1
|
Bhagwat A, Haldar T, Kanojiya P, Saroj SD. Bacterial metabolism in the host and its association with virulence. Virulence 2025; 16:2459336. [PMID: 39890585 PMCID: PMC11792850 DOI: 10.1080/21505594.2025.2459336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
The host restricted pathogens are competently dependent on their respective host for nutritional requirements. The bacterial metabolic pathways are surprisingly varied and remarkably flexible that in turn help them to successfully overcome competition and colonise their host. The metabolic adaptation plays pivotal role in bacterial pathogenesis. The understanding of host-pathogen metabolic crosstalk needs to be prioritized to decipher host-pathogen interactions. The review focuses on various aspects of host pathogen interactions that majorly involves adaptation of bacterial metabolism to counteract immune mechanisms by rectifying metabolic cues that provides pathogen the idea of different anatomical sites and the local physiology of the host. The key set of metabolites that are recognized as centre of competition between host and its pathogens are also briefly discussed. The factors that control the timely expression of virulence of bacterial pathogens is poorly understood. The perspective presented herein will facilitate us with a broader view of molecular mechanisms that modulates the expression of virulence factors in bacterial pathogens. The knowledge of crosslinked metabolic pathways of bacteria and their host will serve to develop novel potential therapeutics.
Collapse
Affiliation(s)
- Amrita Bhagwat
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Tiyasa Haldar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
2
|
Yoon BK, Jackman JA. Medium-chain fatty acids and monoglycerides: Nanoarchitectonics-based insights into molecular self-assembly, membrane interactions, and applications. Adv Colloid Interface Sci 2025; 340:103465. [PMID: 40056558 DOI: 10.1016/j.cis.2025.103465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Medium-chain fatty acids (FAs) and monoglycerides (MGs) with saturated 6- to 12‑carbon long tails are single-chain lipid amphiphiles that demonstrate significant application merits. Key examples include their antimicrobial activity against antibiotic-resistant bacteria and emerging viral threats as well as innovations in oral pharmaceutics and biorenewable chemical production. These diverse functionalities are enabled by FA and MG self-assembly and their interactions with biological membranes. However, an integrated viewpoint connecting interfacial science principles to the broader application scope remains lacking. The objective of this review is to cover the latest progress in medium-chain FA and MG research and to build connections between molecular self-assembly, membrane interactions, and applications. By taking a bottom-up nanoarchitectonics perspective, we first examine molecular self-assembly principles, including ionization properties and formation of colloidal nanostructures such as micelles and vesicles. We then discuss membrane interaction concepts and experimental findings that illustrate how medium-chain FAs and MGs distinctly interact with phospholipid membranes. Based on this foundation, we highlight cutting-edge applications in medicine, agriculture, drug delivery, and sustainability, linking these advances to interfacial science concepts. In addition, we emphasize the growing convergence of experimental, theoretical, and computational approaches and offer a forward-looking perspective on future research needs and application opportunities.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
3
|
Wang S, Yu H, Zhu K. Engineering Pseudomonas aeruginosa for (R)-3-hydroxydecanoic acid production. AMB Express 2025; 15:72. [PMID: 40327264 PMCID: PMC12055736 DOI: 10.1186/s13568-025-01880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
(R)-3-hydroxyalkanoic acids (R-3HAs) play a crucial role as essential chemicals serving as precursors or intermediates in the synthesis of a wide range of valuable compounds, such as pharmaceuticals, antibiotics, and food additives. Despite their significance, achieving industrial-scale production of R-3HAs, particularly medium-chain-length (mcl) R-3HAs, has been challenging due to the absence of suitable strains with efficient biosynthesis pathways. This study focuses on achieving the production of mcl R-3HA monomers by leveraging the "substrate pool" of R-3-(R-3-hydroxyalkanoyloxy) alkanoic acids (HAAs) which is synthesized by HAAs synthase RhlA. The process involved truncating the rhamnolipids synthesis pathway in Pseudomonas aeruginosa PAO1 by knocking out downstream genes rhlB and rhlC, leading to the accumulation and collection of intermediate HAAs from the culture supernatant. To enhance the production of HAAs further, a series of key genes in the β-oxidation pathway were knocked out, resulting in a titer of approximately 18 g/L. Subsequently, hydrolysis of HAAs was conducted under alkaline conditions, where the dimers could be rapidly and efficiently converted into monomers. The hydrolysis process was completed in 2.5 h at 80 °C using a 0.5 M NaOH solution. The primary hydrolysis product identified through GC-MS analysis was (R)-3-hydroxydecanoic acid (R-3HD) with a purity of 95%.
Collapse
Affiliation(s)
- Shuai Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiying Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Kun Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Naga NG, Magdy HM, Negm S, El-Kott AF, AlShehri MA, El-Metwally MM, Abo-Neima SE, Elsehly EM. Trends of biomolecule-conjugated nanoparticles as antibiofilm. Microb Pathog 2025; 202:107396. [PMID: 39978487 DOI: 10.1016/j.micpath.2025.107396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
Biofilm is a powerful barrier that significantly enhances the pathogenicity of bacteria and the development of multidrug resistance. Nanoparticles (NPs) coupled with biomolecules provide a novel approach to addressing this issue. This review briefly discusses the current trends in Biomolecule-Conjugated NPs combined with enzymes, antibiotics, biosurfactants, and natural bioactive compounds as antibiofilm agents emphasizing their superior antibiofilm activity. This conjugation enhances bioavailability, lowers toxicity, requires smaller dosage, and reduces complications caused by infections associated with biofilms. These conjugated systems offer an avenue for industrial, ecological, and medical applications. By increasing the variety of these conjugation techniques, innovative approaches to biofilm-related problems will become possible, with significant advantages for healthcare and other fields.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Habiba M Magdy
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Sally Negm
- Health Specialities, Basic Sciences and Their Applications Unit, Applied College, Mahayil Asir, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, 61421, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, 61421, Abha, Saudi Arabia.
| | - Mohammad M El-Metwally
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.
| | - Sahar E Abo-Neima
- Physics Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.
| | - Emad M Elsehly
- Physics Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
5
|
Petracco G, Faimann I, Reichmann F. Inflammatory bowel disease and neuropsychiatric disorders: Mechanisms and emerging therapeutics targeting the microbiota-gut-brain axis. Pharmacol Ther 2025; 269:108831. [PMID: 40023320 DOI: 10.1016/j.pharmthera.2025.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two major entities of inflammatory bowel disease (IBD). These disorders are known for their relapsing disease course and severe gastrointestinal symptoms including pain, diarrhoea and bloody stool. Accumulating evidence suggests that IBD is not only restricted to the gastrointestinal tract and that disease processes are able to reach distant organs including the brain. In fact, up to 35 % of IBD patients also suffer from neuropsychiatric disorders such as generalized anxiety disorder and major depressive disorder. Emerging research in this area indicates that in many cases these neuropsychiatric disorders are a secondary condition as a consequence of the disturbed communication between the gut and the brain via the microbiota-gut-brain axis. In this review, we summarise the current knowledge on IBD-associated neuropsychiatric disorders. We examine the role of different pathways of the microbiota-gut-brain axis in the development of CNS disorders highlighting altered neural, immunological, humoral and microbial communication. Finally, we discuss emerging therapies targeting the microbiota-gut-brain axis to alleviate IBD and neuropsychiatric symptoms including faecal microbiota transplantation, psychobiotics, microbial metabolites and vagus nerve stimulation.
Collapse
Affiliation(s)
- Giulia Petracco
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Isabella Faimann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; BiotechMed-Graz, Austria.
| |
Collapse
|
6
|
O'Hara E, Chomistek N, Terry SA, Beauchemin KA, Gruninger RJ. Assessing the Impact of the Methane Inhibitors 3-Nitrooxypropanol (3-NOP) and Canola Oil on the Rumen Anaerobic Fungi. Animals (Basel) 2025; 15:1230. [PMID: 40362045 DOI: 10.3390/ani15091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Reducing enteric methane emissions is critical for improving the sustainability of ruminant livestock production. In this study, we investigated the impact of the methane inhibitors 3-nitrooxypropanol (3-NOP) and canola oil, fed both individually and in combination, on the anaerobic gut fungi (AGF) of the rumen. Eight ruminally cannulated Angus heifers were used in a replicated double 4 × 4 Latin square over 28-day periods with a 2 (control, 3-NOP) × 2 (control, canola oil) factorial arrangement. Rumen samples were collected after 13 d dietary adaptation, and AGF communities were evaluated using amplicon sequencing of the D1/D2 region of the 28S rRNA (LSU) gene. Although 3-NOP reduced methane yield by approximately 32%, it did not substantially alter the diversity, composition, or overall abundance of the AGF community. In contrast, canola oil supplementation, either alone or combined with 3-NOP, markedly disrupted the fungal community. These treatments reduced overall fungal diversity and the abundance of key fiber-degrading taxa, such as Neocallimastix and Piromyces, while eliciting variable responses among less abundant genera. Furthermore, resilience analyses using control-diet-fed samples indicated that repeated perturbation impaired the recovery of some AGF taxa, leading to a shift in the composition of the fungal community. Overall, our findings suggest that 3-NOP offers a targeted methane mitigation strategy and does not alter the rumen AGF. In contrast, the addition of canola oil at levels that inhibit enteric methane emissions has a disruptive impact on the AGF community, contributing to reduced feed digestibility.
Collapse
Affiliation(s)
- Eóin O'Hara
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Nora Chomistek
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Stephanie A Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
7
|
Shin S, Jiang D, Yu J, Yang C, Jeong W, Li J, Bae J, Shin J, An K, Kim W, Cho NJ. Interaction Dynamics of Liposomal Fatty Acids with Gram-Positive Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23666-23679. [PMID: 40223206 DOI: 10.1021/acsami.5c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The increasing prevalence of antibiotic-resistant bacteria has driven the need for alternative therapeutic strategies, with liposomal fatty acids (LipoFAs) emerging as promising candidates due to their potent antibacterial properties. Despite growing interest, the detailed biophysical interactions between LipoFAs and bacterial membranes remain underexplored. In this study, we systematically investigate the mechanistic interactions of liposomal linolenic acid (LipoLNA), linoleic acid (LipoLLA), and oleic acid (LipoOA) with model Gram-positive bacterial membranes using quartz crystal microbalance with dissipation (QCM-D) and fluorescence microscopy. QCM-D analysis revealed that LipoOA displayed the highest rate of membrane fusion, followed by LipoLLA and LipoLNA. Fluorescence microscopy highlighted distinct morphological changes induced by each LipoFA: LipoLNA generated large membrane buds, LipoLLA formed smaller dense protrusions, and LipoOA caused rapid incorporation with uniform dense spots. Furthermore, fluorescence recovery after photobleaching (FRAP) demonstrated that LipoLNA significantly enhanced lipid mobility and membrane fluidity, as confirmed by Laurdan generalized polarization measurements. The extent of unsaturation in LipoFAs was found to play a critical role in their interaction mechanism, with higher degrees of unsaturation inducing greater local curvature stress, increased membrane permeability, and substantial ATP leakage, ultimately leading to improved bactericidal activity. Notably, liposomal formulations exhibited enhanced biocompatibility compared to free fatty acids. These findings provide valuable mechanistic insights into how LipoFAs perturb bacterial membranes, supporting their potential application as alternative antibacterial agents.
Collapse
Affiliation(s)
- Sungmin Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Dongping Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jingyeong Yu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chungmo Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Woncheol Jeong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jian Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| | - Jieun Bae
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Jihoon Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Kyongman An
- Department of Research and Development, LUCA AICell Inc, Anyang 14055, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, SBS-01s-50, Singapore 637551, Singapore
| |
Collapse
|
8
|
Dutoit A, Trunet C, Decourcelle N, Mathot AG, Coroller L. Oil-in-water emulsion and acid concentrations impact Bacillus weihenstephanensis KBAB4 growth and culturability. Int J Food Microbiol 2025; 434:111132. [PMID: 40058059 DOI: 10.1016/j.ijfoodmicro.2025.111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025]
Abstract
Organic acids have long been used to limit microbial growth and preserve food products from spoilage and pathogens. However, the food complexity can affect the efficiency of preservatives in inhibiting bacterial growth. The inhibitory activity of acetic, lactic, caprylic and lauric acid in nutrient broth and in a model food system, i.e. an oil-in-water (O/W) emulsion at two pH levels, were compared using the plate count method. The fate of B. weihenstephanensis KBAB4 cells incubated in O/W emulsions revealed a loss of culturability on Brain Heart Infusion agar (BHI agar) medium, occurring at different times according to the tested conditions. Cell viability in O/W emulsion was assessed through flow cytometry measurements which confirmed that a large majority of cells possessed an intact membrane, despite only 3 % being able to recover on BHI agar. Decreasing the pH of the emulsions delayed the time at which cells lost their culturability as well as the time at which it was restored. Using acetic, caprylic and lauric acid in the emulsion impacted strain recovery on BHI agar whereas using lactic acid enhanced the cell recovery from the emulsion exposure, on BHI agar surface. The culturability of B. weihenstephanensis KBAB4 cells incubated in an O/W emulsion without acid has been restored using other recovery media, highlighting ROS involvement and limited strain catalase activity in the recovery ability. This study put in evidence the susceptibility of this strain to oxidative stress and challenges the use of given media for enumerating spore-forming bacteria in food and other complex matrices.
Collapse
Affiliation(s)
- Agathe Dutoit
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Clément Trunet
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Nicolas Decourcelle
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Anne-Gabrielle Mathot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Louis Coroller
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France.
| |
Collapse
|
9
|
Toneto Francisco M, de Jesus Barbosa PH, Ahmad F, Fernandes SA, Giambiagi-deMarval M, Diaz MAN, Rossi CC. Hydrocleys nymphoides (water poppy): a cosmopolitan aquatic plant with a phytochemical-rich extract exhibiting antimicrobial and antibiofilm activity against multidrug-resistant Staphylococcus. Lett Appl Microbiol 2025; 78:ovaf046. [PMID: 40175299 DOI: 10.1093/lambio/ovaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/04/2025]
Abstract
Antimicrobial resistance among Staphylococcus species, including multidrug-resistant and biofilm-forming strains, poses a critical threat to global health, demanding innovative therapeutic solutions. In this context, this study explores the antimicrobial and antibiofilm potential of the aquatic plant Hydrocleys nymphoides as a promising alternative. Extracts from the plant's leaves and roots were obtained using solvents of increasing polarity and tested against five key pathogenic Staphylococcus species: S. aureus, S. epidermidis, S. haemolyticus, S. pseudintermedius, and S. coagulans. The hexane extract of H. nymphoides leaves showed the most notable activity, with inhibition zones of 9-17 mm and minimum inhibitory concentrations (MICs) as low as 0.8 mg/ml for certain strains. Subinhibitory concentrations of the extract significantly reduced biofilm formation in most strains, with reductions up to 46.9%. Gas chromatography-mass spectrometry revealed bioactive compounds such as linoleic acid, n-hexadecanoic acid, 9-octadecenal, eicosane, and tetratriacontane, known for their antimicrobial and antibiofilm properties. Although cytotoxicity was observed at concentrations near the MIC, lower concentrations were non-toxic, indicating potential for controlled therapeutic applications. These findings underscore the biotechnological value of H. nymphoides as a sustainable source of antimicrobial agents against multidrug-resistant Staphylococcus. This work emphasizes the critical role of phytotherapy in combating the escalating antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Marcos Toneto Francisco
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
| | | | - Faizan Ahmad
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
| | | | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Marisa Alves Nogueira Diaz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
| | - Ciro César Rossi
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, 36570-000, MG, Brazil
| |
Collapse
|
10
|
Esposito A, D'Alonzo D, Stabile M, Firpo V, Migliaccio A, Artiano R, D'Errico S, De Gregorio E, Guaragna A. Synthesis of a di-O-acylated deoxynojirimycin (DNJ) derivative and evaluation of its antibacterial and antibiofilm activity against Staphylococcus aureus and Stenotrophomonas maltophilia. Carbohydr Res 2025; 550:109379. [PMID: 39862555 DOI: 10.1016/j.carres.2025.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Herein we report the synthesis of a novel di-O-acylated DNJ derivative, conceived to study whether iminosugar derivatization with a lipophilic acyl moiety could positively affect its antibacterial properties. The well-known PS-TPP/I2/ImH activating system was used to readily install the acyl chains on the iminosugar, leading to the desired compound in high yield. Biological assays revealed that a di-O-lauroyl DNJ derivative enhanced the antibacterial effect of gentamicin and amikacin against S. aureus and S. maltophilia strains, respectively, suggesting a potential role as antibiotic adjuvant. Furthermore, even though this compound displayed only a weak concentration-dependent inhibitory effect on biofilm formation in S. aureus, it was able to significantly reduce the viability of S. aureus and S. maltophilia preformed biofilms. The results confirm the antibacterial potential of piperidine iminosugars and open the way to further studies involving novel lipophilic derivatives to optimize the antibacterial adjuvant effect herein observed for iminosugar 12.
Collapse
Affiliation(s)
- Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, I-80125, Italy.
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy
| | - Maria Stabile
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, I-80131, Italy
| | - Vincenzo Firpo
- Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy
| | - Antonella Migliaccio
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, I-80131, Naples, Italy
| | - Rosaria Artiano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, I-80131, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, I-80131, Italy.
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Naples, I-80126, Italy
| |
Collapse
|
11
|
Krgović N, Stojković D, Ivanov M, Dimitrijević M, Menković N, Ilić M, Jovanović MS, Šavikin K, Živković J. Black raspberry seed oil - Chemical composition, antioxidant/antimicrobial activities and in vitro wound-healing potential. Fitoterapia 2025; 182:106477. [PMID: 40074183 DOI: 10.1016/j.fitote.2025.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
This study aimed to perform chemical characterization of black raspberry seed oil (Rubus occidentalis L., Rosaceae) from Serbia in terms of fatty acids and tocols composition, total carotenoid content, as well as to investigate its antioxidant/antimicrobial activities and in vitro wound-healing potential. GC/MS analysis revealed that linoleic (39.30 %), α-linolenic (30.49 %) and oleic (18.94 %) acid were dominant fatty acids. HPLC analysis highlighted γ-tocopherol as the prevailing tocopherol isomer (166.80 mg/100 g). Spectrophotometric method determined a total carotenoid content of 1.20 mg/100 g. Appreciable antiradical activity (DPPH - IC50 3.02 mg/mL; ABTS - IC50 1.33 mg/mL) and a high level of reducing ability (FRAP value of 393.74 μmol Fe2+/100 g) were observed. Significant antibacterial activity against Salmonella Typhimurium, Escherichia coli and Bacillus cereus, in addition to antifungal activity against strains from Aspergillus and Trichoderma genera, was demonstrated. By cell viability assay, no cytotoxicity (IC50 > 401 μg/mL) was established on human keratinocytes (HaCaT cells). The wound-healing activity, evaluated by scratch assay, was found to be 2.41-fold higher in HaCaT cells treated with 100 μg/mL of black raspberry seed oil (41.77 %) than in non-treated cells (17.34 %). Taken together, black raspberry seed oil holds promising health potential.
Collapse
Affiliation(s)
- Nemanja Krgović
- Institute for Medicinal Plants Research "Dr. Josif Pančić", 11000 Belgrade, Serbia.
| | - Dejan Stojković
- University of Belgrade, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, 11000 Belgrade, Serbia
| | - Marija Ivanov
- University of Belgrade, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, 11000 Belgrade, Serbia
| | - Milena Dimitrijević
- University of Belgrade, Institute for Multidisciplinary Research, 11000 Belgrade, Serbia
| | - Nebojša Menković
- University Business Academy, Faculty of Pharmacy, 21000 Novi Sad, Serbia
| | - Milan Ilić
- University Business Academy, Faculty of Pharmacy, 21000 Novi Sad, Serbia
| | - Miloš S Jovanović
- University of Niš, Faculty of Medicine, Department of Pharmacy, 18000 Niš, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Nasr NN, Elbatanony MM, Hamed MA. GC/MS Analysis and Compounds Isolation of Lycium shawii Petroleum Ether Seeds Extract for Regulating Nrf2/OH-1 Pathway, Oxidative Stress, and Inflammation in Acrylamide-Induced Infertility in Female Rats. Chem Biodivers 2025; 22:e202401102. [PMID: 39008802 DOI: 10.1002/cbdv.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Acrylamide is formed during heating of starchy foods at high temperature and induces reproductive toxicity. Our study is designed to evaluate the chemical constitution and anti-infertility effect of Lycium shawii seeds extract on female rats. Nutritional profile was estimated, and major active compounds were isolated and identified. Biological evaluation of L. shawii extract on female rats was performed and measured by prolactin, follicular stimulating hormone, luteinizing hormone, estradiol, progesterone, tumor necrosis factor-α, interleukin-6, heme oxygenase-1, nuclear respiratory factor-2, malondialdehyde, glutathione, DNA fragmentation, and ovarian architecture parameters. Data revealed the presence of ɤ-tocopherol, vitamin C, magnesium, and 38 bioactive compounds in the fractions of L. shawii. Major constituents from gas chromatography/mass spectrometry (GC/MS) were 9, 12-octadecadienoic acid (Z, Z), methyl ester, 2,7-octadiene-1,6-diol, and 2,6-dimethyl hydroxy linalool but further five compounds (i.e., lupenone, betulin, lupeol acetate, stigmasterol, and β-sitosterol-d-glucoside) were isolated and identified. Treatment of rats with the seeds extract post acrylamide administration ameliorated female sex hormones, oxidative stress, inflammation, DNA damage, and ovarian structure. In conclusion, L. shawii petroleum ether seeds fraction may be considered a nutraceutical agent for improving infertility disorders, oxidative stress, and inflammation due to its richness with biologically active phenolic and flavonoids compounds.
Collapse
Affiliation(s)
- Noha N Nasr
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, Egypt
| | | | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
13
|
Sung JY, Deng Z, Kim SW. Antibiotics and Opportunities of Their Alternatives in Pig Production: Mechanisms Through Modulating Intestinal Microbiota on Intestinal Health and Growth. Antibiotics (Basel) 2025; 14:301. [PMID: 40149111 PMCID: PMC11939794 DOI: 10.3390/antibiotics14030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Antibiotics at subtherapeutic levels have been used in pig diets as antimicrobial growth promoters. However, concerns about antibiotic resistance have increased the demand for alternatives to these antimicrobial growth promoters. This review paper explores the mechanisms through which antimicrobial growth promoters and their alternatives exert their antimicrobial effects. Additionally, this systemic review also covers how modulation of intestinal microbiota by antimicrobial growth promoters or their alternatives affects intestinal health and, subsequently, growth of pigs. The mechanisms and effects of antimicrobial growth promoters and their alternatives on intestinal microbiota, intestinal health, and growth are diverse and inconsistent. Therefore, pig producers should carefully assess which alternative is the most effective for optimizing both profitability and the health status of pigs in their production system.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (J.Y.S.); (Z.D.)
| |
Collapse
|
14
|
Lima ADSP, Cahú TB, Dantas DMM, Veras BO, Oliveira CYB, Souza RS, Moraes LBS, Silva FCO, Araújo MIF, Gálvez AO, Souza RB. Accessing the biotechnological potential of a novel isolated microalga from a semi-arid region of Brazil. FOOD SCI TECHNOL INT 2025; 31:128-141. [PMID: 37408365 DOI: 10.1177/10820132231186171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The use of microalgae as a source of food and pharmaceutical ingredients has garnered growing interest in recent years. Despite the rapid growth of the nutraceutical market, knowledge about the potential of bioactive molecules from microalgae remains insufficient. The present study aimed to investigate the biotechnological potential of the green microalga Desmodesmus armatus isolated from a semi-arid region of Brazil. The algal biomass was characterized in terms of gross biochemical composition, exopolysaccharide content, enzymatic inhibition capacity, and antioxidant, antibacterial, and hemolytic activities from solvents of different polarities (water, ethanol, acetone, and hexane). D armatus biomass had 40% of crude protein content, 25.94% of lipids, and 25.03% of carbohydrates. The prebiotic potential of exopolysaccharides from D armatus was demonstrated, which stimulated the growth of Lacticaseibacillus rhamnosus and Lactiplantibacillus plantarum bacteria strains. Moreover, the enzyme inhibition capacity for the proteases chymotrypsin (34.78%-45.8%) and pepsin (16.64%-27.27%), in addition to α-amylase (24.79%) and lipase (31.05%) was confirmed. The antioxidant potential varied between the different extracts, with 2,2-diphenyl-1-picrylhydrazyl sequestration values varying between 17.51% and 63.12%, and those of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method between 6.82% and 22.89%. In the antibacterial activity test, only the ethanolic extract showed inhibition against Listeria sp. (at minimum inhibitory concentration [MIC] = 256 µg mL-1). This fraction also presented the highest significant levels of hemolysis (31.88%-52.45%). In summary, the data presented in the study suggest the presence of biocompounds with biotechnological and nutraceutical potential in the D armatus biomass. Future studies may evaluate the inclusion of this biomass in foods in order to increase their biological value.
Collapse
Affiliation(s)
- Alysson de Sá P Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Thiago B Cahú
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Danielli M M Dantas
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Bruno O Veras
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Carlos Y B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Rayanna S Souza
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Laenne B S Moraes
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Francisca C O Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Maria I F Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Ranilson B Souza
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
15
|
Zhu TF, Guo HP, Nie L, Chen J. Oral administration of LEAP2 enhances immunity against Edwardsiella tarda through regulation of gut bacterial community and metabolite in mudskipper. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110128. [PMID: 39824300 DOI: 10.1016/j.fsi.2025.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The liver-expressed antimicrobial peptide 2 (LEAP2) is gaining recognition for its immune regulatory functions beyond direct antimicrobial activity. In this study, we investigated the role of mudskipper (Boleophthalmus pectinirostris) LEAP2 (BpLEAP2) in enhancing the survival, gut health, and immune resilience against Edwardsiella tarda infection. Pre-oral delivery of BpLEAP2 significantly improved survival rates and mitigated infection-induced damage to the gut, as evidenced by preserved villus length and goblet cell count. Analysis of gut microbial communities using 16S rRNA sequencing revealed that pre-oral delivery of BpLEAP2 increased microbial diversity, evenness, and the abundance of beneficial genera such as Pseudoalteromonas and Shewanella, while reducing pathogenic genera like Pseudorhodobacter. Metabolomic profiling showed that BpLEAP2 altered the gut metabolite composition, significantly increasing levels of bile acids and amino acids, which are known to support gut health and immune responses. Correlation analysis demonstrated strong positive associations between BpLEAP2-induced microbial shifts and increased metabolites involved in amino acid metabolism. These findings suggest that BpLEAP2 promotes intestinal homeostasis by modulating gut microbiota composition and enhancing beneficial metabolite production, ultimately improving gut barrier integrity and conferring resistance against E. tarda infection. This study highlights the potential application of BpLEAP2 in enhancing disease resilience in aquaculture species, offering a promising strategy for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Ting-Fang Zhu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Hai-Peng Guo
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Li Nie
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
16
|
Methuen M, Kukkonen VF, Anttonen V, Mikkonen S, Väistö J, Soininen S, Närhi M, Lakka TA, Suominen AL, Eloranta AM. Dietary Factors and Dental Caries among Adolescents: Eight-Year Follow-up Study. JDR Clin Trans Res 2025:23800844251314856. [PMID: 39989033 DOI: 10.1177/23800844251314856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVE The aim of this study was to conduct a longitudinal investigation of the associations between changes in dietary factors and changes in caries experience among Finnish children and adolescents participating in the Physical Activity and Nutrition in Children (PANIC) study. METHODS Among 487 children included at baseline at the age of 6 to 8 y, 406 were reexamined at 2-y follow-up and 202 at 8-y follow-up. Food consumption, nutrient intake, and eating frequency were assessed using 4-d food records; diet quality was assessed using the Baltic Sea Diet Score; and eating behavior was evaluated using the Children's and Adult's Eating Behaviour Questionnaires. At baseline and 2-y follow-up, caries findings were recorded using the World Health Organization guidelines and at 8-y follow-up using the International Caries Detection and Assessment System criteria. Generalized linear mixed-effects regression analyses were used. RESULTS Over 8 y from childhood to adolescence, improved diet quality (β = -0.017, P = 0.046) and increased consumption of butter and butter-oil mixtures (β = -0.009, P = 0.044) were associated with decreased caries experience. Increased number of snacks (β = 0.072, P = 0.032), increased consumption of sour milk products (β = 0.001, P = 0.039) and salty snacks (β = 0.006, P = 0.010), and increased calcium intake (β = 2.41 × 10-4, P = 0.022) were associated with increased caries experience. However, the latter association was explained by the consumption of sour milk products (β = 1.88 × 10-4, P = 0.090). Increased enjoyment of food was associated with decreased caries experience (β = -0.121, P = 0.046), and increased slowness in eating (β = 0.113, P = 0.051) and food fussiness (β = 0.140, P = 0.009) were associated with increased caries experience. CONCLUSIONS A healthy diet is vital for oral health among children and adolescents. Dietary behaviors developing from childhood to adolescence seem to be associated with caries experience in adolescence. Dietary counseling aimed at improving dental health from childhood to adolescence should include avoiding frequent snacking, strengthening healthy eating behavior, and composing good overall diet quality. KNOWLEDGE TRANSFER STATEMENT Results of this longitudinal study showed how crucial a healthy diet is for oral health among growing children. Eating behaviors and enjoyment of food play also a role in maintaining good oral health. Research results can be used when planning dietary recommendations and health education for children and adolescents.
Collapse
Affiliation(s)
- M Methuen
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Oral and Maxillofacial Diseases Teaching Unit, Kuopio University Hospital, Finland
- Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Finland
| | - V F Kukkonen
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - V Anttonen
- Research Unit of Population Based Studies, University of Oulu, Finland
- MRC, Oulu University Hospital and University of Oulu, Finland
| | - S Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - J Väistö
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - S Soininen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Physician and Nursing Services, Health and Social Services Centre, Wellbeing Services County of North Savo, Varkaus, Finland
| | - M Närhi
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - T A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - A L Suominen
- Institute of Dentistry, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Oral and Maxillofacial Diseases Teaching Unit, Kuopio University Hospital, Finland
| | - A-M Eloranta
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
17
|
Liana D, Chatwichien J, Phanumartwiwath A. Enhanced Anti-Inflammatory and Skin Barrier Repair Effects of Nanoemulsions Supplemented with Boesenbergia rotunda for Atopic Dermatitis. ACS NANOSCIENCE AU 2025; 5:37-51. [PMID: 39990109 PMCID: PMC11843515 DOI: 10.1021/acsnanoscienceau.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/25/2025]
Abstract
Betamethasone dipropionate (BD) is a potent anti-inflammatory drug for atopic dermatitis (AD); however, it leads to serious adverse effects during prolonged use. We aimed to improve the biochemical properties and lower the risk of toxicity by preparing nanoemulsions containing Boesenbergia rotunda rhizome hexane extract (Hex) and essential oils (EO). Physicochemical characterization and 3-month long-term stability testing were conducted. Gas chromatography-mass spectrometry analysis was used to compare the volatile composition after nanoemulsion formulation. Further, various assays related to AD management, including antioxidant potentials, anti-inflammatory activities through inhibition of 5-lipoxygenase and cyclooxygenase-2, and nitric oxide release suppression in lipopolysaccharides-induced RAW 264.7 macrophages, were investigated. In addition, antibacterial activity against Staphylococcus aureus and cytotoxicity to RAW 264.7 macrophages and HaCaT human keratinocyte cells were also evaluated. Monodispersed nanoemulsions (<20 nm) were successfully generated by an ultrasound-assisted method. BD was successfully encapsulated into B. rotunda-based nanoemulsions with more than 95% encapsulation efficiency (EE). The major phytochemicals present in EO and Hex remained after nanoemulsion formulation. The nanoemulsions were compatible with skin pH (5.2-5.8) and exhibited stability with respect to particle size, polydispersity index, transmittance, pH, and EE when stored for 3 months at -20 °C. The BD nanoemulsions loaded with B. rotunda exhibited antioxidant activities and significantly increased the 5-lipoxygenase inhibitory activity. Furthermore, the suppression of nitric oxide release was remarkably enhanced, whereas lower cytotoxicity was observed. The BD nanoemulsions improved the level of involucrin and filaggrin in HaCaT cells, implying their valuable property for skin barrier repair. The formulation of BD into nanoemulsions also enhanced S. aureus inhibition. Either B. rotunda nanoemulsions loaded with or without BD show promise for the topical treatment and prevention of AD.
Collapse
Affiliation(s)
- Desy Liana
- College
of Public Health Sciences, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Jaruwan Chatwichien
- Program
in Chemical Sciences, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Chulabhorn
Royal Academy, Bangkok 10210, Thailand
| | | |
Collapse
|
18
|
López-Arellanes ME, López-Pacheco LD, Elizondo-Luevano JH, González-Meza GM. Algae and Cyanobacteria Fatty Acids and Bioactive Metabolites: Natural Antifungal Alternative Against Fusarium sp. Microorganisms 2025; 13:439. [PMID: 40005804 PMCID: PMC11858688 DOI: 10.3390/microorganisms13020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Fungal diseases caused by Fusarium spp. significantly threaten food security and sustainable agriculture. One of the traditional strategies for eradicating Fusarium spp. incidents is the use of chemical and synthetic fungicides. The excessive use of these products generates environmental damage and has negative effects on crop yield. It puts plants in stressful conditions, kills the natural soil microbiome, and makes phytopathogenic fungi resistant. Finally, it also causes health problems in farmers. This drives the search for and selection of natural alternatives, such as bio-fungicides. Among natural products, algae and cyanobacteria are promising sources of antifungal bio-compounds. These organisms can synthesize different bioactive molecules, such as fatty acids, phenolic acids, and some volatile organic compounds with antifungal activity, which can damage the fungal cell membrane that surrounds the hyphae and spores, either by solubilization or by making them porous and disrupted. Research in this area is still developing, but significant progress has been made in the identification of the compounds with potential for controlling this important pathogen. Therefore, this review focuses on the knowledge about the mechanisms of action of the fatty acids from macroalgae, microalgae, and cyanobacteria as principal biomolecules with antifungal activity, as well as on the benefits and challenges of applying these natural metabolites against Fusarium spp. to achieve sustainable agriculture.
Collapse
Affiliation(s)
- Miguel E. López-Arellanes
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
| | - Lizbeth Denisse López-Pacheco
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| | - Joel H. Elizondo-Luevano
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico;
| | - Georgia María González-Meza
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico; (M.E.L.-A.); (L.D.L.-P.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey 64700, Nuevo León, Mexico
| |
Collapse
|
19
|
Huang C, He Y, Chai P, Liu Z, Su S, Zhang Y, Luo Y, Fu S. Orlistat ameliorates lipid dysmetabolism in high-fat diet-induced mice via gut microbiota modulation. Front Microbiol 2025; 16:1480500. [PMID: 39980690 PMCID: PMC11839628 DOI: 10.3389/fmicb.2025.1480500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Orlistat reduces obesity by inhibiting gastrointestinal lipases, thereby blocking the absorption and accumulation of triglycerides in the intestine. It has been shown to improve lipid metabolism and alter intestinal microbial communities in animals and humans. However, the impact of Orlistat-induced changes in gut microbiota on obesity requires further investigation. In this study, we found that Orlistat significantly improved metabolic disorders, inhibited fat accumulation, and reshaped the structure of intestinal microbiota. Specifically, it reduced α diversity and increased the relative abundance of Verrucomicrobia and Akkermansia. Notably, antibiotic-induced gut microbiota depletion significantly weakened Orlistat's effect on improving metabolic disorders. Furthermore, microbiota transplanted from Orlistat-treated mice effectively alleviated lipid metabolic disorders caused by a high-fat diet. We also observed that Orlistat increased food intake in mice and inhibited the synthesis of appetite-regulating hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon (Gcg). However, antibiotic-depleted microbiota mitigated this inhibitory effect. Interestingly, although Orlistat altered the gut microbiota of mice, transplanting these microbiota did not inhibit the synthesis of appetite-regulating hormones. In summary, our results suggest that Orlistat can reshape the gut microbiota, and the altered gut microbiota works synergistically with Orlistat to improve metabolic disorders. This improvement is related to the increased abundance of Verrucomicrobia and Akkermansia.
Collapse
Affiliation(s)
- Chengyan Huang
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Yuanhui He
- Department of Obstetrics and Gynecology, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ping Chai
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Zongxin Liu
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Sirui Su
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Yanhui Zhang
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Yuelan Luo
- Department of Medical Imaging, Fenyang College, Shanxi Medical University, Fengyang, China
| | - Shuiping Fu
- Department of Nursing, Fenyang College, Shanxi Medical University, Fengyang, China
| |
Collapse
|
20
|
Sangavi R, Muthumanickam S, Malligarjunan N, Jothi R, Boomi P, Arivudainambi S, Raman M, Joshi CG, Pandian SK, Gowrishankar S. In silico analysis unravels the promising anticariogenic efficacy of fatty acids against dental caries causing Streptococcus mutans. J Biomol Struct Dyn 2025; 43:611-626. [PMID: 37993988 DOI: 10.1080/07391102.2023.2283155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Globally, dental caries is a prevalent oral disease caused by cariogenic bacteria, primarily Streptococcus mutans. It establishes caries either through sucrose-dependent (via glycosyltransferases) or through sucrose-independent (via surface adhesins Antigen I/II) mechanism. Sortase A (srtA) attaches virulence-associated adhesins to host tissues. Because of their importance in the formation of caries, targeting these proteins is decisive in the development of new anticariogenic drugs. High-throughput virtual screening with LIPID MAPS -a fatty acid database was performed. The selected protein-ligand complexes were subjected to molecular dynamics simulation (MDs). The Binding Free Energy of complexes was predicted using MM/PBSA. Further, the drug-likeness and pharmacokinetic properties of ligands were also analyzed. Out of 46,200 FAs scrutinized virtually against the three protein targets (viz., GtfC, Ag I/II and srtA), top 5 FAs for each protein were identified as the best hit based on interaction energies viz., hydrogen bond numbers and hydrophobic interaction. Further, two common FAs (LMFA01050418 and LMFA01040045) that showed high binding affinity against Ag I/II and srtA were selected for MDs analysis. A 100ns MDs unveiled a stable conformation. Results of Rg signified that FAs does not induce significant structural & conformational changes. SASA indicated that the complexes maintain higher thermodynamic stability during MDs. The predicted binding free energy (MM/PBSA) of complexes elucidated their stable binding interaction. ADME analysis suggested the FAs are biologically feasible as therapeutic candidates. Overall, the presented in silico data is the first of its kind in delineating FAs as promising anticaries agents of future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravichellam Sangavi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
| | - Sankar Muthumanickam
- Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, India
| | | | - Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
| | - Pandi Boomi
- Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, India
| | - Seenichamy Arivudainambi
- Department of Science & Technology, Gujarat Biotechnology Research Centre (GBRC), Government of Gujarat, Gandhinagar, India
| | - Muthusamy Raman
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental University, Chennai, India
| | - Chaitanya G Joshi
- Department of Science & Technology, Gujarat Biotechnology Research Centre (GBRC), Government of Gujarat, Gandhinagar, India
| | | | | |
Collapse
|
21
|
Waller ME, Gutierrez A, Ticer TD, Glover JS, Baatz JE, Wagner CL, Engevik MA, Chetta KE. Profiling the response of individual gut microbes to free fatty acids (FFAs) found in human milk. J Funct Foods 2025; 125:106664. [PMID: 40051690 PMCID: PMC11884519 DOI: 10.1016/j.jff.2025.106664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Preterm infants have an immature intestinal environment featuring microbial dysbiosis. Human milk can improve the composition of the neonatal gut microbiome by supporting commensal species. Milk free fatty acids (FFAs) provide nutritional energy, participate in endogenous signaling, and exert antimicrobial effects. This study examined the growth of individual commensal and pathobiont microbes in response to unesterified unsaturated FFAs found in milk: oleic, linoleic, arachidonic, and docosahexaenoic acid. Select species of commensal and pathobiont genera (Bifidobacterium, Lactobacillus, Streptococcus, Staphylococcus, Enterococcus, Acinetobacter, Pseudomonas, Escherichia, and Klebsiella) were cultured with FFAs. The growth of all commensals, except for L. johnsonii, was significantly inhibited by the highest concentration (1 %) of all FFAs. L. johnsonii was only inhibited by arachidonic acid. In contrast, suppression of pathobionts in response to FFAs was less pronounced. Higher concentrations (0.1 %, 1 %) of docosahexaenoic acid significantly inhibited the growth of five of eight pathobionts. Meanwhile, for oleic, linoleic, and arachidonic acid, only two of eight pathobionts were significantly affected. Intriguingly, the effects for these FFAs were highly complex. For example, S. agalactiae growth was enhanced with 1 % oleic acid but suppressed at 0.01 %; however, the effects were directionally opposite for linoleic acid, i.e., suppressed at 1 % but enhanced at 0.01 %. Our genome analyses suggest that pathobiont survival may be related to the number of gene copies for fatty acid transporters. Overall, the effect of FFAs was dose-dependent and species-specific, where commensal growth was broadly inhibited while pathobionts were either unaffected or exhibited complex, bi-directional responses.
Collapse
Affiliation(s)
- Megan E. Waller
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, United States
- Department of Pediatrics, C.P. Darby Children’s Research Institute, Medical University of South Carolina, United States
| | - Alyssa Gutierrez
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, United States
| | - Taylor D. Ticer
- Department of Microbiology & Immunology, Medical University of South Carolina, United States
| | - Janiece S. Glover
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, United States
| | - John E. Baatz
- Department of Pediatrics, C.P. Darby Children’s Research Institute, Medical University of South Carolina, United States
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, United States
| | - Carol L. Wagner
- Department of Pediatrics, C.P. Darby Children’s Research Institute, Medical University of South Carolina, United States
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, United States
| | - Melinda A. Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, United States
- Department of Microbiology & Immunology, Medical University of South Carolina, United States
| | - Katherine E. Chetta
- Department of Pediatrics, C.P. Darby Children’s Research Institute, Medical University of South Carolina, United States
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, 10 McClennan Banks Drive, MSC 915, Charleston, SC 29425, United States
| |
Collapse
|
22
|
Nisha SJ, Uma G, Sathishkumar R, Prakash VSG, Isaac R, Citarasu T. Optimization and characterization of bioactive secondary metabolites from Streptomyces sp CMSTAAHL-4 isolated from mangrove sediment. BMC Microbiol 2025; 25:57. [PMID: 39891067 PMCID: PMC11786576 DOI: 10.1186/s12866-025-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Ten morphologically different actinomycetes were isolated from mangrove sediments of Manakudy, Kanyakumari District, India. The potent strain was selected based on their primary screening against Gram positive Staphylococcus aureus, Enterococcus faecalis and Gram negative Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi bacterial pathogens. The selected strain was identified as Streptomyces sp CMSTAAHL-4 by 16S rRNA sequencing. The media optimization for secondary metabolites production was performed by One-Variable at a Time and Response Surface Methodology-Central Composite Design. Minimum inhibitory concentration and minimum bacterial concentration for the extracted secondary metabolites were determined. The antioxidant potential of the secondary metabolites showed that the concentration of the metabolites increases, with the percentage of inhibition. The anti-inflammatory activity of the secondary metabolites found that maximum activity was observed at 500 µg/ml of the metabolites. Alcohols, alkenes, alkynes, alkyl halides, carboxylic acids, aliphatic esters functional groups were identified by fourier transform infrared spectroscopy, gas chromatography and mass spectrometer analysis of the secondary metabolites revealed five bioactive compounds. The X-ray diffraction analysis revealed that the secondary metabolites are amorphous. The thermogravimetric analysis showed the thermal stability of secondary metabolites. Atomic force microscopy analysis revealed specific structural characteristics of the secondary metabolites, which may be associated with their potential biological activities. CONCLUSIONS The results showed that the antibacterial, antioxidant, and anti-inflammatory chemicals present in the isolated secondary metabolites give them therapeutic properties.
Collapse
Affiliation(s)
- Selvaraj Jeraldin Nisha
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
- Department of surgery, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA
| | - Ganapathi Uma
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
| | - Ramamoorthy Sathishkumar
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
| | - Vincent Samuel Gnana Prakash
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
| | - Rimal Isaac
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Tamilnadu, Kanyakumari District, 629 190, India
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India.
- Adjunct Faculty, Department of Biochemistry, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, 602 105, India.
| |
Collapse
|
23
|
Teiba II, Mamdouh I, Yousef MI, Hussein A, El-Bilawy EH. Antimicrobial activity of Monascus purpureus-derived red pigments against Salmonella typhimurium, Escherichia coli, and Enterococcus faecalis. AMB Express 2025; 15:6. [PMID: 39755819 PMCID: PMC11700071 DOI: 10.1186/s13568-024-01801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923. The dye was extracted from the Monascus purpureus ATCC16436 strain, using 1 mg of red dye in 1 ml of DMSO to achieve a concentration of 1000 µg/ml. The chemical profile of the red dye extract was analyzed using GC-MS analysis, confirming the presence of several bioactive antimicrobial compounds, including aspidospermidin-17-ol, 1-acetyl-16-methoxy, octanoic acid, and hexadecanoic acid methyl ester. The extract was tested against the bacterial strains at varying concentrations to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). The results demonstrated significant antibacterial activity, with the highest MIC and MBC values of 6.25/12.5 µg/ml against S. typhimurium. The antibacterial activity of the red dye was compared to five conventional antibiotics using the disc diffusion method, revealing superior effectiveness, particularly against S. typhimurium, with an inhibition zone measuring 20 ± 0.22 mm. Scanning electron microscopy was employed to explore the mechanism of action of the red dye extract, highlighting its impact on bacterial plasma membrane permeability and its interference with cellular energy production. These findings suggest that the Monascus purpureus-derived red dye extract represents a promising natural alternative to conventional antibiotics, demonstrating potent antibacterial activity and potential as a novel therapeutic agent in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Islam I Teiba
- Microbiology, Botany Department, Faculty of Agriculture, Tanta University, Tanta City, 31527, Egypt.
| | - Islam Mamdouh
- Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt
| | - Mokhtar I Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed Hussein
- Biotechnology Department Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Emad H El-Bilawy
- Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt.
| |
Collapse
|
24
|
Choi H, Rocha GC, Kim SW. Effects of dietary supplementation of myristic acid on jejunal mucosa-associated microbiota, mucosal immunity, and growth performance of nursery pigs. Anim Sci J 2025; 96:e70027. [PMID: 39777830 PMCID: PMC11707569 DOI: 10.1111/asj.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The objective of this study was to investigate the effects of myristic acid on jejunal mucosal microbiota, mucosal immunity, and growth performance of nursery pigs. Thirty-six pigs (6.6 ± 0.4 kg of body weight) were assigned to three treatments (n = 12) for 35 d in three phases: (NC) basal diet; (PC) NC + bacitracin; and (MA) NC + myristic acid compound. Pigs were euthanized to collect jejunal mucosa, jejunal tissues, and ileal digesta. The PC increased (p < 0.05) the relative abundance (RA) of Lactobacillus spp., and Bifidobacterium boum than the NC group. The MA increased (p < 0.05) RA of Bifidobacterium dentium and Megasphaera spp. than the NC group. The PC tended to decrease IL-8 (p = 0.053) and protein carbonyl (p = 0.075) whereas IgG (p = 0.051) and IL-8 (p = 0.090) in jejunal mucosa were decreased by the MA. The PC increased (p < 0.05) the villus height to crypt depth ratio than the NC group. Both bacitracin and myristic acid improved the intestinal health and growth performance of nursery pigs. Effects of bacitracin were rather immediate whereas the effects of myristic acid were obtained after a 3-week feeding.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| | | | - Sung Woo Kim
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
25
|
Gao WL, Ma L, Li MH, Xu WF, Sun CF, Zhao QW, Chen XA, Lyu ZY, Li YQ. The faucet knob effect of DptE crotonylation on the initial flow of daptomycin biosynthesis. Metab Eng 2025; 87:1-10. [PMID: 39542082 DOI: 10.1016/j.ymben.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
We propose here that acylation modification of actinomycete proteins is a restrictive system that limits the excessive synthesis of secondary metabolites, its mechanism has not been clearly elucidated before. We used crotonylation as an example to investigate the acylation effect in the daptomycin biosynthesis by Streptomyces roseosporus. Our experiments revealed abundant crotonylation of numerous secondary metabolic enzymes in Streptomyces roseosporus, a daptomycin producer. DptE, which initiates daptomycin biosynthesis, is crotonylated at K454. We experimentally identified the corresponding DptE crotonyltransferase Kct1 and decrotonylase CobB. Further studies consistently confirmed that decrotonylation increases DptE activity. Decrotonylation functions like loosening a faucet knob, increasing substrate channel throughput and the initial flow of daptomycin biosynthesis. Moreover, DptE catalytic activity was enhanced via K454 and neighboring residues K184 and Q420 mutation, increasing daptomycin yield by 132%; daptomycin biosynthesis related metabolism activities also increased. Substrate channel prediction revealed 38% higher throughput for mutant DptE (K454I/K184Q/Q420N) than crotonylated DptE. Molecular dynamics (MD) simulations revealed significant increases in flexibility and substrate affinity of the mutant. In summary, we elucidated the faucet knob effect of DptE crotonylation on the initial flow of daptomycin biosynthesis and adopted decrotonylation to generate high-yield industrial strains.
Collapse
Affiliation(s)
- Wen-Li Gao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China; Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lie Ma
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China; Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng-Han Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China; Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei-Feng Xu
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen-Fan Sun
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qing-Wei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China; Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong-Yuan Lyu
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China; Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, China.
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China; Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Teiba II, Mazrou YSA, Makhlouf AH, Nehela Y, Mohamed AE, Abbas AM, Mamdouh I, El-Bilawy EH. Antibacterial Potential of Honeybee Venom and Monascus purpureus Extracellular Metabolites Against Multidrug-Resistant Pathogenic Bacteria. BIOLOGY 2024; 14:21. [PMID: 39857252 PMCID: PMC11759185 DOI: 10.3390/biology14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Antimicrobial resistance (AMR) poses a critical global health threat, driving the search for alternative treatments to conventional antibiotics. In this study, the antibacterial properties of honeybee venom (BV) and fungal Monascus purpureus red dye (RD) were evaluated against three multidrug-resistant bacterial pathogens. Extracts of BV and RD exhibited dose-dependent antibacterial activity against the three tested bacteria, with their strongest effectiveness against S. aureus (minimum inhibitory concentrations [MIC] = 3.18 and 6.315 μg·mL-1, respectively). Although the three bacterial strains were resistant to the antibiotic ampicillin-sulbactam (10/10 µg), both extracts exhibited superior antibacterial activity against the three bacterial strains compared to five standard antibiotics, especially RD extract, which produced the largest inhibition zone (20 ± 0.20 mm) against S. aureus. The larger inhibition zones against S. aureus suggest its high sensitivity, whereas E. coli and E. faecalis exhibited smaller inhibition zones, indicating less sensitivity to BV and RD extracts. Differences in the inhibition zones suggest the variations in antimicrobial activity between the two extracts and their strain-specific effectiveness. Scanning electron microscopy (SEM) revealed that BV and RD extracts disrupted the bacterial plasma membrane, suggesting that the bioactive compounds penetrate the bacterial cell wall and alter its integrity. Furthermore, GC-MS-based analysis revealed that the chemical composition of BV and RD extracts exhibited highly diverse structures, including complex polycyclic systems, porphyrins, steroids, and esters. For instance, 42 metabolites were identified in the BV extract, which mainly were organic and metal-organic compounds; however, only 23 molecules were identified in RD extract, which mainly were fatty acids and their derivatives. The diversity in the chemical compositions of both extracts highlights their potential applications in pharmaceuticals, materials, and biochemistry fields. Collectively, these findings indicate that honeybee venom and the red dye from M. purpureus have promising antibacterial properties and warrant further investigation as potential alternatives to conventional antibiotics. Further multi-ligand docking-based virtual screening studies are required to identify the most promising detected metabolite(s) within both BV and RD extracts.
Collapse
Affiliation(s)
- Islam I. Teiba
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Yasser S. A. Mazrou
- Business Administration Department, Community College, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Abeer H. Makhlouf
- Department of Agricultural Botany, Faculty of Agriculture, Minufiya University, Shibin El-Kom 32511, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Abdallah E. Mohamed
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt
| | - Ahmed M. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Abbassia, Cairo 11566, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 46612, South Sinai, Egypt
| | - Islam Mamdouh
- Faculty of Basic Sciences, King Salman International University (KSIU), Ras Sudr 46612, South Sinai, Egypt
| | - Emad H. El-Bilawy
- Faculty of Basic Sciences, King Salman International University (KSIU), Ras Sudr 46612, South Sinai, Egypt
| |
Collapse
|
27
|
Schäfer KJ, Aras M, Boles E, Kayser O. Optimizing hexanoic acid biosynthesis in Saccharomyces cerevisiae for the de novo production of olivetolic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:141. [PMID: 39633477 PMCID: PMC11616333 DOI: 10.1186/s13068-024-02586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Medium chain fatty acids (MCFAs) are valuable platform compounds for the production of biotechnologically relevant chemicals such as biofuels and biochemicals. Two distinct pathways have been implemented in the yeast Saccharomyces cerevisiae for the biosynthetic production of MCFAs: (i) the mutant fatty acid biosynthesis (FAB) pathway in which the fatty acid synthase (FAS) complex is mutated and (ii) a heterologous multispecies-derived reverse β-oxidation (rBOX) pathway. Hexanoic acid has become of great interest as its acyl-CoA ester, hexanoyl-CoA, is required for the biosynthesis of olivetolic acid (OA), a cannabinoid precursor. Due to insufficient endogenous synthesis of hexanoyl-CoA, recombinant microbial systems to date require exogenous supplementation of cultures with hexanoate along with the overexpression of an acyl-CoA ligase to allow cannabinoid biosynthesis. Here, we engineer a recombinant S. cerevisiae strain which was metabolically optimized for the production of hexanoic acid via the FAB and rBOX pathways and we combine both pathways in a single strain to achieve titers of up to 120 mg L-1. Moreover, we demonstrate the biosynthesis of up to 15 mg L-1 OA from glucose using hexanoyl-CoA derived from the rBOX pathway.
Collapse
Affiliation(s)
- Kilan J Schäfer
- Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, 44227, Dortmund, Germany
- Institute of Molecular Biosciences, Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Marco Aras
- Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, 44227, Dortmund, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Oliver Kayser
- Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, 44227, Dortmund, Germany.
| |
Collapse
|
28
|
Wang B, Meng J, Qi X, Wang P, Liu Q, Wang L, Sun W, Pan B. Surface hydrophobicity mechanism of poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae), gives novel meaning to chemical control. Vet Parasitol 2024; 332:110327. [PMID: 39406054 DOI: 10.1016/j.vetpar.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Surface hydrophobicity of organisms provides biological self-protection. The hydrophobicity of pest surface, acting as a main obstacle for the pest control, can lead to low utilization and high loss of pesticides. Dermanyssus gallinae is a notorious pest in egg-laying hens, whose control primarily depends on acaricide spraying, while its surface hydrophobicity and potential influence on pesticide effectiveness are not clear. In the present study, the contact angle measurements revealed that the surface of D. gallinae was hydrophobic. Analysis using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the surface microstructures of D. gallinae consist of cuticular folds, with a lipid-rich outermost layer of the cuticle. Based on gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC), it was found that the major compositions of cuticular lipids were fatty acids and n-alkanes. Modifying the chemical compositions and microstructures of the D. gallinae surface resulted in a reduction in surface hydrophobicity and an increase in the permeation of Rhodamine B through the cuticle. This observation suggested that the chemical compositions and microstructures were pivotal in determining surface hydrophobicity, hindering compound penetration into the cuticle. Finally, it was found improving the wettability of pesticide solution by adding surfactants could overcome the surface hydrophobicity and enhance the efficacy of pesticide against the mites. This study sheds light on the surface hydrophobicity mechanism of D. gallinae and provides a novel strategy to improve the efficacy of acaricides against the mites.
Collapse
Affiliation(s)
- Bohan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Jiali Meng
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xiaoxiao Qi
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Lifang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
29
|
Chen J, Ni X, Grodowitz MJ. Imported Fire Ants Discard Cricket Eggs. INSECTS 2024; 15:954. [PMID: 39769555 PMCID: PMC11676039 DOI: 10.3390/insects15120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The house cricket, Acheta domesticus (Linnaeus), is often used as a food source for the maintenance of imported fire ants under laboratory rearing. It was found that both red imported fire ants, Solenopsis invicta Buren, and black imported fire ants, S. richteri Forel, consumed most of the soft tissues of female crickets, but avoided their eggs by disposing of them on refuse piles. Bioassays using freshly collected cricket eggs showed that ants first retrieved eggs into their nests and then discarded them onto the refuse piles. The major chemicals on the surface of cricket eggs were found to be fatty acids, including lauric, myristic, palmitoleic, palmitic, linoleic, oleic, and stearic acid. Fatty acids are well-known death cues of insects and elicitors of widespread necrophoric behavior in ants. It was shown that both the cricket egg extract and the reconstructed fatty acid mixture elicited the necrophoric behavior of S. invicta; however, they never elicited retrieving behavior. Unknown chemicals on cricket eggs, other than fatty acids, might be responsible for the retrieving behavior. Interestingly, cricket eggs had a very similar fatty acid profile to that of dead ants collected from refuse piles. Possible causes for such a strong match in fatty acid profiles between dead ants and cricket eggs are discussed.
Collapse
Affiliation(s)
- Jian Chen
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA;
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture-Agricultural Research Service, Tifton, GA 31793, USA;
| | - Michael J. Grodowitz
- Biological Control of Pests Research Unit, United States Department of Agriculture-Agricultural Research Service, 59 Lee Road, Stoneville, MS 38776, USA;
| |
Collapse
|
30
|
Georgieva Z, Karcheva Z, Toshkova-Yotova T, Georgieva A, Toshkova R, Petrova D, Zhiponova M, Chaneva G. Blue Light Enhances the Antioxidant, Antimicrobial, and Antitumor Potential of the Green Microalgae Coelastrella sp. BGV. PLANTS (BASEL, SWITZERLAND) 2024; 13:3295. [PMID: 39683088 DOI: 10.3390/plants13233295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Green algae of the genus Coelastrella have attracted the attention of scientists due to their rich biochemical composition and potential for application in phytomedicine. The present study investigated the influence of light on the bioactive capacity of extracts from the Bulgarian strain of the green microalgae Coelastrella sp. BGV. Three LED lights were examined-red/blue (C1), blue (C2), and control white light (C3). The respective ethanol extracts were analyzed for the total content of phenolic antioxidants. The antimicrobial activity was tested using the disk-diffusion method against 10 microorganisms. The antiproliferative and cytotoxic effects on cervical carcinoma HeLa and hepatocellular carcinoma HepG2 cell lines, as well as non-tumorigenic embryonal fibroblasts BALB/3T3 control, were evaluated using a cell viability assay. The overall results highlighted blue light as a factor enhancing the antioxidant, antibacterial, and cytotoxic activities of the C2 microalgal extract. Additionally, the investigated mechanism of the antitumor activity revealed a proapoptotic effect. In contrast, the C1 extract exhibited weaker activity and selectivity, while the C3 extract was the least active but demonstrated high cytotoxic selectivity. This study could contribute to expanding knowledge about the high biological potential of green microalgae and the development of biotechnological approaches for its regulation.
Collapse
Affiliation(s)
- Zhaneta Georgieva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Zornitsa Karcheva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Tanya Toshkova-Yotova
- Laboratory "Experimental and Applied Algology", Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ani Georgieva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
31
|
Williams RT, Caspers-Brown A, Sultana CM, Lee C, Axson JL, Malfatti F, Zhou Y, Moore KA, Stevens N, Santander MV, Azam F, Prather KA, Pomeroy RS. Possible Missing Sources of Atmospheric Glyoxal Part I: Phospholipid Oxidation from Marine Algae. Metabolites 2024; 14:639. [PMID: 39590875 PMCID: PMC11596397 DOI: 10.3390/metabo14110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Glyoxal has been implicated as a significant contributor to the formation of secondary organic aerosols, which play a key role in our ability to estimate the impact of aerosols on climate. Elevated concentrations of glyoxal over remote ocean waters suggests that there is an additional source, distinct from urban and forest environments, which has yet to be identified. Herein, we demonstrate that the ocean can serve as an appreciable source of glyoxal in the atmosphere due to microbiological activity. METHODS AND RESULTS Based on mass spectrometric analyses of nascent sea spray aerosols and the sea surface microlayer (SSML) of naturally occurring algal blooms, we provide evidence that during the algae death phase phospholipids become enriched in the SSML and undergo autoxidation thereby generating glyoxal as a degradation product. CONCLUSIONS We propose that the death phase of an algal bloom could serve as an important and currently missing source of glyoxal in the atmosphere.
Collapse
Affiliation(s)
- Renee T. Williams
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Annika Caspers-Brown
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Camille M. Sultana
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Christopher Lee
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Jessica L. Axson
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Francesca Malfatti
- National Institute of Oceanography and Experimental Geophysics, 34100 Trieste, Italy
- Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Yanyan Zhou
- Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093, USA;
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Kathryn A. Moore
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Natalie Stevens
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Mitchell V. Santander
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Farooq Azam
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kimberly A. Prather
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
- Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Robert S. Pomeroy
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| |
Collapse
|
32
|
Singh N, Chhangani N, Bissa S. Antibacterial potential and phytochemical analysis of two ethnomedicinally important plants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100297. [PMID: 39735720 PMCID: PMC11681831 DOI: 10.1016/j.crmicr.2024.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024] Open
Abstract
Medicinal plants exhibited great role in drug industries. Herbal medicines and their derivative products are often prepared from crude plant extracts. Echinops echinatus and Tridax procumbens both are belonging to Asteraceae family and these plants are ethnomedicinally important due to their utilization as traditional medicine to cure various diseases. Aim of the current study is to evaluate the antimicrobial properties, preliminary phytochemical and GC-MS analysis of these ethnomedicinally important plants to identify the compounds which are responsible for antimicrobial properties. Their extracts exhibited antimicrobial activity against Enterobacter aerogenes, Escherichia coli, Agrobacterium tumefaciens, Staphylococcus aureus, Bacillus subtilis, Pseudomonas syringae and Pseudomonas putida. Both plants contain the active principles like flavonoids, alkaloids, glycosides, saponins, terpenoids and tannins. Result of GC-MS analysis showed the presence of many compounds such as n-Hexadecanoic acid, Hexadecanoic Acid, Methyl ester, Octadecanoic acid, Stigmasterol, Naphthalene, Squalene, 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, Squalene, 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-,5 Hydroxymethylfurfural, Lupeol, Dodecanoic acid, Vitamin E (α-Tocopherol), Neophytadiene, Phytol and many other compounds. These compounds are responsible for antimicrobial, anticancer and medicinal properties.
Collapse
Affiliation(s)
- Narpat Singh
- Microbiology and Plant Pathology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Neha Chhangani
- Microbiology and Plant Pathology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Sharad Bissa
- Microbiology and Plant Pathology Laboratory, Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| |
Collapse
|
33
|
Eltarahony M, El-Deeb N, Abu-Serie M, El-Shall H. Biovalorization of whey waste as economic nutriment for mycogenic production of single cell oils with promising antibiofilm and anticancer potentiality. J Biol Eng 2024; 18:62. [PMID: 39497156 PMCID: PMC11533293 DOI: 10.1186/s13036-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/05/2024] [Indexed: 11/06/2024] Open
Abstract
The production of value-added bio-compounds from rejuvenated sources and their recruitment for healthcare services are paramount objectives in the agenda of white biotechnology. Hereupon, the current study focused on economic production of single cell oils (SCOs) from oleaginous fungi Alternaria sp. (A-OS) and Drechslera sp. (D-OS) using cheese whey waste stream, followed by their evaluation as antibiofilm and anticancer agents, for the first time. As a sole substrate for growth, the whey aided in lipid accumulation by 3.22 and 4.33 g/L, which representing 45.3 and 48.2% lipid content in Drechslera sp. (D-OS) and Alternaria sp. (A-OS), respectively. Meanwhile, a higher unsaturation degree was detected in A-OS by 62.18% comparing to 53.15% of D-OS, with advantageous presence of omega-6 poly unsaturated fatty acid by 22.67% and 15.04% for A-OS and D-OD, respectively, as revealed by GC-MS and FTIR characterization analysis. Interestingly, an eminent and significant (P ≤ 0.05) antibiofilm potency was observed in a dose-dependent modality upon employing both SCOs as antibiofilm agents. Whereas, 100 µg/mL of A-OS recorded superior inhibition of P. aeruginosa, S. aureus and C. albicans biofilms development by 84.10 ± 0.445, 90.37 ± 0.065 and 94.96 ± 0.21%, respectively. Whereas, D-OS (100 µg/mL) thwarted the biofilms of P. aeruginosa, S. aureus and C. albicans by 47.41 ± 2.83, 62.63 ± 5.82 and 78.67 ± 0.23%, correspondingly. Besides, the metabolic performance of cells within biofilm matrix, protein, carbohydrate contents and hydrophobicity of examined biofilms were also curtailed in a significant correlation with biofilm biomass (r ≥ 0.9). Further, as anticancer agents, D-OS recorded higher potency against A549 and CaCo-2 cell lines with IC50 values of 2.55 and 3.425% and SI values of 10.1 and 7.5, respectively. However, A-OS recorded 8.275% and 2.88 for IC50 and SI of Caco-2 cells, respectively. Additionally, A-OS activated caspase 3 by 64.23 ± 1.18% and 53.77 ± 0.995% more than D-OS (52.09 ± 0.222% and 49.72 ± 0.952%) in A549 and Caco-2 cells, respectively. Furthermore, the enzymes, which associated with cancer invasion, metastasis, and angiogenesis (i.e., MMP2 and MMP9) were strongly inhibited by A-OS with 18.58% and 8.295%, respectively as IC50 values; while D-OS results recorded 23.61% and 13.16%, respectively, which could be ascribed to the higher ω-6/ω-3 contents of A-OS. The promising results of the current study opens up the vision to employ SCOs as anti-infective nutraceuticals and in complementary/alternative therapy and prophylactic programs as well.
Collapse
Affiliation(s)
- Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt.
| | - Nehal El-Deeb
- Pharmaceutical Bioproducts Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt
| | - Hadeel El-Shall
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
34
|
Wang X, Rusinova R, Gregorio GG, Boudker O. Free fatty acids inhibit an ion-coupled membrane transporter by dissipating the ion gradient. J Biol Chem 2024; 300:107955. [PMID: 39491650 DOI: 10.1016/j.jbc.2024.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Glutamate is the main excitatory transmitter in the mammalian central nervous system; glutamate transporters keep the synaptic glutamate concentrations at bay for normal brain function. Arachidonic acid (AA), docosahexaenoic acid, and other unsaturated fatty acids modulate glutamate transporters in cell- and tissue slices-based studies. Here, we investigated their effect and mechanism using a purified archaeal glutamate transporter homolog reconstituted into the lipid membranes. AA, docosahexaenoic acid, and related fatty acids irreversibly inhibited the sodium-dependent concentrative substrate uptake into lipid vesicles within the physiologically relevant concentration range. In contrast, AA did not inhibit amino acid exchange across the membrane. The length and unsaturation of the aliphatic tail affect inhibition, and the free carboxylic headgroup is necessary. The inhibition potency did not correlate with the fatty acid effects on the bilayer deformation energies. AA does not affect the conformational dynamics of the protein, suggesting it does not inhibit structural transitions necessary for transport. Single-transporter and membrane voltage assays showed that AA and related fatty acids mediate cation leak, dissipating the driving sodium gradient. Thus, such fatty acids can act as cation ionophores, suggesting a general modulatory mechanism of membrane channels and ion-coupled transporters.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA.
| | - Radda Rusinova
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - G Glenn Gregorio
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, New York, New York, USA
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
35
|
Adegoke A, Olakayode S. Potency of butylated hydroxytoluene and optimized black pepper extract as additives on quality characteristics of stored (4 °C) pork on various days. Food Sci Biotechnol 2024; 33:3367-3377. [PMID: 39328218 PMCID: PMC11422295 DOI: 10.1007/s10068-024-01567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 09/28/2024] Open
Abstract
The potency of butylated hydroxytoluene and black pepper extract (BPE) as additives was explored. BPE was produced through upscale of desirability from 72 to 91.9%, yielding sixty-three bio-compounds. Next, control (0% antioxidant), vitamin E, and BPE groups were formed, each replicated five times in a Completely Randomized Design. Meat physico-chemical and fatty acid (FA) indices, malondialdehyde (MDA) content, and microbial profile were evaluated [day (d) 0, 5, and 10]. Results indicate BPE had lower (p < 0.05) pH (5.85) and least cooking loss (19.30%). BPE had reduced (p < 0.05) saturated FA (SFA) of 2.18 but higher poly unsaturated FA (PUFA)-13.17; UFA (18.82), PUFA: SFA (6.05), and omega 6 (7.69). Also, BPE had lowest (p < 0.05) MDA on d 5 (2.16) and 10 (3.45) of storage (4 °C), while coliform was not seen (p < 0.05) on BPE-incorporated samples on d 0 and 5. BPE contains bio-compounds that are effective and safe for meat storage.
Collapse
Affiliation(s)
- Adeola Adegoke
- Department of Animal Production and Health, Federal University of Agriculture, Ogun State, P.M.B., Abeokuta, 2240 Nigeria
| | - Samuel Olakayode
- Department of Animal Production and Health, Federal University of Agriculture, Ogun State, P.M.B., Abeokuta, 2240 Nigeria
| |
Collapse
|
36
|
Shin S, Yu J, Tae H, Zhao Y, Jiang D, Qiao Y, Kim W, Cho NJ. Exploring the Membrane-Active Interactions of Antimicrobial Long-Chain Fatty Acids Using a Supported Lipid Bilayer Model for Gram-Positive Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56705-56717. [PMID: 39388376 DOI: 10.1021/acsami.4c11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The dynamic nature of bacterial lipid membranes significantly impacts the efficacy of antimicrobial therapies. However, traditional assay methods often fall short in replicating the complexity of these membranes, necessitating innovative approaches. Herein, we successfully fabricated model bacterially supported lipid bilayers (SLBs) that closely mimic the characteristics of Gram-positive bacteria using the solvent-assisted lipid bilayer (SALB) technique. By employing a quartz crystal microbalance with dissipation and fluorescence microscopy, we investigated the interactions between these bacterial mimetic membranes and long-chain unsaturated fatty acids. Specifically, linolenic acid (LNA) and linoleic acid (LLA) demonstrated interaction behaviors correlated with the critical micelle concentration (CMC) on Gram-positive membranes, resulting in membrane remodeling and removal at concentrations above their respective CMC values. In contrast, oleic acid (OA), while showing similar membrane remodeling patterns to LNA and LLA, exhibited membrane insertion and CMC-independent activity on the Gram-positive membranes. Particularly, LNA and LLA demonstrated bactericidal effects and promoted membrane permeability and ATP leakage in the bacterial membranes. OA, characterized by a CMC-independent activity profile, exhibited potent bactericidal effects due to its robust penetration into the SLBs, also enhancing membrane permeability and ATP leakage. These findings shed light on the intricate molecular mechanisms governing the interactions between long-chain unsaturated fatty acids and bacterial membranes. Importantly, this study underscores the potential of using biologically relevant model bacterial membrane systems to develop innovative strategies for combating bacterial infections and designing effective therapeutic agents.
Collapse
Affiliation(s)
- Sungmin Shin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
| | - Jingyeong Yu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Dongping Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise, Singapore HUJ Alliance Research Enterprise (SHARE) 1 CREATE Way, #03-09 Innovation Wing, Singapore 138602, Singapore
| |
Collapse
|
37
|
Kchaou M, Soltani S, Frikha D, Maalej S, Allouche N, Ben Salah H. New acid anhydride from Phalaris canariensis with antimicrobial activity assessed through in vitro and in silico approaches. Nat Prod Res 2024:1-7. [PMID: 39397418 DOI: 10.1080/14786419.2024.2414398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
In this study, a novel fatty acid anhydride, named phalarisin 1, was successfully isolated from the ethyl acetate extract of Phalaris canariensis growing in Tunisia. The structural characterisation of the compound was achieved through various spectroscopic techniques including FT-IR, 1D and 2D-NMR spectroscopy, as well as acidic hydrolysis analyses. Remarkably, phalarisin exhibited potent antimicrobial properties against a range of pathogens including Micrococcus luteus, Bacillus subtilis, Fusarium oxysporum, and Fusarium phylophylum, with minimum inhibitory concentrations (MICs) ranging from 31.25 to 62.5 μg/mL. To grasp the antimicrobial potential of compound 1, molecular docking studies were performed and they furnished evidence indicating its ability to bind to proteins in bacteria and fungi that are pivotal for drug resistance.
Collapse
Affiliation(s)
- Mouna Kchaou
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), University of Sfax, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Siwar Soltani
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), University of Sfax, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Donyez Frikha
- Laboratory of Biodiversity and Aquatic Ecosystems, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Sami Maalej
- Laboratory of Biodiversity and Aquatic Ecosystems, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), University of Sfax, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Hichem Ben Salah
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), University of Sfax, Faculty of Sciences of Sfax, Sfax, Tunisia
| |
Collapse
|
38
|
Unver T, Gurhan I. Unveiling the Chemical Constituents and Inhibitory Roles of Extracts from Pinus Pinea L. Nut and Nutshell: A Novel Source for Pharmaceutical Antimicrobials. Chem Biodivers 2024; 21:e202401208. [PMID: 39178285 DOI: 10.1002/cbdv.202401208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/25/2024]
Abstract
Antibiotic resistance in infectious diseases has been a serious problem for the last century, and scientists have focused on discovering new natural antimicrobial agents. Pinus pinea has been used as a natural pharmacotherapeutic agent with antimutagenic, anticarcinogenic, and high antioxidant properties. In this study, GC-MS and LC-HR/MS were employed to analyze Pinus pinea L. nut and nutshell extracts. DPPH radical scavenging assay was performed to analyze the antioxidant properties of the extracts, but no activity was determined. GC-MS analysis showed that linoleic, oleic, and palmitic acids were the three most dominant fatty acids in nut and nutshell extracts, with ratios between 6.75 % and 47.06 % (v/v). LC-HR/MS revealed that the nutshell methanol extract had a higher phenolic content than other extracts, with vanillic acid (1.4071 mg/g). Antimicrobial activity assays showed that the minimum inhibitory concentrations (MIC) of the extracts varied between 5.94 and 190 mg/mL, and the most significant inhibition was seen in the nutshell methanol extract (MICs: between 5.94 and 47.5 mg/mL). Consequently, the antimicrobial activity of the extracts can be attributed to the dense fatty acids they contain, and the nutshell methanol extract showed the most potent inhibition related to the abundance of phenolic compounds in the extract.
Collapse
Affiliation(s)
- Tuba Unver
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| | - Ismet Gurhan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
39
|
Dubey SK, Lee SS, Kim JH. Efficient enhancement of the antimicrobial activity of Chlamydomonas reinhardtii extract by transgene expression and molecular modification using ionizing radiation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:125. [PMID: 39354614 PMCID: PMC11443672 DOI: 10.1186/s13068-024-02575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Ionizing radiation has been used for mutagenesis or material modification. The potential to use microalgae as a platform for antimicrobial production has been reported, but little work has been done to advance it beyond characterization to biotechnology. This study explored two different applications of ionizing radiation as a metabolic remodeler and a molecular modifier to enhance the antimicrobial activity of total protein and solvent extracts of Chlamydomonas reinhardtii cells. RESULTS First, highly efficient transgenic C. reinhardtii strains expressing the plant-derived antimicrobial peptides, AtPR1 or AtTHI2.1, were developed using the radiation-inducible promoter, CrRPA70Ap. Low transgene expression was significantly improved through X-irradiation (12-50 Gy), with peak activity observed within 2 h. Protein extracts from these strains after X-irradiation showed enhanced antimicrobial activity against the prokaryotic bacterium, Pseudomonas syringae, and the eukaryotic fungus, Cryptococcus neoformans. In addition, X-irradiation (12 Gy) increased the growth and biomass of the transgenic strains. Second, C. reinhardtii cell extracts in ethanol were γ-irradiated (5-20 kGy), leading to molecular modifications and increased antimicrobial activity against the phytopathogenic bacteria, P. syringae and Burkholderia glumae, in a dose-dependent manner. These changes were associated with alterations in fatty acid composition. When both transgenic expression of antimicrobial peptides and molecular modification of bioactive substances were applied, the antimicrobial activity of C. reinhardtii cell extracts was further enhanced to some extent. CONCLUSION Overall, these findings suggest that ionizing radiation can significantly enhance the antimicrobial potential of C. reinhardtii through efficient transgene expression and molecular modification of bioactive substances, making it a valuable source of natural antimicrobial agents. Ionizing radiation can act not only as a metabolic remodeler of transgene expression in microalgae but also as a molecular modifier of the bioactive substances.
Collapse
Affiliation(s)
- Shubham Kumar Dubey
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea
- Department of Radiation Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea
- Department of Radiation Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
40
|
Honaryar H, Amirfattahi S, Nguyen D, Kim K, Shillcock JC, Niroobakhsh Z. A Versatile Approach to Stabilize Liquid-Liquid Interfaces using Surfactant Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403013. [PMID: 38874067 DOI: 10.1002/smll.202403013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water-oil interface is presented using the morphological transitions that occur during the self-assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small-angle X-ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water-oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid-in-liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid-liquid interfaces not only offers unprecedented opportunities for fine-tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self-healing, and porosity, which could have significant implications for various industries.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Duoc Nguyen
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Kyungtae Kim
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Julian C Shillcock
- Laboratory for Biomolecular Modeling, École Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Blue Brain Project, École Polytechnique Federale de Lausanne (EPFL), Campus Biotech, Geneva, CH-1202, Switzerland
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
41
|
Dijksterhuis J, Kleinhoven P, van Kuijk S, Wolters AHG, Bruinenberg PG. Synergistic antifungal effects of the preservative ammonium propionate and medium chain fatty acids against dormant and germinating conidia, germ tubes and hyphae of Aspergillus chevalieri, a feed spoilage fungus. Int J Food Microbiol 2024; 422:110802. [PMID: 38943772 DOI: 10.1016/j.ijfoodmicro.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024]
Abstract
In feed, propionic acid is the weak organic acid of choice to prevent growth of spoilage fungi. For safe and easy industrial handling this antifungal agent is applied in the presence of neutralizing ammonium, which however has the disadvantage to negatively affect the efficacy of fungus-inhibiting properties of the formulation. In the present study we investigated the impact of medium chain fatty acids (MCFA) on the antifungal efficacy of an ammonium propionate formulation on dormant- and germinating conidia as well as germ tubes and hyphae of Aspergillus chevalieri, a xerophilic fungus predominant on moulded feed. Dormant conidia were not affected by 32 mM of ammonium propionate after a 28 h-treatment in demi water. Similar results were obtained with solely 0.52 mM MCFA. However, the combination of both components nearly eradicated formation of colonies from these conidia and was accompanied by distortion of the cellular structure as was visible with light- and transmission electron microscopy. Germination of conidia, characterised by swelling and germ tube formation, was significantly decreased in the presence of 16 mM ammonium propionate and 0.26 mM MCFA, while the latter component itself did not significantly decrease germination. We conclude that a combination of ammonium propionate and MCFA had a synergistic antifungal effect on dormant and germinating conidia. When the combination of ammonium propionate and MCFA was tested on hyphae for 30 min, we observed that cell death was significantly increased in comparison to components alone. Treatment of the hyphae with 16 mM of ammonium propionate caused aberrant mitochondria, as evidenced by irregularly shaped and enlarged mitochondria that contained electron-dense inclusions as observed by transmission electron microscopy. When the combination of ammonium propionate and MCFA was applied against the hyphae, more severe cell damage was observed, with signs of autophagy. Summarised, our results demonstrate synergistic antifungal effects of ammonium propionate and medium chain fatty acids on fungal survival structures, during their germination and after a short (sudden) treatment of growing cells. This is of potential importance for several areas of feed and food storage and shelf-life.
Collapse
Affiliation(s)
- Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | | | | | - Anouk H G Wolters
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul G Bruinenberg
- Trouw Nutrition R&D, Stationsstraat 77, 3811 MH Amersfoort, the Netherlands
| |
Collapse
|
42
|
Lukić M, Ćirić A, Božić DD, Stanković JA, Medarević Đ, Maksimović Z. Extracts from Wheat, Maize, and Sunflower Waste as Natural Raw Materials for Cosmetics: Value-Added Products Reaching Sustainability Goals. Pharmaceutics 2024; 16:1182. [PMID: 39339218 PMCID: PMC11435005 DOI: 10.3390/pharmaceutics16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Agricultural waste is underutilized, and sometimes burning them has a negative impact on the environment and human health. This research investigates the untapped potential of extracts from maize, wheat and sunflower waste as natural materials for cutaneous, specifically, cosmetic application. The possibility of incorporating lipid and ethanol extracts from wheat, maize, and sunflower into creams was investigated together with their potential contribution to the structural and functional properties of the topical formulations. Results of the physicochemical characterization show that investigated extracts can be successfully incorporated into creams with satisfactory stability. All extracts showed a desirable safety profile and good antimicrobial activity against various microorganisms. Lipid extracts have proven to be promising structural ingredients of the oil phase, contributing to the spreadability, occlusivity, and emollient effect. Ethanol extracts influenced washability and stickiness of the formulation and could be considered as prospective ingredients in self-preserving formulations. The extracts affected the sensory properties of the creams, mainly the smell and color. These results suggest that the extracts from wheat, maize, and sunflower waste could be used as multifunctional natural ingredients for cosmetic formulations which can replace less sustainable raw materials. This also represents a valorization of waste and is in line with broader sustainability goals.
Collapse
Affiliation(s)
- Milica Lukić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ana Ćirić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragana D Božić
- Department of Immunology and Microbiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Antić Stanković
- Department of Immunology and Microbiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đorđe Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
43
|
Bashir S, Behiry S, Al-Askar AA, Kowalczewski PŁ, Emaish HH, Abdelkhalek A. Antibacterial, antifungal, and phytochemical properties of Salsola kali ethanolic extract. Open Life Sci 2024; 19:20220962. [PMID: 39247796 PMCID: PMC11377937 DOI: 10.1515/biol-2022-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The research into the use of plants as plentiful reservoirs of bioactive chemicals shows significant potential for agricultural uses. This study focused on analyzing the chemical composition and potency of an ethanolic extract obtained from the aerial parts (leaves and stems) of Salsola kali against potato pathogenic fungal and bacterial pathogens. The isolated fungal isolates were unequivocally identified as Fusarium oxysporum and Rhizoctonia solani based on morphological characteristics and internal transcribed spacer genetic sequencing data. The antifungal activity of the extract revealed good inhibition efficacy against R. solani (60.4%) and weak activity against F. oxysporum (11.1%) at a concentration of 5,000 µg/mL. The S. kali extract exhibited strong antibacterial activity, as evidenced by the significant inhibition zone diameter (mm) observed in all three strains of bacteria that were tested: Pectobacterium carotovorum (13.33), Pectobacterium atrosepticum (9.00), and Ralstonia solanacearum (9.33), at a concentration of 10,000 µg/mL. High-performance liquid chromatography analysis revealed the presence of several polyphenolic compounds (μg/g), with gallic acid (2942.8), caffeic acid (2110.2), cinnamic acid (1943.1), and chlorogenic acid (858.4) being the predominant ones. Quercetin and hesperetin were the predominant flavonoid components, with concentrations of 1110.3 and 1059.3 μg/g, respectively. Gas chromatography-mass spectrometry analysis revealed the presence of many bioactive compounds, such as saturated and unsaturated fatty acids, diterpenes, and phytosterols. The most abundant compound detected was n-hexadecanoic acid, which accounted for 28.1%. The results emphasize the potential of S. kali extract as a valuable source of bioactive substances that possess good antifungal and antibacterial effects, which highlights its potential for many agricultural uses.
Collapse
Affiliation(s)
- Shimaa Bashir
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Said Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Haitham H Emaish
- Department of Soils and Agricultural Chemistry, Biosystem Engineering, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| |
Collapse
|
44
|
Bechar A, Er-Rahmani S, Hassi M, Sadiki M, El Abed S, Ouaddi O, Tizar F, Alouani M, Ibnsouda Koraichi S. The effect of Dunaliella salina extracts on the adhesion of Pseudomonas aeruginosa to 3D printed polyethylene terephthalate and polylactic acid. BIOFOULING 2024; 40:447-466. [PMID: 39034852 DOI: 10.1080/08927014.2024.2380404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Polyethylene terephthalate (PET) and polylactic acid (PLA) are among the polymers used in the food industry. In this study, crude extracts of Dunaliella salina were used to treat the surface of 3D printed materials studied, aiming to provide them with an anti-adhesive property against Pseudomonas aeruginosa. The hydrophobicity of treated and untreated surfaces was characterized using the contact angle method. Furthermore, the adhesive behavior of P. aeruginosa toward the substrata surfaces was also studied theoretically and experimentally. The results showed that the untreated PLA was hydrophobic, while the untreated PET was hydrophilic. It was also found that the treated materials became hydrophilic and electron-donating. The total energy of adhesion revealed that P. aeruginosa adhesion was theoretically favorable on untreated materials, while it was unfavorable on treated ones. Moreover, the experimental data proved that the adhesion to untreated substrata was obtained, while there was complete inhibition of adhesion to treated surfaces.
Collapse
Affiliation(s)
- Azzeddine Bechar
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Sara Er-Rahmani
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Hassi
- Laboratory of Microbial Biotechnology and Plants Protection, Ibn Zohr University, Faculty of Science, Agadir, Morocco
- Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Moulay Sadiki
- Laboratory of Geo-Bio-Environment and Innovation Engineering, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Soumya El Abed
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Oumaima Ouaddi
- Laboratory of Microbial Biotechnology and Plants Protection, Ibn Zohr University, Faculty of Science, Agadir, Morocco
| | - Fatima Tizar
- Laboratory of Microbial Biotechnology and Plants Protection, Ibn Zohr University, Faculty of Science, Agadir, Morocco
- Laboratory of Geo-Bio-Environment and Innovation Engineering, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Alouani
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Science, Ibn Zohr University, Agadir, Morocco
- Faculty of Applied Science, Ait Melloul, Ibn Zohr University, Agadir, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
45
|
Jan H, Ghayas S, Higazy D, Ahmad NM, Yaghmur A, Ciofu O. Antibacterial and anti-biofilm activities of antibiotic-free phosphatidylglycerol/docosahexaenoic acid lamellar and non-lamellar liquid crystalline nanoparticles. J Colloid Interface Sci 2024; 669:537-551. [PMID: 38729002 DOI: 10.1016/j.jcis.2024.04.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Infectious diseases, particularly those associated with biofilms, are challenging to treat due to an increased tolerance to commonly used antibiotics. This underscores the urgent need for innovative antimicrobial strategies. Here, we present an alternative simple-by-design approach focusing on the development of biocompatible and antibiotic-free nanocarriers from docosahexaenoic acid (DHA) that has the potential to combat microbial infections and phosphatidylglycerol (DOPG), which is attractive for use as a biocompatible prominent amphiphilic component of Gram-positive bacterial cell membranes. We assessed the anti-bacterial and anti-biofilm activities of these nanoformulations (hexosomes and vesicles) against S. aureus and S. epidermidis, which are the most common causes of infections on catheters and medical devices by different methods (including resazurin assay, time-kill assay, and confocal laser scanning microscopy on an in vitro catheter biofilm model). In a DHA-concentration-dependent manner, these nano-self-assemblies demonstrated strong anti-bacterial and anti-biofilm activities, particularly against S. aureus. A five-fold reduction of the planktonic and a four-fold reduction of biofilm populations of S. aureus were observed after treatment with hexosomes. The nanoparticles had a bacteriostatic effect against S. epidermidis planktonic cells but no anti-biofilm activity was detected. We discuss the findings in terms of nanoparticle-bacterial cell interactions, plausible alterations in the phospholipid membrane composition, and potential penetration of DHA into these membranes, leading to changes in their structural and biophysical properties. The implications for the future development of biocompatible nanocarriers for the delivery of DHA alone or in combination with other anti-bacterial agents are discussed, as novel treatment strategies of Gram-positive infections, including biofilm-associated infections.
Collapse
Affiliation(s)
- Habibullah Jan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sana Ghayas
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Doaa Higazy
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nasir Mahmood Ahmad
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
46
|
Clare J, Lindley MR, Ratcliffe E. The Potential of Fish Oil Components and Manuka Honey in Tackling Chronic Wound Treatment. Microorganisms 2024; 12:1593. [PMID: 39203434 PMCID: PMC11356504 DOI: 10.3390/microorganisms12081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic wounds are becoming an increasing burden on healthcare services, as they have extended healing times and are susceptible to infection, with many failing to heal, which can lead ultimately to amputation. Due to the additional rise in antimicrobial resistance and emergence of difficult-to-treat Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE pathogens), novel treatments will soon be required asides from traditional antibiotics. Many natural substances have been identified as having the potential to aid in both preventing infection and increasing the speed of wound closure processes. Manuka honey is already in some cases used as a topical treatment in the form of ointments, which in conjunction with dressings and fish skin grafts are an existing US Food and Drug Administration-approved treatment option. These existing treatment options indicate that fatty acids from fish oil and manuka honey are well tolerated by the body, and if the active components of the treatments were better understood, they could make valuable additions to topical treatment options. This review considers two prominent natural substances with established manufacturing and global distribution-marine based fatty acids (including their metabolites) and manuka honey-their function as antimicrobials and how they can aid in wound repair, two important aspects leading to resolution of chronic wounds.
Collapse
Affiliation(s)
- Jenna Clare
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney 2052, Australia;
| | - Elizabeth Ratcliffe
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
47
|
Dutoit A, Decourcelle N, Mathot AG, Coroller L. Relationships between the inhibitory efficacy and physicochemical properties of six organic acids and monolaurin against Bacillus weihenstephanensis KBAB4 growth in liquid medium. Food Microbiol 2024; 121:104498. [PMID: 38637069 DOI: 10.1016/j.fm.2024.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/20/2024]
Abstract
Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.
Collapse
Affiliation(s)
- Agathe Dutoit
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Nicolas Decourcelle
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Anne-Gabrielle Mathot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France
| | - Louis Coroller
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29000 Quimper, France.
| |
Collapse
|
48
|
Tswaai POJ, Augustyn WA, Regnier T, du Plooy W. Identification of Biomarkers Associated with Phyllosticta citricarpa Tolerance. Molecules 2024; 29:3582. [PMID: 39124986 PMCID: PMC11313913 DOI: 10.3390/molecules29153582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa Kiely, (McAlpine Van der Aa), with most cultivars being susceptible to infection. Currently, disease control is based on the application of protective fungicides, which is restricted due to resistance, health and environmental concerns. Although using natural products for disease management is gaining momentum, more advances are required. This study obtained the metabolic profiles of the essential oil and cuticular waxes of two citrus cultivars with a varying susceptibility to CBS infection using gas chromatography-mass spectrometry. A multivariate data analysis identified possible biomarker compounds that contributed to the difference in susceptibility between the two cultivars. Several identified biomarkers were tested in vitro for their antifungal properties against P. citricarpa. Two biomarkers, propanoic acid and linalool, were able to completely inhibit pathogen growth at 750 mg/L and 2000 mg/L, respectively.
Collapse
Affiliation(s)
- Puseletso O. J. Tswaai
- Department of Chemistry, Tshwane University of Technology, P.O. Box 680, Pretoria 0001, South Africa;
| | - Wilma A. Augustyn
- Department of Chemistry, Tshwane University of Technology, P.O. Box 680, Pretoria 0001, South Africa;
| | - Thierry Regnier
- Department of Biotechnology and Food Technology, Tshwane University of Technology, P.O. Box 680, Pretoria 0001, South Africa;
| | - Wilma du Plooy
- Citrus Research International, P.O. Box 28, Mbombela 1200, South Africa;
| |
Collapse
|
49
|
Al-Mur BA. In vitro anticancer, antioxidant and antibacterial activities of crude extract prepared from Enteromorpha intestinalis habited in Jeddah, Saudi Arabia. Saudi J Biol Sci 2024; 31:104026. [PMID: 38840812 PMCID: PMC11152718 DOI: 10.1016/j.sjbs.2024.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
The recent study purposes to evaluate the biological activities of Enteromorpha intestinalis gathered from Jeddah coastal area, Saudi Arabia, with respect to its phytochemical components. Our results indicated that the values of moisture content, ash, total organic matter, total proteins, total lipids and total carbohydrates were 34.25 ± 5.6 %, 40.70 ± 2.3 %, 25.05 ± 1.73 %, 14.39 ± 0.8 %, 4.86 ± 6.9 % and 2.81 ± 1.4 %, respectively. The data also showed that the total phenols and flavonoids were 345.04 ± 1.50 and 320.67 ± 0.92 mg/g in the dried sample, respectively. Furthermore, four compounds were detected by HPLC at very low concentrations (quinic acid, ellagic acid, cinnamic acid, and phenanthrene) and flavonoids data confirmed the presence of apeginin, rudin, diosmin, and quercilin at high concentrations of 141.26, 11.42, 121.75, and 145.28. mg/g, respectively. The crude extract of Enteromorpha intestinalis exhibited cytotoxicity toward hepatocellular carcinoma cells (HepG-2 cell line) using an MTT assay with concentration range between 2 and 500 µg/mL for 48 h with IC50 = 40.02 ± 3.94 µg/mL. Evidently, the Enteromorpha intestinalis extract had Hepatoprotective activity with IC50 = 447.31 ± 14.59 μg/mL. The IC50 activity of a crude methanol extract of Enteromorpha intestinalis was compared with that of an antioxidant drug (Torolox). The value (98.82 ± 1.30 μg/mL) was recorded close to Torolox (62.4 ± 0.70 μg/mL). This extract also possessed moderate antibacterial activity with inhibition zones ranging between 10 mm against Pseudomonas aeruginosa to 16 mm against Escherichia coli. Green seaweed, along with other types of seaweed, has received significant attention in recent years. Despite their potential benefits, green seaweeds are underutilized in many parts of the world. Extensive studies on different green seaweed isolates and extracts are necessary.
Collapse
Affiliation(s)
- Bandar A. Al-Mur
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabi
| |
Collapse
|
50
|
Lima RC, Carvalho APAD, Almeida AECCD, Conte-Junior CA. Bioactive compounds and benefits of by-products of Amazon babassu oil production: potential for dietary supplement, biomedical and food applications. Food Funct 2024; 15:6232-6253. [PMID: 38814112 DOI: 10.1039/d4fo01594k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Babassu coconut (Attalea speciosa syn. Orbignya phalerata) contains an oil-rich nut and is primarily found in South America's Amazon region. Future market researchers predict an increase in the babassu oil market from USD 227.7 million in 2022 to USD 347.0 million by 2032, and the yield of babassu oil from babassu-processed waste could reach 90%. Of these, mesocarp flour is an underrated by-product used only for animal feed purposes by local producers. This comprehensive review focuses on advances in knowledge and understanding of phytochemicals from babassu oil by-products considering the mechanisms of action - covering antioxidant, antimicrobial, antiparasitic, anti-inflammatory, antithrombotic, immunomodulatory, and anticancer effects. Babassu coconut fruit contains free fatty acids, (poly)phenols, phytosterols, and triterpenes. Pytochemicals, antiparasitic and antibacterial activities of babassu mesocarp flour were shown, but fungi and viruses can get more attention. Beyond its antioxidant capacity, babassu mesocarp flour showed potential as a dietary food supplement. Aqueous suspensions of mesocarp flour with a higher preference for cancer cells than normal cells and an antithrombotic effect were also identified, probably related to the antioxidant capacity of its secondary metabolites. Mesocarp flour, a starch-rich fraction, is promising for application as biodegradable packaging to improve the oxidative stability of foods. Finally, low-added value fractions can be considered bio-waste/co-products, and their phytochemicals may attract interest for applications in medicine and nutrition. Toxicological concerns, trends, and gaps are discussed for the future of foods and related sciences.
Collapse
Affiliation(s)
- Rayssa Cruz Lima
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040900, Brazil.
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research Support Group on Nanomaterials, Polymers, and Interaction with Biosystems (BioNano), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941909, Brazil
| | - Anna Paula Azevedo de Carvalho
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040900, Brazil.
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research Support Group on Nanomaterials, Polymers, and Interaction with Biosystems (BioNano), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941909, Brazil
| | - Antonio Eugenio Castro Cardoso de Almeida
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040900, Brazil.
| | - Carlos Adam Conte-Junior
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040900, Brazil.
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research Support Group on Nanomaterials, Polymers, and Interaction with Biosystems (BioNano), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941909, Brazil
| |
Collapse
|