1
|
Stordy BP, Sepahi Z, Patrón GD, Yang W, Goodson AD, Blackadar C, Tavares AJ, Lin G, Malekjahani A, Ling B, Ravichandran R, Hicks DR, Shapiro MG, Zhang M, King NP, Baker D, Ricardez-Sandoval LA, Chan WCW. The Binding Affinities of Serum Proteins to Nanoparticles. J Am Chem Soc 2025. [PMID: 40489685 DOI: 10.1021/jacs.5c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Nanoparticles can be coated with targeting ligands to deliver medical agents to specific cells. Serum protein adsorption affects the binding of nanoparticles to target cells. We hypothesized that serum proteins and target receptors compete for binding to nanoparticles. We tested the serum protein binding affinity of 251 nanoparticle designs. Here, we discovered that the binding affinities of serum proteins and receptors to a nanoparticle determine whether it can bind to target cells. We developed and validated a quantitative metric, the binding ratio, to identify nanoparticle designs that can bind to targets in serum with 90% sensitivity and 88% specificity. Using the binding ratio as a numerical guideline for nanoparticle design enabled us to improve the efficiency of nanoparticle binding to target cellular receptors.
Collapse
Affiliation(s)
- Benjamin P Stordy
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Zahra Sepahi
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Gabriel D Patrón
- Department of Computing, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Alexander D Goodson
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Colin Blackadar
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anthony J Tavares
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ayden Malekjahani
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Institute for Nano-Engineered Systems, University of Washington, Seattle, Washington 98195, United States
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98105, United States
| | - Luis A Ricardez-Sandoval
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
2
|
Levasseur MD. Nonviral protein cages as tools to decipher and combat viral threats. NPJ VIRUSES 2025; 3:45. [PMID: 40419646 DOI: 10.1038/s44298-025-00127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Zoonotic viruses rank among the greatest threats to public health, with urbanization and global warming accelerating their emergence and spread. As the risk of future pandemics grows, innovative tools are needed to deepen our understanding of viral pathogenesis and enhance pandemic preparedness. Nonviral protein cages provide a versatile platform for studying viral mechanisms, virus-host interactions, and designing next-generation therapeutic approaches, making them powerful assets in the fight against viral threats.
Collapse
|
3
|
Tang W, Kim J, Lee RT, Maurer-Stroh S, Renia L, Tay MZ. SARS-CoV-2: lessons in virus mutation prediction and pandemic preparedness. Curr Opin Immunol 2025; 95:102560. [PMID: 40378522 DOI: 10.1016/j.coi.2025.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025]
Abstract
The COVID-19 pandemic has prompted an unprecedented global response. In particular, extraordinary efforts have been dedicated toward monitoring and predicting variant emergence due to its huge impact, particularly for vaccine escape. Broadly, we classify such methods into two categories: forward mutation prediction, where phenotypes are first observed and the responsible genotypes traced, and reverse mutation prediction, which starts with selected pathogen genetic profiles and characterizes their associated phenotypes. Reverse mutation prediction strategies have advantages in being able to sample a more complete evolutionary space since sequences that do not yet exist can be sampled. The rapid improvement in the maturity and scale of reverse mutation prediction strategies, such as deep mutational scanning, has led to significant amounts of data for machine learning, with concomitant improvement in the prediction results from computational tools. Such integrated prediction approaches are generalizable and offer significant opportunities for anticipating viral evolution and for pandemic preparedness.
Collapse
Affiliation(s)
- Weiyi Tang
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jenna Kim
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Raphael Tc Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore; GISAID Global Data Science Initiative (GISAID), Munich, Germany
| | - Sebastian Maurer-Stroh
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore; GISAID Global Data Science Initiative (GISAID), Munich, Germany; National Public Health Laboratory, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Matthew Z Tay
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biochemistry, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Li W, Liu Z. Advances in glycan-specific biomimetic molecular recognition and its biomedical applications. Chem Commun (Camb) 2025; 61:6739-6754. [PMID: 40243224 DOI: 10.1039/d5cc01003a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Glycan-mediated recognition is critically involved in a variety of pathophysiological events, so strategies targeting unique glycosylation could offer opportunities for novel disease diagnostics and therapeutics. Herein, we survey the current progress in glycan-binding entities and their biomedical applications. Particularly focusing on biologically promising artificial receptors, including boronate affinity-based molecularly imprinted polymers (MIPs) and anti-glycan aptamers, we summarize significant efforts in the recognition of glycans by MIPs and aptamers with high affinity and exquisite specificity. Furthermore, we highlight successful examples in biomedical fields of antiviral treatment, cancer diagnostics and targeted therapeutics. Finally, we briefly sketch the remaining challenges and future perspectives. Collectively, this review provides significant insights for further exploration of glycan-specific biomimetic materials in the broad biomedical area.
Collapse
Affiliation(s)
- Wei Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Hull MA, Pritchard SM, Nicola AV. Herpes simplex virus 1 envelope glycoprotein C shields glycoprotein D to protect virions from entry-blocking antibodies. J Virol 2025; 99:e0009025. [PMID: 40135897 PMCID: PMC11998518 DOI: 10.1128/jvi.00090-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
Herpes simplex virus 1 (HSV-1) gD interaction with the host cell receptor nectin-1 triggers the membrane fusion cascade during viral entry. Potent neutralizing antibodies to gD prevent receptor-binding or prevent gD interaction with gH/gL critical for fusion. HSV has many strategies to evade host immune responses. We investigated the ability of virion envelope gC to protect envelope gD from antibody neutralization. HSV-1 lacking gC was more sensitive to neutralization by anti-gD monoclonal antibodies than a wild-type rescuant virus. gD in the HSV-1 gC-null viral envelope had enhanced reactivity to anti-gD antibodies compared to wild type. Soluble nectin-1 bound similar to HSV-1 particles regardless of the presence of gC in the envelope. However, entry of HSV-1 ΔgC was more sensitive to inhibition by soluble nectin-1 receptor. The viral membrane protein composition of HSV-1 ΔgC is equivalent to that of wild type, suggesting that the lack of gC is responsible for the increased reactivity of gD-specific antibodies and the consequent increased susceptibility to neutralization by those antibodies. Together, the results suggest that gC in the HSV-1 envelope shields both receptor-binding domains and gH/gL-interacting domains of gD from neutralizing antibodies, facilitating HSV cell entry.IMPORTANCEHSV-1 causes lifelong infections. There is no vaccine and no cure. Understanding HSV immune evasion strategies is an important goal. HSV-1 gC is a multi-functional envelope glycoprotein. This study suggests that virion gC physically shields neighboring gD from antibodies, including neutralizing monoclonal antibodies. This mechanism may allow HSV to escape immune detection, promoting HSV infection in the host.
Collapse
Affiliation(s)
- McKenna A. Hull
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M. Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Hariharan V, White JA, Dragoni F, Fray EJ, Pathoulas N, Moskovljevic M, Zhang H, Singhal A, Lai J, Beg SA, Scully EP, Gilliams EA, Block DS, Keruly J, Moore RD, Siliciano JD, Simonetti FR, Siliciano RF. Superinfection with intact HIV-1 results in conditional replication of defective proviruses and nonsuppressible viremia in people living with HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647291. [PMID: 40236094 PMCID: PMC11996531 DOI: 10.1101/2025.04.04.647291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
During replication of some RNA viruses, defective particles can spontaneously arise and interfere with wild-type (WT) virus replication. Recently, engineered versions of these defective interfering particles (DIPs) have been proposed as an HIV-1 therapeutic. However, DIPs have yet to be reported in people with HIV-1 (PWH). Here, we find DIPs in PWH who have a rare, polyclonal form of non-suppressible viremia (NSV). While antiretroviral therapy (ART) rapidly reduces viremia to undetectable levels, some individuals experience sustained viremia due to virus production from cell clones harboring intact or defective proviruses. We characterized the source of NSV in two PWH who never reached undetectable viral load despite ART adherence. Remarkably, in each participant, we found a diverse set of defective viral genomes all sharing the same fatal deletions. We found that this paradoxical accumulation of mutations by viruses with fatal defects was driven by superinfection with intact viruses, resulting in mobilization of defective genomes and accumulation of additional mutations during untreated infection. We show that these defective proviruses interfere with WT virus replication, conditionally replicate, and, in one case, have an R 0 > 1, enabling in vivo spread. Despite this, clinical outcomes show no evidence of a beneficial effect of these DIPs.
Collapse
|
7
|
Guerrero JF, Zimdars LL, Bruce JW, Becker JT, Evans EL, Torabi S, Striker R, Berry SM, Sherer NM. Single-cell delineation of strain-specific HIV-1 Vif activities using dual reporter sensor cells and live cell imaging. J Virol 2025; 99:e0157924. [PMID: 39998123 PMCID: PMC11915839 DOI: 10.1128/jvi.01579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) genome diversification is a key determinant of viral evolution and the pathogenesis of HIV/AIDS. Antiretroviral therapy is non-curative, and in the context of monitoring the latent reservoir, precision tools are needed to detect and enumerate HIV-1 genomes as well as to assess their heterogeneity, replication potential, and predict responses to therapy. Current sequencing-based methodologies are often unable to confirm intact genomes and most cell-based reporters provide limited information pertaining to viral fitness. In this study, we describe dual reporter sensor cells (DRSCs), an imaging-based reporter system designed to detect HIV-1 infection and measure several independent attributes of the virus in a single-cell high-content assay. We show that the DRSC assay can be used to measure infection, viral gene activation kinetics, and quantify viral circumvention of host antiviral responses. Using the DRSCs, we confirmed markedly different functional heterogeneity for vif alleles derived from diverse HIV-1 strains and subtypes affecting both rates of APOBEC3G degradation and the cell cycle. Furthermore, the assay allowed for the delineation of virus co-receptor preference (X4- vs R5-tropism) and visualization of virion assembly. Overall, our study illustrates proof-of-principle for a multivariate imaging-based cell-based system capable of detecting HIV-1 and studying viral genetic variability with greater data richness relative to prior available modalities. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) is highly heterogeneous and constantly mutating. These changes drive immune evasion and can cause treatment efforts to fail. Here, we describe the "dual reporter sensor cell" (DRSC) assay; a novel imaging-based approach that allows for the detection of HIV-1 infection coupled with a multivariate definition of several independent phenotypic aspects of viral genome activity in a single integrated assay. We validate the DRSC system by studying lab-adapted and patient isolate-derived versions of the viral Vif accessory protein, confirming marked differences in the capacity of diverse vif alleles to mediate downregulation of antiviral APOBEC3G proteins and dysregulate the cell cycle.
Collapse
Affiliation(s)
- Jorge F. Guerrero
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laraine L. Zimdars
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James W. Bruce
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jordan T. Becker
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Edward L. Evans
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Soroosh Torabi
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Rob Striker
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott M. Berry
- Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Mitchell JL, Buranapraditkun S, Gantner P, Takata H, Dietze K, N'guessan KF, Pollara J, Nohara J, Muir R, Kroon E, Pinyakorn S, Tulmethakaan N, Manasnayakorn S, Chottanapund S, Thantiworasit P, Prueksakaew P, Ratnaratorn N, Puttamaswin S, Nuntapinit B, Fox L, Haddad EK, Paquin-Proulx D, Phanuphak P, Sacdalan CP, Phanuphak N, Ananworanich J, Hsu D, Vasan S, Ferrari G, Chomont N, Trautmann L, on behalf of RV254 and RV304 Study Groups. Activation of CXCR3 + Tfh cells and B cells in lymph nodes during acute HIV-1 infection correlates with HIV-specific antibody development. J Virol 2025; 99:e0153224. [PMID: 39932316 PMCID: PMC11915809 DOI: 10.1128/jvi.01532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/17/2025] [Indexed: 03/19/2025] Open
Abstract
Lymph node T follicular helper (Tfh) cells and germinal center (GC) B cells are critical to generate potent antibodies but are rarely possible to study in humans. To understand how Tfh/GC B-cell interactions during acute HIV-1 infection (AHI) impact the generation of HIV-specific antibodies, we performed a unique cross-sectional analysis of inguinal lymph node biopsies taken prior to antiretroviral therapy (ART) initiation in AHI. Although total Tfh and GC B cell frequencies did not change during AHI, increased frequencies of proliferating Th1-like CXCR3+ Tfh, CXCR3+ non-GC B cells, and total CXCR3+ GC B cells correlated with gp120-specific IgG antibody levels in AHI. Frequencies of proliferating CXCR3+ Tfh in AHI also correlated with gp120-specific IgG antibody levels after 48 weeks of ART, antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and increased antibody binding to infected cells after ART. Importantly, while beneficial for antibody development, CXCR3+ Tfh cells were also infected by HIV-1 at higher frequencies than their CXCR3- counterparts and may contribute to the initial dissemination of HIV-1 in follicles. Together, these data suggest that activation of CXCR3+ Tfh cells is associated with induction of the germinal center response and subsequent antibody development, making these cells an important target for future therapeutic interventions. IMPORTANCE Early initiation of antiretroviral therapy (ART) is important to limit the seeding of the long-lasting HIV-1 reservoir; however, it also precludes the development of HIV-specific antibodies that can help control the virus if ART is stopped. Antibody development occurs within germinal centers in the lymph node and requires activation of both antigen-specific B cells and T follicular helper cells (Tfh), a specialized CD4+ cell that provides B cell help. To understand how early ART initiation may prohibit antibody development, we analyzed the frequencies and activation status of Tfh and B cells in lymph node biopsies collected in the different stages of acute HIV-1 infection. Our data suggest that decreased antibody development after early ART initiation may be due to limited germinal center development at the time of treatment and that new interventions that target activation of CXCR3+ Tfh may be beneficial to increase long-term HIV-specific antibody levels.
Collapse
Affiliation(s)
- Julie L. Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Supranee Buranapraditkun
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pierre Gantner
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kenneth Dietze
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kombo F. N'guessan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Junsuke Nohara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Roshell Muir
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Suteeraporn Pinyakorn
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Sopark Manasnayakorn
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Pattarawat Thantiworasit
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Bessara Nuntapinit
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
| | - Lawrence Fox
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elias K. Haddad
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Carlo P. Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Jintanat Ananworanich
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Denise Hsu
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Sandhya Vasan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - on behalf of RV254 and RV304 Study Groups
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Centre de Recherche du CHUM (CRCHUM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- SEARCH Research Foundation, Bangkok, Thailand
- Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Armed Forces Research Institute of Medical Sciences in Bangkok, Bangkok, Thailand
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Institute of HIV Research and Innovation (IHRI), Bangkok, Thailand
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Kannan D, Wang E, Deeks SG, Lewin SR, Chakraborty AK. Mechanism for evolution of diverse autologous antibodies upon broadly neutralizing antibody therapy of people with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641732. [PMID: 40161612 PMCID: PMC11952291 DOI: 10.1101/2025.03.05.641732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Antiretroviral therapy (ART) inhibits Human Immunodeficiency Virus (HIV) replication to maintain undetectable viral loads in people living with HIV, but does not result in a cure. Due to the significant challenges of lifelong ART for many, there is strong interest in therapeutic strategies that result in cure. Recent clinical trials have shown that administration of broadly neutralizing antibodies (bnAbs) when there is some viremia can lead to ART-free viral control in some people; however, the underlying mechanisms are unclear. Our computational modeling shows that bnAbs administered in the presence of some viremia promote the evolution of autologous antibodies (aAbs) that target diverse epitopes of HIV spike proteins. This "net" of polyclonal aAbs could confer control since evasion of this response would require developing mutations in multiple epitopes. Our results provide a common mechanistic framework underlying recent clinical observations upon bnAb/ART therapy, and they should also motivate and inform new trials.
Collapse
Affiliation(s)
- Deepti Kannan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, USA
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Arup K. Chakraborty
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Anderson LN, Hoyt CT, Zucker JD, McNaughton AD, Teuton JR, Karis K, Arokium-Christian NN, Warley JT, Stromberg ZR, Gyori BM, Kumar N. Computational tools and data integration to accelerate vaccine development: challenges, opportunities, and future directions. Front Immunol 2025; 16:1502484. [PMID: 40124369 PMCID: PMC11925797 DOI: 10.3389/fimmu.2025.1502484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
The development of effective vaccines is crucial for combating current and emerging pathogens. Despite significant advances in the field of vaccine development there remain numerous challenges including the lack of standardized data reporting and curation practices, making it difficult to determine correlates of protection from experimental and clinical studies. Significant gaps in data and knowledge integration can hinder vaccine development which relies on a comprehensive understanding of the interplay between pathogens and the host immune system. In this review, we explore the current landscape of vaccine development, highlighting the computational challenges, limitations, and opportunities associated with integrating diverse data types for leveraging artificial intelligence (AI) and machine learning (ML) techniques in vaccine design. We discuss the role of natural language processing, semantic integration, and causal inference in extracting valuable insights from published literature and unstructured data sources, as well as the computational modeling of immune responses. Furthermore, we highlight specific challenges associated with uncertainty quantification in vaccine development and emphasize the importance of establishing standardized data formats and ontologies to facilitate the integration and analysis of heterogeneous data. Through data harmonization and integration, the development of safe and effective vaccines can be accelerated to improve public health outcomes. Looking to the future, we highlight the need for collaborative efforts among researchers, data scientists, and public health experts to realize the full potential of AI-assisted vaccine design and streamline the vaccine development process.
Collapse
Affiliation(s)
| | - Charles Tapley Hoyt
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | - Jeremy D. Zucker
- Pacific Northwest National Laboratory (DOE), Richland, WA, United States
| | | | - Jeremy R. Teuton
- Pacific Northwest National Laboratory (DOE), Richland, WA, United States
| | - Klas Karis
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | | | - Jackson T. Warley
- Pacific Northwest National Laboratory (DOE), Richland, WA, United States
| | | | - Benjamin M. Gyori
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Neeraj Kumar
- Pacific Northwest National Laboratory (DOE), Richland, WA, United States
| |
Collapse
|
11
|
Chéret A. Acute HIV-1 Infection: Paradigm and Singularity. Viruses 2025; 17:366. [PMID: 40143294 PMCID: PMC11945883 DOI: 10.3390/v17030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Acute HIV-1 infection (AHI) is a transient period where the virus causes evident damage to the immune system, including an extensive apoptosis of CD4+ T cells associated with a high level of activation and a major cytokine storm to fight the invading virus. HIV infection establishes persistence by integrating the viral genome into host cell DNA in both replicating and non-replicating forms, effectively hiding from immune surveillance within infected lymphocytes as cellular reservoirs. The measurement of total HIV-1 DNA in peripheral blood mononuclear cells (PBMCs) is a reliable reflection of this reservoir. Initiating treatments during AHI with nucleoside reverse transcriptase inhibitors (NRTIs) and/or integrase strand transfer inhibitors (INSTIs) is essential to alter the dynamics of the global reservoir expansion, and to reduce the establishment of long-lived cellular and tissue reservoirs, while preserving and enhancing specific and non-specific immune responses. Furthermore, some of the patients treated at the AHI stage may become post-treatment controllers and should be informative regarding the mechanism of viral control, so patients treated during AHI are undoubtedly the best candidates to test innovative remission strategies toward a functional cure that could play a pivotal role in long-term HIV control. AHI is characterized by high levels of viral replication, with a significant increase in the risk of HIV transmission. Detecting AHI and initiating early treatment following diagnosis provides a window of opportunity to control the epidemic, particularly in high-risk populations.
Collapse
Affiliation(s)
- Antoine Chéret
- Inserm U1016, CNRS UMR 8104, Institut Cochin, Université Paris Descartes, 75014 Paris, France;
- Service Plateforme de Diagnostic et Thérapeutique Pluridisciplinaire, Centre Hospitalier Universitaire, 97159 Pointe à Pitre, Guadeloupe, France
- INSERM-CIC-1424, Centre Hospitalier Universitaire, 97159 Pointe à Pitre, Guadeloupe, France
| |
Collapse
|
12
|
Li W, Li G, Liu Y, Meng L, Zhang T, Wang L, Li H, Yu B, Wu J, Wang C, Yu X. Functional variability of Nef in antagonizing SERINC5 during acute to chronic HIV-1 infection. AIDS 2025; 39:229-240. [PMID: 39612239 PMCID: PMC11784911 DOI: 10.1097/qad.0000000000004079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The ability of HIV-1 Nef to counteract the host restriction factor SERINC5 and enhance virion infectivity has been well established. However, the impact of long-term within-host Nef evolution on this antagonistic capability remains unclear. DESIGN Analysis of longitudinal activity of Nef in antagonizing SERINC5. METHODS We investigated the downregulation activity of Nef against SERINC5 at different stages of infection by analyzing the cognate transmitted/founder, set point, and/or chronic Nef isolates from a cohort of 19 people with either subtype B or C HIV-1. RESULTS The Nef isolates from different stages exhibited varying abilities to antagonize SERINC5. Long-term evolution resulted in mutations accumulated in Nef and a decline of Nef-mediated SERINC5 downregulation function in subtype B, but not in subtype C viruses, leading to a rapid reduction in viral load from peak viremia. Furthermore, we identified four polymorphisms of both subtype B and C Nef that are associated with variations in the SERINC5 antagonistic function and viral infectivity. HIV-1 NL4-3 variants encoding Nef E63G, A83G, R105K, or D108E mutants exhibited reduced replication capacity through a SERINC5-dependent mechanism. However, among different subjects, only a small part of naturally occurring mutations at these sites were selected by host T-cell responses, suggesting a limited impact of host T-cell responses on influencing Nef's ability to antagonize SERINC5. CONCLUSION These results highlight the potential contribution of functional variation in Nef to differences in HIV-1 pathogenesis and provide significant implications for understanding the evolutionary interaction between Nef and SERINC5 in vivo .
Collapse
Affiliation(s)
- Weiting Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education
- National Engineering Laboratory for AIDS Vaccine
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine
| | - Yuyang Liu
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine
| | | | - Libian Wang
- National Engineering Laboratory for AIDS Vaccine
| | - Haochen Li
- National Engineering Laboratory for AIDS Vaccine
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine
| | - Chu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education
- National Engineering Laboratory for AIDS Vaccine
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Klenchin VA, Clark NM, Keles NK, Capuano S, Mason R, Gao G, Broman A, Kose E, Immonen TT, Fennessey CM, Keele BF, Lifson JD, Roederer M, Gardner MR, Evans DT. Adeno-associated viral delivery of Env-specific antibodies prevents SIV rebound after discontinuing antiretroviral therapy. Sci Immunol 2025; 10:eadq4973. [PMID: 40020046 DOI: 10.1126/sciimmunol.adq4973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
An alternative to lifelong antiretroviral therapy (ART) is needed to achieve durable control of HIV-1. Here, we show that adeno-associated virus (AAV) delivery of two rhesus macaque antibodies to the simian immunodeficiency virus (SIV) envelope glycoprotein (Env) with potent neutralization and antibody-dependent cellular cytotoxicity can prevent viral rebound in macaques infected with barcoded SIVmac239M after discontinuing suppressive ART. After AAV administration, sustained antibody expression with minimal antidrug antibody responses was achieved in all but one animal. After ART withdrawal, SIV replication rebounded within 2 weeks in all control animals but remained <15 copies per milliliter in plasma for more than a year in four of the eight animals that received AAV vectors encoding Env-specific antibodies. Viral sequences from animals that rebounded with delayed kinetics exhibited restricted clonal diversity and antibody escape mutations in Env. Thus, sustained expression of antibodies with potent antiviral activity can afford durable, ART-free containment of pathogenic SIV infection.
Collapse
Affiliation(s)
- Vadim A Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natasha M Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nida K Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guangping Gao
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aimee Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emek Kose
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Taina T Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew R Gardner
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30329, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
14
|
Ito F, Zhen J, Xie G, Huang H, Silva JC, Wu TT, Zhou ZH. Structure of the Kaposi's sarcoma-associated herpesvirus gB in post-fusion conformation. J Virol 2025; 99:e0153324. [PMID: 39818969 PMCID: PMC11852774 DOI: 10.1128/jvi.01533-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Discovered in 1994 in lesions of an AIDS patient, Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus subfamily of the Herpesviridae family, which contains a total of nine that infect humans. These viruses all contain a large envelope glycoprotein, glycoprotein B (gB), that is required for viral fusion with host cell membrane to initial infection. Although the atomic structures of five other human herpesviruses in their postfusion conformation and one in its prefusion conformation are known, the atomic structure of KSHV gB has not been reported. Here, we report the first structure of the KSHV gB ectodomain determined by single-particle cryogenic electron microscopy (cryoEM). Despite a similar global fold between herpesvirus gB, KSHV gB possesses local differences not shared by its relatives in other herpesviruses. The glycosylation sites of gB are arranged in belts down the symmetry axis with distinct localization compared to that of other herpesviruses, which occludes certain antibody binding sites. An extended glycan chain observed in domain I (DI), located proximal to the host membrane, may suggest its possible role in host cell attachment. Local flexibility of domain IV (DIV) governed by molecular hinges at its interdomain junctions identifies a means for enabling conformational change. A mutation in the domain III (DIII) central helix disrupts incorporation of gB into KSHV virions despite adoption of a canonical fold in vitro. Taken together, this study reveals mechanisms of structural variability of herpesvirus fusion protein gB and informs its folding and immunogenicity.IMPORTANCEIn 1994, a cancer-causing virus was discovered in lesions of AIDS patients, which was later named Kaposi's sarcoma-associated herpesvirus (KSHV). As the latest discovered human herpesvirus, KSHV has been classified into the gammaherpesvirus subfamily of the Herpesviridae. In this study, we have expressed KSHV gB and employed cryogenic electron microscopy (cryoEM) to determine its first structure. Importantly, our structure resolves some glycans beyond the first sugar moiety. These glycans are arranged in a pattern unique to KSHV, which impacts the antigenicity of KSHV gB. Our structure also reveals conformational flexibility caused by molecular hinges between domains that provide clues into the mechanism behind the drastic change between prefusion and postfusion states.
Collapse
Affiliation(s)
- Fumiaki Ito
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Guodong Xie
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Haigen Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Juan C. Silva
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
15
|
Li M, Li D. Cysteines shape antibody battles for HIV-1 Env. Cell Host Microbe 2025; 33:171-172. [PMID: 39947129 DOI: 10.1016/j.chom.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 05/09/2025]
Abstract
In this issue of Cell Host & Microbe, Hesselman et al. investigate the relationship between the presence of non-canonical cysteine residues in HIV-1 V1 region of the Envelope glycoprotein and the development of neutralization breadth through population-based analyses.
Collapse
Affiliation(s)
- Mingxi Li
- Center for Infectious Disease Research, Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Dapeng Li
- Center for Infectious Disease Research, Research Center for Industries of the Future, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Decoding the HIV-1 immune response, including its humoral arm, in post-treatment controllers (PTCs) is paramount to unveil immune correlates of viral control, which could help developing novel strategies towards HIV-1 remission. Here, we review novel findings on the humoral response to HIV-1 in PTCs. RECENT FINDINGS New data reveal the heterogeneity of humoral immune profiles in PTCs, principally influenced by viral exposure and dynamics. Stably aviremic PTCs, akin early ART-treated individuals, show minimal antibody B-cell response. Conversely, virally exposed PTCs develop functionally coordinated and effective humoral responses to HIV-1. They can produce antibodies cross-neutralizing heterologous HIV-1 viruses, including broadly neutralizing antibodies (bNAbs) exerting selective immune pressure. PTCs also elicit neutralizing antibodies against contemporaneous autologous viruses presumed to play a major role in sustaining viral suppression. SUMMARY The immune mechanisms underlying virologic control in PTCs likely involve various immune effectors. Notably, functional HIV-1 humoral responses can generate bNAbs and autologous neutralizing antibodies; however, their exact contribution to maintaining long-term control of plasma viremia and the precise mechanisms driving their induction require further investigation.
Collapse
Affiliation(s)
- Hugo Mouquet
- Institut Pasteur, Université Paris Cité, Humoral Immunology Unit, Paris, France
| |
Collapse
|
17
|
Foulkes C, Friedrich N, Ivan B, Stiegeler E, Magnus C, Schmidt D, Karakus U, Weber J, Günthard HF, Pasin C, Rusert P, Trkola A. Assessing bnAb potency in the context of HIV-1 envelope conformational plasticity. PLoS Pathog 2025; 21:e1012825. [PMID: 39836706 PMCID: PMC11774494 DOI: 10.1371/journal.ppat.1012825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/28/2025] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
For use in prevention and treatment, HIV-1 broadly neutralizing antibodies (bnAbs) have to overcome Env conformational heterogeneity of viral quasispecies and neutralize with constant high potency. Comparative analysis of neutralization data from the CATNAP database revealed a nuanced relationship between bnAb activity and Env conformational flexibility, with substantial epitope-specific variation of bnAb potency ranging from increased to decreased activity against open, neutralization-sensitive Env. To systematically investigate the impact of variability in Env conformation on bnAb potency we screened 126 JR-CSF point mutants for generalized neutralization sensitivity to weakly neutralizing antibodies (weak-nAbs) depending on trimer opening and plasma from people with chronic HIV-1 infection. 23 mutations resulted in a highly neutralization sensitive phenotype, which was associated with de-stabilization of the closed, prefusion conformation. Including 19 of these mutants into a Sensitivity Env mutant panel (SENSE-19), we classified bnAbs according to potency variations in response to trimer opening. To verify that these sensitivity patterns are independent of the in vitro assay system, replication-competent SENSE-19 mutant viruses were tested on primary CD4 T cells. While loss of potency on SENSE-19 was registered for bnAbs from several classes recognizing quaternary epitopes on pre-triggered Env, structural destabilization benefitted MPER bnAbs and other inhibitors known to have post-CD4 attachment neutralization activity. Importantly, for a subset of CD4bs bnAbs, and the interface bnAb PGT151, particularly low potency variation was noted, suggesting that Env conformational tolerance can be achieved but is not the rule. In summary, SENSE-19 screens revealed distinct tolerance levels to Env conformational intermediates between bnAbs that provide mechanistic insights in their function and broaden current neutralization breadth assessments.
Collapse
Affiliation(s)
- Caio Foulkes
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Branislav Ivan
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Emanuel Stiegeler
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Daniel Schmidt
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
18
|
Pandey B, S S, Chatterjee A, Mangala Prasad V. Role of surface glycans in enveloped RNA virus infections: A structural perspective. Proteins 2025; 93:93-104. [PMID: 37994197 DOI: 10.1002/prot.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Enveloped RNA viruses have been causative agents of major pandemic outbreaks in the recent past. Glycans present on these virus surface proteins are critical for multiple processes during the viral infection cycle. Presence of glycans serves as a key determinant of immunogenicity, but intrinsic heterogeneity, dynamics, and evolutionary shifting of glycans in heavily glycosylated enveloped viruses confounds typical structure-function analysis. Glycosylation sites are also conserved across different viral families, which further emphasizes their functional significance. In this review, we summarize findings regarding structure-function correlation of glycans on enveloped RNA virus proteins.
Collapse
Affiliation(s)
- Bhawna Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Srividhya S
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
19
|
Ding H, Nguyen HT, Li W, Deshpande A, Zhang S, Jiang F, Zhang Z, Anang S, Mothes W, Sodroski J, Kappes JC. Inducible cell lines producing replication-defective human immunodeficiency virus particles containing envelope glycoproteins stabilized in a pretriggered conformation. J Virol 2024; 98:e0172024. [PMID: 39508605 PMCID: PMC11650979 DOI: 10.1128/jvi.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, "closed" (State-1) conformation to more "open" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation. More open Env conformations are recognized by poorly neutralizing antibodies (pNAbs), which are readily elicited during natural infection and vaccination with current Env immunogens. Env heterogeneity likely contributes to HIV-1 persistence by skewing antibody responses away from the pretriggered conformation. The conformationally flexible gp160 Env precursor on the infected cell or virion surface potentially presents multiple pNAb epitopes to the host immune system. Although proteolytic cleavage to produce the functional, mature Env trimer [(gp120/gp41)3] stabilizes State-1, many primary HIV-1 Envs spontaneously sample more open conformations. Here, we establish inducible cell lines that produce replication-defective HIV-1 particles with Env trimers stabilized in a pretriggered conformation. The mature Env is enriched on virus-like particles (VLPs). Using complementary approaches, we estimate an average of 25-50 Env trimers on each VLP. The stabilizing changes in Env limit the natural conformational heterogeneity of the VLP Env trimers, allowing recognition by bNAbs but not pNAbs. These defective VLPs provide a more homogeneous source of pretriggered Env trimers in a native membrane environment. Thus, these VLPs may facilitate the characterization of this functionally important Env conformation and its interaction with the immune system.IMPORTANCEA major impediment to the development of an effective HIV/AIDS vaccine is the inefficiency with which human immunodeficiency virus (HIV-1) envelope glycoproteins elicit antibodies that neutralize multiple virus strains. Neutralizing antibodies recognize a particular shape of the envelope glycoproteins that resides on the viral membrane before the virus engages the host cell. Here, we report the creation of stable cell lines that inducibly produce non-infectious HIV-like particles. The normally flexible envelope glycoprotein spikes on these virus-like particles have been stabilized in a conformation that is recognized by broadly neutralizing antibodies. These virus-like particles allow the study of the envelope glycoprotein conformation, its modification by sugars, and its ability to elicit desired neutralizing antibodies.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Ashlesha Deshpande
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fan Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Wang H, Cheng C, Dal Santo JL, Shen CH, Bylund T, Henry AR, Howe CA, Hwang J, Morano NC, Morris DJ, Pletnev S, Roark RS, Zhou T, Hansen BT, Hoyt FH, Johnston TS, Wang S, Zhang B, Ambrozak DR, Becker JE, Bender MF, Changela A, Chaudhary R, Corcoran M, Corrigan AR, Foulds KE, Guo Y, Lee M, Li Y, Lin BC, Liu T, Louder MK, Mandolesi M, Mason RD, McKee K, Nair V, O'Dell S, Olia AS, Ou L, Pegu A, Raju N, Rawi R, Roberts-Torres J, Sarfo EK, Sastry M, Schaub AJ, Schmidt SD, Schramm CA, Schwartz CL, Smith SC, Stephens T, Stuckey J, Teng IT, Todd JP, Tsybovsky Y, Van Wazer DJ, Wang S, Doria-Rose NA, Fischer ER, Georgiev IS, Karlsson Hedestam GB, Sheng Z, Woodward RA, Douek DC, Koup RA, Pierson TC, Shapiro L, Shaw GM, Mascola JR, Kwong PD. Potent and broad HIV-1 neutralization in fusion peptide-primed SHIV-infected macaques. Cell 2024; 187:7214-7231.e23. [PMID: 39471811 PMCID: PMC11645223 DOI: 10.1016/j.cell.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
An antibody-based HIV-1 vaccine will require the induction of potent cross-reactive HIV-1-neutralizing responses. To demonstrate feasibility toward this goal, we combined vaccination targeting the fusion-peptide site of vulnerability with infection by simian-human immunodeficiency virus (SHIV). In four macaques with vaccine-induced neutralizing responses, SHIV infection boosted plasma neutralization to 45%-77% breadth (geometric mean 50% inhibitory dilution [ID50] ∼100) on a 208-strain panel. Molecular dissection of these responses by antibody isolation and cryo-electron microscopy (cryo-EM) structure determination revealed 15 of 16 antibody lineages with cross-clade neutralization to be directed toward the fusion-peptide site of vulnerability. In each macaque, isolated antibodies from memory B cells recapitulated the plasma-neutralizing response, with fusion-peptide-binding antibodies reaching breadths of 40%-60% (50% inhibitory concentration [IC50] < 50 μg/mL) and total lineage-concentrations estimates of 50-200 μg/mL. Longitudinal mapping indicated that these responses arose prior to SHIV infection. Collectively, these results provide in vivo molecular examples for one to a few B cell lineages affording potent, broadly neutralizing plasma responses.
Collapse
Affiliation(s)
- Hua Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L Dal Santo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Colin A Howe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juyun Hwang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel J Morris
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan S Roark
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan T Hansen
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Forrest H Hoyt
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuyi Wang
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan E Becker
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Angela R Corrigan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinod Nair
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Schaub
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindi L Schwartz
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Sarah C Smith
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Jonathan Stuckey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - David J Van Wazer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ruth A Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C Pierson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Modex Therapeutics Inc., Natick, MA 01760, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
21
|
Shimagaki KS, Lynch RM, Barton JP. Parallel HIV-1 fitness landscapes shape viral dynamics in humans and macaques that develop broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603090. [PMID: 39071321 PMCID: PMC11275900 DOI: 10.1101/2024.07.12.603090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Human immunodeficiency virus (HIV)-1 exhibits remarkable genetic diversity. For this reason, an effective HIV-1 vaccine must elicit antibodies that can neutralize many variants of the virus. While broadly neutralizing antibodies (bnAbs) have been isolated from HIV-1 infected individuals, a general understanding of the virus-antibody coevolutionary processes that lead to their development remains incomplete. We performed a quantitative study of HIV-1 evolution in two individuals who developed bnAbs. We observed strong selection early in infection for mutations affecting HIV-1 envelope glycosylation and escape from autologous strain-specific antibodies, followed by weaker selection for bnAb resistance later in infection. To confirm our findings, we analyzed data from rhesus macaques infected with viruses derived from the same two individuals. We inferred remarkably similar fitness effects of HIV-1 mutations in humans and macaques. Moreover, we observed a striking pattern of rapid HIV-1 evolution, consistent in both humans and macaques, that precedes the development of bnAbs. Our work highlights strong parallels between infection in rhesus macaques and humans, and it reveals a quantitative evolutionary signature of bnAb development.
Collapse
|
22
|
Hlekelele L, Setshedi K, Mandiwana V, Kalombo L, Lemmer Y, Chauke V, Maity A. Carboxy-PEG-thiol functionalized gold nanoparticle conjugates for the detection of SARS-CoV-2: Detection tools and analytical method development. J Virol Methods 2024; 330:115028. [PMID: 39236987 DOI: 10.1016/j.jviromet.2024.115028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Addressing the need for accessible SARS-CoV-2 testing, carboxy-PEG 12-thiol functionalized gold nanoparticles conjugates were developed for rapid point-of-care (POC) detection against SARS-CoV-2 spike protein, pseudo-SARS-CoV-2, and authentic Beta SARS-CoV-2 virus particles. These conjugates leverage gold nanoparticles (AuNPs) as signal transducers, cross-linked to either angiotensin-converting enzyme 2 (ACE2) or SARS-CoV-2 spike protein receptor-binding domain (RBD) antibodies as bioreceptors and showed a distinct color shift from pink to blue. To assess their POC feasibility, the conjugates were integrated into facemasks and breathalyzers, wherein aerosolized SARS-CoV-2 antigens were successfully detected, producing a color change within 10 and 30 minutes for the breathalyzer and facemask prototypes, respectively. Furthermore, we explored quantitative analysis using varying concentrations of SARS-CoV-2 spike protein. Both conjugates demonstrated a linear relationship between blue color intensity and virus concentration, with linear ranges of 0.08-0.6 ng/mL and 0.04-0.5 ng/mL, respectively. Low limits of detection and quantification were also achieved. They exhibited specificity, responding solely to SARS-CoV-2 even in complex matrices containing diverse proteins, including the SARS-CoV-1 spike protein. Precision tests yielded coefficient of variations below 2 %, showcasing their remarkable reproducibility. This work presents a promising approach for rapid, sensitive, and specific POC detection of SARS-CoV-2 paving the way for improved pandemic response and management.
Collapse
Affiliation(s)
- Lerato Hlekelele
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.
| | - Katlego Setshedi
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Vusani Mandiwana
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Lonji Kalombo
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Yolandy Lemmer
- Next Generation Health, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Vongani Chauke
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Arjun Maity
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
23
|
Dhlamini KS, Selepe CT, Ramalapa B, Cele Z, Malatji K, Govender KK, Tshweu L, Ray SS. Dual Antimicrobial Activity of HTCC and Its Nanoparticles: A Synergistic Approach for Antibacterial and Antiviral Applications Through Combined In Silico and In Vitro Studies. Polymers (Basel) 2024; 16:2999. [PMID: 39518210 PMCID: PMC11548688 DOI: 10.3390/polym16212999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC), a quaternized chitosan derivative, has been shown to exhibit a broad spectrum of antimicrobial activity, especially against bacteria and enveloped viruses. Despite this, molecular docking studies showing its atomic-level mechanisms against these microorganisms are scarce. Here, for the first time, we employed molecular docking analyses to investigate the potential antibacterial activity of HTCC against Staphylococcus aureus and its antiviral activity against human immunodeficiency virus 1 (HIV-1). According to the findings, HTCC exhibited promising antibacterial activity with high binding affinities; however, it had limited antiviral activity. To validate these theoretical outcomes, experimental studies were conducted. Different derivatives of HTCC were synthesized and characterized using NMR, XRD, FTIR, and DLS. The in vitro assays validated the potent antibacterial efficacy of HTCC against S. aureus, whereas the antiviral studies did not show good antiviral activity. However, our research also revealed a promising avenue for further exploration of the antimicrobial activity of HTCC nanoparticles (NPs), since, thus far, no studies have been conducted to show the antiviral activity of HTCC NPs against HIV-1. The nanosized HTCC exhibited superior antiviral performance compared to the parent polymers, with complete (100%) inhibition of HIV-1 viral activity at the highest tested concentration (0.33 mg/mL).
Collapse
Affiliation(s)
- Khanyisile S. Dhlamini
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (K.S.D.); (C.T.S.); (B.R.); (Z.C.); (K.M.)
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
| | - Cyril T. Selepe
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (K.S.D.); (C.T.S.); (B.R.); (Z.C.); (K.M.)
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
| | - Bathabile Ramalapa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (K.S.D.); (C.T.S.); (B.R.); (Z.C.); (K.M.)
- Material Science, Innovation and Modelling (MaSIM), Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Zamani Cele
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (K.S.D.); (C.T.S.); (B.R.); (Z.C.); (K.M.)
| | - Kanyane Malatji
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (K.S.D.); (C.T.S.); (B.R.); (Z.C.); (K.M.)
| | - Krishna K. Govender
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
| | - Lesego Tshweu
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (K.S.D.); (C.T.S.); (B.R.); (Z.C.); (K.M.)
- Material Science, Innovation and Modelling (MaSIM), Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (K.S.D.); (C.T.S.); (B.R.); (Z.C.); (K.M.)
- Department of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa;
| |
Collapse
|
24
|
Zhang S, Anang S, Zhang Z, Nguyen HT, Ding H, Kappes JC, Sodroski J. Conformations of membrane human immunodeficiency virus (HIV-1) envelope glycoproteins solubilized in Amphipol A18 lipid-nanodiscs. J Virol 2024; 98:e0063124. [PMID: 39248459 PMCID: PMC11495050 DOI: 10.1128/jvi.00631-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Upon binding to the host cell receptor, CD4, the pretriggered (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer undergoes transitions to downstream conformations important for virus entry. State 1 is targeted by most broadly neutralizing antibodies (bNAbs), whereas downstream conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. Extraction of Env from the membranes of viruses or Env-expressing cells disrupts the metastable State-1 Env conformation, even when detergent-free approaches like styrene-maleic acid lipid nanoparticles (SMALPs) are used. Here, we combine three strategies to solubilize and purify mature membrane Envs that are antigenically native (i.e., recognized by bNAbs and not pNAbs): (1) solubilization of Env with a novel amphipathic copolymer, Amphipol A18; (2) use of stabilized pretriggered Env mutants; and (3) addition of the State-1-stabilizing entry inhibitor, BMS-806. Amphipol A18 was superior to the other amphipathic copolymers tested (SMA and AASTY 11-50) for preserving a native Env conformation. A native antigenic profile of A18 Env-lipid-nanodiscs was maintained for at least 7 days at 4°C and 2 days at 37°C in the presence of BMS-806 and was also maintained for at least 1 h at 37°C in a variety of adjuvants. The damaging effects of a single cycle of freeze-thawing on the antigenic profile of the A18 Env-lipid-nanodiscs could be prevented by the addition of 10% sucrose or 10% glycerol. These results underscore the importance of the membrane environment to the maintenance of a pretriggered (State-1) Env conformation and provide strategies for the preparation of lipid-nanodiscs containing native membrane Envs.IMPORTANCEThe human immunodeficiency virus (HIV-1) envelope glycoproteins (Envs) mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins like Env rely on purification procedures that maintain their natural conformation. In this study, we show that an amphipathic copolymer A18 can directly extract HIV-1 Env from a membrane without the use of detergents. A18 promotes the formation of nanodiscs that contain Env and membrane lipids. Env in A18-lipid nanodiscs largely preserves features recognized by broadly neutralizing antibodies (bNAbs) and conceals features potentially recognized by poorly neutralizing antibodies (pNAbs). Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful for future studies of HIV-1 Env structure, interaction with receptors and antibodies, and immunogenicity.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Umotoy JC, Kroon PZ, Man S, van Dort KA, Atabey T, Schriek AI, Dekkers G, Herrera-Carrillo E, Geijtenbeek TB, Heukers R, Kootstra NA, van Gils MJ, de Taeye SW. Inhibition of HIV-1 replication by nanobodies targeting tetraspanin CD9. iScience 2024; 27:110958. [PMID: 39391729 PMCID: PMC11465043 DOI: 10.1016/j.isci.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
HIV-1 alters the dynamics and distribution of tetraspanins, a group of proteins integral to membrane organization, to facilitate both entry and egress. Notably, the tetraspanin CD9 is dysregulated during HIV-1 infection, correlating with multifaceted effects on viral replication. Here, we generated llama-derived nanobodies against CD9 to restrict HIV-1 replication. We immunized llamas with recombinant large extracellular loop of CD9 and identified eight clonally distinct nanobodies targeting CD9, each exhibiting a range of affinities and differential binding to cell surface-expressed CD9. Notably, nanobodies T2C001 and T2C002 demonstrated low nanomolar affinities and exhibited differential sensitivities against endogenous and overexpressed CD9 on the cell surface. Although CD9-directed nanobodies did not impede the early stages of HIV-1 life cycle, they effectively inhibited virus-induced syncytia formation and virus replication in T cells and monocyte-derived macrophages. This discovery opens new avenues for host-targeted therapeutic strategies, potentially augmenting existing antiretroviral treatments for HIV-1.
Collapse
Affiliation(s)
- Jeffrey C. Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Pascal Z. Kroon
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Shirley Man
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Karel A. van Dort
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tugba Atabey
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Angela I. Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Gillian Dekkers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Elena Herrera-Carrillo
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Teunis B.H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Raimond Heukers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Steven W. de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Snow BJ, Keles NK, Grunst MW, Janaka SK, Behrens RT, Evans DT. Potent broadly neutralizing antibodies mediate efficient antibody-dependent phagocytosis of HIV-infected cells. PLoS Pathog 2024; 20:e1012665. [PMID: 39466835 PMCID: PMC11542898 DOI: 10.1371/journal.ppat.1012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) has been implicated in protection against HIV-1. However, methods for measuring ADCP currently rely on the phagocytosis of gp120- or gp41-coated beads that do not reflect physiologically relevant conformations of the viral envelope glycoprotein or the size of a virus-infected cell. We therefore developed a novel approach for measuring ADCP of HIV-infected cells expressing natural conformations of Env. A monocytic cell line (THP-1 cells) or primary human monocytes were incubated with a CD4+ T cell line that expresses eGFP upon HIV-1 infection in the presence of antibodies and ADCP was measured as the accumulation of eGFP+ material by flow cytometry. The internalization of HIV-infected cells by monocytes was confirmed visually by image-capture flow cytometry. Cytoskeletal remodeling, pseudopod formation and phagocytosis were also observed by confocal microscopy. We found that potent broadly neutralizing antibodies (bnAbs), but not non-neutralizing antibodies (nnAbs), mediate efficient phagocytosis of cells infected with either primary or lab-adapted HIV-1. A nnAb to a CD4-inducible epitope of gp120 (A32) failed to enable ADCP of HIV-infected cells but mediated efficient phagocytosis of gp120-coated beads. Conversely, a bnAb specific to intact Env trimers (PGT145) mediated potent ADCP of HIV-infected cells but did not facilitate the uptake of gp120-coated beads. These results underscore the importance of measuring ADCP of HIV-infected cells expressing physiologically relevant conformations of Env and show that most antibodies that are capable of binding to Env trimers on virions to neutralize virus infectivity are also capable of binding to Env on the surface of virus-infected cells to mediate ADCP.
Collapse
Affiliation(s)
- Brian J. Snow
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
27
|
Upadhyay C, Rao P, Behzadi MA, Feyznezhad R, Lambert GS, Kumar R, Kumar M, Yang W, Jiang X, Luo CC, Nadas A, Arthos J, Kong XP, Zhang H, Hioe CE, Duty JA. Signal peptide exchange alters HIV-1 envelope antigenicity and immunogenicity. Front Immunol 2024; 15:1476924. [PMID: 39380992 PMCID: PMC11458420 DOI: 10.3389/fimmu.2024.1476924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction HIV-1 envelope (Env) is the key target for antibodies (Abs) against the virus and thus an important HIV-1 vaccine component. Env is synthesized from a gp160 precursor with a signal peptide (SP) at its N-terminus. This study investigated the influence of the SP on Env antigenicity and immunogenicity. Methods Env proteins from two HIV-1 isolates, AA05 and AC02, were analyzed as gp120 and gp160 in their native wild-type (WT) forms and as chimeras with swapped SPs (AA05-02 and AC02-05). The WT and chimeric Env were assessed for antigenicity and glycosylation using monoclonal antibodies (mAbs) and glycan probes. Immunogenicity was tested in mice using three vaccine types: gp120 protein, gp120 DNA+gp120 protein, and gp120 DNA+gp160 DNA. Results The recombinant AC02 gp120 protein was antigenically superior to AA05 as indicated by higher reactivity with most mAbs tested. When SPs were swapped, the antigenicity of the chimeric gp120s (AA05-02 and AC02-05) resembled that of the gp120s from which the SPs were derived; AA05-02 was similar to AC02 and vice versa. Glycan probe reactivity followed a similar pattern: AA05-02 and AC02 showed similar affinity to high-mannose specific mAbs and lectins. Interestingly, the antigenicity of gp160s showed an opposite pattern; membrane-bound gp160 expressed with the AA05 SP (AA05 and AC02-05) showed greater mAb binding than gp160 with the AC02 SP (AC02 and AA05-02). Mice immunized with gp120 protein showed that AA05-02 induced stronger cross-reactive binding Ab responses than AA05 WT, and AC02 elicited stronger responses than AC02-05, indicating AC02 SP enhanced gp120 immunogenicity. However, when DNA vaccines were included (gp120 DNA+gp120 protein and gp120 DNA+gp160 DNA), the use of heterologous SPs diminished the immunogenicity of the WT immunogens. Among the three vaccine regimens tested, only gp120 DNA+gp160 DNA immunization elicited low-level Tier 2 neutralizing Abs, with AA05 WT inducing Abs with greater neutralization capabilities than AA05-02. Conclusion These data demonstrate that the SP can significantly impact the antigenicity and immunogenicity of HIV-1 Env proteins. Hence, while SP swapping is a common practice in constructing Env immunogens, this study highlights the importance of careful consideration of the effects of replacing native SPs on the immunogenicity of Env vaccines.
Collapse
Affiliation(s)
- Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priyanka Rao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roya Feyznezhad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory S. Lambert
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajnish Kumar
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Madhu Kumar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Christina C. Luo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arthur Nadas
- Department of Environment Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - James Arthos
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research Service, James J. Peters VA Medical Center, Bronx, NY, United States
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
28
|
Malebo K, Woodward J, Ximba P, Mkhize Q, Cingo S, Moyo-Gwete T, Moore PL, Williamson AL, Chapman R. Development of a Two-Component Nanoparticle Vaccine Displaying an HIV-1 Envelope Glycoprotein that Elicits Tier 2 Neutralising Antibodies. Vaccines (Basel) 2024; 12:1063. [PMID: 39340093 PMCID: PMC11436023 DOI: 10.3390/vaccines12091063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Despite treatment and other interventions, an effective prophylactic HIV vaccine is still an essential goal in the control of HIV. Inducing robust and long-lasting antibody responses is one of the main targets of an HIV vaccine. The delivery of HIV envelope glycoproteins (Env) using nanoparticle (NP) platforms has been shown to elicit better immunogenicity than soluble HIV Env. In this paper, we describe the development of a nanoparticle-based vaccine decorated with HIV Env using the SpyCatcher/SpyTag system. The Env utilised in this study, CAP255, was derived from a transmitted founder virus isolated from a patient who developed broadly neutralising antibodies. Negative stain and cryo-electron microscopy analyses confirmed the assembly and stability of the mi3 into uniform icosahedral NPs surrounded by regularly spaced CAP255 gp140 Env trimers. A three-dimensional reconstruction of CAP255 gp140 SpyTag-SpyCatcher mi3 clearly showed Env trimers projecting from the centre of each of the pentagonal dodecahedral faces of the NP. To our knowledge, this is the first study to report the formation of SpyCatcher pentamers on the dodecahedral faces of mi3 NPs. To investigate the immunogenicity, rabbits were primed with two doses of DNA vaccines expressing the CAP255 gp150 and a mosaic subtype C Gag and boosted with three doses of the NP-developed autologous Tier 2 CAP255 neutralising antibodies (Nabs) and low levels of heterologous CAP256SU NAbs.
Collapse
Affiliation(s)
- Kegomoditswe Malebo
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Jeremy Woodward
- Electron Microscope Unit, University of Cape Town, Cape Town 7925, South Africa
| | - Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Qiniso Mkhize
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2192, South Africa
| | - Sanele Cingo
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Thandeka Moyo-Gwete
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2192, South Africa
| | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2000, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2192, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
29
|
Zhang Y, Otte F, Stoeckle M, Thielen A, Däumer M, Kaiser R, Kusejko K, Metzner KJ, Klimkait T. HIV-1 diversity in viral reservoirs obtained from circulating T-cell subsets during early ART and beyond. PLoS Pathog 2024; 20:e1012526. [PMID: 39292732 PMCID: PMC11410260 DOI: 10.1371/journal.ppat.1012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Even during extended periods of effective immunological control, a substantial dynamic of the viral genome can be observed in different cellular compartments in HIV-1 positive individuals, indicating the persistence of active viral reservoirs. To obtain further insights, we studied changes in the proviral as well as in the viral HIV-1 envelope (Env) sequence along with transcriptional, translational and viral outgrowth activity as indicators for viral dynamics and genomic intactness. Our study identified distinct reservoir patterns that either represented highly sequence-diverse HIV-1 populations or only a single / few persisting virus variants. The single dominating variants were more often found in individuals starting ART during early infection phases, indicating that early treatment might limit reservoir diversification. At the same time, more sequence-diverse HIV reservoirs correlated with a poorer immune status, indicated by lower CD4 count, a higher number of regimen changes and more co-morbidities. Furthermore, we noted that in T-cell populations in the peripheral blood, replication-competent HIV-1 is predominantly present in Lymph node homing TN (naïve) and TCM (central memory) T cells. Provirus genomes archived in TTM (transitional memory) and TEM (effector memory) T cells more frequently tended to carry inactivating mutations and, population-wise, possess changes in the genetic diversity. These discriminating properties of the viral reservoir in T-cell subsets may have important implications for new early therapy strategies, underscoring the critical role of early therapy in preserving robust immune surveillance and constraining the viral reservoir.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Tarasova O, Petrou A, Ivanov SM, Geronikaki A, Poroikov V. Viral Factors in Modulation of Host Immune Response: A Route to Novel Antiviral Agents and New Therapeutic Approaches. Int J Mol Sci 2024; 25:9408. [PMID: 39273355 PMCID: PMC11395507 DOI: 10.3390/ijms25179408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Viruses utilize host cells at all stages of their life cycle, from the transcription of genes and translation of viral proteins to the release of viral copies. The human immune system counteracts viruses through a variety of complex mechanisms, including both innate and adaptive components. Viruses have an ability to evade different components of the immune system and affect them, leading to disruption. This review covers contemporary knowledge about the virus-induced complex interplay of molecular interactions, including regulation of transcription and translation in host cells resulting in the modulation of immune system functions. Thorough investigation of molecular mechanisms and signaling pathways that are involved in modulating of host immune response to viral infections can help to develop novel approaches for antiviral therapy. In this review, we consider new therapeutic approaches for antiviral treatment. Modern therapeutic strategies for the treatment and cure of human immunodeficiency virus (HIV) are considered in detail because HIV is a unique example of a virus that leads to host T lymphocyte deregulation and significant modulation of the host immune response. Furthermore, peculiarities of some promising novel agents for the treatment of various viral infections are described.
Collapse
Affiliation(s)
- Olga Tarasova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
31
|
Hull MA, Pritchard SM, Nicola AV. Herpes Simplex Virus 1 Envelope Glycoprotein C Shields Glycoprotein D to Protect Virions from Entry-Blocking Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608756. [PMID: 39229192 PMCID: PMC11370450 DOI: 10.1101/2024.08.20.608756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Herpes simplex virus 1 (HSV-1) gD interaction with the host cell receptor nectin-1 triggers the membrane fusion cascade during viral entry. Potent neutralizing antibodies to gD prevent receptor-binding or prevent gD interaction with gH/gL critical for fusion. HSV has many strategies to evade host immune responses. We investigated the ability of virion envelope gC to protect envelope gD from antibody neutralization. HSV-1 lacking gC was more sensitive to neutralization by anti-gD monoclonal antibodies than a wild type rescuant virus. gD in the HSV-1 gC-null viral envelope had enhanced reactivity to anti-gD antibodies compared to wild type. HSV-1 ΔgC binding to the nectin-1 receptor was more readily inhibited by a neutralizing anti-gD monoclonal antibody. HSV-1 ΔgC was also more sensitive to inhibition by soluble nectin-1 receptor. The viral membrane protein composition of HSV-1 ΔgC was equivalent to that of wild type, suggesting that the lack of gC is responsible for the increased reactivity of gD-specific antibodies and the consequent increased susceptibility to neutralization by those antibodies. Together, the results suggest that gC in the HSV-1 envelope shields both receptor-binding domains and gH/gL-interacting domains of gD from neutralizing antibodies, facilitating HSV cell entry.
Collapse
Affiliation(s)
- McKenna A Hull
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
32
|
Zhang Z, Anang S, Nguyen HT, Fritschi C, Smith AB, Sodroski JG. Membrane HIV-1 envelope glycoproteins stabilized more strongly in a pretriggered conformation than natural virus Envs. iScience 2024; 27:110141. [PMID: 38979012 PMCID: PMC11228805 DOI: 10.1016/j.isci.2024.110141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
The pretriggered conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) is targeted by virus entry inhibitors and broadly neutralizing antibodies (bNAbs). The lability of pretriggered Env has hindered its characterization. Here, we produce membrane Env variants progressively stabilized in pretriggered conformations, in some cases to a degree beyond that found in natural HIV-1 strains. Pretriggered Env stability correlated with stronger trimer subunit association, increased virus sensitivity to bNAb neutralization, and decreased capacity to mediate cell-cell fusion and virus entry. For some highly stabilized Env mutants, after virus-host cell engagement, the normally inaccessible gp120 V3 region on an Env intermediate became targetable by otherwise poorly neutralizing antibodies. Thus, evolutionary pressure on HIV-1 Env to maintain trimer integrity, responsiveness to the CD4 receptor, and resistance to antibodies modulates pretriggered Env stability. The strongly stabilized pretriggered membrane Envs reported here will facilitate further characterization of this functionally important conformation.
Collapse
Affiliation(s)
- Zhiqing Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hanh T. Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Fritschi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Cottrell CA, Pratap PP, Cirelli KM, Carnathan DG, Enemuo CA, Antanasijevic A, Ozorowski G, Sewall LM, Gao H, Allen JD, Nogal B, Silva M, Bhiman J, Pauthner M, Irvine DJ, Montefiori D, Crispin M, Burton DR, Silvestri G, Crotty S, Ward AB. Priming antibody responses to the fusion peptide in rhesus macaques. NPJ Vaccines 2024; 9:126. [PMID: 38997302 PMCID: PMC11245479 DOI: 10.1038/s41541-024-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to prime and elicit antibody responses against the conserved fusion peptide (FP). GC responses and antibody specificities were tracked longitudinally using lymph node fine-needle aspirates and electron microscopy polyclonal epitope mapping (EMPEM), respectively, to show antibody responses to the FP/N611 glycan hole region were primed, although exhibited limited neutralization breadth. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.
Collapse
Affiliation(s)
- Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Payal P Pratap
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kimberly M Cirelli
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Diane G Carnathan
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Chiamaka A Enemuo
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Leigh M Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hongmei Gao
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, Durham, NC, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jinal Bhiman
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthias Pauthner
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Darrell J Irvine
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, Durham, NC, USA
| | - Max Crispin
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Dennis R Burton
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Division of Infectious Disease and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
Cyster JG, Wilson PC. Antibody modulation of B cell responses-Incorporating positive and negative feedback. Immunity 2024; 57:1466-1481. [PMID: 38986442 PMCID: PMC11257158 DOI: 10.1016/j.immuni.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Antibodies are powerful modulators of ongoing and future B cell responses. While the concept of antibody feedback has been appreciated for over a century, the topic has seen a surge in interest due to the evidence that the broadening of antibody responses to SARS-CoV-2 after a third mRNA vaccination is a consequence of antibody feedback. Moreover, the discovery that slow antigen delivery can lead to more robust humoral immunity has put a spotlight on the capacity for early antibodies to augment B cell responses. Here, we review the mechanisms whereby antibody feedback shapes B cell responses, integrating findings in humans and in mouse models. We consider the major influence of epitope masking and the diverse actions of complement and Fc receptors and provide a framework for conceptualizing the ways antigen-specific antibodies may influence B cell responses to any form of antigen, in conditions as diverse as infectious disease, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Giorgi EE, Li H, Hora B, Shaw GM, Wagh K, Williams WB. Viral Envelope Evolution in Simian-HIV-Infected Neonate and Adult-Dam Pairs of Rhesus Macaques. Viruses 2024; 16:1014. [PMID: 39066177 PMCID: PMC11281369 DOI: 10.3390/v16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
We recently demonstrated that Simian-HIV (SHIV)-infected neonate rhesus macaques (RMs) generated heterologous HIV-1 neutralizing antibodies (NAbs) with broadly-NAb (bNAb) characteristics at a higher frequency compared with their corresponding dam. Here, we characterized genetic diversity in Env sequences from four neonate or adult/dam RM pairs: in two pairs, neonate and dam RMs made heterologous HIV-1 NAbs; in one pair, neither the neonate nor the dam made heterologous HIV-1 NAbs; and in another pair, only the neonate made heterologous HIV-1 NAbs. Phylogenetic and sequence diversity analyses of longitudinal Envs revealed that a higher genetic diversity, within the host and away from the infecting SHIV strain, was correlated with heterologous HIV-1 NAb development. We identified 22 Env variable sites, of which 9 were associated with heterologous HIV-1 NAb development; 3/9 sites had mutations previously linked to HIV-1 Env bNAb development. These data suggested that viral diversity drives heterologous HIV-1 NAb development, and the faster accumulation of viral diversity in neonate RMs may be a potential mechanism underlying bNAb induction in pediatric populations. Moreover, these data may inform candidate Env immunogens to guide precursor B cells to bNAb status via vaccination by the Env-based selection of bNAb lineage members with the appropriate mutations associated with neutralization breadth.
Collapse
Affiliation(s)
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.); (G.M.S.)
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA;
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.); (G.M.S.)
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA;
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
36
|
Ortiz R, Barajas A, Pons-Grífols A, Trinité B, Tarrés-Freixas F, Rovirosa C, Urrea V, Barreiro A, Gonzalez-Tendero A, Rovira-Rigau M, Cardona M, Ferrer L, Clotet B, Carrillo J, Aguilar-Gurrieri C, Blanco J. Production and Immunogenicity of FeLV Gag-Based VLPs Exposing a Stabilized FeLV Envelope Glycoprotein. Viruses 2024; 16:987. [PMID: 38932278 PMCID: PMC11209239 DOI: 10.3390/v16060987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses in their prefusion conformation (e.g., HIV Env, SARS-CoV-2 S, or RSV F glycoproteins) has improved their capability to induce neutralizing protective immune responses. Therefore, we have stabilized the FeLV Env protein following a strategy based on the incorporation of a disulfide bond and an Ile/Pro mutation (SOSIP) previously used to generate soluble HIV Env trimers. We have characterized this SOSIP-FeLV Env in its soluble form and as a transmembrane protein present at high density on the surface of FeLV Gag-based VLPs. Furthermore, we have tested its immunogenicity in DNA-immunization assays in C57BL/6 mice. Low anti-FeLV Env responses were detected in SOSIP-FeLV soluble protein-immunized animals; however, unexpectedly no responses were detected in the animals immunized with SOSIP-FeLV Gag-based VLPs. In contrast, high humoral response against FeLV Gag was observed in the animals immunized with control Gag VLPs lacking SOSIP-FeLV Env, while this response was significantly impaired when the VLPs incorporated SOSIP-FeLV Env. Our data suggest that FeLV Env can be stabilized as a soluble protein and can be expressed in high-density VLPs. However, when formulated as a DNA vaccine, SOSIP-FeLV Env remains poorly immunogenic, a limitation that must be overcome to develop an effective FeLV vaccine.
Collapse
MESH Headings
- Animals
- Mice
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Mice, Inbred C57BL
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Leukemia Virus, Feline/immunology
- Leukemia Virus, Feline/genetics
- Gene Products, gag/immunology
- Gene Products, gag/genetics
- Female
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/administration & dosage
- Humans
- Cats
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Raquel Ortiz
- IrsiCaixa, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Barajas
- IrsiCaixa, 08916 Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Anna Pons-Grífols
- IrsiCaixa, 08916 Badalona, Spain
- Doctorate School, Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | - Bonaventura Clotet
- IrsiCaixa, 08916 Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Infectious Diseases Department, Germans Trias I Pujol Hospital, 08916 Badalona, Spain
| | | | | | - Julià Blanco
- IrsiCaixa, 08916 Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Germans Trias I Pujol Research Institute (IGTP), 08916 Badalona, Spain
- CIBERINFEC, ISCIII, 28029 Madrid, Spain
| |
Collapse
|
37
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
38
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
39
|
Burnie J, Fernandes C, Patel A, Persaud AT, Chaphekar D, Wei D, Lee TKH, Tang VA, Cicala C, Arthos J, Guzzo C. Applying Flow Virometry to Study the HIV Envelope Glycoprotein and Differences Across HIV Model Systems. Viruses 2024; 16:935. [PMID: 38932227 PMCID: PMC11209363 DOI: 10.3390/v16060935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The HIV envelope glycoprotein (Env) is a trimeric protein that facilitates viral binding and fusion with target cells. As the sole viral protein on the HIV surface, Env is important both for immune responses to HIV and in vaccine designs. Targeting Env in clinical applications is challenging due to its heavy glycosylation, high genetic variability, conformational camouflage, and its low abundance on virions. Thus, there is a critical need to better understand this protein. Flow virometry (FV) is a useful methodology for phenotyping the virion surface in a high-throughput, single virion manner. To demonstrate the utility of FV to characterize Env, we stained HIV virions with a panel of 85 monoclonal antibodies targeting different regions of Env. A broad range of antibodies yielded robust staining of Env, with V3 antibodies showing the highest quantitative staining. A subset of antibodies tested in parallel on viruses produced in CD4+ T cell lines, HEK293T cells, and primary cells showed that the cellular model of virus production can impact Env detection. Finally, in addition to being able to highlight Env heterogeneity on virions, we show FV can sensitively detect differences in Env conformation when soluble CD4 is added to virions before staining.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Ayushi Patel
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Arvin Tejnarine Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Deepa Chaphekar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.W.); (C.C.); (J.A.)
| | - Timothy Kit Hin Lee
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
| | - Vera A. Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.W.); (C.C.); (J.A.)
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.W.); (C.C.); (J.A.)
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
40
|
Thavarajah JJ, Hønge BL, Wejse CM. The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses 2024; 16:911. [PMID: 38932203 PMCID: PMC11209272 DOI: 10.3390/v16060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although antiretroviral therapy (ART) effectively halts disease progression in HIV infection, the complete eradication of the virus remains elusive. Additionally, challenges such as long-term ART toxicity, drug resistance, and the demanding regimen of daily and lifelong adherence required by ART highlight the imperative need for alternative therapeutic and preventative approaches. In recent years, broadly neutralizing antibodies (bNAbs) have emerged as promising candidates, offering potential for therapeutic, preventative, and possibly curative interventions against HIV infection. OBJECTIVE This review aims to provide a comprehensive overview of the current state of knowledge regarding the passive immunization of bNAbs in HIV-1-infected individuals. MAIN FINDINGS Recent findings from clinical trials have highlighted the potential of bNAbs in the treatment, prevention, and quest for an HIV-1 cure. While monotherapy with a single bNAb is insufficient in maintaining viral suppression and preventing viral escape, ultimately leading to viral rebound, combination therapy with potent, non-overlapping epitope-targeting bNAbs have demonstrated prolonged viral suppression and delayed time to rebound by effectively restricting the emergence of escape mutations, albeit largely in individuals with bNAb-sensitive strains. Additionally, passive immunization with bNAb has provided a "proof of concept" for antibody-mediated prevention against HIV-1 acquisition, although complete prevention has not been obtained. Therefore, further research on the use of bNAbs in HIV-1 treatment and prevention remains imperative.
Collapse
Affiliation(s)
- Jannifer Jasmin Thavarajah
- Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Bo Langhoff Hønge
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Christian Morberg Wejse
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
- GloHAU, Center of Global Health, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
41
|
Klenchin VA, Clark NM, Keles NK, Capuano S, Mason R, Gao G, Broman A, Kose E, Immonen TT, Fennessey CM, Keele BF, Lifson JD, Roederer M, Gardner MR, Evans DT. Adeno-associated viral delivery of Env-specific antibodies prevents SIV rebound after discontinuing antiretroviral therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.593694. [PMID: 38895320 PMCID: PMC11185534 DOI: 10.1101/2024.05.30.593694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
An alternative to lifelong antiretroviral therapy (ART) is needed to achieve durable control of HIV-1. Here we show that adeno-associated virus (AAV)-delivery of two rhesus macaque antibodies to the SIV envelope glycoprotein (Env) with potent neutralization and antibody-dependent cellular cytotoxicity can prevent viral rebound in macaques infected with barcoded SIVmac239M after discontinuing suppressive ART. Following AAV administration, sustained antibody expression with minimal anti-drug antibody responses was achieved in all but one animal. After ART withdrawal, SIV replication rebounded within two weeks in all of the control animals but remained below the threshold of detection in plasma (<15 copies/mL) for more than a year in four of the eight animals that received AAV vectors encoding Env-specific antibodies. Viral sequences from animals with delayed rebound exhibited restricted barcode diversity and antibody escape. Thus, sustained expression of antibodies with potent antiviral activity can afford durable, ART-free containment of pathogenic SIV infection.
Collapse
Affiliation(s)
- Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, 53705, USA
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, 53705, USA
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, 53705, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, WI, 53715, USA
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, 20892, USA
| | - Guangping Gao
- Deparment of Microbiology and Physiological Systems, University of Massachusetts Medical School; Worcester, MA, 01605, USA
| | - Aimee Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison; Madison, WI, 53705, USA
| | - Emek Kose
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Taina T. Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research; Frederick, MD, 21702, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD, 20892, USA
| | - Matthew R. Gardner
- Division of Infectious Diseases, Department of Medicine, Emory University; Atlanta, GA, 30329, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison; Madison, WI, 53705, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison; Madison, WI, 53715, USA
| |
Collapse
|
42
|
Li L, Qin R, Liu Y, Tseng YS, Zhang W, Yu L, Mietzsch M, Zou X, Liu H, Lu G, Hu H, Mckenna R, Yang J, Wei Y, Agbandje-Mckenna M, Hu J, Yang L. Dissecting positive selection events and immunological drives during the evolution of adeno-associated virus lineages. PLoS Pathog 2024; 20:e1012260. [PMID: 38885242 PMCID: PMC11182496 DOI: 10.1371/journal.ppat.1012260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Adeno-associated virus (AAV) serotypes from primates are being developed and clinically used as vectors for human gene therapy. However, the evolutionary mechanism of AAV variants is far from being understood, except that genetic recombination plays an important role. Furthermore, little is known about the interaction between AAV and its natural hosts, human and nonhuman primates. In this study, natural AAV capsid genes were subjected to systemic evolutionary analysis with a focus on selection drives during the diversification of AAV lineages. A number of positively selected sites were identified from these AAV lineages with functional relevance implied by their localization on the AAV structures. The selection drives of the two AAV2 capsid sites were further investigated in a series of biological experiments. These observations did not support the evolution of the site 410 of the AAV2 capsid driven by selection pressure from the human CD4+ T-cell response. However, positive selection on site 548 of the AAV2 capsid was directly related to host humoral immunity because of the profound effects of mutations at this site on the immune evasion of AAV variants from human neutralizing antibodies at both the individual and population levels. Overall, this work provides a novel interpretation of the genetic diversity and evolution of AAV lineages in their natural hosts, which may contribute to their further engineering and application in human gene therapy.
Collapse
Affiliation(s)
- Lirong Li
- Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Runkuan Qin
- Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunbo Liu
- Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Shan Tseng
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Weihan Zhang
- General Surgery Department, Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Xinkai Zou
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Robert Mckenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mavis Agbandje-Mckenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, The McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jiankun Hu
- General Surgery Department, Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Cardiology and Laboratory of Gene Therapy for Heart Diseases, State Key Laboratory of Biotherapy, and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
43
|
Tomé-Poderti L, Olivero-Deibe N, Carrión F, Portela MM, Obal G, Cabrera G, Bianchi S, Lima A, Addiego A, Durán R, Moratorio G, Pritsch O. Characterization and application of recombinant Bovine Leukemia Virus Env protein. Sci Rep 2024; 14:12190. [PMID: 38806566 PMCID: PMC11133380 DOI: 10.1038/s41598-024-62811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
The Bovine Leukemia Virus (BLV) Envelope (Env) glycoprotein complex is instrumental in viral infectivity and shapes the host's immune response. This study presents the production and characterization of a soluble furin-mutated BLV Env ectodomain (sBLV-EnvFm) expressed in a stable S2 insect cell line. We purified a 63 kDa soluble protein, corresponding to the monomeric sBLV-EnvFm, which predominantly presented oligomannose and paucimannose N-glycans, with a high content of core fucose structures. Our results demonstrate that our recombinant protein can be recognized from specific antibodies in BLV infected cattle, suggesting its potential as a powerful diagnostic tool. Moreover, the robust humoral immune response it elicited in mice shows its potential contribution to the development of subunit-based vaccines against BLV.
Collapse
Affiliation(s)
- Lorena Tomé-Poderti
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses (MAVIVH), INSERM Unit 1259, Université de Tours and CHRU de Tours, Tours, France.
| | | | - Federico Carrión
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - María Magdalena Portela
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Gonzalo Obal
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gleysin Cabrera
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Sergio Bianchi
- Laboratory of Molecular Biomarkers, Department of Physiopathology, University Hospital, Universidad de la República, 11600, Montevideo, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Analia Lima
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Andrés Addiego
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Experimental Evolution of Viruses, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Otto Pritsch
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Immunobiology Department School of Medicine, Universidad de la República, 11800, Montevideo, Uruguay
| |
Collapse
|
44
|
Wang S, Chan KW, Wei D, Ma X, Liu S, Hu G, Park S, Pan R, Gu Y, Nazzari AF, Olia AS, Xu K, Lin BC, Louder MK, McKee K, Doria-Rose NA, Montefiori D, Seaman MS, Zhou T, Kwong PD, Arthos J, Kong XP, Lu S. Human CD4-binding site antibody elicited by polyvalent DNA prime-protein boost vaccine neutralizes cross-clade tier-2-HIV strains. Nat Commun 2024; 15:4301. [PMID: 38773089 PMCID: PMC11109196 DOI: 10.1038/s41467-024-48514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
The vaccine elicitation of HIV tier-2-neutralization antibodies has been a challenge. Here, we report the isolation and characterization of a CD4-binding site (CD4bs) specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent DNA prime-protein boost HIV vaccine. HmAb64 is derived from heavy chain variable germline gene IGHV1-18 and light chain germline gene IGKV1-39. It has a third heavy chain complementarity-determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 20 (10%), including tier-2 strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 in complex with a CNE40 SOSIP trimer revealed details of its recognition; HmAb64 uses both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4bs. This study demonstrates that a gp120-based vaccine can elicit antibodies capable of tier 2-HIV neutralization.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Danlan Wei
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Xiuwen Ma
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Shuying Liu
- SYL Consulting, Thousand Oak, CA, 91320, USA
| | - Guangnan Hu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Saeyoung Park
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | | | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - James Arthos
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
45
|
Karsten CB, Buettner FFR, Cajic S, Nehlmeier I, Roshani B, Klippert A, Sauermann U, Stolte-Leeb N, Reichl U, Gerardy-Schahn R, Rapp E, Stahl-Hennig C, Pöhlmann S. Macrophage- and CD4+ T cell-derived SIV differ in glycosylation, infectivity and neutralization sensitivity. PLoS Pathog 2024; 20:e1012190. [PMID: 38805549 PMCID: PMC11161069 DOI: 10.1371/journal.ppat.1012190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024] Open
Abstract
The human immunodeficiency virus (HIV) envelope protein (Env) mediates viral entry into host cells and is the primary target for the humoral immune response. Env is extensively glycosylated, and these glycans shield underlying epitopes from neutralizing antibodies. The glycosylation of Env is influenced by the type of host cell in which the virus is produced. Thus, HIV is distinctly glycosylated by CD4+ T cells, the major target cells, and macrophages. However, the specific differences in glycosylation between viruses produced in these cell types have not been explored at the molecular level. Moreover, it remains unclear whether the production of HIV in CD4+ T cells or macrophages affects the efficiency of viral spread and resistance to neutralization. To address these questions, we employed the simian immunodeficiency virus (SIV) model. Glycan analysis implied higher relative levels of oligomannose-type N-glycans in SIV from CD4+ T cells (T-SIV) compared to SIV from macrophages (M-SIV), and the complex-type N-glycans profiles seem to differ between the two viruses. Notably, M-SIV demonstrated greater infectivity than T-SIV, even when accounting for Env incorporation, suggesting that host cell-dependent factors influence infectivity. Further, M-SIV was more efficiently disseminated by HIV binding cellular lectins. We also evaluated the influence of cell type-dependent differences on SIV's vulnerability to carbohydrate binding agents (CBAs) and neutralizing antibodies. T-SIV demonstrated greater susceptibility to mannose-specific CBAs, possibly due to its elevated expression of oligomannose-type N-glycans. In contrast, M-SIV exhibited higher susceptibility to neutralizing sera in comparison to T-SIV. These findings underscore the importance of host cell-dependent attributes of SIV, such as glycosylation, in shaping both infectivity and the potential effectiveness of intervention strategies.
Collapse
Affiliation(s)
- Christina B. Karsten
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Falk F. R. Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Proteomics, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Samanta Cajic
- glyXera GmbH, Magdeburg, Germany
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Berit Roshani
- Unit of Infection Models, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Nicole Stolte-Leeb
- Unit of Infection Models, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Udo Reichl
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Erdmann Rapp
- glyXera GmbH, Magdeburg, Germany
- Bioprocess Engineering Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Christiane Stahl-Hennig
- Unit of Infection Models, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
46
|
Jeffy J, Parthasarathy D, Ahmed S, Cervera-Benet H, Xiong U, Harris M, Mazurov D, Pickthorn S, Herschhorn A. Alternative substitutions of N332 in HIV-1 AD8 gp120 differentially affect envelope glycoprotein function and viral sensitivity to broadly neutralizing antibodies targeting the V3-glycan. mBio 2024; 15:e0268623. [PMID: 38470051 PMCID: PMC11005340 DOI: 10.1128/mbio.02686-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332, but Asn at this position is not absolutely conserved or required for HIV-1 entry based on the prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes, with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity with high levels of cell surface expression and slightly higher gp120 shedding than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs were in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states. IMPORTANCE Glycan attached to amino acid asparagine at position 332 of HIV-1 envelope glycoproteins is a main target of a subset of broadly neutralizing antibodies that block HIV-1 infection. Here, we defined the contribution of different amino acids at this position to Env antigenicity, stability on ice, and conformational states.
Collapse
Affiliation(s)
- Jeffy Jeffy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Durgadevi Parthasarathy
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shamim Ahmed
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Héctor Cervera-Benet
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ulahn Xiong
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dmitriy Mazurov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephanie Pickthorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Center of Genomic Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
47
|
Del Moral-Sánchez I, Wee EG, Xian Y, Lee WH, Allen JD, Torrents de la Peña A, Fróes Rocha R, Ferguson J, León AN, Koekkoek S, Schermer EE, Burger JA, Kumar S, Zwolsman R, Brinkkemper M, Aartse A, Eggink D, Han J, Yuan M, Crispin M, Ozorowski G, Ward AB, Wilson IA, Hanke T, Sliepen K, Sanders RW. Triple tandem trimer immunogens for HIV-1 and influenza nucleic acid-based vaccines. NPJ Vaccines 2024; 9:74. [PMID: 38582771 PMCID: PMC10998906 DOI: 10.1038/s41541-024-00862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/14/2024] [Indexed: 04/08/2024] Open
Abstract
Recombinant native-like HIV-1 envelope glycoprotein (Env) trimers are used in candidate vaccines aimed at inducing broadly neutralizing antibodies. While state-of-the-art SOSIP or single-chain Env designs can be expressed as native-like trimers, undesired monomers, dimers and malformed trimers that elicit non-neutralizing antibodies are also formed, implying that these designs could benefit from further modifications for gene-based vaccination approaches. Here, we describe the triple tandem trimer (TTT) design, in which three Env protomers are genetically linked in a single open reading frame and express as native-like trimers. Viral vectored Env TTT induced similar neutralization titers but with a higher proportion of trimer-specific responses. The TTT design was also applied to generate influenza hemagglutinin (HA) trimers without the need for trimerization domains. Additionally, we used TTT to generate well-folded chimeric Env and HA trimers that harbor protomers from three different strains. In summary, the TTT design is a useful platform for the design of HIV-1 Env and influenza HA immunogens for a multitude of vaccination strategies.
Collapse
Affiliation(s)
- Iván Del Moral-Sánchez
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuejiao Xian
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rebeca Fróes Rocha
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - André N León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Edith E Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sanjeev Kumar
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Robby Zwolsman
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mitch Brinkkemper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
48
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
49
|
Cheng S, Xu M, Li M, Feng Y, He L, Liu T, Ma L, Li X. Improving Anti-HIV activity and pharmacokinetics of enfuvirtide (T20) by modification with oligomannose. Eur J Med Chem 2024; 269:116299. [PMID: 38479167 DOI: 10.1016/j.ejmech.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 μM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.
Collapse
Affiliation(s)
- Shuihong Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Mingyue Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Mingli Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Yong Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Lin He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Tong Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China
| | - Liying Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Huairou district, Beijing, 101408, China.
| |
Collapse
|
50
|
Ao Y, Grover JR, Gifford L, Han Y, Zhong G, Katte R, Li W, Bhattacharjee R, Zhang B, Sauve S, Qin W, Ghimire D, Haque MA, Arthos J, Moradi M, Mothes W, Lemke EA, Kwong PD, Melikyan GB, Lu M. Bioorthogonal click labeling of an amber-free HIV-1 provirus for in-virus single molecule imaging. Cell Chem Biol 2024; 31:487-501.e7. [PMID: 38232732 PMCID: PMC10960674 DOI: 10.1016/j.chembiol.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
Structural dynamics of human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein mediate cell entry and facilitate immune evasion. Single-molecule FRET using peptides for Env labeling revealed structural dynamics of Env, but peptide use risks potential effects on structural integrity/dynamics. While incorporating noncanonical amino acids (ncAAs) into Env by amber stop-codon suppression, followed by click chemistry, offers a minimally invasive approach, this has proved to be technically challenging for HIV-1. Here, we develope an intact amber-free HIV-1 system that overcomes hurdles of preexisting viral amber codons. We achieved dual-ncAA incorporation into Env on amber-free virions, enabling single-molecule Förster resonance energy transfer (smFRET) studies of click-labeled Env that validated the previous peptide-based labeling approaches by confirming the intrinsic propensity of Env to dynamically sample multiple conformational states. Amber-free click-labeled Env also enabled real-time tracking of single virion internalization and trafficking in cells. Our system thus permits in-virus bioorthogonal labeling of proteins, compatible with studies of virus entry, trafficking, and egress from cells.
Collapse
Affiliation(s)
- Yuanyun Ao
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Jonathan R Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Levi Gifford
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yang Han
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Guohua Zhong
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Revansiddha Katte
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rajanya Bhattacharjee
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; International PhD Program of the Institute of Molecular Biology, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Sauve
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Dibya Ghimire
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Md Anzarul Haque
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Edward A Lemke
- Biocentre, Departments of Biology and Chemistry, Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| |
Collapse
|