1
|
Chatsirisakul O, Leenabanchong N, Siripaopradit Y, Chang CW, Buhngamongkol P, Pongpirul K. Strain-Specific Therapeutic Potential of Lactiplantibacillus plantarum: A Systematic Scoping Review. Nutrients 2025; 17:1165. [PMID: 40218922 PMCID: PMC11990516 DOI: 10.3390/nu17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Objectives: This systematically scoping review aims to evaluate the therapeutic potential and clinical benefits of specific Lactiplantibacillus plantarum (L. plantarum) strains in human health, identifying their strain-specific effects across various medical conditions. Methods: Following the PRISMA for Scoping Reviews (PRISMA-ScR) guidelines and employing the PICO framework, a comprehensive literature search was conducted in the PubMed and Embase databases to identify relevant studies published up to December 2023. Inclusion criteria were rigorously applied to ensure the selection of high-quality studies focusing on the clinical application of distinct L. plantarum stains. Results: This review analyzed several unique strains of L. plantarum across 69 studies, identifying several therapeutic benefits. L. plantarum 299v effectively improved gastrointestinal symptoms, enhanced oral health, and reduced systemic inflammation. L. plantarum IS-10506 exhibited notable immunomodulatory effects, especially in managing atopic dermatitis. L. plantarum LB931 showed promise in decreasing pathogenic colonization, supporting women's vaginal health. Additionally, L. plantarum CCFM8724 demonstrated potential in reducing early childhood caries, highlighting its promise in pediatric oral care. Conclusions: The therapeutic potential of L. plantarum is extensive, with certain strains exhibiting promising clinical benefits for specific health concerns. The findings of this review advocate for the integration of L. plantarum strains into clinical practice, emphasizing the need for further research to elucidate their mechanisms of action, optimal dosages, and long-term safety profiles.
Collapse
Affiliation(s)
- Oranut Chatsirisakul
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Natasha Leenabanchong
- Faculty of Medicine and Public Health, HRH Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Lak Si, Bangkok 10210, Thailand;
| | - Yada Siripaopradit
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Chun-Wei Chang
- College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Patsakorn Buhngamongkol
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Krit Pongpirul
- Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand
- Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
- Bumrungrad International Hospital, Bangkok 10110, Thailand
| |
Collapse
|
2
|
Petrillo F, Buonanno A, Fedi L, Galdiero M, Reibaldi M, Tamburini B, Galdiero E. Atopic Dermatitis and Atopic Keratoconjunctivitis: New Insights in the Analyses of Microbiota and Probiotic Effect. Int J Mol Sci 2025; 26:1463. [PMID: 40003928 PMCID: PMC11855157 DOI: 10.3390/ijms26041463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Atopy is defined as a predisposition to hypersensitivity reactions against a range of antigens. It is characterized by the activation of CD4+ T helper type 2 (Th2) cells and an increased production of immunoglobulin E (IgE). The most common atopic conditions are atopic dermatitis, asthma, allergic rhinitis, food allergies, and atopic ocular diseases. Atopic keratoconjunctivitis (AKC) is a chronic, bilateral inflammatory condition affecting the ocular surface, frequently occurring in conjunction with atopic dermatitis. It is not uncommon for patients to present with multiple conditions simultaneously or in a sequential manner. A comprehensive understanding of the underlying mechanisms of atopic diseases is essential for the effective clinical evaluation and treatment. Recent research has underscored the pivotal role of the microbiota in the pathogenesis of atopic dermatitis and atopic eye diseases, with alterations in microbial composition (dysbiosis) being linked to a spectrum of atopic conditions. Probiotics are currently being investigated as a potential treatment option for restoring microbial balance and alleviating disease symptoms. This review examines the relationship between atopic dermatitis, atopic keratoconjunctivitis, and the microbiota, evaluating the current evidence and exploring the potential of probiotics as a novel therapeutic approach.
Collapse
Affiliation(s)
- Francesco Petrillo
- Department of Medical Sciences, Eye Clinic, Turin University, 10024 Turin, Italy;
| | - Annalisa Buonanno
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (E.G.)
| | - Ludovica Fedi
- Department of Translational Medical Science, Section of Pediatrics, Università Degli Studi di Napoli Federico II, 80131 Naples, Italy;
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Michele Reibaldi
- Department of Medical Sciences, Eye Clinic, Turin University, 10024 Turin, Italy;
| | - Bruno Tamburini
- Department of Experimental Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Emilia Galdiero
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.B.); (E.G.)
| |
Collapse
|
3
|
Liu F, Zhang H, Fan L, Yu Q, Wang S. Hotspots and development trends of gut microbiota in atopic dermatitis: A bibliometric analysis from 1988 to 2024. Medicine (Baltimore) 2024; 103:e40931. [PMID: 39686442 PMCID: PMC11651439 DOI: 10.1097/md.0000000000040931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a prevalent inflammatory skin condition that commonly occurs in children. More and more scientific evidence suggests that gut microbiota plays an important role in the pathogenesis of AD, whereas there is no article providing a comprehensive summary and analysis. We aimed to analyze documents on AD and gut microbiota and identify hotspots and development trends in this field. METHODS Articles and reviews in the field of AD and gut microbiota from January 1, 1988 to October 20, 2024 were obtained from the Web of Science Core Collection database. Biblioshiny was utilized for evaluating and visualizing the core authors, journals, countries, documents, trend topics, and hotspots in this field. RESULTS Among 1672 documents, it indicated that the number of annual publications generally increased. The United States had the highest production, impact, and international collaboration. Journal of Allergy and Clinical Immunology was the journal of the maximum publications. Based on keyword co-occurrence and clustering analysis, "stratum-corneum lipids," "probiotics," "prebiotics," "fecal microbiota transplantation," "phage therapy," "short chain fatty-acids," "biologic therapy," and "skin inflammation" represented current trend topics. The pathological and molecular mechanisms and associated therapeutic methods for AD and gut microbiota were the research hotspots. The incorporation of microbiota-based therapies alongside conventional treatments can contribute to better clinical outcomes. CONCLUSION We highlighted that gut microbiota may exacerbate symptoms of AD through various aspects, including immunity, metabolites, and neuroendocrine pathways. More efforts are required to investigate the safety and efficacy of gut microbial management methods for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Fang Liu
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, China
| | - Haipeng Zhang
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, China
| | - Lina Fan
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, China
| | - Qi Yu
- Chengdong College, Northeast Agricultural University, Harbin, China
| | - Siqiao Wang
- Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Lee J, Jo J, Wan J, Seo H, Han SW, Shin YJ, Kim DH. In Vitro Evaluation of Probiotic Properties and Anti-Pathogenic Effects of Lactobacillus and Bifidobacterium Strains as Potential Probiotics. Foods 2024; 13:2301. [PMID: 39063385 PMCID: PMC11276478 DOI: 10.3390/foods13142301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Probiotics restore gut microbial balance, thereby providing health-promoting effects to the host. They have long been suggested for managing intestinal disorders caused by pathogens and for improving gut health. This study evaluated the probiotic properties and anti-pathogenic effects of specific probiotic strains against the intestinal pathogens Staphylococcus aureus and Escherichia coli. The tested strains-Lactiplantibacillus plantarum LC27, Limosilactobacillus reuteri NK33, Lacticaseibacillus rhamnosus NK210, Bifidobacterium longum NK46, and Bifidobacterium bifidum NK175-were able to survive harsh conditions simulating gastric and intestinal fluids. These strains exhibited good auto-aggregation abilities (41.8-92.3%) and ideal hydrophobicity (30.9-85.6% and 38.3-96.1% for xylene and chloroform, respectively), along with the ability to co-aggregate with S. aureus (40.6-68.2%) and E. coli (38.6-75.2%), indicating significant adhesion levels to Caco-2 cells. Furthermore, these strains' cell-free supernatants (CFSs) demonstrated antimicrobial and antibiofilm activity against S. aureus and E. coli. Additionally, these strains inhibited gas production by E. coli through fermentative activity. These findings suggest that the strains tested in this study have potential as novel probiotics to enhance gut health.
Collapse
Affiliation(s)
- Jaekoo Lee
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Jaehyun Jo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Jungho Wan
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Hanseul Seo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Seung-Won Han
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
5
|
Emokpae I, Tobia DL, Stamm SD, Lundy P, Weimer DS, Demory Beckler M. Examining the Efficacy of Five Lactobacillus Species in Treating and Preventing Atopic Dermatitis: A Systemic Literature Review. Cureus 2024; 16:e64833. [PMID: 39156317 PMCID: PMC11330270 DOI: 10.7759/cureus.64833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Probiotics have garnered increasing attention, particularly within the realm of atopic dermatitis (AD). Although classified as dietary supplements by the Food and Drug Administration, probiotics are being explored for their potential to modify immune system responses and aid in disease recovery. This review aims to provide a current understanding of probiotics, specifically various lactobacilli strains, as a therapeutic option in preventing and treating AD. The concept of the gut-skin axis has gained substantial recognition, emphasizing the complex relationship between the gut microbiome and skin health. Dysfunctional gut barriers and metabolites produced by gut microorganisms can exert profound influences on skin conditions, including AD. Lactobacilli species are particularly noteworthy for their resilience and stability within the gastrointestinal tract, making these bacteria ideal candidates for probiotic supplementation. Various lactobacilli strains (Lactobacillus salivarius, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus reuteri, and Lactobacillus rhamnosus) were included in this study due to their current uses in mitigating AD symptomatology. This systemic review article aims to shed light on the potential of probiotics as a therapeutic approach for AD, highlighting their stellar safety profile and promising therapeutic efficacy. Given the compelling preliminary findings and the constraints associated with conventional treatments, probiotics, particularly lactobacilli strains, emerge as a considerable alternative or adjuvant option for individuals grappling with AD. Further exploration is imperative to establish probiotics as a promising therapeutic option, providing renewed hope for those seeking effective strategies for managing AD.
Collapse
Affiliation(s)
- Imina Emokpae
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Deanna L Tobia
- Biomedical Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Saskia D Stamm
- Biomedical Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Petra Lundy
- Family and Community Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Derek S Weimer
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
- Biomedical Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Michelle Demory Beckler
- Microbiology and Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
6
|
Vassilopoulou E, Comotti A, Douladiris N, Konstantinou GΝ, Zuberbier T, Alberti I, Agostoni C, Berni Canani R, Bocsan IC, Corsello A, De Cosmi V, Feketea G, Laitinen K, Mazzocchi A, Monzani NA, Papadopoulos NG, Peroni DG, Pitsios C, Roth-Walter F, Skypala I, Tsabouri S, Baldeh AK, O'Mahony L, Venter C, Milani GP. A systematic review and meta-analysis of nutritional and dietary interventions in randomized controlled trials for skin symptoms in children with atopic dermatitis and without food allergy: An EAACI task force report. Allergy 2024; 79:1708-1724. [PMID: 38783644 DOI: 10.1111/all.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
This systematic review and meta-analysis aimed to consolidate evidence on dietary interventions for atopic eczema/dermatitis (AD) skin symptoms in children without food allergies, following PRISMA 2020 guidelines. Systematic review updates were conducted in May 2022 and June 2023, focusing on randomized placebo-controlled trials (RCTs) involving children with AD but without food allergies. Specific diets or supplements, such as vitamins, minerals, probiotics, prebiotics, symbiotics, or postbiotics, were explored in these trials. Exclusions comprised descriptive studies, systematic reviews, meta-analyses, letters, case reports, studies involving elimination diets, and those reporting on food allergens in children and adolescents. Additionally, studies assessing exacerbation of AD due to food allergy/sensitization and those evaluating elimination diets' effects on AD were excluded. Nutritional supplementation studies were eligible regardless of sensitization profile. Evaluation of their impact on AD clinical expression was performed using SCORAD scores, and a meta-analysis of SCORAD outcomes was conducted using random-effect models (CRD42022328702). The review encompassed 27 RCTs examining prebiotics, Vitamin D, evening primrose oil, and substituting cow's milk formula with partially hydrolyzed whey milk formula. A meta-analysis of 20 RCTs assessing probiotics, alone or combined with prebiotics, revealed a significant reduction in SCORAD scores, suggesting a consistent trend in alleviating AD symptoms in children without food allergies. Nonetheless, evidence for other dietary interventions remains limited, underscoring the necessity for well-designed intervention studies targeting multiple factors to understand etiological interactions and propose reliable manipulation strategies.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Comotti
- Occupational Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nikolaos Douladiris
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - George Ν Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Torsten Zuberbier
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Ilaria Alberti
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Carlo Agostoni
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "luliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Valentina De Cosmi
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità - Italian National Institute of Health, Rome, Italy
| | - Gavriela Feketea
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "luliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pediatrics, "Karamandaneio" Children's Hospital of Patra, Patras, Greece
| | - Kirsi Laitinen
- Faculty of Medicine, Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Nutrition and Food Research Center, University of Turku, Turku, Finland
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Nicola A Monzani
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | | | - Diego G Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | | | - Franziska Roth-Walter
- Department of Interdisciplinary Life Sciences, Messerli Research Institute, University of Veterinary Medicine, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Isabel Skypala
- Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK
- Department of Inflammation & Repaid, Imperial College of London, London, UK
| | - Sophia Tsabouri
- Child Health Department, University of Ioannina School of Medicine, Ioannina, Greece
| | - Abdoulie K Baldeh
- Department of Public Health and Community Medicine, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liam O'Mahony
- APC Microbiome Ireland, Department of Medicine, School of Microbiology, University College Cork, Cork, Ireland
| | - Carina Venter
- Pediatric Allergy and Clinical Immunology, Children's Hospital Colorado/University of Colorado, Aurora, Colorado, USA
| | - Gregorio Paolo Milani
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| |
Collapse
|
7
|
ERVINA WF, MADYAWATI SP, SAPUTRO ID, SAFARI D, PUTRI RE, ZULQAIDA S. A Meta-analysis of the Effect of Probiotic Lactobacillus sp. as Immunomodulating Inflammatory Responses. Medeni Med J 2024; 39:122-131. [PMID: 38940492 PMCID: PMC11572271 DOI: 10.4274/mmj.galenos.2024.53822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Lactobacillus sp. is considered an indispensable probiotic, and this probiotic has an effective role in maintaining the immune system. We evaluated the effect of the probiotic Lactobacillus sp. on modulating inflammation in several cases. In collecting the literature, we used databases from the Web of Science, the Cochrane Central Register of Controlled Trials, PubMed, and Embase. Studies that met the inclusion criteria were analyzed using Review Manager (version 5.4). A p-value of <0.05 of the total effect is considered statistically significant. Finally, 1895 references were retrieved and 20 were included in the meta-analysis. This meta-analysis suggested that most cases in this study were healthy elderly who received treatment with Lactobacillus sp. Lactobacillus sp. has a positive effect on B cells, eosinophils, IgE, NK cells, TNF-α, and IL-10. Lactobacillus could regulate the immune system by modulating inflammation in the healthy elderly.
Collapse
Affiliation(s)
- Waode Fifin ERVINA
- Postgraduate School of Universitas Airlangga, Master of Immunology Program, Surabaya, Indonesia
- National Research and Innovation Agency, Cibinong, Indonesia
| | | | | | - Dodi SAFARI
- National Research and Innovation Agency, Cibinong, Indonesia
| | - Rury Eryna PUTRI
- Postgraduate School of Universitas Airlangga, Master of Forensic Program, Surabaya, Indonesia
| | - Salma ZULQAIDA
- Postgraduate School of Universitas Airlangga, Master of Immunology Program, Surabaya, Indonesia
| |
Collapse
|
8
|
Kim S, Kang BG, Sa S, Park SY, Ryu K, Lee J, Park B, Kwon M, Kim Y, Kim J, Shin S, Jang S, Kim BE, Bae J, Ahn K, Liu KH, Kim J. Advanced fructo-oligosaccharides improve itching and aberrant epidermal lipid composition in children with atopic dermatitis. Front Microbiol 2024; 15:1383779. [PMID: 38741747 PMCID: PMC11089124 DOI: 10.3389/fmicb.2024.1383779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The effects of fructo-oligosaccharides (FOS) on atopic dermatitis (AD) have not been determined. Methods In a randomized, double-blind, placebo-controlled trial, children with AD aged 24 months to 17 years received either advanced FOS containing 4.25 g of 1-kestose or a placebo (maltose) for 12 weeks. Results The SCORAD and itching scores were reduced in patients treated with both FOS (all p < 0.01) and maltose (p < 0.05 and p < 0.01). Sleep disturbance was improved only in the FOS group (p < 0.01). The FOS group revealed a decreased proportion of linoleic acid (18:2) esterified omega-hydroxy-ceramides (EOS-CERs) with amide-linked shorter chain fatty acids (C28 and C30, all p < 0.05), along with an increased proportion of EOS-CERs with longer chain fatty acids (C32, p < 0.01). Discussion FOS may be beneficial in alleviating itching and sleep disturbance, as well as improving skin barrier function in children with AD.
Collapse
Affiliation(s)
- Sukyung Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bae-Gon Kang
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soonok Sa
- Food R&D, Samyang Corporation, Seongnam, Republic of Korea
| | - Se Young Park
- Food R&D, Samyang Corporation, Seongnam, Republic of Korea
| | - Kyungheon Ryu
- Food R&D, Samyang Corporation, Seongnam, Republic of Korea
| | - Jinyoung Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Boram Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Mijeong Kwon
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeonghee Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sanghee Shin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehun Jang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung Eui Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, National Jewish Health, Denver, CO, United States
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| |
Collapse
|
9
|
Chan OM, Xu W, Cheng NS, Leung ASY, Ching JYL, Fong BLY, Cheong PK, Zhang L, Chan FKL, Ng SC, Leung TF. A novel infant microbiome formula (SIM03) improved eczema severity and quality of life in preschool children. Sci Rep 2024; 14:3168. [PMID: 38326388 PMCID: PMC10850179 DOI: 10.1038/s41598-024-53848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Altered gut microbiome composition has been reported in children with eczema and interventions that restore beneficial bacteria in the gut may improve eczema. This open-label pilot study aimed to investigate the efficacy of a novel infant microbiome formula (SIM03) in young children with eczema. Pre-school Chinese children aged 1-5 years old with eczema received SIM03 twice daily for three months. The novelty of SIM03 consists of both the use of a patented microencapsulation technology to protect the viability of unique Bifidobacterium bifidum and Bifidobacterium breve strains identified through big data analysis of large metagenomic datasets of young Chinese children. Paired stool samples at baseline and following SIM03 were analyzed by metagenomics sequencing. Generalized estimating equation was used to analyze changes in eczema severity, skin biophysical parameters, quality of life and stool microbiome. Twenty children aged 3.0 ± 1.6 years (10 with severe eczema) were recruited. Treatment compliance was ≥ 98%. SCORing Atopic Dermatitis score decreased significantly at two months (P = 0.008) and three months (P < 0.001), while quality of life improved significantly at 1, 2, and 3 months. The relative abundance of B. breve and microbial pathways on acetate and acetyl-CoA synthesis were enriched in stool samples at one month (P = 0.0014). Children who demonstrated increased B. bifidum after SIM03 showed improvement in sleep loss (P = 0.045). Relative abundance of B. breve correlated inversely with eczema extent (P = 0.023) and intensity (P = 0.019) only among patients with increased B. breve at Month 3. No serious adverse event was observed. In conclusion, SIM03 is well tolerated. This patented microbiome formula improves disease severity and quality of life in young eczematous children by enhancing the delivery of B. bifidum and B. breve in the gut. SIM03 is a potential treatment option for childhood eczema.
Collapse
Affiliation(s)
- Oi Man Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Wenye Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Shatin, Hong Kong SAR, China
| | - Nam Sze Cheng
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Agnes Sze Yin Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jessica Yuet Ling Ching
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Shatin, Hong Kong SAR, China
| | - Brian Leong Yuen Fong
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Pui Kuan Cheong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Shatin, Hong Kong SAR, China
| | - Lin Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Shatin, Hong Kong SAR, China
| | - Francis Ka Leung Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Shatin, Hong Kong SAR, China
| | - Siew Chien Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Shatin, Hong Kong SAR, China
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
10
|
Kadia BM, Allen SJ. Effect of Pre-, Pro-, and Synbiotics on Biomarkers of Systemic Inflammation in Children: A Scoping Review. Nutrients 2024; 16:336. [PMID: 38337621 PMCID: PMC10856957 DOI: 10.3390/nu16030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic inflammation plays a central role in many diseases and is, therefore, an important therapeutic target. In a scoping review, we assessed the evidence base for the anti-inflammatory effects of pre-, pro-, and synbiotics in children. Of the 1254 clinical trials published in English in Ovid Medline and Cochrane Library PubMed from January 2003 to September 2022, 29 were included in the review. In six studies of healthy children (n = 1552), one reported that fructo-oligosaccharides added to infant formula significantly reduced pro-inflammatory biomarkers, and one study of a single-strain probiotic reported both anti- and pro-inflammatory effects. No effects were seen in the remaining two single-strain studies, one multi-strain probiotic, and one synbiotic study. In 23 studies of children with diseases (n = 1550), prebiotics were tested in 3, single-strain in 16, multi-strain probiotics in 6, and synbiotics in 2 studies. Significantly reduced inflammatory biomarkers were reported in 7/10 studies of atopic/allergic conditions, 3/5 studies of autoimmune diseases, 1/2 studies of preterm infants, 1 study of overweight/obesity, 2/2 studies of severe illness, and 2/3 studies of other diseases. However, only one or two of several biomarkers were often improved; increased pro-inflammatory biomarkers occurred in five of these studies, and a probiotic increased inflammatory biomarkers in a study of newborns with congenital heart disease. The evidence base for the effects of pre-, pro-, and synbiotics on systemic inflammation in children is weak. Further research is needed to determine if anti-inflammatory effects depend on the specific pre-, pro-, and synbiotic preparations, health status, and biomarkers studied.
Collapse
Affiliation(s)
| | - Stephen John Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| |
Collapse
|
11
|
Xue P, Qin H, Qin D, Liu H, Li J, Jin R, Xiao X. The efficacy and safety of oral microecological agents as add-on therapy for atopic dermatitis: A systematic review and meta-analysis of randomized clinical trials. Clin Transl Allergy 2023; 13:e12318. [PMID: 38146806 PMCID: PMC10694634 DOI: 10.1002/clt2.12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a common skin disease that is hard to completely cure in a short time. Guidelines recommend the use of topical corticosteroids (TCS) as first-line anti-inflammatory therapy for AD, but long-term use has significant side effects. Microecological agents (MA), including probiotics, prebiotics and synbiotics, have been widely reported as a potential adjunctive therapy of AD, but whether MA can contribute to AD treatment is currently controversial. Therefore, we conducted a systematic review and meta-analysis to investigate whether MA as an add-on therapy for AD has synergistic and attenuated effects and to further understand the role of MA in clinical interventions for AD. METHODS We systematically searched Medline, Embase, Web of Science, Cochrane Library and PsycINFO databases up to Apr 11, 2023, and bibliographies were also manually searched, for potentially relevant studies regarding MA as additional therapy of AD. The Cochrane Risk of Bias Tool for assessing risk of bias was used to assess the quality of randomized controlled trials (RCTs). Two reviewers screened studies, extracted data, and evaluated the risk of bias independently. The primary outcomes (SCORAD scores and the number of adverse events) and the secondary outcomes (pruritus scores, the quality of life and the frequency of TCS) were extracted from each article. The data were combined and analyzed to quantify the safety and efficacy of the treatment. R (V4.4.3) software was used for data synthesis. The certainty of the evidence was evaluated with the Grade of Recommendation, Assessment, Development and Evaluation (GRADE) system. We also performed a trial sequential analysis to assess the reliability of the evidence. RESULTS A total of 21 studies, including 1230 individuals, were identified, 20 of which met the eligibility criteria for the meta-analysis. Our pooled meta-analyses showed that compared with controls, oral MA as an add-on therapy was associated with significantly lower SCORAD scores (MD = -5.30, 95% CI -8.50, -1.55, p < 0.01, I2 = 81%). However, adverse events, pruritus scores, quality of life, and frequency of TCS use showed no significant difference in this meta-analysis study (p > 0.05). CONCLUSIONS This meta-analysis showed that MA plus TCS could be an effective and safe treatment for patients with AD to relieve relevant symptoms, which might be used as an add-on therapy in the treatment of AD. However, due to the limited number of studies, results should be interpreted with caution. Further studies with a larger sample size are needed to explore the optimal protocol of MA plus TCS.
Collapse
Affiliation(s)
- Peiwen Xue
- School of Health Preservation and RehabilitationChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Haiyan Qin
- Acupuncture and Tuina SchoolChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Di Qin
- Acupuncture and Tuina SchoolChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Huilin Liu
- Acupuncture and Tuina SchoolChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Juan Li
- School of Health Preservation and RehabilitationChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCMChengduSichuanChina
| | - Rongjiang Jin
- School of Health Preservation and RehabilitationChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xianjun Xiao
- School of Health Preservation and RehabilitationChengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
12
|
Aguwa C, Enwereji N, Santiago S, Hine A, Kels GG, McGee J, Lu J. Targeting dysbiosis in psoriasis, atopic dermatitis, and hidradenitis suppurativa: the gut-skin axis and microbiome-directed therapy. Clin Dermatol 2023; 41:640-649. [PMID: 37816413 DOI: 10.1016/j.clindermatol.2023.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Emerging evidence highlights the gut-skin microbiota as a potential therapeutic target for the management of inflammatory-driven cutaneous diseases as well as the interconnection of the gut-skin microbiota in disease pathogenesis and progression. Although not fully understood, recent research has indicated that commensal microbiota and the interaction of the gut-skin axis play an important role in maintaining skin homeostasis. Dysbiosis and disruption of the skin-gut microbiome may lead to impaired skin barrier function, thus triggering downstream inflammatory responses involved in the development of inflammatory skin disorders, especially in atopic dermatitis, psoriasis, and hidradenitis suppurativa. The skin microbiome may also serve as adjunctive therapeutic modalities for treatment. Herein, we review the latest reports on the interrelationship between microbial dysbiosis and inflammatory cutaneous diseases as well as emerging microbiome-directed therapeutics in atopic dermatitis, psoriasis, and hidradenitis suppurativa.
Collapse
Affiliation(s)
- Chibuzo Aguwa
- School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Ndidi Enwereji
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, Connecticut, USA
| | - Sueheidi Santiago
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ashley Hine
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Jean McGee
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jun Lu
- Department of Dermatology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
13
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
14
|
Xue X, Yang X, Shi X, Deng Z. Efficacy of probiotics in pediatric atopic dermatitis: A systematic review and meta-analysis. Clin Transl Allergy 2023; 13:e12283. [PMID: 37488736 PMCID: PMC10349543 DOI: 10.1002/clt2.12283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a prevailing skin disease in childhood. Several studies have appraised probiotics as a strategy for treating AD. We aimed to assess the validity of probiotics in the treatment of AD in children. METHODS We systematically searched the PubMed/MEDLINE, Embase, Scopus, EBSCO, Web of Science and Cochrane library databases for randomized controlled trials (RCTs) that assessed the effect of probiotic treatment on SCORAD value in pediatric patients with AD compared with a placebo group between 1 January 2010 and 1 January 2023. The risk of bias and the certainty of evidence were assessed using Cochrane ROB 2.0. RESULTS A total of 10 outcomes from 9 RCTs involving 1000 patients were included. Three of these outcomes were analyzed as dichotomous variables in 373 patients. The other seven were analyzed for continuous variables in 627 patients. A meta-analysis of the random-effect model of the dichotomous variables demonstrated no significant difference between the probiotic and control groups [OR = 1.75, 95% confidence interval (CI) (0.70, 4.35), p = 0.23, I2 = 68%]. A meta-analysis of the random-effect model of continuous variables demonstrated significant differences between the probiotic and control groups [MD = -4.24, 95% CI (-7.78, -0.71), p = 0.002, I2 = 71%]. Subgroup analysis of continuous variables showed that the effects of children's age, treatment duration and probiotic species on the SCORAD value were not statistically significant. CONCLUSION Evidence on the improvement effect of probiotics on pediatric patients with AD is limited. This study showed that single-strain probiotic treatment exerts a positive effect on AD. Restricted to the quantity and quality of incorporated studies, these conclusions have yet to be validated by high-quality studies.
Collapse
Affiliation(s)
- Xiali Xue
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiubo Shi
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China
| | - Zhongyi Deng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Ojha S, Patil N, Jain M, Kole C, Kaushik P. Probiotics for Neurodegenerative Diseases: A Systemic Review. Microorganisms 2023; 11:microorganisms11041083. [PMID: 37110506 PMCID: PMC10140855 DOI: 10.3390/microorganisms11041083] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders (ND) are a group of conditions that affect the neurons in the brain and spinal cord, leading to their degeneration and eventually causing the loss of function in the affected areas. These disorders can be caused by a range of factors, including genetics, environmental factors, and lifestyle choices. Major pathological signs of these diseases are protein misfolding, proteosomal dysfunction, aggregation, inadequate degradation, oxidative stress, free radical formation, mitochondrial dysfunctions, impaired bioenergetics, DNA damage, fragmentation of Golgi apparatus neurons, disruption of axonal transport, dysfunction of neurotrophins (NTFs), neuroinflammatory or neuroimmune processes, and neurohumoral symptoms. According to recent studies, defects or imbalances in gut microbiota can directly lead to neurological disorders through the gut-brain axis. Probiotics in ND are recommended to prevent cognitive dysfunction, which is a major symptom of these diseases. Many in vivo and clinical trials have revealed that probiotics (Lactobacillus acidophilus, Bifidobacterium bifidum, and Lactobacillus casei, etc.) are effective candidates against the progression of ND. It has been proven that the inflammatory process and oxidative stress can be modulated by modifying the gut microbiota with the help of probiotics. As a result, this study provides an overview of the available data, bacterial variety, gut-brain axis defects, and probiotics' mode of action in averting ND. A literature search on particular sites, including PubMed, Nature, and Springer Link, has identified articles that might be pertinent to this subject. The search contains the following few groups of terms: (1) Neurodegenerative disorders and Probiotics OR (2) Probiotics and Neurodegenerative disorders. The outcomes of this study aid in elucidating the relationship between the effects of probiotics on different neurodegenerative disorders. This systematic review will assist in discovering new treatments in the future, as probiotics are generally safe and cause mild side effects in some cases in the human body.
Collapse
Affiliation(s)
- Sandhya Ojha
- Cell & Developmental Biology Laboratory, Centre of Research for Development, Parul University, Vadodara 391760, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Nil Patil
- Cell & Developmental Biology Laboratory, Centre of Research for Development, Parul University, Vadodara 391760, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Mukul Jain
- Cell & Developmental Biology Laboratory, Centre of Research for Development, Parul University, Vadodara 391760, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | | | - Prashant Kaushik
- Instituto de Conservacióny Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
16
|
Fijan S, Kolč N, Hrašovec M, Jamtvedt G, Pogačar MŠ, Mičetić Turk D, Maver U. Single-Strain Probiotic Lactobacilli for the Treatment of Atopic Dermatitis in Children: A Systematic Review and Meta-Analysis. Pharmaceutics 2023; 15:pharmaceutics15041256. [PMID: 37111741 PMCID: PMC10146705 DOI: 10.3390/pharmaceutics15041256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics are known for their positive effects on the gut microbiota. There is growing evidence that the infant gut and skin colonization have a role in the development of the immune system, which may be helpful in the prevention and treatment of atopic dermatitis. This systematic review focused on evaluating the effect of single-strain probiotic lactobacilli consumption on treating children's atopic dermatitis. Seventeen randomized placebo-controlled trials with the primary outcome of the Scoring Atopic Dermatitis (SCORAD) index were included in the systematic review. Clinical trials using single-strain lactobacilli were included. The search was conducted until October 2022 using PubMed, ScienceDirect, Web of Science, Cochrane library and manual searches. The Joanna Briggs Institute appraisal tool was used to assess the quality of the included studies. Meta-analyses and sub meta-analyses were performed using Cochrane Collaboration methodology. Due to different methods of reporting the SCORAD index, only 14 clinical trials with 1124 children were included in the meta-analysis (574 in the single-strain probiotic lactobacilli group and 550 in the placebo group) and showed that single-strain probiotic lactobacilli statistically significantly reduced the SCORAD index compared to the placebo in children with atopic dermatitis (mean difference [MD]: -4.50; 95% confidence interval [CI]: -7.50 to -1.49; Z = 2.93; p = 0.003; heterogeneity I2 = 90%). The subgroup meta-analysis showed that strains of Limosilactobacillus fermentum were significantly more effective than strains of Lactiplantibacillus plantarum, Lacticaseibacillus paracasei or Lacticaseibacillus rhamnosus. A longer treatment time and younger treatment age statistically significantly reduced symptoms of atopic dermatitis. The result of this systematic review and meta-analysis shows that certain single-strain probiotic lactobacilli are more successful than others in reducing atopic dermatitis severity in children. Therefore, careful consideration to strain selection, treatment time and the age of the treated patients are important factors in enhancing the effectiveness of reducing atopic dermatitis in children when choosing probiotic single-strain lactobacilli.
Collapse
Affiliation(s)
- Sabina Fijan
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Nina Kolč
- Department of Pediatrics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Metka Hrašovec
- Department of Pediatrics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Gro Jamtvedt
- Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
| | - Maja Šikić Pogačar
- Department of Pediatrics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Dušanka Mičetić Turk
- Department of Pediatrics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
17
|
Jankiewicz M, Łukasik J, Kotowska M, Kołodziej M, Szajewska H. Strain-Specificity of Probiotics in Pediatrics: A Rapid Review of the Clinical Evidence. J Pediatr Gastroenterol Nutr 2023; 76:227-231. [PMID: 36563089 DOI: 10.1097/mpg.0000000000003675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The dogma of probiotic strain-specificity is widely accepted. However, only the genus- and species-specific effects of probiotics are supported by evidence from clinical trials. The aim of this rapid review was to assess clinical evidence supporting the claim that the efficacy of probiotics in the pediatric population is strain-specific. METHODS The Cochrane Library, MEDLINE, and EMBASE databases were searched (up to August 2022) for randomized controlled trials (RCTs) conducted in children aged 0-18 years evaluating the effects of prophylactic or therapeutic administration of probiotics (well-characterized at the strain level) for conditions such as antibiotic-associated diarrhea, acute diarrhea, necrotizing enterocolitis, respiratory tract infections, Helicobacter pylori infection, and atopic dermatitis. To allow evaluation of strain-specificity, a trial could only be included in the review if at least one additional RCT assessed the effect of a different strain of the same species against the same comparator. RCTs without proper strain-level data were excluded. In the absence of identifying head-to-head strain versus strain RCTs, indirect comparisons were made between interventions. RESULTS Twenty-three RCTs were eligible for inclusion. Out of the 11 performed comparisons, with 1 exception (two Lacticaseibacillus paracasei strains in reducing atopic dermatitis symptoms), no significant differences between the clinical effects of different strains of the same probiotic species were found. CONCLUSIONS Head-to-head comparison is an optimal study design to compare probiotic strains, but such comparisons are lacking. Based on indirect comparisons, this rapid review demonstrates insufficient clinical evidence to support or refute the claim that probiotic effects in children are strain-specific.
Collapse
Affiliation(s)
- Mateusz Jankiewicz
- From the Department of Paediatrics, The Medical University of Warsaw, Warszawa, Poland
| | | | | | | | | |
Collapse
|
18
|
Xie A, Chen A, Chen Y, Luo Z, Jiang S, Chen D, Yu R. Lactobacillus for the treatment and prevention of atopic dermatitis: Clinical and experimental evidence. Front Cell Infect Microbiol 2023; 13:1137275. [PMID: 36875529 PMCID: PMC9978199 DOI: 10.3389/fcimb.2023.1137275] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease, accompanied by itching and swelling. The main pathological mechanism of AD is related to the imbalance between Type 2 helper cells (Th2 cells) and Type 1 helper cells (Th1 cells). Currently, no safe and effective means to treat and prevent AD are available; moreover, some treatments have side effects. Probiotics, such as some strains of Lactobacillus, can address these concerns via various pathways: i) facilitating high patient compliance; ii) regulating Th1/Th2 balance, increasing IL-10 secretion, and reducing inflammatory cytokines; iii) accelerating the maturation of the immune system, maintaining intestinal homeostasis, and improving gut microbiota; and iv) improving the symptoms of AD. This review describes the treatment and prevention of AD using 13 species of Lactobacillus. AD is commonly observed in children. Therefore, the review includes a higher proportion of studies on AD in children and fewer in adolescents and adults. However, there are also some strains that do not improve the symptoms of AD and even worsen allergies in children. In addition, a subset of the genus Lactobacillus that can prevent and relieve AD has been identified in vitro. Therefore, future studies should include more in vivo studies and randomized controlled clinical trials. Given the advantages and disadvantages mentioned above, further research in this area is urgently required.
Collapse
Affiliation(s)
- Anni Xie
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuqing Chen
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Daozhen Chen, ; Renqiang Yu,
| |
Collapse
|
19
|
Steyer A, Mičetić-Turk D, Fijan S. The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms 2022; 10:microorganisms10122392. [PMID: 36557645 PMCID: PMC9781831 DOI: 10.3390/microorganisms10122392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Enteric viruses, including the rotavirus, norovirus, and adenoviruses, are the most common cause of acute gastroenteritis. The rotavirus disease is especially prevalent among children, and studies over the past decade have revealed complex interactions between rotaviruses and the gut microbiota. One way to treat and prevent dysbiosis is the use of probiotics as an antiviral agent. This review focuses on the latest scientific evidence on the antiviral properties of probiotics against rotavirus gastroenteric infections in children. A total of 19 studies exhibited a statistically significant antiviral effect of probiotics. The main probiotics that were effective were Saccharomyces cerevisiae var. boulardii, Lacticaseibacillus rhamnosus GG, and various multi-strain probiotics. The underlying mechanism of the probiotics against rotavirus gastroenteric infections in children included immune enhancement and modulation of intestinal microbiota leading to shortening of diarrhoea. However, several clinical studies also found no significant difference in the probiotic group compared to the placebo group even though well-known strains were used, thus showing the importance of correct dosage, duration of treatment, quality of probiotics and the possible influence of other factors, such as the production process of probiotics and the influence of immunisation on the effect of probiotics. Therefore, more robust, well-designed clinical studies addressing all factors are warranted.
Collapse
Affiliation(s)
- Andrej Steyer
- National Laboratory of Health, Environment and Food, Division of Public Health Microbiology, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Dušanka Mičetić-Turk
- Department of Paediatrics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Sabina Fijan
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
20
|
Schneider R, Sant'Anna A. Using probiotics in paediatric populations. Paediatr Child Health 2022; 27:482-502. [PMID: 36583073 PMCID: PMC9792287 DOI: 10.1093/pch/pxac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/25/2022] [Indexed: 12/28/2022] Open
Abstract
This statement defines probiotics and reviews the most recent literature on their use in paediatrics. Many studies have examined the potential benefit of probiotics, but significant variation in the strains and doses of probiotics used, the patient populations studied, and in study design, have led to heterogeneous results. Present evidence suggests that probiotics can decrease mortality and lower incidence of necrotizing enterocolitis in preterm and low birth weight neonates. Probiotics may also be beneficial in reducing feeding intolerance. In infants, probiotics may be considered to reduce symptoms of colic. In older children, probiotics can be considered to prevent antibiotic-associated diarrhea and Clostridium difficile -associated diarrhea. Probiotic supplements used in conjunction with standard therapy can help with Helicobacter pylori eradication and decrease the side effects of treatment. Lactobacillus species can be considered to treat irritable bowel syndrome. Probiotics can also be considered to help prevent atopic dermatitis and eczema. To optimize paediatric policy and practice, large, quality studies are needed to determine what types and combinations of probiotics are most efficacious.
Collapse
Affiliation(s)
- Rilla Schneider
- Canadian Paediatric Society, Nutrition and Gastroenterology Committee, Ottawa, Ontario, Canada
| | - Ana Sant'Anna
- Canadian Paediatric Society, Nutrition and Gastroenterology Committee, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Schneider R, Sant'Anna A. L’utilisation des probiotiques dans la population pédiatrique. Paediatr Child Health 2022; 27:482-502. [PMID: 36583070 PMCID: PMC9792288 DOI: 10.1093/pch/pxac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/25/2022] [Indexed: 12/28/2022] Open
Abstract
Le présent document de principes définit les probiotiques et fournit une analyse des publications scientifiques les plus récentes sur leur utilisation en pédiatrie. De nombreuses études ont évalué les avantages potentiels des probiotiques, mais en raison des variations importantes dans les souches et les doses utilisées, des populations de patients étudiées et des méthodologies privilégiées, les résultats sont hétérogènes. Selon les données probantes à jour, les probiotiques peuvent réduire le taux de mortalité et l’incidence d’entérocolite nécrosante chez les nouveau-nés prématurés et de petit poids à la naissance. Ils peuvent également être bénéfiques pour réduire l’intolérance alimentaire. Chez les nourrissons, on peut envisager de les utiliser pour limiter les symptômes de coliques, et chez les enfants plus âgés, pour prévenir la diarrhée associée aux antibiotiques ou au Clostridium difficile . Les suppléments de probiotiques utilisés conjointement avec un traitement standard peuvent contribuer à éradiquer l’Helicobacter pylori et à atténuer les effets secondaires du traitement. On peut envisager d’utiliser des espèces de Lactobacillus pour traiter le syndrome du côlon irritable ou de recourir à des probiotiques pour contribuer à prévenir la dermatite atopique et l’eczéma. Afin d’optimiser les politiques et les pratiques en pédiatrie, de vastes études de qualité devront être réalisées pour déterminer les types et les combinaisons de probiotiques les plus efficaces.
Collapse
Affiliation(s)
- Rilla Schneider
- Société canadienne de pédiatrie, comité de nutrition et de gastroentérologie, Ottawa (Ontario)Canada
| | - Ana Sant'Anna
- Société canadienne de pédiatrie, comité de nutrition et de gastroentérologie, Ottawa (Ontario)Canada
| |
Collapse
|
22
|
D'Auria E, Acunzo M, Salvatore S, Grazi R, Agosti M, Vandenplas Y, Zuccotti G. Biotics in atopic diseases: state of the art and future perspectives. Minerva Pediatr (Torino) 2022; 74:688-702. [PMID: 36149096 DOI: 10.23736/s2724-5276.22.07010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prevalence of allergic diseases has growing in recent decades, being a significant burden for patients and their families. Different environmental factors, acting in early life, can significantly affect the timing and diversity of bacterial colonization and the immune system development. Growing evidence points to a correlation between early life microbial perturbation and development of allergic diseases. Besides, changes in the microbiota in one body site may influence other microbiota communities at distance by different mechanisms, including microbial-derived metabolites, mainly the short chain fatty acids (SCFA). Hence, there has been an increasing interest on the role of "biotics" (probiotics, prebiotics, symbiotics and postbiotics) in shaping dysbiosis and modulating allergic risk. Systemic type 2 inflammation is emerging as a common pathogenetic pathway of allergic diseases, intertwining communication with the gut mcirobiota. The aim of this review was to provide an update overview of the current knowledge of biotics in prevention and treatment of allergic diseases, also addressing research gaps which need to be filled.
Collapse
Affiliation(s)
- Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy -
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Silvia Salvatore
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Roberta Grazi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Massimo Agosti
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Yvan Vandenplas
- KidZ Health Castle, Free University of Brussels, Brussels, Belgium
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Wang Y, Choy CT, Lin Y, Wang L, Hou J, Tsui JCC, Zhou J, Wong CH, Yim TK, Tsui WK, Chan UK, Siu PLK, Loo SKF, Tsui SKW. Effect of a Novel E3 Probiotics Formula on the Gut Microbiome in Atopic Dermatitis Patients: A Pilot Study. Biomedicines 2022; 10:2904. [PMID: 36428472 PMCID: PMC9687608 DOI: 10.3390/biomedicines10112904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) has been shown to be closely related to gut dysbiosis mediated through the gut−skin axis, and thus the gut microbiome has recently been explored as a potential therapeutic target for the treatment of AD. Contrasting and varying efficacy have been reported since then. In order to investigate the determining factor of probiotics responsiveness in individuals with AD, we initiated the analysis of 41 AD patients with varying disease severity in Hong Kong, whereas the severity was assessed by Eczema Area and Severity Index (EASI) by board certified dermatologist. 16S rRNA sequencing on the fecal samples from AD patients were performed to obtain the metagenomics profile at baseline and after 8 weeks of oral administration of a novel E3 probiotics formula (including prebiotics, probiotics and postbiotics). While EASI of the participants were significantly lower after the probiotics treatment (p < 0.001, paired Wilcoxon signed rank), subjects with mild AD were found to be more likely to respond to the probiotics treatment. Species richness among responders regardless of disease severity were significantly increased (p < 0.001, paired Wilcoxon signed rank). Responders exhibited (1) elevated relative abundance of Clostridium, Fecalibacterium, Lactobacillus, Romboutsia, and Streptococcus, (2) reduced relative abundance of Collinsella, Bifidobacterium, Fusicatenibacter, and Escherichia-Shigella amid orally-intake probiotics identified using the machine learning algorithm and (3) gut microbiome composition and structure resembling healthy subjects after probiotics treatment. Here, we presented the gut microbiome dynamics in AD patients after the administration of the E3 probiotics formula and delineated the unique gut microbiome signatures in individuals with AD who were responding to the probiotics. These findings could guide the future development of probiotics use for AD management.
Collapse
Affiliation(s)
- Yiwei Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Yufeng Lin
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinpao Hou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Tai Ki Yim
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Wai Kai Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Un Kei Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Effects of Oral Administration of Lactiplantibacillus Plantarum APsulloc 331261 (GTB1TM) Isolated from Green Tea on Atopic Dermatitis (AD)-like Skin Lesion Mouse Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4520433. [PMID: 36110182 PMCID: PMC9470305 DOI: 10.1155/2022/4520433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Background Probiotics are known to improve atopic dermatitis (AD) by inhibiting T helper 2 (Th2)-related reactions, restoring the Th2/T helper1 (Th1) cytokine ratio. The most popular probiotic is Lactiplantibacillus plantarum (L. plantarum), which is widely used in the food and pharmaceutical industries. L. plantarum APsulloc 331261 (GTB1) used in this study was isolated from green tea. Materials and Methods The effectiveness of oral GTB1 administration in improving AD was evaluated by visual evaluation, comparison of the lymph node sizes and spleen weights, histological evaluation, RT-qPCR, ELISA, and IHC analysis in the mouse model. Results GTB1 improved AD symptoms, reduced epidermal thickness and mast cell numbers, decreased lymph node size and the spleen weight, increased filaggrin and loricrin protein levels, downregulated Th2 expression, and upregulated Th1 expression in a colony-forming unit-dependent manner. Conclusion Oral administration of GTB1 isolated from green tea (Camellia sinensis) improved the AD symptoms, reduced hypersensitivity reaction, and increased the skin barrier function. Finally, it is involved in AD improvement by restoring the Th2/Th1 cytokine balance.
Collapse
|
25
|
Al-shami SJ, Sandru F, Dumitrascu MC, Popa A. The intestinal microbiome and the role of probiotics/prebiotics in the therapeutic approach of atopic dermatitis: A review. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.3.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin condition, characterized by multiple recurrent eczematous lesions and intense itchiness. It is a multifactorial skin disorder involving an association between genetic and environmental factors that lead to a defect of the epithelial barrier in conjunction with immunological dysregulation. Over the last decade, there has been an increasing understanding of the role of the human microbiota in preserving skin integrity and that a shift in the homeostasis of these microorganisms may lead to dysbiosis and disease. Diversity in the intestinal microbiome and its role in the etiopathogenesis of AD has been described and has become of great interest. In this report, we have reviewed the importance of the gut microbiome and the possible mechanism in the pathogenesis of AD as well as the therapeutic impact of probiotics and prebiotics
Collapse
|
26
|
Sodré CS, Vieira MS, Estefan JL, Moraes C, Cavalcante FS, Dos Santos KRN, de Carvalho Ferreira D. The effect of probiotics on the clinical status of adult patients with atopic dermatitis: a systematic review. Eur J Med Res 2022; 27:94. [PMID: 35701836 PMCID: PMC9199243 DOI: 10.1186/s40001-022-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/14/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES To describe, through a literature review, the results and benefits of oral and topical probiotics for adult patients with atopic dermatitis. DESIGN A systematic review of articles published over a 13-year period was conducted to answer the following questions: (1) what information is given in the scientific literature concerning the use of probiotics in adult patients with atopic dermatitis? (2) Was there an improvement in the clinical status of the patients? (3) Was there a change in the microbial profile in patients after using such approaches? (4) Among the probiotics used, which was the most used in adult AD patients? (5) What was the average time of these interventions? (6) What were the outcomes? RESULTS Seven studies with different sample sizes, ranging from 16 to 109 patients, were included in this review. These studies were all clinical trials (7/7), and probiotics (7/7) was the model of intervention chosen. Probiotics showed a potential to relieve the symptoms of the study groups with a reduction of pruritus and SCORAD when compared to the placebo groups. However, their effectiveness varied according to the strain, period, and form of administration. CONCLUSIONS Many studies have demonstrated that probiotics improve the symptoms of atopic dermatitis and even its prevention. However, there is still much controversy and divergence concerning the real benefits. Despite this, probiotics have demonstrated a fair ability in improving AD adult patients' symptoms in terms of decreasing pruritus and severity related to SCORAD.
Collapse
Affiliation(s)
- Camila Stofella Sodré
- Faculty of Dentistry, Centro Universitário Universus Veritas, Rio de Janeiro, Brazil.
| | | | - Juliany Lima Estefan
- Department of Clinical Medicine, Universidade Federal do Rio de Janeiro- UFRJ, Rio de Janeiro, Brazil
| | - Cristiane Moraes
- Faculty of Dentistry, Universidade Estácio de Sá, Rio de Janeiro, Brazil
| | | | | | - Dennis de Carvalho Ferreira
- Faculty of Dentistry, Universidade Estácio de Sá, Rio de Janeiro, Brazil
- Faculty of Dentistry, Universidade Veiga de Almeida, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens 2022; 11:pathogens11060642. [PMID: 35745496 PMCID: PMC9228373 DOI: 10.3390/pathogens11060642] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent skin inflammation with a particular impact on children. Current therapies for AD are challenged by the limited armamentarium and the high heterogeneity of the disease. A novel promising therapeutic target for AD is the microbiota. Numerous studies have highlighted the involvement of the skin and gut microbiota in the pathogenesis of AD. The resident microbiota at these two epithelial tissues can modulate skin barrier functions and host immune responses, thus regulating AD progression. For example, the pathogenic roles of Staphylococcus aureus in the skin are well-established, making this bacterium an attractive target for AD treatment. Targeting the gut microbiota is another therapeutic strategy for AD. Multiple oral supplements with prebiotics, probiotics, postbiotics, and synbiotics have demonstrated promising efficacy in both AD prevention and treatment. In this review, we summarize the association of microbiota dysbiosis in both the skin and gut with AD, and the current knowledge of the functions of commensal microbiota in AD pathogenesis. Furthermore, we discuss the existing therapies in manipulating both the skin and gut commensal microbiota to prevent or treat AD. We also propose potential novel therapies based on the cutting-edge progress in this area.
Collapse
|
28
|
Oral and external intervention on the crosstalk between microbial barrier and skin via foodborne functional component. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
How to Improve Health with Biological Agents-Narrative Review. Nutrients 2022; 14:nu14091700. [PMID: 35565671 PMCID: PMC9103441 DOI: 10.3390/nu14091700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The proper functioning of the human organism is dependent on a number of factors. The health condition of the organism can be often enhanced through appropriate supplementation, as well as the application of certain biological agents. Probiotics, i.e., live microorganisms that exert a beneficial effect on the health of the host when administered in adequate amounts, are often used in commonly available dietary supplements or functional foods, such as yoghurts. Specific strains of microorganisms, administered in appropriate amounts, may find application in the treatment of conditions such as various types of diarrhoea (viral, antibiotic-related, caused by Clostridioides difficile), irritable bowel syndrome, ulcerative colitis, Crohn’s disease, or allergic disorders. In contrast, live microorganisms capable of exerting influence on the nervous system and mental health through interactions with the gut microbiome are referred to as psychobiotics. Live microbes are often used in combination with prebiotics to form synbiotics, which stimulate growth and/or activate the metabolism of the healthy gut microbiome. Prebiotics may serve as a substrate for the growth of probiotic strains or fermentation processes. Compared to prebiotic substances, probiotic microorganisms are more tolerant of environmental conditions, such as oxygenation, pH, or temperature in a given organism. It is also worth emphasizing that the health of the host may be influenced not only by live microorganisms, but also by their metabolites or cell components, which are referred to as postbiotics and paraprobiotics. This work presents the mechanisms of action employed by probiotics, prebiotics, synbiotics, postbiotics, paraprobiotics, and psychobiotics, together with the results of studies confirming their effectiveness and impact on consumer health.
Collapse
|
30
|
Skin Microbiota in Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms23073503. [PMID: 35408862 PMCID: PMC8998607 DOI: 10.3390/ijms23073503] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022] Open
Abstract
The skin microbiota represents an ecosystem composed of numerous microbial species interacting with each other, as well as with host epithelial and immune cells. The microbiota provides health benefits to the host by supporting essential functions of the skin and inhibiting colonization with pathogens. However, the disturbance of the microbial balance can result in dysbiosis and promote skin diseases, such as atopic dermatitis (AD). This review provides a current overview of the skin microbiota involvement in AD and its complex interplay with host immune response mechanisms, as well as novel therapeutic strategies for treating AD focused on restoring skin microbial homeostasis.
Collapse
|
31
|
de Andrade PDSMA, Maria e Silva J, Carregaro V, Sacramento LA, Roberti LR, Aragon DC, Carmona F, Roxo-Junior P. Efficacy of Probiotics in Children and Adolescents With Atopic Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Study. Front Nutr 2022; 8:833666. [PMID: 35155534 PMCID: PMC8826069 DOI: 10.3389/fnut.2021.833666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
ObjectiveTo evaluate the clinical efficacy of a mixture of probiotics (Lactobacillus and Bifidobacterium) in children and adolescents with atopic dermatitis (AD) and the effects on sensitization, inflammation, and immunological tolerance.MethodsIn this double-blind, randomized, placebo-controlled clinical trial, we enrolled 60 patients aged between 6 months and 19 years with mild, moderate, or severe AD, according to the criteria proposed by Hanifin and Rajka. Patients were stratified to receive one gram per day of probiotics or placebo for 6 months. The primary outcome was a decrease in SCORing Atopic Dermatitis (SCORAD). Secondary outcomes were to assess the role of probiotics on the use of topical and oral medicines (standard treatment), serum IgE levels, skin prick test (SPT), and tolerogenic and inflammatory cytokines. Background therapy was maintained.ResultsForty patients completed the study (24 probiotics, 16 placebo). After treatment for six months, the clinical response was significantly better in the probiotics group; the SCORAD decreased [mean difference (MD) 27.69 percentage points; 95% confidence interval (CI), 2.44–52.94], even after adjustment for co-variables (MD 32.33 percentage points; 95%CI, 5.52–59.13), especially from the third month of treatment on. The reduction of the SCORAD in probiotic group persisted for three more months after the treatment had been discontinued, even after adjustment for co-variables (MD 14.24 percentage points; 95%CI, 0.78–27.70). Patients in the probiotics group required topical immunosuppressant less frequently at 6 and 9 months. No significant changes were found for IgE levels, SPT and cytokines.ConclusionsChildren and adolescents with AD presented a significant clinical response after 6 months with a mixture of probiotics (Lactobacillus rhamnosus, Lactobacillus acidophilus, Lactobacillus paracasei, and Bifidobacterium lactis. However, this clinical benefit is related to treatment duration. Probiotics should be considered as an adjuvant treatment for AD.
Collapse
Affiliation(s)
| | - Jorgete Maria e Silva
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vanessa Carregaro
- Department of Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | - Laís Amorim Sacramento
- Department of Immunology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, São Paulo, Brazil
| | | | - Davi Casale Aragon
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fabio Carmona
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pérsio Roxo-Junior
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- *Correspondence: Pérsio Roxo-Junior
| |
Collapse
|
32
|
Kim S, Han SY, Lee J, Kim NR, Lee BR, Kim H, Kwon M, Ahn K, Noh Y, Kim SJ, Lee P, Kim D, Kim BE, Kim J. Bifidobacterium longum and Galactooligosaccharide Improve Skin Barrier Dysfunction and Atopic Dermatitis-like Skin. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:549-564. [PMID: 36174995 PMCID: PMC9523416 DOI: 10.4168/aair.2022.14.5.549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Purpose The beneficial effects of a combination therapy using Bifidobacterium longum and galactooligosaccharide (GOS) for the treatment of atopic dermatitis (AD) have not been elucidated. Methods Gene expressions of interleukin (IL)-4 and IL-13 from peripheral blood mononuclear cells and fecal abundance of B. longum from 12-month-old infants were evaluated. Human primary epidermal keratinocytes (HEKs) and hairless mice were treated with B. longum, GOS, B. longum-derived extracellular vesicles (BLEVs), dinitrochlorobenzene (DNCB), or a synbiotic mixture of B. longum and GOS. Expression of epidermal barrier proteins and cytokines as well as serum immunoglobulin E (IgE) levels were analyzed in HEKs and mice. Dermatitis scores, transepidermal water loss (TEWL), epidermal thickness, and fecal B. longum abundance were evaluated in mice. Results Fecal abundance of B. longum was negatively correlated with blood IL-13 expression in infants. B. longum or BLEVs increased expression of filaggrin (FLG) and loricrin (LOR) in HEKs. B. longum increased the efficacy of GOS to upregulate FLG and LOR expressions in HEKs. Oral administration of GOS increased fecal abundance of B. longum in mice. Oral administration of B. longum attenuated DNCB-induced skin inflammation, abnormal TEWL, AD-like skin, and deficiency of epidermal barrier proteins. Moreover, the combination of B. longum and GOS showed greater effects to improve DNCB-induced skin inflammation, abnormal TEWL, AD-like skin, serum IgE levels, IL-4 over-expression, and the deficiency of epidermal barrier proteins than the administration of B. longum alone. Conclusions B. longum and GOS improve DNCB-induced skin barrier dysfunction and AD-like skin.
Collapse
Affiliation(s)
- Sukyung Kim
- Department of Pediatrics, Hallym University Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Hwaseong, Korea
| | - Song-Yi Han
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinyoung Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Na-Rae Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bo Ra Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyunmi Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mijeoung Kwon
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | - Phyrim Lee
- Dairyteam, Lotte R&D Center, Seoul, Korea
| | - Dongki Kim
- Department of Translational Research and Cellular Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Byung Eui Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Lee JH, Kim JE, Park GH, Bae JM, Byun JY, Shin MK, Han TY, Hong SP, Jang YH, Kim HO, Na CH, Lew BL, Ahn J, Park CO, Seo YJ, Lee YW, Son SW, Choi EH, Park YL, Roh JY. Consensus Update for Systemic Treatment of Atopic Dermatitis. Ann Dermatol 2021; 33:497-514. [PMID: 34858001 PMCID: PMC8577915 DOI: 10.5021/ad.2021.33.6.497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/04/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background In 2015, the Korean Atopic Dermatitis Association (KADA) working group published consensus guidelines for treating atopic dermatitis (AD). Objective We aimed to provide updated consensus recommendations for systemic treatment of AD in South Korea based on recent evidence and experience. Methods We compiled a database of references from relevant systematic reviews and guidelines on the systemic management of AD. Evidence for each statement was graded and classified based on thestrength of the recommendation. Forty-two council members from the KADA participated in three rounds of voting to establish a consensus on expert recommendations. Results We do not recommend long-term treatment with systemic steroids forpatients with moderate-to-severe AD due to the risk of adverse effects. We recommend treatment with cyclosporine or dupilumab and selective treatment with methotrexate or azathioprine for patients with moderate-to-severe AD. We suggest treatment with antihistamines as an option for alleviating clinical symptoms of AD. We recommend selective treatment with narrowband ultraviolet B for patients with chronic moderate-to-severe AD. We do not recommend treatment with oral antibiotics for patients with moderate-to-severe AD but who have no signs of infection. We did not reach a consensus on recommendations for treatment with allergen-specific immunotherapy, probiotics, evening primrose oil, orvitamin D for patients with moderate-to-severe AD. We also recommend educational interventions and counselling for patients with AD and caregivers to improve the treatment success rate. Conclusion We look forward to implementing a new and updated consensus of systemic therapy in controlling patients with moderate-to-severe AD.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Kim
- Department of Dermatology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gyeong-Hun Park
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Jung Min Bae
- Department of Dermatology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Yeon Byun
- Department of Dermatology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Min Kyung Shin
- Department of Dermatology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Tae Young Han
- Department of Dermatology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Seung Phil Hong
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Hye One Kim
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Chan Ho Na
- Department of Dermatology, College of Medicine, Chosun University, Gwangju, Korea
| | - Bark-Lynn Lew
- Department of Dermatology, Kyung Hee University College of Medicine, Seoul, Korea
| | - JiYoung Ahn
- Department of Dermatology, National Medical Center, Seoul, Korea
| | - Chang Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Joon Seo
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yang Won Lee
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University College of Medicine, Seoul, Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Lip Park
- Department of Dermatology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Joo Young Roh
- Department of Dermatology, Gil Medical Center, Gachon University School of Medicine, Incheon, Korea
| |
Collapse
|
34
|
Pachacama López A, Tapia Portilla M, Moreno-Piedrahíta Hernández F, Palacios-Álvarez S. Uso de probióticos para disminuir la gravedad de la dermatitis atópica en población pediátrica: revisión sistemática y metaanálisis. ACTAS DERMO-SIFILIOGRAFICAS 2021. [DOI: 10.1016/j.ad.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
35
|
Pachacama López A, Tapia Portilla M, Moreno-Piedrahíta Hernández F, Palacios-Álvarez S. Probiotics to Reduce the Severity of Atopic Dermatitis in Pediatric Patients: A Systematic Review and Meta-Analysis. ACTAS DERMO-SIFILIOGRAFICAS 2021. [DOI: 10.1016/j.adengl.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Fidanza M, Panigrahi P, Kollmann TR. Lactiplantibacillus plantarum-Nomad and Ideal Probiotic. Front Microbiol 2021; 12:712236. [PMID: 34690957 PMCID: PMC8527090 DOI: 10.3389/fmicb.2021.712236] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are increasingly recognized as capable of positively modulating several aspects of human health. There are numerous attributes that make an ideal probiotic. Lactiplantibacillus plantarum (Lp) exhibits an ecological and metabolic flexibility that allows it to thrive in a variety of environments. The present review will highlight the genetic and functional characteristics of Lp that make it an ideal probiotic and summarizes the current knowledge about its potential application as a prophylactic or therapeutic intervention.
Collapse
Affiliation(s)
| | - Pinaki Panigrahi
- Georgetown University Medical Center, Department of Pediatrics, Washington, DC, United States
| | | |
Collapse
|
37
|
Polak K, Jobbágy A, Muszyński T, Wojciechowska K, Frątczak A, Bánvölgyi A, Bergler-Czop B, Kiss N. Microbiome Modulation as a Therapeutic Approach in Chronic Skin Diseases. Biomedicines 2021; 9:biomedicines9101436. [PMID: 34680552 PMCID: PMC8533290 DOI: 10.3390/biomedicines9101436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is a growing quantity of evidence on how skin and gut microbiome composition impacts the course of various dermatological diseases. The strategies involving the modulation of bacterial composition are increasingly in the focus of research attention. The aim of the present review was to analyze the literature available in PubMed (MEDLINE) and EMBASE databases on the topic of microbiome modulation in skin diseases. The effects and possible mechanisms of action of probiotics, prebiotics and synbiotics in dermatological conditions including atopic dermatitis (AD), psoriasis, chronic ulcers, seborrheic dermatitis, burns and acne were analyzed. Due to the very limited number of studies available regarding the topic of microbiome modulation in all skin diseases except for AD, the authors decided to also include case reports and original studies concerning oral administration and topical application of the pro-, pre- and synbiotics in the final analysis. The evaluated studies mostly reported significant health benefits to the patients or show promising results in animal or ex vivo studies. However, due to a limited amount of research and unambiguous results, the topic of microbiome modulation as a therapeutic approach in skin diseases still warrants further investigation.
Collapse
Affiliation(s)
- Karina Polak
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Antal Jobbágy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Tomasz Muszyński
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Cracow, Poland;
| | - Kamila Wojciechowska
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Aleksandra Frątczak
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Beata Bergler-Czop
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
- Correspondence:
| |
Collapse
|
38
|
Hammond AM, Monir RL, Schoch JJ. The role of the pediatric cutaneous and gut microbiomes in childhood disease: A review. Semin Perinatol 2021; 45:151452. [PMID: 34272085 DOI: 10.1016/j.semperi.2021.151452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Infancy and early childhood are crucial periods in the development of the human microbiome and shape the trajectory of microbial colonization, immune system development, and systemic disease. We review the development of the skin and gut microbiomes, their connection to the immune system, and their relevance to common pediatric pathologies. FINDINGS Beginning after birth, and likely even in utero, colonization of the skin and the gut occur in parallel, influenced by external factors. This colonization, in turn, dictates maturation of the immune system and contributes to conditions from atopic dermatitis to sepsis. Emerging literature is identifying links between the gut and skin microbiomes. CONCLUSION The gut and skin microbiomes are associated with pediatric disease states. Immune and microbial plasticity make this unique period an ideal target for intervention. Investigating the purposeful manipulation of the pediatric microbiome may lead to novel treatment and prevention strategies.
Collapse
Affiliation(s)
| | - Reesa L Monir
- University of Florida College of Medicine, Gainesville, FL, USA; Department of Dermatology, Gainesville, FL, USA.
| | - Jennifer J Schoch
- University of Florida College of Medicine, Gainesville, FL, USA; Department of Dermatology, Gainesville, FL, USA.
| |
Collapse
|
39
|
Lunjani N, Ahearn-Ford S, Dube FS, Hlela C, O'Mahony L. Mechanisms of microbe-immune system dialogue within the skin. Genes Immun 2021; 22:276-288. [PMID: 33993202 PMCID: PMC8497273 DOI: 10.1038/s41435-021-00133-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 02/01/2023]
Abstract
The prevalence and severity of dermatological conditions such as atopic dermatitis have increased dramatically during recent decades. Many of the factors associated with an altered risk of developing inflammatory skin disorders have also been shown to alter the composition and diversity of non-pathogenic microbial communities that inhabit the human host. While the most densely microbial populated organ is the gut, culture and non-culture-based technologies have revealed a dynamic community of bacteria, fungi, viruses and mites that exist on healthy human skin, which change during disease. In this review, we highlight some of the recent findings on the mechanisms through which microbes interact with each other on the skin and the signalling systems that mediate communication between the immune system and skin-associated microbes. In addition, we summarize the ongoing clinical studies that are targeting the microbiome in patients with skin disorders. While significant efforts are still required to decipher the mechanisms underpinning host-microbe communication relevant to skin health, it is likely that disease-related microbial communities, or Dermatypes, will help identify personalized treatments and appropriate microbial reconstitution strategies.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Felix S Dube
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Carol Hlela
- Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
40
|
Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods 2021; 10:foods10092148. [PMID: 34574257 PMCID: PMC8465840 DOI: 10.3390/foods10092148] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023] Open
Abstract
Lactic acid bacteria (LAB) have been used for various food fermentations for thousands of years. Recently, LAB are receiving increased attention due to their great potential as probiotics for man and animals, and also as cell factories for producing enzymes, antibodies, vitamins, exopolysaccharides, and various feedstocks. LAB are safe organisms with GRAS (generally recognized as safe) status and possess relatively simple metabolic pathways easily subjected to modifications. However, relatively few studies have been carried out on LAB inhabiting plants compared to dairy LAB. Kimchi is a Korean traditional fermented vegetable, and its fermentation is carried out by LAB inhabiting plant raw materials of kimchi. Kimchi represents a model food with low pH and is fermented at low temperatures and in anaerobic environments. LAB have been adjusting to kimchi environments, and produce various metabolites such as bacteriocins, γ-aminobutyric acid, ornithine, exopolysaccharides, mannitol, etc. as products of metabolic efforts to adjust to the environments. The metabolites also contribute to the known health-promoting effects of kimchi. Due to the recent progress in multi-omics technologies, identification of genes and gene products responsible for the synthesis of functional metabolites becomes easier than before. With the aid of tools of metabolic engineering and synthetic biology, it can be envisioned that LAB strains producing valuable metabolites in large quantities will be constructed and used as starters for foods and probiotics for improving human health. Such LAB strains can also be useful as production hosts for value-added products for food, feed, and pharmaceutical industries. In this review, recent findings on the selected metabolites produced by kimchi LAB are discussed, and the potentials of metabolites will be mentioned.
Collapse
|
41
|
Fang Z, Li L, Zhang H, Zhao J, Lu W, Chen W. Gut Microbiota, Probiotics, and Their Interactions in Prevention and Treatment of Atopic Dermatitis: A Review. Front Immunol 2021; 12:720393. [PMID: 34335634 PMCID: PMC8317022 DOI: 10.3389/fimmu.2021.720393] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD) is a public health concern and is increasing in prevalence in urban areas. Recent advances in sequencing technology have demonstrated that the development of AD not only associate with the skin microbiome but gut microbiota. Gut microbiota plays an important role in allergic diseases including AD. The hypothesis of the “gut-skin” axis has been proposed and the cross-talk mechanism between them has been gradually demonstrated in the research. Probiotics contribute to the improvement of the intestinal environment, the balance of immune responses, regulation of metabolic activity. Most studies suggest that probiotic supplements may be an alternative for the prevention and treatment of AD. This study aimed to discuss the effects of probiotics on the clinical manifestation of AD based on gut microbial alterations. Here we reviewed the gut microbial alteration in patients with AD, the association between gut microbiota, epidermal barrier, and toll-like receptors, and the interaction of probiotics and gut microbiota. The potential mechanisms of probiotics on alleviating AD via upregulation of epidermal barrier and regulation of immune signaling had been discussed, and their possible effective substances on AD had been explored. This provides the supports for targeting gut microbiota to attenuate AD.
Collapse
Affiliation(s)
- Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lingzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research, Institute Wuxi Branch, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
42
|
Park DH, Kim JW, Park HJ, Hahm DH. Comparative Analysis of the Microbiome across the Gut-Skin Axis in Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms22084228. [PMID: 33921772 PMCID: PMC8073639 DOI: 10.3390/ijms22084228] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a refractory and relapsing skin disease with a complex and multifactorial etiology. Various congenital malformations and environmental factors are thought to be involved in the onset of the disease. The etiology of the disease has been investigated, with respect to clinical skin symptoms and systemic immune response factors. A gut microbiome–mediated connection between emotional disorders such as depression and anxiety, and dermatologic conditions such as acne, based on the comorbidities of these two seemingly unrelated disorders, has long been hypothesized. Many aspects of this gut–brain–skin integration theory have recently been revalidated to identify treatment options for AD with the recent advances in metagenomic analysis involving powerful sequencing techniques and bioinformatics that overcome the need for isolation and cultivation of individual microbial strains from the skin or gut. Comparative analysis of microbial clusters across the gut–skin axis can provide new information regarding AD research. Herein, we provide a historical perspective on the modern investigation and clinical implications of gut–skin connections in AD in terms of the integration between the two microbial clusters.
Collapse
Affiliation(s)
- Dong Hoon Park
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
| | - Joo Wan Kim
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
| | - Dae-Hyun Hahm
- College of Medicine, Kyung Hee University, Seoul 02447, Korea; (D.H.P.); (J.W.K.)
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0366
| |
Collapse
|
43
|
Kim MJ, Kim KP, Choi E, Yim JH, Choi C, Yun HS, Ahn HY, Oh JY, Cho Y. Effects of Lactobacillus plantarum CJLP55 on Clinical Improvement, Skin Condition and Urine Bacterial Extracellular Vesicles in Patients with Acne Vulgaris: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2021; 13:nu13041368. [PMID: 33921829 PMCID: PMC8073324 DOI: 10.3390/nu13041368] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Lactobacillus plantarum CJLP55 has anti-pathogenic bacterial and anti-inflammatory activities in vitro. We investigated the dietary effect of CJLP55 supplement in patients with acne vulgaris, a prevalent inflammatory skin condition. Subjects ingested CJLP55 or placebo (n = 14 per group) supplements for 12 weeks in this double-blind, placebo-controlled randomized study. Acne lesion count and grade, skin sebum, hydration, pH and surface lipids were assessed. Metagenomic DNA analysis was performed on urine extracellular vesicles (EV), which indirectly reflect systemic bacterial flora. Compared to the placebo supplement, CJLP55 supplement improved acne lesion count and grade, decreased sebum triglycerides (TG), and increased hydration and ceramide 2, the major ceramide species that maintains the epidermal lipid barrier for hydration. In addition, CJLP55 supplement decreased the prevalence of Proteobacteria and increased Firmicutes, which were correlated with decreased TG, the major skin surface lipid of sebum origin. CJLP55 supplement further decreased the Bacteroidetes:Firmicutes ratio, a relevant marker of bacterial dysbiosis. No differences in skin pH, other skin surface lipids or urine bacterial EV phylum were noted between CJLP55 and placebo supplements. Dietary Lactobacillus plantarum CJLP55 was beneficial to clinical state, skin sebum, and hydration and urine bacterial EV phylum flora in patients with acne vulgaris.
Collapse
Affiliation(s)
- Mi-Ju Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Gyeongggi-do, Korea; (M.-J.K.); (K.-P.K.); (E.C.)
| | - Kun-Pyo Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Gyeongggi-do, Korea; (M.-J.K.); (K.-P.K.); (E.C.)
| | - Eunhye Choi
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Gyeongggi-do, Korea; (M.-J.K.); (K.-P.K.); (E.C.)
| | - June-Hyuck Yim
- Department of Dermatology, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Chunpil Choi
- Skyfeel Dermatologic Clinic, Seoul 06020, Korea;
| | - Hyun-Sun Yun
- CJ Foods R & D Center, CJ CheilJedang Corporation, Suwon-si 16495, Gyeongggi-do, Korea; (H.-S.Y.); (H.-Y.A.); (J.-Y.O.)
| | - Hee-Yoon Ahn
- CJ Foods R & D Center, CJ CheilJedang Corporation, Suwon-si 16495, Gyeongggi-do, Korea; (H.-S.Y.); (H.-Y.A.); (J.-Y.O.)
| | - Ji-Young Oh
- CJ Foods R & D Center, CJ CheilJedang Corporation, Suwon-si 16495, Gyeongggi-do, Korea; (H.-S.Y.); (H.-Y.A.); (J.-Y.O.)
| | - Yunhi Cho
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Gyeongggi-do, Korea; (M.-J.K.); (K.-P.K.); (E.C.)
- Correspondence: ; Tel.: +82-31-201-3817
| |
Collapse
|
44
|
Lopez-Santamarina A, Gonzalez EG, Lamas A, Mondragon ADC, Regal P, Miranda JM. Probiotics as a Possible Strategy for the Prevention and Treatment of Allergies. A Narrative Review. Foods 2021; 10:foods10040701. [PMID: 33806092 PMCID: PMC8064452 DOI: 10.3390/foods10040701] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Allergies are an increasing global public health concern, especially for children and people living in urban environments. Allergies impair the quality of life of those who suffer from them, and for this reason, alternatives for the treatment of allergic diseases or reduction in their symptoms are being sought. The main objective of this study was to compile the studies carried out on probiotics as a possible therapy for allergies. The most studied allergies on which probiotics have been shown to have a beneficial effect are rhinitis, asthma, and atopic dermatitis. Most studies have studied the administration of Lactobacillus and Bifidobacterium spp. in children and have shown beneficial effects, such as a reduction in hyperreactivity and inflammation caused by allergens and a decrease in cytokine release, among other beneficial effects. In the case of children, no clear beneficial effects were found in several studies, and the potential risk from the use of some opportunistic bacteria, such as probiotics, seems controversial. In the studies that reported beneficial results, these effects were found to make allergy symptoms less aggressive, thus reducing morbidity in allergy sufferers. The different effects of the same probiotic bacteria on different patients seem to reinforce the idea that the efficacy of probiotics is dependent on the microbial species or strain, its derived metabolites and byproducts, and the gut microbiota eubiosis of the patient. This study is relevant in the context of allergic diseases, as it provides a broader understanding of new alternatives for the treatment of allergies, both in children, who are the main sufferers, and adults, showing that probiotics, in some cases, reduce the symptoms and severity of such diseases.
Collapse
|
45
|
Huidrom S. Therapeutic Approach of Probiotics in Children with Atopic Dermatitis. Antiinflamm Antiallergy Agents Med Chem 2021; 20:2-9. [PMID: 31899681 DOI: 10.2174/1871523019666200102110317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/16/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Pediatric atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease, affecting 20% of children all over the world especially in developed countries. The global prevalence of AD in children has been increasing over recent years. This chronic inflammatory skin disease causes economic and social burden to the family. The exact cause of AD is not known, however recent studies suggest that the imbalance of microflora present in the gut leads to AD. The current treatment of AD involves the application of moisturizer, topical corticosteroids, antihistamines and antibiotics. This line of treatment of AD in children has many side effects. An alternative novel therapeutic approach has to be explored to combat this chronic skin disease. In recent years, there has been increasing interest in the use of probiotics in the modulation of gut microbiota for the management of AD. Many research studies showed that the administration of probiotics gives positive results in the prevention and treatment of AD in children, however, the results are not consistent and conclusive. In this review, the phenomenon that the dysbiosis of the gut flora contributes to the development of AD is addressed and clinical evidence of probiotics in the prevention and treatment of AD children is also summarised.
Collapse
Affiliation(s)
- Sangeeta Huidrom
- Department of Pharmacology, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun-248001, India
| |
Collapse
|
46
|
Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. Health-Promoting Role of Lactiplantibacillus plantarum Isolated from Fermented Foods. Microorganisms 2021; 9:349. [PMID: 33578806 PMCID: PMC7916596 DOI: 10.3390/microorganisms9020349] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Fermentation processes have been used for centuries for food production and preservation. Besides the contribution of fermentation to food quality, recently, scientific interest in the beneficial nature of fermented foods as a reservoir of probiotic candidates is increasing. Fermented food microbes are gaining attention for their health-promoting potential and for being genetically related to human probiotic bacteria. Among them, Lactiplantibacillus (Lpb.) plantarum strains, with a long history in the food industry as starter cultures in the production of a wide variety of fermented foods, are being investigated for their beneficial properties which are similar to those of probiotic strains, and they are also applied in clinical interventions. Food-associated Lpb. plantarum showed a good adaptation and adhesion ability in the gastro-intestinal tract and the potential to affect host health through various beneficial activities, e.g., antimicrobial, antioxidative, antigenotoxic, anti-inflammatory and immunomodulatory, in several in vitro and in vivo studies. This review provides an overview of fermented-associated Lpb. plantarum health benefits with evidence from clinical studies. Probiotic criteria that fermented-associated microbes need to fulfil are also reported.
Collapse
Affiliation(s)
| | | | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100 Teramo, Italy; (N.G.-G.); (N.B.); (A.C.)
| | | |
Collapse
|
47
|
Park SH, Kim JG, Jang YA, Bayazid AB, Ou Lim B. Fermented black rice and blueberry with
Lactobacillus plantarum
MG4221 improve UVB-induced skin injury. FOOD AGR IMMUNOL 2021; 32:499-515. [DOI: 10.1080/09540105.2021.1967300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Seo Hyun Park
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- R&D Center, Ahn-Gook Health Co., Ltd., Seoul, Korea
| | - Jae Gon Kim
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- Research of Institute of Inflammatory Diseases, BK21FOUR GLOCAL Education Program for Nutraceutical and Biopharmaceutical Research, Konkuk University, Chungju, Republic of Korea
| | - Young Ah Jang
- Convergence Research Center for Smart Healthcare, R&DB Foundation of Kyungsung University, Busan, Korea
| | - Al Borhan Bayazid
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- Department of Integrated Bioscience, Konkuk University, Chungju, Korea
- Research of Institute of Inflammatory Diseases, BK21FOUR GLOCAL Education Program for Nutraceutical and Biopharmaceutical Research, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
48
|
Forster CS, Hsieh MH, Cabana MD. Perspectives from the Society for Pediatric Research: Probiotic use in urinary tract infections, atopic dermatitis, and antibiotic-associated diarrhea: an overview. Pediatr Res 2021; 90:315-327. [PMID: 33288875 PMCID: PMC8180529 DOI: 10.1038/s41390-020-01298-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
Probiotics have received significant attention within both the scientific and lay communities for their potential health-promoting properties, including the treatment or prevention of various conditions in children. In this article, we review the published data on use of specific probiotic strains for three common pediatric conditions: the prevention of urinary tract infections and antibiotic-associated diarrhea and the treatment of atopic dermatitis. Research into the utility of specific probiotic strains is of varying quality, and data are often derived from small studies and case series. We discuss the scientific merit of these studies, their overall findings regarding the utility of probiotics for these indications, issues in reporting of methods, and results from these clinical trials, as well as future areas of investigation.
Collapse
Affiliation(s)
- Catherine S. Forster
- grid.239560.b0000 0004 0482 1586Department of Pediatrics, Children’s National Health System, Washington, DC USA
| | - Michael H. Hsieh
- grid.239560.b0000 0004 0482 1586Department of Pediatrics, Children’s National Health System, Washington, DC USA
| | - Michael D. Cabana
- grid.251993.50000000121791997Department of Pediatrics, Children’s Hospital at Montefiore and the Albert Einstein School of Medicine, Bronx, NY USA
| |
Collapse
|
49
|
Tan-Lim CSC, Esteban-Ipac NAR, Mantaring JBV, Chan Shih Yen E, Recto MST, Sison OT, Alejandria MM. Comparative effectiveness of probiotic strains for the treatment of pediatric atopic dermatitis: A systematic review and network meta-analysis. Pediatr Allergy Immunol 2021; 32:124-136. [PMID: 32524647 DOI: 10.1111/pai.13305] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The current evidence on the use of probiotics in treating atopic dermatitis is inconclusive. This study determined the comparative effectiveness of the different types of probiotic strains in treating pediatric atopic dermatitis. METHODOLOGY Systematic and manual search for all randomized controlled trials available from inception until January 31, 2020, was done. Two independent authors conducted the search, screening, appraisal, and data abstraction. Network meta-analysis was conducted using STATA 14 software. RESULTS Twenty-two studies involving 28 different probiotic strains were included. The top three ranked probiotic strains in terms of efficacy are Mix1 (Bifidobacterium animalis subsp lactis CECT 8145, Bifidobacterium longum CECT 7347, and Lactobacillus casei CECT 9104); Lactobacillus casei DN-114001; and Mix6 (Bifidobacterium bifidum, Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus salivarius). Compared with placebo, Mix1 reduces atopic dermatitis symptoms with high certainty evidence (SMD -1.94, 95% CI -2.65 to -1.24; 47 participants). Mix6 compared with placebo probably reduces atopic dermatitis symptoms based on moderate certainty evidence (SMD -0.85, 95% CI -1.50 to -0.20; 40 participants). Lactobacillus casei DN-114001 compared with placebo may reduce atopic dermatitis symptoms based on low certainty evidence (SMD -1.35, 95% CI -2.04 to -0.65). In terms of safety, the highest ranked strain is Lactobacillus fermentum VRI-003, while the lowest ranked strain is Lactobacillus rhamnosus GG. CONCLUSION Certain probiotic preparations show benefit in reducing allergic symptoms in pediatric atopic dermatitis.
Collapse
Affiliation(s)
- Carol Stephanie C Tan-Lim
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Natasha Ann R Esteban-Ipac
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Jacinto Blas V Mantaring
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | | - Marysia Stella T Recto
- Section of Allergy and Immunology, Department of Pediatrics, Philippine General Hospital, Manila, Philippines
| | - Olivia T Sison
- Institute of Clinical Epidemiology, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Marissa M Alejandria
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
50
|
Probiotics in the Management of Atopic Dermatitis for Children: A Case-Based Review. Dermatol Res Pract 2020; 2020:4587459. [PMID: 33354208 PMCID: PMC7737446 DOI: 10.1155/2020/4587459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
Background Atopic dermatitis or eczema is one of the most common dermatologic problems, especially in children. Several studies have hypothesized that alteration of gut-colonizing microbes might have induced and conditioned the development of the disease. Thus, modulation of microbial diversity and abundance might help alleviate symptoms and conditions for patients. Given the ability of commensal and symbiotic microorganisms in modulating the immune system, probiotics administration has been studied in previous research in the management of eczema. However, until today, there are conflicting results between studies making inconclusive recommendations towards probiotics supplementation in the management of atopic dermatitis. This case-based review was done to assess and evaluate the therapeutic efficacy of probiotics supplementation in the management of eczema in children. Method An electronic database search was conducted in PubMed-NCBI, Cochrane, EBSCO, ProQuest, and SCOPUS in March 2020. Individual studies and reviews were then gathered for screening using predetermined inclusion and exclusion criteria. The included studies were then critically appraised for their validity and importance. Result A total of 5 studies, all of which were RCTs, were included in this review. Out of all the studies included, 4 showed no clinically significant improvements in using probiotics in the management of eczema in children as they did not pass the minimal clinically important difference (MCID) of eczema severity as determined by SCORAD (SCORing Atopic Dermatitis). Conclusion Supplementation of probiotics in the management of eczema in children does not show a clinically relevant difference vs. standard treatment in reducing eczema severity.
Collapse
|