1
|
Cook M, Freniere C, Wu C, Lozano F, Xiong Y. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single-particle cryo-EM. Cell Rep 2025; 44:115245. [PMID: 39864060 PMCID: PMC11912512 DOI: 10.1016/j.celrep.2025.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of FG-peptide binding is conserved with HIV-1, this study reveals distinctive features of the HIV-2 CA lattice, including differing structural character at regions of host factor interactions and divergence in the mechanism of formation of CA hexamers and pentamers. This study extends our understanding of HIV capsids and highlights an approach facilitating the study of lentiviral capsid biology.
Collapse
Affiliation(s)
- Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Faith Lozano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Olebo DF, Igwe MC. Comparative Analysis of Virology and Pathogenesis of SARS-CoV-2 and HIV Infections: Implications for Public Health and Treatment Strategies. Infect Drug Resist 2025; 18:269-283. [PMID: 39835166 PMCID: PMC11742764 DOI: 10.2147/idr.s498430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Introduction Coronavirus Disease 19 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and Human Immunodeficiency Virus (HIV) are significant 21st-century pandemics with distinct virological and clinical characteristics. COVID-19 primarily presents as an acute respiratory illness, while HIV leads to chronic immune suppression. Understanding their differences can enhance public health strategies and treatment approaches. Purpose This narrative review compares the virology, transmission, immune responses, and clinical outcomes of SARS-CoV-2 and HIV to inform treatment strategies and public health interventions. Methods A narrative review was conducted, synthesizing data from peer-reviewed literature and expert commentary from 2010 to 2024. Databases such as PubMed, Cochrane Library, and Google Scholar were searched for relevant studies. Results SARS-CoV-2 primarily spreads through airborne droplets and contaminated surfaces, while HIV transmits through direct contact with infected bodily fluids. The immune response to SARS-CoV-2 involves both innate and adaptive systems, potentially leading to a cytokine storm in severe cases. In contrast, HIV evades the immune system by integrating into host cells, resulting in chronic infection and progressive immune deterioration. Treatment for SARS-CoV-2 focuses on symptom management and prevention, with antiviral medications and vaccines playing crucial roles. Conversely, HIV treatment relies on antiretroviral therapy (ART) to suppress viral replication and maintain immune function. Conclusion The review highlights the acute nature of SARS-CoV-2 versus the chronic progression of HIV. Tailored prevention and treatment strategies are essential for effective disease management. Recommendations Public health strategies should address the unique transmission routes and progression of both viruses. Further research into vaccine development and therapeutic interventions is critical for improving disease management.
Collapse
Affiliation(s)
- David Francis Olebo
- Department of Public Health, School of Allied Health Sciences, Kampala International University, Western Campus, Uganda
- Komase Ebenezer Research Centre, Fort Portal City, Uganda
- Makerere University Walter Reed Program, Kampala City, Uganda
| | - Matthew Chibunna Igwe
- Department of Public Health, School of Allied Health Sciences, Kampala International University, Western Campus, Uganda
| |
Collapse
|
3
|
Venkatachalam S, Krishnan SR, Sayed Y, Gromiha MM. Structural and Functional Studies on HIV Protease: Mechanism of Action, Subtypes, Inhibitors, and Drug Resistance. Methods Mol Biol 2025; 2867:185-200. [PMID: 39576582 DOI: 10.1007/978-1-0716-4196-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Human immunodeficiency virus (HIV) targets the host immune system causing acquired immunodeficiency syndrome (AIDS). Although significant advancements have been made on investigating HIV and related infections, eradicating the virus from the host immune system is still challenging. Nevertheless, the combination therapies using drugs targeting different stages in the viral life cycle are used for treatment in which HIV protease plays a vital role. Hence, it is essential to understand the structure and function of HIV protease. This review focuses on these aspects from different perspectives such as catalytic mechanism, subtypes and role of flaps in drug binding. Further, we highlight the factors affecting drug binding, evolution of drug resistance, and inhibitors reported in the literature using 3D QSAR studies.
Collapse
Affiliation(s)
- Sankaran Venkatachalam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sowmya Ramaswamy Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Chhabra L, Pandey RK, Kumar R, Sundar S, Mehrotra S. Navigating the Roadblocks: Progress and Challenges in Cell-Based Therapies for Human Immunodeficiency Virus. J Cell Biochem 2025; 126:e30669. [PMID: 39485037 DOI: 10.1002/jcb.30669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
Cell-based therapies represent a major advancement in the treatment and management of HIV/AIDS, with a goal to overcome the limitations of traditional antiretroviral therapy (ART). These innovative approaches not only promise a functional cure by reconstructing the immune landscape but also address the persistent viral reservoirs. For example, stem cell therapies have emerged from the foundational success of allogeneic hematopoietic stem cell transplantation in curing HIV infection in a limited number of cases. B cell therapies make use of genetically modified B cells constitutively expressing broadly neutralizing antibodies (bNAbs) against target viral particles and infected cells. Adoptive cell transfer (ACT), including TCR-T therapy, CAR-T cells, NK-CAR cells, and DC-based therapy, is adapted from cancer immunotherapy and repurposed for HIV eradication. In this review, we summarize the mechanisms through which these engineered cells recognize and destroy HIV-infected cells, the modification strategies, and their role in sustaining remission in the absence of ART. The review also addresses the challenges to cell-based therapies against HIV and discusses the recent advancements aimed at overcoming them.
Collapse
Affiliation(s)
- Lakshay Chhabra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
5
|
Nogueira VG, Reis EA, Godman B, Martin AP, Godói IPD. Acceptability and willingness to pay for a hypothetical HIV vaccine in Brazil and the implications: a cross-sectional study. Expert Rev Pharmacoecon Outcomes Res 2025; 25:91-100. [PMID: 39049463 DOI: 10.1080/14737167.2024.2384543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION The Human Immunodeficiency Virus (HIV) is one of the greatest public health challenges still facing communities worldwide, and until this moment, no vaccine is available for its prevention. In Brazil, the Rio de Janeiro State has stood out regarding the prevalence of this disease. As a result, an important state to consider the Willingness to Pay (WTP) for a hypothetical HIV vaccine to help with future pricing. METHODS A cross-sectional study was conducted to assess the acceptability and WTP of individuals from Rio de Janeiro State for a hypothetical HIV vaccine with a 70% efficacy. RESULTS 600 individuals were interviewed and the acceptability for this hypothetical vaccine was 77.2%. In addition, 452 participants were eligible for the WTP analysis and would accept a WTP US$79.37 (400 BRL) for this vaccine, a higher value than that found in another study (200 BRL) conducted in the Northern region of Brazil under the same methodological conditions. CONCLUSION Economic studies such as WTP can contribute to discussions regarding the prices and specifications for future vaccines, particularly for a HIV vaccine in countries such as Brazil with over 5,000 municipalities spread across regions with diverse characteristics and challenges in terms of socioeconomic, epidemiological and cultural differences.
Collapse
Affiliation(s)
| | - Edna Afonso Reis
- Department of Statistics, Exact Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- School of Pharmacy, Department of Public Health and Pharmacy Management, Sefako Health Sciences University, Pretoria, South Africa
| | - Antony Paul Martin
- Faculty of Health & Life Sciences, University of Liverpool, Liverpool, UK
- QC Medica, York, North Yorkshire, UK
| | - Isabella Piassi Dias Godói
- Institute of Pharmaceutical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Health Technology Assessment Center - Management, Economics, Health Education and Pharmaceutical Services (GEESFAR/NATS/UFRJ) of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
7
|
Jones CH, Beitelshees M, Williams BA, Hill AB, Welch VL, True JM. In silico prediction of pathogen's pandemic potential using the viral trait assessment for pandemics (ViTAP) model. PNAS NEXUS 2024; 3:pgae558. [PMID: 39703231 PMCID: PMC11658415 DOI: 10.1093/pnasnexus/pgae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Our world is ever evolving and interconnected, creating constant opportunities for disease outbreaks and pandemics to occur, making pandemic preparedness and pathogen management crucial for global health security. Early pathogen identification and intervention play a key role in mitigating the impacts of disease outbreaks. In this perspective, we present the Viral Trait Assessment for Pandemics (ViTAP) model to aid in the early identification of high-risk viruses that have pandemic potential, which incorporates lessons from past pandemics, including which key viral characteristics are important such as genetic makeup, transmission modes, mutation rates, and symptom severity. This model serves as the foundation for the development of powerful, quantitative tools for the early prediction of pandemic pathogens. The use of such a tool, in conjunction with other pandemic preparedness measures, can allow for early intervention and containment of the virus. This proactive approach could enable timely interventions, guiding public health responses, and resource allocation to prevent widespread outbreaks and mitigate the impact of emerging pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Verna L Welch
- Pfizer, 66 Hudson Boulevard, New York, NY 10018, USA
| | - Jane M True
- Pfizer, 66 Hudson Boulevard, New York, NY 10018, USA
| |
Collapse
|
8
|
Cook M, Freniere C, Wu C, Lozano F, Xiong Y. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617312. [PMID: 39416035 PMCID: PMC11482794 DOI: 10.1101/2024.10.09.617312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
One of the most striking features of HIV is the capsid; a fullerene cone comprised of the pleomorphic capsid protein (CA) which shields the viral genome from cellular defense mechanisms and recruits cellular cofactors to the virus. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interaction, HIV-2 CA remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we were able to determine high resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and in complexes with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of binding the FG-peptides are conserved with HIV-1, this study reveals distinctive structural features that define the HIV-2 CA lattice, potential differences in interactions with other host factors such as CypA, and divergence in the mechanism of formation of hexameric and pentameric CA assemblies. This study extends our understanding of HIV capsids and highlights an approach with significant potential to facilitate the study of lentiviral capsid biology.
Collapse
Affiliation(s)
- Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Faith Lozano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Lead Contact
| |
Collapse
|
9
|
Zhao X, Liu H, Zhang JC, Cai J. Helical sulfonyl-γ-AApeptides for the inhibition of HIV-1 fusion and HIF-1α signaling. RSC Med Chem 2024; 15:1418-1423. [PMID: 38784464 PMCID: PMC11110726 DOI: 10.1039/d4md00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
Synthetic helical peptidic foldamers show promising applications in chemical biology and biomedical sciences by mimicking protein helical segments. Sulfonyl-γ-AApeptide helices developed by our group exhibit good chemodiversity, predictable folding structures, proteolytic resistance, favorable cell permeability, and enhanced bioavailability. Herein, in this minireview, we highlight two recent examples of homogeneous left-handed sulfonyl-γ-AApeptide helices to modulate protein-protein interactions (PPIs). One is sulfonyl-γ-AApeptides as anti-HIV-1 fusion inhibitors mimicking the helical C-terminal heptad repeat (CHR), which show excellent anti-HIV-1 activities through tight binding with the N-terminal heptad repeat (NHR) and inhibiting the formation of the 6-helical bundle (HB) structure. Another example is helical sulfonyl-γ-AApeptides disrupting hypoxia-inducible factor 1α (HIF-1α) and p300 PPI, thus selectively inhibiting the relevant signaling cascade. We hope these findings could help to elucidate the principles of the structural design of sulfonyl-γ-AApeptides and inspire their future applications in PPI modulations.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Heng Liu
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Justin C Zhang
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida Tampa FL 33620 USA
| |
Collapse
|
10
|
Apetroaei MM, Velescu BȘ, Nedea MI(I, Dinu-Pîrvu CE, Drăgănescu D, Fâcă AI, Udeanu DI, Arsene AL. The Phenomenon of Antiretroviral Drug Resistance in the Context of Human Immunodeficiency Virus Treatment: Dynamic and Ever Evolving Subject Matter. Biomedicines 2024; 12:915. [PMID: 38672269 PMCID: PMC11048092 DOI: 10.3390/biomedicines12040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) is a significant global health issue that affects a substantial number of individuals across the globe, with a total of 39 million individuals living with HIV/AIDS. ART has resulted in a reduction in HIV-related mortality. Nevertheless, the issue of medication resistance is a significant obstacle in the management of HIV/AIDS. The unique genetic composition of HIV enables it to undergo rapid mutations and adapt, leading to the emergence of drug-resistant forms. The development of drug resistance can be attributed to various circumstances, including noncompliance with treatment regimens, insufficient dosage, interactions between drugs, viral mutations, preexposure prophylactics, and transmission from mother to child. It is therefore essential to comprehend the molecular components of HIV and the mechanisms of antiretroviral medications to devise efficacious treatment options for HIV/AIDS.
Collapse
Affiliation(s)
- Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Cristina Elena Dinu-Pîrvu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
| | - Anca Ionela Fâcă
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
- Marius Nasta Institute of Pneumophthisiology, 90 Viilor Street, 050159 Bucharest, Romania
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
- Marius Nasta Institute of Pneumophthisiology, 90 Viilor Street, 050159 Bucharest, Romania
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (M.I.N.); (C.E.D.-P.); (D.D.); (A.I.F.); (D.I.U.); (A.L.A.)
- Marius Nasta Institute of Pneumophthisiology, 90 Viilor Street, 050159 Bucharest, Romania
| |
Collapse
|
11
|
Sulistina DR, Martini S, Prasetyo B, Rahman FS, Adji AS, Li CY, Lusida MI. A systematic review and meta-analysis of HIV transmission risk behaviors, genetic variations, and antiretroviral (ARV) resistance in LGBT populations. J Public Health Res 2024; 13:22799036241239464. [PMID: 38628579 PMCID: PMC11020705 DOI: 10.1177/22799036241239464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Background Currently, human immunodeficiency virus and acquired immunodeficiency syndrome (HIV/AIDS) has become one of the major health problems worldwide, including Indonesia. East Java is one of the provinces in Indonesia with the highest prevalence of HIV infection. One of the causes of HIV infection transmission is lesbian, gay, bisexual, and transgender (LGBT) practice. Furthermore, the treatment using antiretroviral (ARV) drugs in HIV-1 patients can fail due to the presence of HIV drug resistance. Objective The aim of this study is to identify the behavior at risk of HIV transmission among LGBT, patterns of genetic variation and antiretroviral (ARV) resistance. Methods A systematic review and meta-analysis based on the PRISMA guidelines was conducted. We searched three databases including PubMed, ScienceDirect, and Google scholar for studies investigating the non-heterosexual behavior as risk factor of HIV infection and antiretroviral resistance. Only studies published in English are considered. The adjusted estimates of the risk were carried out using best-adjusted OR with 95% confidence interval (CI) and significant p value < 0.05. Results In the quantitative analysis of HIV infection risk factors, a total of 13 studies were included, which investigated non-heterosexual behavior as a potential factor. The studies involved a total of 37,129 participants, comprising 10,449 individuals in the non-heterosexual behavior group (LGBTQ+) and 26,680 individuals in the heterosexual group. The majority of the participants in this study were from the USA, Japan, China, and Brazil, and the main HIV subgenotypes were B and CRF. Additionally, the antiretroviral resistance of HIV patients was examined, involving a total of 3062 individuals, with 1296 individuals in the non-heterosexual behavior group and 1766 individuals in the heterosexual group. Our calculation showed that non-heterosexual behavior was significant as risk factor of HIV infection (OR = 2.17, 95% CI = 1.94-2.43, p < 0.001) and antiretroviral resistance (OR = 1.31, 95% CI = 1.00-1.71, p = 0.05). Conclusion This study concludes that non heterosexual behavior is significant risk factor of HIV infection. A quite prevalent of antiretroviral resistance were found among non heterosexual behavior. The main subgenotype of HIV are B and CRF.
Collapse
Affiliation(s)
- Dewi Ratna Sulistina
- Doctoral Study Program, Faculty of Public Health, Universitas Airlangga, Surabaya, East Java, Indonesia
- Department of Sport Science, Faculty of Sport Science, State University of Malang, Malang, Indonesia
| | - Santi Martini
- Division of Epidemiology, Faculty of Public Health, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Budi Prasetyo
- Department of Social Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Arga Setyo Adji
- Faculty of Medicine, Hang Tuah University, Surabaya, East Java, Indonesia
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Maria Inge Lusida
- Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
12
|
Marković V, Szczepańska A, Berlicki Ł. Antiviral Protein-Protein Interaction Inhibitors. J Med Chem 2024; 67:3205-3231. [PMID: 38394369 PMCID: PMC10945500 DOI: 10.1021/acs.jmedchem.3c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Continually repeating outbreaks of pathogenic viruses necessitate the construction of effective antiviral strategies. Therefore, the development of new specific antiviral drugs in a well-established and efficient manner is crucial. Taking into account the strong ability of viruses to change, therapies with diversified molecular targets must be sought. In addition to the widely explored viral enzyme inhibitor approach, inhibition of protein-protein interactions is a very valuable strategy. In this Perspective, protein-protein interaction inhibitors targeting HIV, SARS-CoV-2, HCV, Ebola, Dengue, and Chikungunya viruses are reviewed and discussed. Antibodies, peptides/peptidomimetics, and small molecules constitute three classes of compounds that have been explored, and each of them has some advantages and disadvantages for drug development.
Collapse
Affiliation(s)
- Violeta Marković
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- University
of Kragujevac, Faculty of Science,
Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Anna Szczepańska
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
13
|
Habib A, Liang Y, Xu X, Zhu N, Xie J. Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection. Int J Mol Sci 2024; 25:2432. [PMID: 38397105 PMCID: PMC10889372 DOI: 10.3390/ijms25042432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Acquired Immunodeficiency Syndrome is caused by the Human Immunodeficiency Virus (HIV), and a significant number of fatalities occur annually. There is a dire need to develop an effective vaccine against HIV-1. Understanding the structural proteins of viruses helps in designing a vaccine based on immunogenic peptides. In the current experiment, we identified gp120 epitopes using bioinformatic epitope prediction tools, molecular docking, and MD simulations. The Gb-1 peptide was considered an adjuvant. Consecutive sequences of GTG, GSG, GGTGG, and GGGGS linkers were used to bind the B cell, Cytotoxic T Lymphocytes (CTL), and Helper T Lymphocytes (HTL) epitopes. The final vaccine construct consisted of 315 amino acids and is expected to be a recombinant protein of approximately 35.49 kDa. Based on docking experiments, molecular dynamics simulations, and tertiary structure validation, the analysis of the modeled protein indicates that it possesses a stable structure and can interact with Toll-like receptors. The analysis demonstrates that the proposed vaccine can provoke an immunological response by activating T and B cells, as well as stimulating the release of IgA and IgG antibodies. This vaccine shows potential for HIV-1 prophylaxis. The in-silico design suggests that multiple-epitope constructs can be used as potentially effective immunogens for HIV-1 vaccine development.
Collapse
Affiliation(s)
- Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Yulai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Xinyi Xu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
- Institute of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| |
Collapse
|
14
|
Prokopovich AK, Litvinova IS, Zubkova AE, Yudkin DV. CXCR4 Is a Potential Target for Anti-HIV Gene Therapy. Int J Mol Sci 2024; 25:1187. [PMID: 38256260 PMCID: PMC10816112 DOI: 10.3390/ijms25021187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The human immunodeficiency virus (HIV) epidemic is a global issue. The estimated number of people with HIV is 39,000,000 to date. Antiviral therapy is the primary approach to treat the infection. However, it does not allow for a complete elimination of the pathogen. The advances in modern gene therapy methods open up new possibilities of effective therapy. One of these areas of possibility is the development of technologies to prevent virus penetration into the cell. Currently, a number of technologies aimed at either the prevention of virus binding to the CCR5 coreceptor or its knockout are undergoing various stages of clinical trials. Since HIV can also utilize the CXCR4 coreceptor, technologies to modify this receptor are also required. Standard knockout of CXCR4 is impossible due to its physiological significance. This review presents an analysis of interactions between individual amino acids in CXCR4 and physiological ligands and HIV gp120. It also discusses potential targets for gene therapy approaches aimed at modifying the coreceptor.
Collapse
Affiliation(s)
- Appolinaria K. Prokopovich
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| | - Irina S. Litvinova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| | - Alexandra E. Zubkova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Dmitry V. Yudkin
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| |
Collapse
|
15
|
Hokello J, Tyagi K, Owor RO, Sharma AL, Bhushan A, Daniel R, Tyagi M. New Insights into HIV Life Cycle, Th1/Th2 Shift during HIV Infection and Preferential Virus Infection of Th2 Cells: Implications of Early HIV Treatment Initiation and Care. Life (Basel) 2024; 14:104. [PMID: 38255719 PMCID: PMC10817636 DOI: 10.3390/life14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
The theory of immune regulation involves a homeostatic balance between T-helper 1 (Th1) and T-helper 2 (Th2) responses. The Th1 and Th2 theories were introduced in 1986 as a result of studies in mice, whereby T-helper cell subsets were found to direct different immune response pathways. Subsequently, this hypothesis was extended to human immunity, with Th1 cells mediating cellular immunity to fight intracellular pathogens, while Th2 cells mediated humoral immunity to fight extracellular pathogens. Several disease conditions were later found to tilt the balance between Th1 and Th2 immune response pathways, including HIV infection, but the exact mechanism for the shift from Th1 to Th2 cells was poorly understood. This review provides new insights into the molecular biology of HIV, wherein the HIV life cycle is discussed in detail. Insights into the possible mechanism for the Th1 to Th2 shift during HIV infection and the preferential infection of Th2 cells during the late symptomatic stage of HIV disease are also discussed.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Kratika Tyagi
- Department of Biotechnology, Banasthali Vidyapith, Jaipur 304022, India
| | - Richard Oriko Owor
- Department of Chemistry, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | | | - Alok Bhushan
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rene Daniel
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Yapo V, Majumder K, Tedbury PR, Wen X, Ong YT, Johnson MC, Sarafianos SG. HIV-2 inhibits HIV-1 gene expression via two independent mechanisms during cellular co-infection. J Virol 2023; 97:e0187022. [PMID: 37991365 PMCID: PMC10734542 DOI: 10.1128/jvi.01870-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/28/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.
Collapse
Affiliation(s)
- Vincent Yapo
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Kinjal Majumder
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Philip R. Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yee T. Ong
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Marc C. Johnson
- CS Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Xu S, Sun L, Barnett M, Zhang X, Ding D, Gattu A, Shi D, Taka JRH, Shen W, Jiang X, Cocklin S, De Clercq E, Pannecouque C, Goldstone DC, Liu X, Dick A, Zhan P. Discovery, Crystallographic Studies, and Mechanistic Investigations of Novel Phenylalanine Derivatives Bearing a Quinazolin-4-one Scaffold as Potent HIV Capsid Modulators. J Med Chem 2023; 66:16303-16329. [PMID: 38054267 PMCID: PMC10790229 DOI: 10.1021/acs.jmedchem.3c01647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Optimization of compound 11L led to the identification of novel HIV capsid modulators, quinazolin-4-one-bearing phenylalanine derivatives, displaying potent antiviral activities against both HIV-1 and HIV-2. Notably, derivatives 12a2 and 21a2 showed significant improvements, with 2.5-fold over 11L and 7.3-fold over PF74 for HIV-1, and approximately 40-fold over PF74 for HIV-2. The X-ray co-crystal structures confirmed the multiple pocket occupation of 12a2 and 21a2 in the binding site. Mechanistic studies revealed a dual-stage inhibition profile, where the compounds disrupted capsid-host factor interactions at the early stage and promoted capsid misassembly at the late stage. Remarkably, 12a2 and 21a2 significantly promoted capsid misassembly, outperforming 11L, PF74, and LEN. The substitution of easily metabolized amide bond with quinolin-4-one marginally enhanced the stability of 12a2 in human liver microsomes compared to controls. Overall, 12a2 and 21a2 highlight their potential as potent HIV capsid modulators, paving the way for future advancements in anti-HIV drug design.
Collapse
Affiliation(s)
- Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Michael Barnett
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Anushka Gattu
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Jamie R H Taka
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - Wenli Shen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Simon Cocklin
- Specifica Inc., The Santa Fe Railyard, 1607 Alcaldesa Street, Santa Fe, New Mexico 87501, United States
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - David C Goldstone
- School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| |
Collapse
|
18
|
Ebogo-Belobo JT, Kenmoe S, Mbongue Mikangue CA, Tchatchouang S, Robertine LF, Takuissu GR, Ndzie Ondigui JL, Bowo-Ngandji A, Kenfack-Momo R, Kengne-Ndé C, Mbaga DS, Menkem EZ, Kame-Ngasse GI, Magoudjou-Pekam JN, Kenfack-Zanguim J, Esemu SN, Tagnouokam-Ngoupo PA, Ndip L, Njouom R. Systematic review and meta-analysis of seroprevalence of human immunodeficiency virus serological markers among pregnant women in Africa, 1984-2020. World J Crit Care Med 2023; 12:264-285. [PMID: 38188451 PMCID: PMC10768416 DOI: 10.5492/wjccm.v12.i5.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) is a major public health concern, particularly in Africa where HIV rates remain substantial. Pregnant women are at an increased risk of acquiring HIV, which has a significant impact on both maternal and child health. AIM To review summarizes HIV seroprevalence among pregnant women in Africa. It also identifies regional and clinical characteristics that contribute to study-specific estimates variation. METHODS The study included pregnant women from any African country or region, irrespective of their symptoms, and any study design conducted in any setting. Using electronic literature searches, articles published until February 2023 were reviewed. The quality of the included studies was evaluated. The DerSimonian and Laird random-effects model was applied to determine HIV pooled seroprevalence among pregnant women in Africa. Subgroup and sensitivity analyses were conducted to identify potential sources of heterogeneity. Heterogeneity was assessed with Cochran's Q test and I2 statistics, and publication bias was assessed with Egger's test. RESULTS A total of 248 studies conducted between 1984 and 2020 were included in the quantitative synthesis (meta-analysis). Out of the total studies, 146 (58.9%) had a low risk of bias and 102 (41.1%) had a moderate risk of bias. No HIV-positive pregnant women died in the included studies. The overall HIV seroprevalence in pregnant women was estimated to be 9.3% [95% confidence interval (CI): 8.3-10.3]. The subgroup analysis showed statistically significant heterogeneity across subgroups (P < 0.001), with the highest seroprevalence observed in Southern Africa (29.4%, 95%CI: 26.5-32.4) and the lowest seroprevalence observed in Northern Africa (0.7%, 95%CI: 0.3-1.3). CONCLUSION The review found that HIV seroprevalence among pregnant women in African countries remains significant, particularly in Southern African countries. This review can inform the development of targeted public health interventions to address high HIV seroprevalence in pregnant women in African countries.
Collapse
Affiliation(s)
- Jean Thierry Ebogo-Belobo
- Center for Research in Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea 00237, Cameroon
| | | | | | | | - Guy Roussel Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde 00237, Cameroon
| | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde 00237, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala 00237, Cameroon
| | - Donatien Serge Mbaga
- Department of Microbiology, The University of Yaounde I, Yaounde 00237, Cameroon
| | | | - Ginette Irma Kame-Ngasse
- Center for Research in Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | | | | | - Seraphine Nkie Esemu
- Department of Microbiology and Parasitology, University of Buea, Buea 00237, Cameroon
| | | | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea 00237, Cameroon
| | - Richard Njouom
- Department of Virology, Centre Pasteur du Cameroun, Yaounde 00237, Cameroon
| |
Collapse
|
19
|
Zhao JH, Wang YW, Yang J, Tong ZJ, Wu JZ, Wang YB, Wang QX, Li QQ, Yu YC, Leng XJ, Chang L, Xue X, Sun SL, Li HM, Ding N, Duan JA, Li NG, Shi ZH. Natural products as potential lead compounds to develop new antiviral drugs over the past decade. Eur J Med Chem 2023; 260:115726. [PMID: 37597436 DOI: 10.1016/j.ejmech.2023.115726] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Virus infection has been one of the main causes of human death since the ancient times. Even though more and more antiviral drugs have been approved in clinic, long-term use can easily lead to the emergence of drug resistance and side effects. Fortunately, there are many kinds of metabolites which were produced by plants, marine organisms and microorganisms in nature with rich structural skeletons, and they are natural treasure house for people to find antiviral active substances. Aiming at many types of viruses that had caused serious harm to human health in recent years, this review summarizes the natural products with antiviral activity that had been reported for the first time in the past ten years, we also sort out the source, chemical structure and safety indicators in order to provide potential lead compounds for the research and development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing-Han Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yue-Wei Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
20
|
Lungu C, Overmars RJ, Grundeken E, Boers PHM, van der Ende ME, Mesplède T, Gruters RA. Genotypic and Phenotypic Characterization of Replication-Competent HIV-2 Isolated from Controllers and Progressors. Viruses 2023; 15:2236. [PMID: 38005913 PMCID: PMC10675771 DOI: 10.3390/v15112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Although some individuals with HIV-2 develop severe immunodeficiency and AIDS-related complications, most may never progress to AIDS. Replication-competent HIV-2 isolated from asymptomatic long-term non-progressors (controllers) have lower replication rates than viruses from individuals who progress to AIDS (progressors). To investigate potential retroviral factors that correlate with disease progression in HIV-2, we sequenced the near full-length genomes of replication-competent viruses previously outgrown from controllers and progressors and used phylogeny to seek genotypic correlates of disease progression. We validated the integrity of all open reading frames and used cell-based assays to study the retroviral transcriptional activity of the long terminal repeats (LTRs) and Tat proteins of HIV-2 from controllers and progressors. Overall, we did not identify genotypic defects that may contribute to HIV-2 non-progression. Tat-induced, LTR-mediated transcription was comparable between viruses from controllers and progressors. Our results were obtained from a small number of participants and should be interpreted accordingly. Overall, they suggest that progression may be determined before or during integration of HIV-2.
Collapse
Affiliation(s)
- Cynthia Lungu
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Ronald J. Overmars
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Esmée Grundeken
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Patrick H. M. Boers
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Marchina E. van der Ende
- Department of Internal Medicine, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Thibault Mesplède
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| | - Rob A. Gruters
- Viroscience Department, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (C.L.); (R.J.O.); (E.G.); (P.H.M.B.)
| |
Collapse
|
21
|
Nematollahi MH, Mehrabani M, Hozhabri Y, Mirtajaddini M, Iravani S. Antiviral and antimicrobial applications of chalcones and their derivatives: From nature to greener synthesis. Heliyon 2023; 9:e20428. [PMID: 37810815 PMCID: PMC10556610 DOI: 10.1016/j.heliyon.2023.e20428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Chalcones and their derivatives have been widely studied due to their versatile pharmacological and biological activities, such as anti-inflammatory, antibacterial, antiviral, and antitumor effects. These compounds have shown suitable antiviral effects through the selective targeting of a variety of viral enzymes, including lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, protein tyrosine phosphatase, topoisomerase-II, protein kinases, integrase/protease, and lactate/isocitrate dehydrogenase, among others. Chalcones and their derivatives have displayed excellent potential for combating pathogenic bacteria and fungi (especially, multidrug-resistant bacteria). However, relevant mechanisms should be further explored, focusing on inhibitory effects against DNA gyrase B, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), and efflux pumps (e.g., NorA), among others. In addition, the antifungal and antiparasitic activities of these compounds (e.g., antitrypanosomal and antileishmanial properties) have prompted additional explorations. Nonetheless, systematic analysis of the relevant mechanisms, biosafety issues, and pharmacological properties, as well as clinical translation studies, are vital for practical applications. Herein, recent advancements pertaining to the antibacterial, antiviral, antiparasitic, and antifungal activities of chalcones and their derivatives are deliberated, focusing on the relevant mechanisms of action, crucial challenges, and future prospects. Furthermore, due to the great importance of greener and more sustainable synthesis of these valuable compounds, especially on an industrial scale, the progress made in this field has been briefly discussed. Hopefully, this review can serve as a catalyst for researchers to delve deeper into the exploration and designing of novel chalcone compounds with medicinal properties, especially against pathogenic viruses and multidrug-resistant bacteria as major causes of concern for human health.
Collapse
Affiliation(s)
- Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Hozhabri
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryamossadat Mirtajaddini
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| |
Collapse
|
22
|
Bruggemans A, Vansant G, Van de Velde P, Debyser Z. The HIV-2 OGH double reporter virus shows that HIV-2 is less cytotoxic and less sensitive to reactivation from latency than HIV-1 in cell culture. J Virus Erad 2023; 9:100343. [PMID: 37701289 PMCID: PMC10493508 DOI: 10.1016/j.jve.2023.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
A better understanding of HIV-1 latency is a research priority in HIV cure research. Conversely, little is known about the latency characteristics of HIV-2, the closely related human lentivirus. Though both viruses cause AIDS, HIV-2 infection progresses more slowly with significantly lower viral loads, even when corrected for CD4+ T cell counts. Hence a direct comparison of latency characteristics between HIV-1 and HIV-2 could provide important clues towards a functional cure. Transduction of SupT1 cells with single-round HIV-1 and HIV-2 viruses with an enhanced green fluorescent protein (eGFP) reporter showed higher levels of eGFP expression for HIV-2 than HIV-1, while HIV-1 expression appeared more cytotoxic. To compare HIV-1 and HIV-2 gene expression, latency and reactivation in more detail, we have generated HIV-2 OGH, a replication deficient, near full- length, double reporter virus that discriminates latently and productively infected cells in cell culture. This construct is based on HIV-1 OGH, and to our knowledge, first of its kind for HIV-2. Using this construct we have observed a higher eGFP expression for HIV-2, but higher losses of HIV-1 transduced cells in SupT1 and Jurkat cells and a reduced sensitivity of HIV-2 for reactivation with TNF-α. In addition, we have analysed HIV-2 integration sites and their epigenetic environment. HIV-1 and HIV-2 share a preference for actively transcribed genes in gene-dense regions and favor active chromatin marks while disfavoring methylation markers associated with heterochromatin. In conclusion the HIV-2 OGH construct provides an interesting tool for studying HIV-2 expression, latency and reactivation. As simian immunodeficiency virus (SIV) and HIV-2 have been proposed to model a functional HIV cure, a better understanding of the mechanisms governing HIV-2 and SIV latency will be important to move forward. Further research is needed to investigate if HIV-2 uses similar mechanisms as HIV-1 to achieve its integration site selectivity.
Collapse
Affiliation(s)
- Anne Bruggemans
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | - Gerlinde Vansant
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
23
|
Chvatal-Medina M, Lopez-Guzman C, Diaz FJ, Gallego S, Rugeles MT, Taborda NA. Molecular mechanisms by which the HIV-1 latent reservoir is established and therapeutic strategies for its elimination. Arch Virol 2023; 168:218. [PMID: 37530901 DOI: 10.1007/s00705-023-05800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/12/2023] [Indexed: 08/03/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) reservoir, composed of cells harboring the latent, integrated virus, is not eliminated by antiretroviral therapy. It therefore represents a significant barrier to curing the infection. The biology of HIV-1 reservoirs, the mechanisms of their persistence, and effective strategies for their eradication are not entirely understood. Here, we review the molecular mechanisms by which HIV-1 reservoirs develop, the cells and compartments where the latent virus resides, and advancements in curative therapeutic strategies. We first introduce statistics and relevant data on HIV-1 infection, aspects of pathogenesis, the role of antiretroviral therapy, and the general features of the latent HIV reservoir. Then, the article is built on three main pillars: The molecular mechanisms related to latency, the different strategies for targeting the reservoir to obtain a cure, and the current progress in immunotherapy to counteract said reservoirs.
Collapse
Affiliation(s)
- Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Lopez-Guzman
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Francisco J Diaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Salomon Gallego
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia.
- Universidad Cooperativa de Colombia, Campus Medellin, Envigado, Colombia.
| |
Collapse
|
24
|
Talledge N, Yang H, Shi K, Coray R, Yu G, Arndt WG, Meng S, Baxter GC, Mendonça LM, Castaño-Díez D, Aihara H, Mansky LM, Zhang W. HIV-2 Immature Particle Morphology Provides Insights into Gag Lattice Stability and Virus Maturation. J Mol Biol 2023; 435:168143. [PMID: 37150290 PMCID: PMC10524356 DOI: 10.1016/j.jmb.2023.168143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Retrovirus immature particle morphology consists of a membrane enclosed, pleomorphic, spherical and incomplete lattice of Gag hexamers. Previously, we demonstrated that human immunodeficiency virus type 2 (HIV-2) immature particles possess a distinct and extensive Gag lattice morphology. To better understand the nature of the continuously curved hexagonal Gag lattice, we have used the single particle cryo-electron microscopy method to determine the HIV-2 Gag lattice structure for immature virions. The reconstruction map at 5.5 Å resolution revealed a stable, wineglass-shaped Gag hexamer structure with structural features consistent with other lentiviral immature Gag lattice structures. Cryo-electron tomography provided evidence for nearly complete ordered Gag lattice structures in HIV-2 immature particles. We also solved a 1.98 Å resolution crystal structure of the carboxyl-terminal domain (CTD) of the HIV-2 capsid (CA) protein that identified a structured helix 12 supported via an interaction of helix 10 in the absence of the SP1 region of Gag. Residues at the helix 10-12 interface proved critical in maintaining HIV-2 particle release and infectivity. Taken together, our findings provide the first 3D organization of HIV-2 immature Gag lattice and important insights into both HIV Gag lattice stabilization and virus maturation.
Collapse
Affiliation(s)
- Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA. https://twitter.com/BioChemTalledge
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Ke Shi
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Raffaele Coray
- BioEM Lab, Biozentrum, University of Basel - Basel, Switzerland
| | - Guichuan Yu
- Minnesota Supercomputing Institute, Office of the Vice President for Research, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Gloria C Baxter
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota - Twin Cities, USA
| | - Luiza M Mendonça
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | | | - Hideki Aihara
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Cisneros E, Sherwani N, Lanier OL, Peppas NA. Targeted delivery methods for RNA interference are necessary to obtain a potential functional cure for HIV/AIDS. Adv Drug Deliv Rev 2023; 199:114970. [PMID: 37385543 DOI: 10.1016/j.addr.2023.114970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Ribonucleic acid (RNA) is of great interest in many different therapeutic areas including infectious diseases such as immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thanks to current, advanced treatments for HIV, the diagnosis is no longer a death sentence. However, even with these treatments, latency is suggested to persist in T-lymphocyte-rich tissues including gut-associated lymphatic tissue (GALT), spleen, and bone marrow making HIV an incurable disease. Therefore, it is important to design systems that can effectively deliver therapeutics to these tissues to fight latent infection and find a functional cure. Numerous therapeutics ranging from small molecules to cell therapies have been explored as a cure for HIV but have failed to maintain therapeutic longevity. RNA interference (RNAi) provides a unique opportunity to achieve a functional cure for those who suffer from chronic HIV/AIDS by suppressing replication of the virus. However, RNA has certain imitations in delivery as it cannot be delivered without a carrier due to its negative charge and degradation from endogenous nucleases. Here, we provide a detailed analysis of explored systems for siRNA delivery for HIV/AIDS in the context of RNA therapeutic design and nanoparticle design. In addition, we suggest strategies that should be used to target specific tissues that are rich in lymphatic tissue.
Collapse
Affiliation(s)
- Ethan Cisneros
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA; Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
| | - Najia Sherwani
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Olivia L Lanier
- Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA; Institute of Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
26
|
Varanda J, Santos JM. It Was Not the Perfect Storm: The Social History of the HIV-2 Virus in Guinea-Bissau. Trop Med Infect Dis 2023; 8:tropicalmed8050261. [PMID: 37235309 DOI: 10.3390/tropicalmed8050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The perfect storm model that was elaborated for the HIV-1M pandemic has also been used to explain the emergence of HIV-2, a second human immunodeficiency virus-acquired immunodeficiency syndrome (HIV-AIDS) that became an epidemic in Guinea-Bissau, West Africa. The use of this model creates epidemiological generalizations, ecological oversimplifications and historical misunderstandings as its assumptions-an urban center with explosive population growth, a high level of commercial sex and a surge in STDs, a network of mechanical transport and country-wide, en masse mobile campaigns-are absent from the historical record. This model fails to explain how the HIV-2 epidemic actually came about. This is the first study to conduct an exhaustive examination of sociohistorical contextual developments and align them with environmental, virological and epidemiological data. The interdisciplinary dialogue indicates that the emergence of the HIV-2 epidemic piggybacked on local sociopolitical transformations. The war's indirect effects on ecological relations, mobility and sociability were acute in rural areas and are a key to the HIV-2 epidemic. This setting had the natural host of the virus, the population numbers, the mobility trends and the use of technology on a scale needed to foster viral adaptation and amplification. The present analysis suggests new reflections on the processes of zoonotic spillovers and disease emergence.
Collapse
Affiliation(s)
- Jorge Varanda
- Centre for Research in Anthropology (CRIA-UC), Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine-NOVA-Lisbon (GHTM-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - José Maurício Santos
- Centre for Geographical Studies, Institute of Geography and Spatial Planning, Universidade de Lisboa, 1600-276 Lisboa, Portugal
- Associated Laboratory TERRA, 1349-017 Lisboa, Portugal
| |
Collapse
|
27
|
Li Z, Winer RL, Ba S, Sy MP, Lin J, Feng Q, Gottlieb GS, Salif Sow P, Kiviat NB, Hawes SE. Effect of Human Immunodeficiency Virus Infection on Human Papillomavirus Clearance Among Women in Senegal, West Africa. J Infect Dis 2023; 227:1088-1096. [PMID: 36314598 PMCID: PMC10319963 DOI: 10.1093/infdis/jiac428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Persistent infection with high-risk human papillomavirus (HPV) is associated with development of invasive cervical cancer. METHODS Longitudinal data was collected from 174 Senegalese women. We employed marginal Cox proportional hazards models to examine the effect of human immunodeficiency virus (HIV) status (HIV positive vs HIV negative) and HIV type (HIV-1 vs HIV-2 vs dual HIV-1/HIV-2) on clearance of type-specific HPV infection. Analyses were stratified by incident versus prevalent HPV infection. RESULTS Incident HPV infections in HIV-positive women were less likely to clear than those in HIV-negative women (adjusted hazard ratio [HR] = 0.60; 95% confidence interval [CI], .38-.94). Among HIV-positive women, HIV-2-infected women and HIV-1/2 dually infected women were more likely to clear HPV incident infections than HIV-1-infected women (HR = 1.66; 95% CI, .95-2.92 and HR = 2.17; 95% CI, 1.12-4.22, respectively). Incident HPV infections in HIV-positive women with CD4 cell count ≤500 cells/μL were less likely to clear than those in HIV-positive women with CD4 cell count >500 cells/μL (HR = 0.65; 95% CI, .42-1.01). No significant associations were observed for prevalent HPV infections. CONCLUSIONS HIV infection reduced the likelihood of clearance of incident HPV infection. Furthermore, among HIV-positive women, low CD4 cell count and dual HIV infection were each associated with reduced likelihood of clearance.
Collapse
Affiliation(s)
- Zhuochen Li
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Rachel L Winer
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Selly Ba
- Service des Maladies Infectieuses Centre Hospitalier National Universitaire (CHNU) de Fann, Dakar, Sénégal
| | - Marie Pierre Sy
- Service des Maladies Infectieuses Centre Hospitalier National Universitaire (CHNU) de Fann, Dakar, Sénégal
| | - John Lin
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Qinghua Feng
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Geoffrey S Gottlieb
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Papa Salif Sow
- Service des Maladies Infectieuses Centre Hospitalier National Universitaire (CHNU) de Fann, Dakar, Sénégal
| | - Nancy B Kiviat
- Department of Pathology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen E Hawes
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Health Systems and Population Health, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Calado M, Pires D, Conceição C, Ferreira R, Santos-Costa Q, Anes E, Azevedo-Pereira JM. Cell-to-Cell Transmission of HIV-1 and HIV-2 from Infected Macrophages and Dendritic Cells to CD4+ T Lymphocytes. Viruses 2023; 15:v15051030. [PMID: 37243118 DOI: 10.3390/v15051030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages (Mø) and dendritic cells (DCs) are key players in human immunodeficiency virus (HIV) infection and pathogenesis. They are essential for the spread of HIV to CD4+ T lymphocytes (TCD4+) during acute infection. In addition, they constitute a persistently infected reservoir in which viral production is maintained for long periods of time during chronic infection. Defining how HIV interacts with these cells remains a critical area of research to elucidate the pathogenic mechanisms of acute spread and sustained chronic infection and transmission. To address this issue, we analyzed a panel of phenotypically distinct HIV-1 and HIV-2 primary isolates for the efficiency with which they are transferred from infected DCs or Mø to TCD4+. Our results show that infected Mø and DCs spread the virus to TCD4+ via cell-free viral particles in addition to other alternative pathways. We demonstrate that the production of infectious viral particles is induced by the co-culture of different cell populations, indicating that the contribution of cell signaling driven by cell-to-cell contact is a trigger for viral replication. The results obtained do not correlate with the phenotypic characteristics of the HIV isolates, namely their co-receptor usage, nor do we find significant differences between HIV-1 and HIV-2 in terms of cis- or trans-infection. The data presented here may help to further elucidate the cell-to-cell spread of HIV and its importance in HIV pathogenesis. Ultimately, this knowledge is critical for new therapeutic and vaccine approaches.
Collapse
Affiliation(s)
- Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Sintra, Portugal
| | - Carolina Conceição
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Ferreira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
29
|
Cabral-Piccin MP, Papagno L, Lahaye X, Perdomo-Celis F, Volant S, White E, Monceaux V, Llewellyn-Lacey S, Fromentin R, Price DA, Chomont N, Manel N, Saez-Cirion A, Appay V. Primary role of type I interferons for the induction of functionally optimal antigen-specific CD8 + T cells in HIV infection. EBioMedicine 2023; 91:104557. [PMID: 37058769 PMCID: PMC10130611 DOI: 10.1016/j.ebiom.2023.104557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND CD8+ T cells equipped with a full arsenal of antiviral effector functions are critical for effective immune control of HIV-1. It has nonetheless remained unclear how best to elicit such potent cellular immune responses in the context of immunotherapy or vaccination. HIV-2 has been associated with milder disease manifestations and more commonly elicits functionally replete virus-specific CD8+ T cell responses compared with HIV-1. We aimed to learn from this immunological dichotomy and to develop informed strategies that could enhance the induction of robust CD8+ T cell responses against HIV-1. METHODS We developed an unbiased in vitro system to compare the de novo induction of antigen-specific CD8+ T cell responses after exposure to HIV-1 or HIV-2. The functional properties of primed CD8+ T cells were assessed using flow cytometry and molecular analyses of gene transcription. FINDINGS HIV-2 primed functionally optimal antigen-specific CD8+ T cells with enhanced survival properties more effectively than HIV-1. This superior induction process was dependent on type I interferons (IFNs) and could be mimicked via the adjuvant delivery of cyclic GMP-AMP (cGAMP), a known agonist of the stimulator of interferon genes (STING). CD8+ T cells elicited in the presence of cGAMP were polyfunctional and highly sensitive to antigen stimulation, even after priming from people living with HIV-1. INTERPRETATION HIV-2 primes CD8+ T cells with potent antiviral functionality by activating the cyclic GMP-AMP synthase (cGAS)/STING pathway, which results in the production of type I IFNs. This process may be amenable to therapeutic development via the use of cGAMP or other STING agonists to bolster CD8+ T cell-mediated immunity against HIV-1. FUNDING This work was funded by INSERM, the Institut Curie, and the University of Bordeaux (Senior IdEx Chair) and by grants from Sidaction (17-1-AAE-11097, 17-1-FJC-11199, VIH2016126002, 20-2-AEQ-12822-2, and 22-2-AEQ-13411), the Agence Nationale de la Recherche sur le SIDA (ECTZ36691, ECTZ25472, ECTZ71745, and ECTZ118797), and the Fondation pour la Recherche Médicale (EQ U202103012774). D.A.P. was supported by a Wellcome Trust Senior Investigator Award (100326/Z/12/Z).
Collapse
Affiliation(s)
- Mariela P Cabral-Piccin
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Laura Papagno
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Xavier Lahaye
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France
| | | | - Stevenn Volant
- Institut Pasteur, Hub Bioinformatique et Biostatistique, 75015, Paris, France
| | - Eoghann White
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Nicolas Manel
- Institut Curie, INSERM U932, Immunity and Cancer Department, PSL Research University, 75005, Paris, France.
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV Inflammation et Persistance, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015, Paris, France.
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000, Bordeaux, France; Sorbonne Université, INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013, Paris, France; International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
30
|
Gotora PT, van der Sluis R, Williams ME. HIV-1 Tat amino acid residues that influence Tat-TAR binding affinity: a scoping review. BMC Infect Dis 2023; 23:164. [PMID: 36932337 PMCID: PMC10020771 DOI: 10.1186/s12879-023-08123-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
HIV-1 remains a global health concern and to date, nearly 38 million people are living with HIV. The complexity of HIV-1 pathogenesis and its subsequent prevalence is influenced by several factors including the HIV-1 subtype. HIV-1 subtype variation extends to sequence variation in the amino acids of the HIV-1 viral proteins. Of particular interest is the transactivation of transcription (Tat) protein due to its key function in viral transcription. The Tat protein predominantly functions by binding to the transactivation response (TAR) RNA element to activate HIV-1 transcriptional elongation. Subtype-specific Tat protein sequence variation influences Tat-TAR binding affinity. Despite several studies investigating Tat-TAR binding, it is not clear which regions of the Tat protein and/or individual Tat amino acid residues may contribute to TAR binding affinity. We, therefore, conducted a scoping review on studies investigating Tat-TAR binding. We aimed to synthesize the published data to determine (1) the regions of the Tat protein that may be involved in TAR binding, (2) key Tat amino acids involved in TAR binding and (3) if Tat subtype-specific variation influences TAR binding. A total of thirteen studies met our inclusion criteria and the key findings were that (1) both N-terminal and C-terminal amino acids outside the basic domain (47-59) may be important in increasing Tat-TAR binding affinity, (2) substitution of the amino acids Lysine and Arginine (47-59) resulted in a reduction in binding affinity to TAR, and (3) none of the included studies have investigated Tat subtype-specific substitutions and therefore no commentary could be made regarding which subtype may have a higher Tat-TAR binding affinity. Future studies investigating Tat-TAR binding should therefore use full-length Tat proteins and compare subtype-specific variations. Studies of such a nature may help explain why we see differential pathogenesis and prevalence when comparing HIV-1 subtypes.
Collapse
|
31
|
García-Machorro J, Gutiérrez-Sánchez M, Rojas-Ortega DA, Bello M, Andrade-Ochoa S, Díaz-Hernández S, Correa-Basurto J, Rojas-Hernández S. Identification of peptide epitopes of the gp120 protein of HIV-1 capable of inducing cellular and humoral immunity. RSC Adv 2023; 13:9078-9090. [PMID: 36950073 PMCID: PMC10025946 DOI: 10.1039/d2ra08160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
The Human Immunodeficiency Virus (HIV-1) causes Acquired Immunodeficiency Syndrome (AIDS) and a high percentage of deaths. Therefore, it is necessary to design vaccines against HIV-1 for the prevention of AIDS. Bioinformatic tools and theoretical algorisms allow us to understand the structural proteins of viruses to develop vaccines based on immunogenic peptides (epitopes). In this work, we identified the epitopes: P1, P2, P10, P27 and P30 from the gp120 protein of HIV-1. These peptides were administered intranasally alone or with cholera toxin (CT) to BALB/c mice. The population of CD4+, CD8+ T lymphocytes and B cells (CD19/CD138+, IgA+ and IgG+) from nasal-associated lymphoid tissue, nasal passages, cervical and inguinal nodes was determined by flow cytometry. In addition, anti-peptides IgG and IgA from serum, nasal and vaginal washings were measured by ELISA. The results show that peptides administered by i.n. can modulate the immune response of T and B lymphocyte populations, as well as IgA and IgG antibodies secretion in the different sites analyzed. In conclusion, bioinformatics tools help us to select peptides with physicochemical properties that allow the induction of the humoral and cellular responses that depend on the peptide sequence.
Collapse
Affiliation(s)
- Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - Mara Gutiérrez-Sánchez
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México City Mexico
| | - Diego Alexander Rojas-Ortega
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México City Mexico
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - Sergio Andrade-Ochoa
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N 31125 Chihuahua México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N Colonia Santo Tomas 11340 Ciudad de México Mexico
| | - Sebastián Díaz-Hernández
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México City Mexico
| |
Collapse
|
32
|
Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg? Viruses 2023; 15:v15030712. [PMID: 36992421 PMCID: PMC10053624 DOI: 10.3390/v15030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.
Collapse
|
33
|
Yadav S, Senapati S, Kulkarni SS, Singh JP. A SERS based clinical study on HIV-1 viral load quantification and determination of disease prognosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112629. [PMID: 36577167 DOI: 10.1016/j.jphotobiol.2022.112629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In resource limited settings, a cost-effective point-of-care diagnostic testing possessing the characteristics of detecting the minimum viral load of a malady like human immunodeficiency virus (HIV) acquired immune deficiency syndrome (AIDS) is a pressing priority. The present work describes a novel, rapid and field-deployable method using surface enhanced Raman spectroscopy (SERS) for detection and prognosis of HIV positive clinical samples, in seven different viral load ranges varying between 200 and 1 million copies/ml. A relationship between the increasing and decreasing intensity peaks of HIV-1 was also established for quantitation efficacy of the handheld tool. Three different types of SERS substrates: single arm Ag nanorods, double arm Ag nanorods and Au sputtered single arm Ag nanorods were used and the obtained data was compared for the three substrates. It was demonstrated that maximum enhancement was obtained for Au sputtered Ag nanorods. Rigorous coupled wave analysis (RCWA) simulations were performed to study the 'hotspots' in three different SERS substrates. Further, to explore the utility of our platform and to differentiate between the clade specific X4 and R5 tropism, their corresponding SERS spectra were studied using HIV-1 strains belonging to four different HIV-1 subtypes (A, B, C and D) which showed a clear distinction, implying the usefulness of the platform in understanding the disease prognosis. Statistical analysis of the obtained SERS spectra using principal component analysis (PCA) showed good agreement with the experimental results, confirming the ability of SERS platform to quantitate HIV-1 viral load and distinguish HIV-1 strains on the basis of their SERS spectra.
Collapse
Affiliation(s)
- Sarjana Yadav
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sneha Senapati
- School of Interdisciplinary Research (SIRe), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Smita S Kulkarni
- Division of Virology, ICMR-National AIDS Research Institute, Bhosari, Pune 413404, India.
| | - J P Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
34
|
Pellaers E, Bhat A, Christ F, Debyser Z. Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV-Based Vectors and for a Cure for HIV-1 Infection. Viruses 2022; 15:32. [PMID: 36680071 PMCID: PMC9861059 DOI: 10.3390/v15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, overwhelming evidence from cell culture, animal experiments and clinical data suggests that integration sites are important for retroviral replication, oncogenesis and/or latency. In this review, we will summarize the increasing knowledge of the mechanisms underlying the integration site selection of the gammaretrovirus MLV and the lentivirus HIV-1. We will discuss how host factors of the integration site selection of retroviruses may steer the development of safer viral vectors for gene therapy. Next, we will discuss how altering the integration site preference of HIV-1 using small molecules could lead to a cure for HIV-1 infection.
Collapse
Affiliation(s)
| | | | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
35
|
Diallo I, Ouédraogo S, Sawadogo A, Ouédraogo GA, Diendéré EA, Zoungrana J, Sondo AK, Bognounou R, Savadogo M, Poda A, Drabo YJ. Future of HIV2 and HIV2 + 1 Infected Patients Treated with Antiretrovirals Followed at the Day Hospital HIV Care Unit from 2011 to 2015. J Int Assoc Provid AIDS Care 2022; 21:23259582221143675. [PMID: 36474417 PMCID: PMC9732798 DOI: 10.1177/23259582221143675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction: HIV2 is endemic in West Africa. In Burkina Faso, its prevalence was estimated at 2%. The aim of this work was to evaluate the follow-up of patients and also to contribute to the availability of data. Methods: We involved 18 years or older. Infection was screened according to the national algorithm. A cross- sectional study from first June 2017 to 31 December 2017 was performed. For each patient, sociodemographic, clinical, biological, therapeutic and evolution data were collected and analyzed. Results: The proportion of patients infected with HIV2 (n = 48; 1.7%) and HIV2 + 1 (n = 67; 2.4%) was 4.3%. The sex rat mean age was 50.3 ± 8.5 years. The combination of 2INTI + LPV/r was the most prescribed (n = 73; 63.5%). The average gain of LTCD4 has evolved from + 236 cells/mm3 in 2011 to + 364 cells/mm3 in 2015. The retention rate at grade 5 was about 70%. Conclusion: The immunological and clinic response of the patients was satisfactory. More than half of the patients remained in the continuum of care after five years of follow-up.
Collapse
Affiliation(s)
- Ismaël Diallo
- Department of Internal Medicine/Day Hospital (HIV Department),
Yalgado Ouedraogo University Hospital, Ouagadougou, Burkina Faso,Training and Research Unit Health Sciences (UFR-SDS), Joseph
KI-Zerbo University, Ouagadougou, Burkina Faso
| | - Smaïla Ouédraogo
- Training and Research Unit Health Sciences (UFR-SDS), Joseph
KI-Zerbo University, Ouagadougou, Burkina Faso,Public Health Department, Yalgado Ouedraogo University Hospital,
Ouagadougou, Burkina Faso
| | - Abdoulaye Sawadogo
- Department of Infectious Diseases, Regional Teaching Hospital of
Ouahigouya, Ouahigouya, Burkina Faso,Abdoulaye Sawadogo, Regional Teaching
Hospital of Ouahigouya, Department of Infectious Diseases, 04 BP : 698
Ouagadougou 04, Ouahigouya, Burkina Faso.
| | | | - Eric Arnaud Diendéré
- Department of Internal Medicine, Teaching Hospital of Bogodogo,
Ouagadougou, Burkina Faso
| | - Jacques Zoungrana
- Superior Institute of Health Sciences, Department of infectious
diseases and tropical medicine, Nazi Boni University, Bobo Dioulasso, Burkina
Faso
| | - Apoline Kongnimissom Sondo
- Training and Research Unit Health Sciences (UFR-SDS), Joseph
KI-Zerbo University, Ouagadougou, Burkina Faso,Department of Infectious Diseases, Yalgado Ouedraogo University
Hospital, Ouagadougou, Burkina Faso
| | - Réné Bognounou
- Department of Internal Medicine/Day Hospital (HIV Department),
Yalgado Ouedraogo University Hospital, Ouagadougou, Burkina Faso
| | - Mamoudou Savadogo
- Training and Research Unit Health Sciences (UFR-SDS), Joseph
KI-Zerbo University, Ouagadougou, Burkina Faso,Department of Infectious Diseases, Yalgado Ouedraogo University
Hospital, Ouagadougou, Burkina Faso
| | - Armel Poda
- Superior Institute of Health Sciences, Department of infectious
diseases and tropical medicine, Nazi Boni University, Bobo Dioulasso, Burkina
Faso
| | - Youssouf Joseph Drabo
- Department of Internal Medicine/Day Hospital (HIV Department),
Yalgado Ouedraogo University Hospital, Ouagadougou, Burkina Faso,Training and Research Unit Health Sciences (UFR-SDS), Joseph
KI-Zerbo University, Ouagadougou, Burkina Faso
| |
Collapse
|
36
|
Roberto de Souza Fonseca R, Valois Laurentino R, Fernando Almeida Machado L, Eduardo Vieira da Silva Gomes C, Oliveira de Alencar Menezes T, Faciola Pessoa O, Branco Oliveira-Filho A, Resque Beckmann Carvalho T, Gabriela Faciola Pessoa de Oliveira P, Brito Tanaka E, Sá Elias Nogueira J, Magno Guimarães D, Newton Carneiro M, Mendes Acatauassú Carneiro P, Ferreira Celestino Junior A, de Almeida Rodrigues P, Augusto Fernandes de Menezes S. HIV Infection and Oral Manifestations: An Update. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) causes a complete depletion of the immune system; it has been a major health issue around the world since the 1980s, and due to the reduction of CD4+ T lymphocytes levels, it can trigger various opportunistic infections. Oral lesions are usually accurate indicators of immunosuppression because these oral manifestations may occur as a result of the compromised immune system caused by HIV infection; therefore, oral lesions might be initial and common clinical features in people living with HIV. So, it is necessary to evaluate and understand the mechanism, prevalence, and risk factors of oral lesions to avoid the increase morbidity among those with oral diseases.
Collapse
|
37
|
Zhang X, Sun L, Xu S, Shao X, Li Z, Ding D, Jiang X, Zhao S, Cocklin S, Clercq ED, Pannecouque C, Dick A, Liu X, Zhan P. Design, Synthesis, and Mechanistic Study of 2-Pyridone-Bearing Phenylalanine Derivatives as Novel HIV Capsid Modulators. Molecules 2022; 27:molecules27217640. [PMID: 36364467 PMCID: PMC9658817 DOI: 10.3390/molecules27217640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The AIDS pandemic is still of importance. HIV-1 and HIV-2 are the causative agents of this pandemic, and in the absence of a viable vaccine, drugs are continually required to provide quality of life for infected patients. The HIV capsid (CA) protein performs critical functions in the life cycle of HIV-1 and HIV-2, is broadly conserved across major strains and subtypes, and is underexploited. Therefore, it has become a therapeutic target of interest. Here, we report a novel series of 2-pyridone-bearing phenylalanine derivatives as HIV capsid modulators. Compound FTC-2 is the most potent anti-HIV-1 compound in the new series of compounds, with acceptable cytotoxicity in MT-4 cells (selectivity index HIV-1 > 49.57; HIV-2 > 17.08). However, compound TD-1a has the lowest EC50 in the anti-HIV-2 assays (EC50 = 4.86 ± 1.71 μM; CC50= 86.54 ± 29.24 μM). A water solubility test found that TD-1a showed a moderately increased water solubility compared with PF74, while the water solubility of FTC-2 was improved hundreds of times. Furthermore, we use molecular simulation studies to provide insight into the molecular contacts between the new compounds and HIV CA. We also computationally predict drug-like properties and metabolic stability for FTC-2 and TD-1a. Based on this analysis, TD-1a is predicted to have improved drug-like properties and metabolic stability over PF74. This study increases the repertoire of CA modulators and has important implications for developing anti-HIV agents with novel mechanisms, especially those that inhibit the often overlooked HIV-2.
Collapse
Affiliation(s)
- Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 West Culture Road, Jinan 250012, China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiaoyu Shao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ziyi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Simon Cocklin
- Specifica, Inc., 1607 Alcaldesa Street, Santa Fe, NM 87501, USA
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (C.P.); (A.D.); (X.L.); (P.Z.)
| |
Collapse
|
38
|
Palm AA, Esbjörnsson J, Kvist A, Månsson F, Biague A, Norrgren H, Jansson M, Medstrand P. Intra-Patient Evolution of HIV-2 Molecular Properties. Viruses 2022; 14:v14112447. [PMID: 36366545 PMCID: PMC9698092 DOI: 10.3390/v14112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Limited data are available on the pathogenesis of HIV-2, and the evolution of Env molecular properties during disease progression is not fully elucidated. We investigated the intra-patient evolution of molecular properties of HIV-2 Env regions (V1-C3) during the asymptomatic, treatment-naïve phase of the infection in 16 study participants, stratified into faster or slower progressors. Most notably, the rate of change in the number of potential N-linked glycosylation sites (PNGS) within the Env (V1-C3) regions differed between progressor groups. With declining CD4+ T-cell levels, slower progressors showed, on average, a decrease in the number of PNGSs, while faster progressors showed no significant change. Furthermore, diversity increased significantly with time in faster progressors, whereas no such change was observed in slower progressors. No differences were identified between the progressor groups in the evolution of length or charge of the analyzed Env regions. Predicted virus CXCR4 use was rare and did not emerge as a dominating viral population during the studied disease course (median 7.9 years, interquartile range [IQR]: 5.2-14.0) in either progressor groups. Further work building on our observations may explain molecular hallmarks of HIV-2 disease progression and differences in pathogenesis between HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Angelica A. Palm
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
- Correspondence:
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Anders Kvist
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Fredrik Månsson
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
| | - Antonio Biague
- National Public Health Laboratory, Bissau 1041, Guinea-Bissau
| | - Hans Norrgren
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Lund University, 20502 Lund, Sweden
| |
Collapse
|
39
|
Liu Z, Julius P, Kang G, West JT, Wood C. Subtype C HIV-1 reservoirs throughout the body in ART-suppressed individuals. JCI Insight 2022; 7:162604. [PMID: 36278485 PMCID: PMC9714794 DOI: 10.1172/jci.insight.162604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/31/2022] [Indexed: 01/13/2023] Open
Abstract
Subtype B HIV-1 reservoirs have been intensively investigated, but reservoirs in other subtypes and how they respond to antiretroviral therapy (ART) is substantially less established. To characterize subtype C HIV-1 reservoirs, we implemented postmortem frozen, as well as formalin fixed paraffin embedded (FFPE) tissue sampling of central nervous system (CNS) and peripheral tissues. HIV-1 LTR, gag, envelope (env) DNA and RNA was quantified using genomic DNA and RNA extracted from frozen tissues. RNAscope was used to localize subtype C HIV-1 DNA and RNA in FFPE tissue. Despite uniform viral load suppression in our cohort, PCR results showed that subtype C HIV-1 proviral copies vary both in magnitude and tissue distribution, with detection primarily in secondary lymphoid tissues. Interestingly, the appendix harbored proviruses in all subjects. Unlike subtype B, subtype C provirus was rarely detectable in the CNS, and there was no detectable HIV-1 RNA. HIV-1 RNA was detected in peripheral lymphoid tissues of 6 out of 8 ART-suppressed cases. In addition to active HIV-1 expression in lymphoid tissues, RNAscope revealed HIV RNA detection in CD4-expressing cells in the appendix, suggesting that this tissue was a previously unreported potential treatment-resistant reservoir for subtype C HIV-1.
Collapse
Affiliation(s)
- Zhou Liu
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - Peter Julius
- Department of Pathology and Microbiology, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Guobin Kang
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| | - Charles Wood
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
40
|
Yang H, Talledge N, Arndt WG, Zhang W, Mansky LM. Human Immunodeficiency Virus Type 2 Capsid Protein Mutagenesis Reveals Amino Acid Residues Important for Virus Particle Assembly. J Mol Biol 2022; 434:167753. [PMID: 35868362 PMCID: PMC11057910 DOI: 10.1016/j.jmb.2022.167753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.
Collapse
Affiliation(s)
- Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
Pashkov EA, Pak AV, Pashkov EP, Bykov AS, Budanova EV, Poddubikov AV, Svitich OA, Zverev VV. [The prospects for the use of drugs based on the phenomenon of RNA interference against HIV infection]. Vopr Virusol 2022; 67:278-289. [PMID: 36097709 DOI: 10.36233/0507-4088-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The human immunodeficiency virus (HIV) is currently one of the most pressing global health problems. Since its discovery in 1978, HIV has claimed the lives of more than 35 million people, and the number of people infected today reaches 37 million. In the absence of highly active antiretroviral therapy (HAART), HIV infection is characterized by a steady decrease in the number of CD4+ T-lymphocytes, but its manifestations can affect the central nervous, cardiovascular, digestive, endocrine and genitourinary systems. At the same time, complications induced by representatives of pathogenic and opportunistic microflora, which can lead to the development of bacterial, fungal and viral concomitant infections, are of particular danger. It should be borne in mind that an important problem is the emergence of viruses resistant to standard therapy, as well as the toxicity of the drugs themselves for the body. In the context of this review, of particular interest is the assessment of the prospects for the creation and clinical use of drugs based on small interfering RNAs aimed at suppressing the reproduction of HIV, taking into account the experience of similar studies conducted earlier. RNA interference is a cascade of regulatory reactions in eukaryotic cells, which results in the degradation of foreign messenger RNA. The development of drugs based on the mechanism of RNA interference will overcome the problem of viral resistance. Along with this, this technology makes it possible to quickly respond to outbreaks of new viral diseases.
Collapse
Affiliation(s)
- E A Pashkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - A V Pak
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E P Pashkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A S Bykov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E V Budanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A V Poddubikov
- Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - O A Svitich
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - V V Zverev
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| |
Collapse
|
42
|
Oyelade T, Raya RP, Latief K. HIV infection and the implication for COVID-19 vaccination. PUBLIC HEALTH CHALLENGES 2022; 1:e14. [PMID: 37521727 PMCID: PMC9353425 DOI: 10.1002/puh2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022]
Abstract
Abstract Human immunodeficiency virus (HIV) is associated with altered cellular and humoral immune response, especially in patients with an untreated or chronic infection. This may be due to direct and/or indirect HIV viral activities resulting in T- and B-cells dysfunctions. Although still unclear, various studies have proposed that HIV infection may exacerbate the clinical outcomes of COVID-19. Indeed, COVID-19 vaccines were developed in record time and have been shown to reduce the severity of COVID-19 in the general population. These vaccines were also earmarked as a solution to global disruptions caused by the COVID-19 pandemic. HIV infection has been reported to reduce the efficacy of various other vaccines including those used against Streptococcus pneumoniae, Clostridium tetani, and influenza viruses. However, current guidelines for the administration of available COVID-19 vaccines do not account for the immune-compromised state of people living with HIV (PLWH). We discuss here the potentials, nature, and implications of this HIV-induced dampening of the humoral immune response on COVID-19 vaccines by first reviewing the literature about efficacy of previous vaccines in PLWH, and then assessing the proportion of PLWH included in phase III clinical trials of the COVID-19 vaccines currently available. The clinical and public health implications as well as suggestions for governments and non-governmental organizations are also proposed in the context of whether findings on the safety and efficacy of the vaccines could be extended to PLWH. Impacts The human immunodeficiency virus (HIV) is characterized by attenuated humoral immunity that may reduce the efficacy of vaccines in people living with HIV (PLWH). Vaccination against the SARS-CoV-2 infection remains the main public health answer to the COVID-19 pandemic.Although no significant safety concerns have been raised regarding the COVID-19 vaccines in PLWH, the efficacy of these vaccines in PLWH has not received due attention. Indeed, phase III clinical trials for the safety and efficacy of COVID-19 vaccines involved a significantly low number of PLWH.There are major gaps in knowledge on the efficacy of COVID-19 vaccines in PLWH and until further research is carried out, PLWH should be prioritized along with other at-risk groups for repeated vaccination and safeguard.
Collapse
Affiliation(s)
- Tope Oyelade
- Institute for Liver and Digestive HealthDivision of MedicineUniversity College LondonLondonUK
| | - Reynie Purnama Raya
- Institute for Global HealthFaculty of Population Health SciencesUniversity College LondonLondonUK
- Faculty of ScienceUniversitas ‘Aisyiyah BandungBandungIndonesia
| | - Kamaluddin Latief
- Global Health and Health Security DepartmentCollege of Public HealthTaipei Medical UniversityTaipei CityTaiwan
- Centre for Family WelfareFaculty of Public HealthUniversity of IndonesiaDepokIndonesia
| |
Collapse
|
43
|
Rawson JMO, Nikolaitchik OA, Shakya S, Keele BF, Pathak VK, Hu WS. Transcription Start Site Heterogeneity and Preferential Packaging of Specific Full-Length RNA Species Are Conserved Features of Primate Lentiviruses. Microbiol Spectr 2022; 10:e0105322. [PMID: 35736240 PMCID: PMC9430795 DOI: 10.1128/spectrum.01053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
HIV-1 must package its RNA genome to generate infectious viruses. Recent studies have revealed that during genome packaging, HIV-1 not only excludes cellular mRNAs, but also distinguishes among full-length viral RNAs. Using NL4-3 and MAL molecular clones, multiple transcription start sites (TSS) were identified, which generate full-length RNAs that differ by only a few nucleotides at the 5' end. However, HIV-1 selectively packages RNAs containing one guanosine (1G RNA) over RNAs with three guanosines (3G RNA) at the 5' end. Thus, the 5' context of HIV-1 full-length RNA can affect its function. To determine whether the regulation of genome packaging by TSS usage is unique to NL4-3 and MAL, we examined 15 primate lentiviruses including transmitted founder viruses of HIV-1, HIV-2, and several simian immunodeficiency viruses (SIVs). We found that all 15 viruses used multiple TSS to some extent. However, the level of TSS heterogeneity in infected cells varied greatly, even among closely related viruses belonging to the same subtype. Most viruses also exhibited selective packaging of specific full-length viral RNA species into particles. These findings demonstrate that TSS heterogeneity and selective packaging of certain full-length viral RNA species are conserved features of primate lentiviruses. In addition, an SIV strain closely related to the progenitor virus that gave rise to HIV-1 group M, the pandemic pathogen, exhibited TSS usage similar to some HIV-1 strains and preferentially packaged 1G RNA. These findings indicate that multiple TSS usage and selective packaging of a particular unspliced RNA species predate the emergence of HIV-1. IMPORTANCE Unspliced HIV-1 RNA serves two important roles during viral replication: as the virion genome and as the template for translation of Gag/Gag-Pol. Previous studies of two HIV-1 molecular clones have concluded that the TSS usage affects unspliced HIV-1 RNA structures and functions. To investigate the evolutionary origin of this replication strategy, we determined TSS of HIV-1 RNA in infected cells and virions for 15 primate lentiviruses. All HIV-1 isolates examined, including several transmitted founder viruses, utilized multiple TSS and selected a particular RNA species for packaging. Furthermore, these features were observed in SIVs related to the progenitors of HIV-1, suggesting that these characteristics originated from the ancestral viruses. HIV-2, SIVs related to HIV-2, and other SIVs also exhibited multiple TSS and preferential packaging of specific unspliced RNA species, demonstrating that this replication strategy is broadly conserved across primate lentiviruses.
Collapse
Affiliation(s)
- Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Saurabh Shakya
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
44
|
Li X, Wang W, Chen J, Xie B, Luo S, Chen D, Cai C, Li C, Li W. The potential role of exosomal miRNAs and membrane proteins in acute HIV-infected people. Front Immunol 2022; 13:939504. [PMID: 36032099 PMCID: PMC9411714 DOI: 10.3389/fimmu.2022.939504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes play an important role during human immunodeficiency virus (HIV) acute infection. Yet, information regarding its cargo and its association with HIV rapid progressors (RPs) and typical progressors (TPs) remain largely unknown. In this study, exosomal miRNAs sequencing and mass cytometry were used to identify differential exosomal miRNAs and membrane proteins that participate in the pathogenesis of TPs and RPs. We discovered that miR-144-5p, miR-1180-3p, miR-451a, miR-362-5p, and miR-625-5p are associated with the TPs and miR-362-5p with the RPs. Decreased autophagy, amino acid metabolism, immune response, and IL-6 are closely related to RPs. In addition, SP1 was selected as the most significant transcription factor (TF) associated with disease progression. CD49D, CD5, CCR5, CD40, CD14, and CD86 were selected as the differential exosomal membrane proteins between TPs and RPs. This study provides valuable information for clarifying the mechanism in people with acute HIV infection.
Collapse
Affiliation(s)
- Xin Li
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- General Surgery Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Chen
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weihua Li, ; Chao Cai, ; Chuanyun Li,
| | - Chuanyun Li
- General Surgery Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weihua Li, ; Chao Cai, ; Chuanyun Li,
| | - Weihua Li
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weihua Li, ; Chao Cai, ; Chuanyun Li,
| |
Collapse
|
45
|
Ramalingam VV, Fletcher GJ, Kasirajan A, Demosthenes JP, Rupali P, Varghese GM, Pulimood SA, Rebekah G, Kannangai R. Can In-house HIV-2 Viral Load Assay be a Reliable Alternative to Commercial Assays for Clinical and Therapeutic Monitoring? Curr HIV Res 2022; 20:274-286. [PMID: 35692165 DOI: 10.2174/1570162x20666220609155237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Currently, there is a global contemplation to end the AIDS epidemic by 2030. HIV-2 poses unique challenges to this end. The burden of HIV-2 is higher in resource-limited countries, and it is intrinsically resistant to NNRTI drugs. In addition, there is no FDA-approved plasma viral load assay to monitor disease progression and therapeutic efficacy. To overcome these challenges, we have developed and evaluated an in-house quantitative HIV-2 viral load assay. METHODS Blood samples were collected from 28 HIV-2 treatment-naïve monoinfected individuals and tested using an in-house qPCR HIV-2 viral load assay. The extracted RNA was amplified using Quantifast pathogen + IC kit. RESULTS The in-house qPCR has a limit of detection of 695 copies/ml. The intra- and inter-assay variation (% CV) of the assay was 0.61 and 0.95, respectively. The in-house assay quantified HIV-2 NIBSC accurately (1000 IU) with a mean of 1952 copies/mL. Among the 28 samples tested by in-house qPCR assay, 11 (39.2%) samples were quantified, whereas 17 (60.7%) samples were not detected. In comparison with Altona RealStar HIV-2 RT PCR and Exavir Load RT assay, the results were 96.4% and 69.6% concordant, respectively. No significant (p = 0.99 and p = 0.13) difference in quantifying viral load between the three assays. Based on clinical and immunological (CD4) staging, the performance characteristics were comparable. CONCLUSION To the best of our knowledge, this is the first in-house qPCR developed in India. The performance characteristics of the in-house assay are comparable to the commercial assays, and they can be used assertively to monitor HIV-2 patients.
Collapse
Affiliation(s)
| | | | - Anand Kasirajan
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - John Paul Demosthenes
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Priscilla Rupali
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - George Mannil Varghese
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | | | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| |
Collapse
|
46
|
Makgoo L, Mosebi S, Mbita Z. Long noncoding RNAs (lncRNAs) in HIV-mediated carcinogenesis: Role in cell homeostasis, cell survival processes and drug resistance. Noncoding RNA Res 2022; 7:184-196. [PMID: 35991514 PMCID: PMC9361211 DOI: 10.1016/j.ncrna.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
There is accruing data implicating long non-coding RNAs (lncRNAs) in the development and progression of non-communicable diseases such as cancer. These lncRNAs have been implicated in many diverse HIV-host interactions, some of which are beneficial to HIV propagation. The virus-host interactions induce the expression of HIV-regulated long non-coding RNAs, which are implicated in the carcinogenesis process, therefore, it is critical to understand the molecular mechanisms that underpin these HIV-regulated lncRNAs, especially in cancer formation. Herein, we summarize the role of HIV-regulated lncRNAs targeting cancer development-related processes including apoptosis, cell cycle, cell survival signalling, angiogenesis and drug resistance. It is unclear how lncRNAs regulate cancer development, this review also discuss recent discoveries regarding the functions of lncRNAs in cancer biology. Innovative research in this field will be beneficial for the future development of therapeutic strategies targeting long non-coding RNAs that are regulated by HIV, especially in HIV associated cancers.
Collapse
|
47
|
Wang Y, Qiao X, Li Y, Yang Q, Wang L, Liu X, Wang H, Shen H. Role of the receptor for activated C kinase 1 during viral infection. Arch Virol 2022; 167:1915-1924. [PMID: 35763066 DOI: 10.1007/s00705-022-05484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Viruses can survive only in living cells, where they depend on the host's enzymatic system for survival and reproduction. Virus-host interactions are complex. On the one hand, hosts express host-restricted factors to protect the host cells from viral infections. On the other hand, viruses recruit certain host factors to facilitate their survival and transmission. The identification of host factors critical to viral infection is essential for comprehending the pathogenesis of contagion and developing novel antiviral therapies that specifically target the host. Receptor for activated C kinase 1 (RACK1), an evolutionarily conserved host factor that exists in various eukaryotic organisms, is a promising target for antiviral therapy. This review primarily summarizes the roles of RACK1 in regulating different viral life stages, particularly entry, replication, translation, and release.
Collapse
Affiliation(s)
- Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuhan Li
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qingru Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
48
|
Hawsawi YM, Shams A, Theyab A, Siddiqui J, Barnawee M, Abdali WA, Marghalani NA, Alshelali NH, Al-Sayed R, Alzahrani O, Alqahtani A, Alsulaiman AM. The State-of-the-Art of Gene Editing and its Application to Viral Infections and Diseases Including COVID-19. Front Cell Infect Microbiol 2022; 12:869889. [PMID: 35782122 PMCID: PMC9241565 DOI: 10.3389/fcimb.2022.869889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gene therapy delivers a promising hope to cure many diseases and defects. The discovery of gene-editing technology fueled the world with valuable tools that have been employed in various domains of science, medicine, and biotechnology. Multiple means of gene editing have been established, including CRISPR/Cas, ZFNs, and TALENs. These strategies are believed to help understand the biological mechanisms of disease progression. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been designated the causative virus for coronavirus disease 2019 (COVID-19) that emerged at the end of 2019. This viral infection is a highly pathogenic and transmissible disease that caused a public health pandemic. As gene editing tools have shown great success in multiple scientific and medical areas, they could eventually contribute to discovering novel therapeutic and diagnostic strategies to battle the COVID-19 pandemic disease. This review aims to briefly highlight the history and some of the recent advancements of gene editing technologies. After that, we will describe various biological features of the CRISPR-Cas9 system and its diverse implications in treating different infectious diseases, both viral and non-viral. Finally, we will present current and future advancements in combating COVID-19 with a potential contribution of the CRISPR system as an antiviral modality in this battle.
Collapse
Affiliation(s)
- Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Mecca, Saudi Arabia
| | - Abdulrahman Theyab
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Jumana Siddiqui
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mawada Barnawee
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Wed A. Abdali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada A. Marghalani
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada H. Alshelali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Rawan Al-Sayed
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Othman Alzahrani
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Alanoud Alqahtani
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
49
|
Jadhav S, Yenorkar N, Bondre R, Karemore M, Bali N. Nanomedicines encountering HIV dementia: A guiding star for neurotherapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Lu MD, Telwatte S, Kumar N, Ferreira F, Martin HA, Kadiyala GN, Wedrychowski A, Moron-Lopez S, Chen TH, Goecker EA, Coombs RW, Lu CM, Wong JK, Tsibris A, Yukl SA. Novel assays to investigate the mechanisms of latent infection with HIV-2. PLoS One 2022; 17:e0267402. [PMID: 35476802 PMCID: PMC9045618 DOI: 10.1371/journal.pone.0267402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Although there have been great advancements in the field of HIV treatment and prevention, there is no cure. There are two types of HIV: HIV-1 and HIV-2. In addition to genetic differences between the two types of HIV, HIV-2 infection causes a slower disease progression, and the rate of new HIV-2 infections has dramatically decreased since 2003. Like HIV-1, HIV-2 is capable of establishing latent infection in CD4+ T cells, thereby allowing the virus to evade viral cytopathic effects and detection by the immune system. The mechanisms underlying HIV latency are not fully understood, rendering this a significant barrier to development of a cure. Using RT-ddPCR, we previously demonstrated that latent infection with HIV-1 may be due to blocks to HIV transcriptional elongation, distal transcription/polyadenylation, and multiple splicing. In this study, we describe the development of seven highly-specific RT-ddPCR assays for HIV-2 that can be applied to the study of HIV-2 infections and latency. We designed and validated seven assays targeting different HIV-2 RNA regions along the genome that can be used to measure the degree of progression through different blocks to HIV-2 transcription and splicing. Given that HIV-2 is vastly understudied relative to HIV-1 and that it can be considered a model of a less virulent infection, application of these assays to studies of HIV-2 latency may inform new therapies for HIV-2, HIV-1, and other retroviruses.
Collapse
Affiliation(s)
- Michael D. Lu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
| | - Sushama Telwatte
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Nitasha Kumar
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Fernanda Ferreira
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Holly Anne Martin
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Gayatri Nikhila Kadiyala
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Adam Wedrychowski
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Sara Moron-Lopez
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Tsui-Hua Chen
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Erin A. Goecker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
| | - Robert W. Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
| | - Chuanyi M. Lu
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Joseph K. Wong
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
| | - Athe Tsibris
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Steven A. Yukl
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States of America
- Department of Medicine, San Francisco VA Health Care System, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|