun
- University of Cambridge, Cambridge, UK
| | - Monika Mickute
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- University of Cambridge, Cambridge, UK
| | | | | | - Charlotte Bolton
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Jonathan Fuld
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Joseph Cheriyan
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Yasmin
- University of Cambridge, Cambridge, UK
| | | | | | | | - Ian Wilkinson
- University of Cambridge, Cambridge, UK
- Joint senior authors
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Joint senior authors
| |
Collapse
|
37
|
Thoma G, Miltz W, Waelchli R, Orain D, Spanka C, Decoret O, Wolf RM, Hurley B, Cheung AK, Sandham DA, Honda A, Tichkule R, Chen X, Patel T, Labbe-Giguere N, Tan KL, Springer C, Manchester J, Culshaw AJ, Hunt P, Srinivas H, Penno CA, Ferrand S, Numao S, Schopfer U, Jäger P, Wack N, Hasler F, Urban B, Sindelar M, Loetscher P, Kiffe M, Ren X, Nicklin P, White K, Subramanian K, Liu H, Growcott EJ, Röhn TA. Discovery of GJG057, a Potent and Highly Selective Inhibitor of Leukotriene C4 Synthase. J Med Chem 2025; 68:4721-4742. [PMID: 39960261 DOI: 10.1021/acs.jmedchem.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Leukotriene C4 synthase (LTC4S) is a glutathione S-transferase that mediates the biosynthesis of cysteinyl leukotriene C4 (LTC4). Cysteinyl leukotrienes (CysLTs) are lipid mediators that drive type 2 inflammation, bronchoconstriction, and itch. Thus, LTC4S represents an attractive drug target for the treatment of allergic inflammatory diseases, but to date, no LTC4S inhibitor has been tested in patients. Herein, we disclose the discovery and preclinical profiling of the highly selective, oral LTC4S inhibitor GJG057 (compound 1), which exhibits 20-fold improved potency (IC50 = 44 nM) versus clinical candidate AZD9898 (IC50 = 900 nM) in a human whole blood LTC4 release assay. GJG057 showed efficacy in a murine asthma exacerbation model as well as in a mastoparan-induced skin challenge PK/PD model and was profiled in GLP toxicology studies. Despite its promising properties, GJG057 was not progressed into clinical trials as an oral drug. Its potential as a topical drug is currently being evaluated.
Collapse
Affiliation(s)
- Gebhard Thoma
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Rudolf Waelchli
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - David Orain
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Carsten Spanka
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Odile Decoret
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Romain M Wolf
- Global Discovery Chemistry, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Brian Hurley
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Atwood K Cheung
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - David A Sandham
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Ayako Honda
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Ritesh Tichkule
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Xin Chen
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Tajesh Patel
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Nancy Labbe-Giguere
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Kian L Tan
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Clayton Springer
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - John Manchester
- Global Discovery Chemistry, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Andrew J Culshaw
- Global Discovery Chemistry, Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, U.K
| | - Peter Hunt
- Global Discovery Chemistry, Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, U.K
| | - Honnappa Srinivas
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Carlos A Penno
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Sandrine Ferrand
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Shin Numao
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Ulrich Schopfer
- Discovery Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Petra Jäger
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Nathalie Wack
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Franziska Hasler
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Beatrice Urban
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Miriam Sindelar
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Pius Loetscher
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Michael Kiffe
- PK Sciences, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Xiaojun Ren
- PK Sciences, Biomedical Research, Novartis Pharmaceuticals, East Hanover, New Jersey 07936, United States
| | - Paul Nicklin
- Respiratory Disease Area, Novartis Horsham Research Centre, Horsham, West Sussex RH12 5AB, U.K
| | - Kevin White
- Global Health Disease Area, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Khaushik Subramanian
- Global Health Disease Area, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Haoyuan Liu
- Global Health Disease Area, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Ellena J Growcott
- Global Health Disease Area, Biomedical Research, Novartis Pharmaceuticals, Cambridge, Massachusetts 02139, United States
| | - Till A Röhn
- Immunology Disease Area, Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| |
Collapse
|
38
|
Olkowicz M, Yu F, Alvarez JS, Ribeiro RVP, Rosales R, Xin L, Yu M, Jaroch K, Adamson MB, Bissoondath V, Billia F, Badiwala MV, Pawliszyn J. Spatiotemporal metabolic mapping of ex-situ preserved hearts subjected to dialysis by integration of bio-SPME sampling with non-targeted metabolipidomic profiling. Anal Chim Acta 2025; 1340:343581. [PMID: 39863306 DOI: 10.1016/j.aca.2024.343581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement. RESULTS Male Yorkshire porcine hearts were subjected to ESHP for 8 h with or without dialysis. Alterations in metabolism were studied with an innovative in vivo solid-phase microextraction (SPME) technology coupled with global metabolite profiling at 15 min, 1.5, 4, and 8 h of perfusion. Bio-SPME sampling was performed by inserting SPME fibres coated with a PAN-based extraction phase containing mixed-mode (C8+benzenesulfonic acid) functionalities into the myocardium to a depth of their entire 8 mm coating or immersing them in the perfusate, followed by a 20-min extraction period for the analytes of interest. Dialyzed hearts demonstrated improved bioenergetics as evidenced by accelerated purine metabolism and less pronounced accumulation of intermediates of fatty acid β/ω-oxidation. Metabolic waste accumulation such as pro-inflammatory lipid mediators (e.g., leukotrienes) was mitigated thereby supporting the process of resolution of inflammation through excretion of specialized pro-resolving mediators (resolvins D1/D2, E2, protecin D1). SIGNIFICANCE Through implementing the unique analytical pipeline we demonstrated that the addition of dialysis may preserve cardiac metabolism allowing for prolonged ESHP. This strategy has the potential to facilitate high-risk donor organs' reconditioning prior to transplantation.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada; Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Gdańsk, Poland
| | - Frank Yu
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Juglans Souto Alvarez
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Roberto Vanin Pinto Ribeiro
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Roizar Rosales
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Liming Xin
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Miao Yu
- The Jackson Laboratory, JAX Genomic Medicine, Farmington, CT, USA
| | - Karol Jaroch
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Mitchell Brady Adamson
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Ved Bissoondath
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute (TGHRI), University Health Network, ON, Canada; Ted Roger's Center for Heart Research, University Health Network, ON, Canada; Division of Cardiology, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Mitesh Vallabh Badiwala
- Division of Cardiovascular Surgery, Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Ted Roger's Center for Heart Research, University Health Network, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
39
|
Schaefer AS, Nibali L, Zoheir N, Moutsopoulos NM, Loos BG. Genetic risk variants implicate impaired maintenance and repair of periodontal tissues as causal for periodontitis-A synthesis of recent findings. Periodontol 2000 2025. [PMID: 39953674 DOI: 10.1111/prd.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 02/17/2025]
Abstract
Periodontitis is a complex inflammatory disease in which the host genome, in conjunction with extrinsic factors, determines susceptibility and progression. Genetic predisposition is the strongest risk factor in the first decades of life. As people age, chronic exposure to the periodontal microbiome puts a strain on the proper maintenance of barrier function. This review summarizes our current knowledge on genetic risk factors implicated in periodontitis, derived (i) from hypothesis-free systematic whole genome-profiling studies (genome-wide association studies [GWAS] and quantitative trait loci [QTL] mapping studies), and independently validated through further unbiased approaches; (ii) from monogenic and oligogenic forms of periodontitis; and (iii) from syndromic forms of periodontitis. The genes include, but are not limited to, SIGLEC5, PLG, ROBO2, ABCA1, PF4, and CTSC. Notably, CTSC and PLG gene mutations were also identified in non-syndromic and syndromic forms of prepubertal and early-onset periodontitis. The functions of the identified genes in this review suggest that the pathways affected by the periodontitis-associated gene variants converge in functions involved in the maintenance and repair of structural integrity of the periodontal tissues. Particularly, these genes play a role in the healing of inflamed and ulcerated periodontal tissues, including roles in fibrinolysis, extrusion of cellular debris, extracellular matrix remodeling and angiogenesis. Syndromes that include periodontitis in their phenotype indicate that neutrophils play an important role in the regulation of inflammation in the periodontium. The established genetic susceptibility genes therefore collectively provide new insights into the molecular mechanisms and plausible causal factors underlying periodontitis.
Collapse
Affiliation(s)
- Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Luigi Nibali
- Periodontology Unit, Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Noha Zoheir
- Periodontology Unit, Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Bruno G Loos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
40
|
Witte Castro A, Couce ML, de Lamas C, López-Giménez MR, Jiménez Varas MÁ, Zozaya C, Saenz de Pipaon M. Long-chain polyunsaturated fatty acids supplementation and sepsis: a systematic review and meta-analysis. Pediatr Res 2025; 97:924-938. [PMID: 39300278 DOI: 10.1038/s41390-024-03579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Long chain polyunsaturated fatty acids (LCPUFAs) have proven to be essential for development in preterm infants and have been studied for their capacity to reduce inflammation and infection rates, including sepsis in enteral and parenteral nutrition. The aim of this review and meta-analysis is to gather the information available on this subject to determine if n-3 polyunsaturated fatty acids can reduce sepsis incidence in preterm infants. METHODS This systematic review was conducted by searching in the databases MEDLINE (via PubMed), ISI-Web of Science, EMBASE, SCOPUS, SciELO, and Cochrane Library databases. We analyzed the data regarding sepsis using the Grading of Recommendations Assessment, Development and Evaluation approach to assess the quality of the evidence. RESULTS A total of 40 trials were included for review and 35 trials had the data available for quantitative analysis. LCPUFAs supplementation did not reduce incidence of sepsis (relative risk (RR), confidence interval (CI) 0.95 [0.87, 1.03] P = 0.87; I2 = 0%). These results remained consistent after the sensitivity analysis. CONCLUSION The results of this systematic review and meta-analysis indicate that LCPUFA supplementation is not associated with a significant decrease in the incidence of sepsis in premature infants. IMPACT Reviewing the information available about LCPUFA supplementation and sepsis since the results in previous Clinical Trials (CT) are inconclusive. It summarizes the results of 42 CT and we have not found conclusive results regarding sepsis in the literature. It could be of clinical interest for pediatricians and nutritionists.
Collapse
Affiliation(s)
| | - María L Couce
- Department of Forensic Sciences, Pathological Anatomy, Gynecology and Obstetrics and Pediatrics, University of Santiago de Compostela, Santiago de Compostela, Spain
- Division of Neonatology, University Clinical Hospital of Santiago de Compostela, IDIS-Sanitary Research Institute of Santiago de Compostela, RICORS-SAMID, CIBERER, Santiago de Compostela, Spain
| | - Carmela de Lamas
- Department of Forensic Sciences, Pathological Anatomy, Gynecology and Obstetrics and Pediatrics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - C Zozaya
- Neonatology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - Miguel Saenz de Pipaon
- Neonatology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
41
|
Valverde A, George A, Nares S, Naqvi AR. Emerging therapeutic strategies targeting bone signaling pathways in periodontitis. J Periodontal Res 2025; 60:101-120. [PMID: 39044454 PMCID: PMC11873684 DOI: 10.1111/jre.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Periodontitis is a multifactorial immune-mediated disease exacerbated by dysregulated alveolar bone homeostasis. Timely intervention is crucial for disease management to prevent tooth loss. To successfully manage periodontitis, it is imperative to understand the cellular and molecular mechanisms involved in its pathogenesis to develop novel treatment modalities. Non-surgical periodontal therapy (NSPT) such as subgingival instrumentation/debridement has been the underlying treatment strategy over the past decades. However, new NSPT approaches that target key signaling pathways regulating alveolar bone homeostasis have shown positive clinical outcomes. This narrative review aims to discuss endogenous bone homeostasis mechanisms impaired in periodontitis and highlight the clinical outcomes of preventive periodontal therapy to avoid invasive periodontal therapies. Although the anti-resorptive therapeutic adjuncts have demonstrated beneficial outcomes, adverse events have been reported. Diverse immunomodulatory therapies targeting the osteoblast/osteoclast (OB/OC) axis have shown promising outcomes in vivo. Future controlled randomized clinical trials (RCT) would help clinicians and patients in the selection of novel preventing therapies targeting key molecules to effectively treat or prevent periodontitis.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Anne George
- Department of Oral BiologyCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Salvador Nares
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Department of PeriodonticsCollege of Dentistry, University of Illinois ChicagoChicagoIllinoisUSA
- Department of Microbiology and ImmunologyUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
42
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
43
|
Jeong H, Subramanian K, Lee JB, Byun H, Shin H, Yun JH. Anti-inflammatory and osteoconductive multi-functional nanoparticles for the regeneration of an inflamed alveolar bone defect. Biomater Sci 2025; 13:810-825. [PMID: 39749408 DOI: 10.1039/d4bm01280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities. Tannic-acid mineral nanoparticles (TMPs) were prepared by the supramolecular assembly of tannic acid with bioactive calcium and phosphate ions, which were subsequently incorporated into collagen plugs via molecular interactions. Under physiological conditions, in vitro analysis confirmed that tannic acid was dissociated and released, which significantly reduced the expression of pro-inflammatory genes in lipopolysaccharide (LPS)-activated RAW264.7 cells. Meanwhile, the bioactive ions of Ca2+ and PO43- synergistically increased the gene and protein expressions of osteogenic markers of bone marrow-derived stem cells. For in vivo studies, combined endodontic-periodontal lesions were induced in beagle dogs where the plugs were readily implanted. After 2 months of the implantation, analysis of micro-computed tomography and histomorphometry revealed that groups of dogs implanted with the plug incorporating TMPs exhibited a significant decrease in bone surface density as well as structural model index, and significant increase in the mineralized bone content, respectively, with positive OPN expression being observed in reversal lines. Notably, the profound improvement in bone regeneration relied on the concentration of TMPs in the implants, underscoring the promise of multi-functional nanoparticles for treating infected alveolar bones.
Collapse
Affiliation(s)
- Hyewoo Jeong
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea.
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Keerthana Subramanian
- Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea.
| | - Jong-Bin Lee
- Department of Periodontology, College of Dentistry and Research Institute of Oral Sciences, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea.
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea.
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea
| | - Jeong-Ho Yun
- Department of Periodontology, College of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
44
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
45
|
Yu M, Jiang WJ, Yu M, Zhou Z, Wang M, Li L. The Upregulation of IL-1β Induced by Cisplatin Triggers PI3K/AKT/MMP9 Pathway in Pericytes Mediating the Leakage of the Blood Labyrinth Barrier. J Inflamm Res 2025; 18:1191-1205. [PMID: 39911951 PMCID: PMC11794042 DOI: 10.2147/jir.s492292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
Background Blood-labyrinth barrier (BLB) damage has been recognized as a key mechanism underlying cisplatin (CDDP)-induced hearing loss. Inflammation within the cochlea, triggered by CDDP, is a key pathological response. However, the relationship between CDDP-induced inflammation and BLB dysfunction remains elusive. Materials and Methods In vivo and in vitro BLB models were used to explore the inflammatory mechanisms underlying CDDP ototoxicity. C57BL/6J mice were treated with CDDP and IL-1β levels, BLB permeability, and hearing thresholds were assessed using ELISA, histological staining, ABR test and BLB leakage tests. In vitro BLB models, the effect of IL-1β on MMP9 expression, PI3K-AKT pathway activation, and endothelial barrier permeability were examined via Western blot, TEER value test, and FITC extraction analysis. In addition, inhibitors of IL-1β, MMP9, and PI3K-AKT were used to analyze the specific mechanisms. Results After CDDP treatment, IL-1β upregulation in the stria vascularis disrupted tight junctions, increased BLB permeability, and led to hearing loss. Notably, IL-1β inhibition with AS101 attenuated hearing threshold elevation and BLB damage in CDDP-treated mice. Mechanistically, CDDP triggered IL-1β release from endothelial cells. IL-1β promoted MMP9 secretion from pericytes via the PI3K/AKT pathway, leading to disruption of tight junctions. Both MMP9 and PI3K-AKT inhibitors abrogated IL-1β-induced changes. Conclusion Our findings suggest that CDDP initiates a cascade of events starting with IL-1β release from endothelial cells. This release triggers the activation of PI3K/AKT pathway and upregulation of MMP9 expression in pericytes, which increases BLB permeability and leds to hearing loss. IL-1β and the PI3K-AKT pathway are promising therapeutic targets,offering hope for patients with CDDP-induced hearing loss.
Collapse
Affiliation(s)
- Miao Yu
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, People’s Republic of China
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, People’s Republic of China
| | - Wen-Jun Jiang
- The Second People’s Hospital of Li Shui, Li Shui, Zhejiang, 323000, People’s Republic of China
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, People’s Republic of China
| | - Meng Yu
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, People’s Republic of China
| | - Zan Zhou
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, People’s Republic of China
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, People’s Republic of China
| | - Min Wang
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, People’s Republic of China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, People’s Republic of China
| |
Collapse
|
46
|
Holmlund I, Ahmadi S, Ruyter B, Østbye TK, Bou M, Gjøen T. Effect of eicosapentaenoic acid on innate immune responses in Atlantic salmon cells infected with infectious salmon anemia virus. Virol J 2025; 22:5. [PMID: 39780168 PMCID: PMC11715085 DOI: 10.1186/s12985-024-02619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA). The aim of this study was to investigate whether low or high levels of EPA affect the expression of genes related to the innate immune response 48 h after infection with ISAV. The study includes seven experimental groups: ± ISAV and various levels of EPA up to 200 µM. Analysis of RNA sequencing data showed that more than 3000 genes were affected by ISAV alone (without additional EPA). In cells with increasing levels of EPA, more than 2500 additional genes were differentially expressed. This indicates that high levels of EPA concentration have an independent effect on gene expression in virus-infected cells, not observed at lower levels of EPA. Analyses of enriched biological processes and molecular functions (GO and KEGG analysis) revealed that EPA had a limited impact on the innate immune system alone, but that many processes were affected by EPA when cells were virus infected. Several biological pathways were affected, including protein synthesis (ribosomal transcripts), peroxisome proliferator activated receptor (PPAR) signaling, and ferroptosis. Cells exposed to both increasing concentrations of EPA and virus displayed gene expression patterns indicating increased formation of oxygen radicals and that cell death via ferroptosis was activated. This gene expression pattern was not observed during infection at low EPA levels or when Atlantic salmon kidney (ASK) cells were exposed to the highest EPA level (200 μM) without virus infection. Cell death via ferroptosis may therefore be a mechanism for controlled cell death and thus reduction of virus replication when there are enough polyunsaturated fatty acids (PUFAs) in the membrane.
Collapse
|
47
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
48
|
Bakhtiari S, Asri N, Jahdkaran M, Rezaei-Tavirani M, Jahani-Sherafat S, Rostami-Nejad M. The connection between fatty acids and inflammation in celiac disease; a deep exploring. Tissue Barriers 2025; 13:2342619. [PMID: 38618691 PMCID: PMC11875481 DOI: 10.1080/21688370.2024.2342619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The interplay between fatty acids (FAs) and celiac disease (CD) is a burgeoning field of research with significant implications for understanding the pathophysiology and potential therapeutic avenues for this autoimmune disorder. CD, triggered by gluten consumption in susceptible individuals, presents with a range of intestinal and extra-intestinal symptoms impacting various bodily functions. The disruption of intestinal tight junctions (TJs) by gluten proteins leads to increased gut permeability and subsequent inflammatory responses mediated by T-cells. FAs, crucial components of cell membranes, play diverse roles in inflammation and immune regulation. In fact, FAs have been shown to modulate inflammatory processes through various mechanisms. Studies have highlighted alterations in FA profiles in individuals with CD, indicating potential implications for disease pathogenesis and micronutrient deficiencies. Moreover, the exploration of FAs as biomarkers for CD diagnosis offers promising avenues for future research and therapeutic interventions. Understanding the intricate relationship between FAs and CD could lead to novel approaches in managing this complex autoimmune disorder. Therefore, this review article aims to provide an overview of the connection between FAs and inflammation in CD.
Collapse
Affiliation(s)
- Sajjad Bakhtiari
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Jahdkaran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
50
|
Hile GA, Werth VP. Understanding the Role of Type I Interferons in Cutaneous Lupus and Dermatomyositis: Toward Better Therapeutics. Arthritis Rheumatol 2025; 77:1-11. [PMID: 39262215 DOI: 10.1002/art.42983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
A 29-year-old female presented to a rheumatology-dermatology clinic with a pruritic rash that began 6 months prior, after a viral illness. She had previously been diagnosed with eczema and treated with antihistamines and topical steroids without improvement. She also noted fatigue, hair loss, and severe scalp pruritus. Physical examination was notable for violaceous periorbital edema, scaly erythematous papules on the metacarpophalangeal joints of bilateral hands, dilated capillaries of the proximal nail folds, scaly plaques on bilateral elbows, and excoriated erythematous plaques on upper chest, back and hips. The patient reported no muscle weakness, and strength testing and creatinine phosphokinase were normal. Magnetic resonance imaging of the thigh showed no evidence of inflammation or edema. Antibody testing was negative. A diagnosis of clinically amyopathic dermatomyositis was made. Computed tomography scans of the chest, abdomen and pelvis, colonoscopy, and mammogram showed no evidence of cancer. The patient was initiated on methotrexate. Her cutaneous manifestations persisted with debilitating intractable pruritus, and thus, she was transitioned to mycophenolate mofetil, again with minimal improvement. Intravenous immunoglobulin was not approved by insurance given the lack of muscle involvement in her disease. This patient's case highlights a common clinical scenario in rheumatology and dermatology and raises several important issues related to the immunologic underpinnings of cutaneous lupus erythematosus (CLE) and dermatomyositis (DM): What is the role of type I interferon (IFN) in triggering skin disease in CLE and DM? What is the role of IFN in the pathogenesis of skin inflammation in CLE and DM? Can we apply what we know about IFN-targeted therapeutics in CLE and DM to develop better treatments for skin disease?
Collapse
Affiliation(s)
| | - Victoria P Werth
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center and the University of Pennsylvania, Philadelphia
| |
Collapse
|