1
|
Rillaerts K, Verlinden L, Doms S, Carmeliet G, Verstuyf A. A comprehensive perspective on the role of vitamin D signaling in maintaining bone homeostasis: Lessons from animal models. J Steroid Biochem Mol Biol 2025; 250:106732. [PMID: 40122304 DOI: 10.1016/j.jsbmb.2025.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
1,25(OH)2D3 is well known for its role in maintaining normal serum calcium levels. Through its receptor, 1,25(OH)2D3 enhances intestinal calcium absorption and renal calcium reabsorption, thereby ensuring serum calcium levels are within physiological range, which is in turn important for normal bone development and mineralization. The vitamin D receptor (VDR) achieves this via transcriptional induction of genes important in calcium transport. When intestinal and renal calcium (re)absorption is impaired, VDR-mediated signaling will stimulate bone resorption and inhibit mineralization in order to maintain normal serum calcium levels, as evidenced in mice with a systemic or intestine-specific deletion of the VDR. However, VDR signaling in bone is also reported to have anabolic effects. In this review we will discuss the effects of 1,25(OH)2D3-mediated VDR signaling on bone homeostasis and provide an overview of the in vitro experiments and various transgenic mice models that have been generated to unravel the role of VDR signaling in different bone cell types such as chondrocytes, (pre)osteoblasts, osteocytes, and (pre)osteoclasts.
Collapse
Affiliation(s)
- Kayleigh Rillaerts
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| | - Lieve Verlinden
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| | - Stefanie Doms
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| | - Geert Carmeliet
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| | - Annemieke Verstuyf
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| |
Collapse
|
2
|
Yahyavi SK, Kaae IE, Juul A, Eldrup E, Blomberg Jensen M. Longitudinal changes in minerals are influenced by immunosuppressive treatment in men with granuloma disease. J Endocrinol Invest 2025:10.1007/s40618-025-02607-3. [PMID: 40353949 DOI: 10.1007/s40618-025-02607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
PURPOSE To investigate whether granuloma formation following self-administered cosmetic oil injections affects mineral homeostasis, specifically calcium, magnesium, phosphate, iron, sodium, and potassium, and to assess the potential impact of prednisolone treatment on these mineral levels. METHODS In this retrospective study, we reviewed blood samples from baseline through a follow-up period of 48 months in patients referred to a tertiary center at Herlev Hospital, Denmark. Changes in serum minerals over time were assessed by a linear mixed model for repeated measures. RESULTS A total of 111 patients were included. Men who injected > 2,000 mL paraffin oil had higher total and ionized calcium (p = 0.029 and p < 0.001), lower PTH (p < 0.001), but also lower magnesium (p < 0.001) and higher sodium (p = 0.048) compared to those who had injected < 500 mL. Men with manifest hypercalcemia at baseline (n = 32) compared to men with normocalcemia (n = 79) experienced an increase in serum PTH and phosphate concentrations over time (p = 0.042 at 48 months), and also a transient increase in iron concentration, although this reached baseline levels again after 24 months. Prednisolone lowered calcium in hypercalcemic men but also decreased serum magnesium (p = 0.027 after 36 months), phosphate, and increased serum iron concentration. CONCLUSION Men who had injected large volumes of paraffin oil were more likely to have hypercalcemia, lower magnesium, and higher sodium concentrations. Minor aberration in serum minerals was more frequent in patients with more pronounced disease and this may likely be a poor prognostic sign although the mechanism behind this observation remains unclear.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Ida Enggaard Kaae
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ebbe Eldrup
- Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Endocrinology, Herlev-Gentofte University Hospital, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
3
|
Artusa P, White JH. Vitamin D and its analogs in immune system regulation. Pharmacol Rev 2025; 77:100032. [PMID: 40148037 DOI: 10.1016/j.pharmr.2024.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Vitamin D was discovered as the cure for nutritional rickets, a disease of bone growth arising from inadequate intestinal calcium absorption, and for much of the 20th century, it was studied for its critical role in calcium homeostasis. However, we now recognize that the vitamin D receptor and vitamin D metabolic enzymes are expressed in numerous tissues unrelated to calcium homeostasis. Notably, vitamin D signaling can induce cellular differentiation and cell cycle arrest. Moreover, the vitamin D receptor and the enzyme CYP27B1, which produces the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D), are expressed throughout the immune system. In addition, CYP27B1 expression in immune cells is regulated by physiological inputs independent of those controlling its expression in calcium homeostatic tissues. These observations have driven the development of 1,25D-like secosteroidal analogs and nonsecosteroidal analogs to separate the effects of vitamin D on cell differentiation and function from its calcemic activities. Notably, some of these analogs have had considerable success in the clinic in the treatment of inflammatory and immune-related disorders. In this review, we described in detail the mechanisms of vitamin D signaling and the physiological signals controlling 1,25D synthesis and catabolism, with a focus on the immune system. We also surveyed the effects of 1,25D and its analogs on the regulation of immune system function and their implications for human immune-related disorders. Finally, we described the potential of vitamin D analogs as anticancer therapeutics, in particular, their use as adjuncts to cancer immunotherapy. SIGNIFICANCE STATEMENT: Vitamin D signaling is active in both the innate and adaptive arms of the immune system. Numerous vitamin D analogs, developed primarily to minimize the dose-limiting hypercalcemia of the active form of vitamin D, have been used widely in preclinical and clinical studies of immune system regulation. This review presents a description of the mechanisms of action of vitamin D signaling, an overview of analog development, and an in-depth discussion of the immunoregulatory roles of vitamin D analogs.
Collapse
Affiliation(s)
- Patricio Artusa
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John H White
- Department of Physiology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Yahyavi SK, Wall-Gremstrup G, Makki A, Juel J, Theilade S, Berg JO, Juul A, Momsen O, Eldrup E, Blomberg Jensen M. Debulking Surgery After Muscular Paraffin Oil Injections: Effects on Calcium Homeostasis and Patient Satisfaction. J Clin Endocrinol Metab 2025; 110:649-657. [PMID: 39225149 DOI: 10.1210/clinem/dgae606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT Cosmetic paraffin oil injections can lead to granuloma formation, causing hypercalcemia and kidney failure. OBJECTIVE This study explores whether debulking surgery is an effective treatment for improving calcium homeostasis, inflammation, and clinical symptoms. METHODS In a retrospective study, we reviewed 33 patients undergoing debulking surgery. Changes in calcium, inflammatory markers, and renal function from baseline up to 12 months after surgery were assessed. Patients were interviewed after surgery. RESULTS The patients were 34.6 years of age (SD 6.9) and had 1104 grams (SD 591) of granuloma tissue removed following injection of 1329 mL (SD 803) paraffin oil 7.9 years (SD 3.2) earlier. Seventeen patients had hypercalcemia and experienced a significant decline in ionized calcium from 1.48 mmol/L (SD 0.16) at baseline to 1.33 mmol/L (SD 0.03) at 12 months (P < .002), although only 4 men (23.5%) became normocalcemic. Serum ferritin was reduced by 50% after 12 months (P = .048). Sixteen patients were normocalcemic and had no change in calcium homeostasis but experienced a 20% drop in serum ferritin levels (P = .025) after surgery. Fifteen patients completed all their planned surgeries within the study period and experienced a decline in serum ionized calcium (P = .031), ferritin (P = .011), and interleukin 2-receptor (P = .037). A survey showed that 55% of patients reported postoperative satisfaction scores of 10/10, and 59% of the patients reported reduced pain. CONCLUSION Surgery improved calcium homeostasis in a fraction of patients and reduced inflammation and subjective symptoms such as pain and mental well-being in a patient group left with few treatment options except high-dose prednisolone.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital-Herlev and Gentofte, 2730 Herlev, Denmark
| | - Gustav Wall-Gremstrup
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital-Herlev and Gentofte, 2730 Herlev, Denmark
| | - Ahmad Makki
- Department of Plastic Surgery, Sydvestjysk Sygehus Esbjerg and Grindsted, 6700 Esbjerg, Denmark
- Aros Private Hospital, 8200 Aarhus, Denmark
| | - Jacob Juel
- Department of Plastic and Breast Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Plastic and Breast Surgery, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Simone Theilade
- Department of Endocrinology, Herlev-Gentofte University Hospital, 2730 Herlev, Denmark
| | - Jais Oliver Berg
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Plastic Surgery, Herlev-Gentofte University Hospital, 2730 Herlev, Denmark
| | - Anders Juul
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ole Momsen
- Aros Private Hospital, 8200 Aarhus, Denmark
| | - Ebbe Eldrup
- Department of Endocrinology, Herlev-Gentofte University Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital-Herlev and Gentofte, 2730 Herlev, Denmark
- Department of Endocrinology, Herlev-Gentofte University Hospital, 2730 Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Yahyavi SK, Holt R, Jorsal MJ, Árting LB, Eldrup E, Juul A, Jørgensen N, Blomberg Jensen M. Influence of cholecalciferol supplementation on changes in total 25OHD, free 25OHD, and free 25OHD % in relation to calcium, bone, and glucose homeostasis in young, infertile men. J Steroid Biochem Mol Biol 2025; 246:106640. [PMID: 39577708 DOI: 10.1016/j.jsbmb.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND AND OBJECTIVE While all types of vitamin D metabolites are bound to vitamin D binding protein and albumin leaving only a small fraction in its free active form, only serum concentrations of total 25-hydroxy vitamin D (25OHD) are used to determine vitamin D status in clinical practice. This study aimed to describe the association of total 25-hydroxy vitamin D (25OHD), calculated free 25OHD, and free 25OHD% (free 25OHD × 100 %/total 25OHD) with mineral, bone, and metabolic variables and assess the impact of cholecalciferol supplementation. RESEARCH DESIGN AND METHODS Secondary data from a single-center, double-blinded, randomized, placebo-controlled clinical trial (NCT01304927) in 307 infertile men. The treatment group (n = 151) initially received 300,000 IU cholecalciferol as a bolus followed by 1400 IU daily for 150 days and was compared to a placebo group (n = 156). RESULTS At baseline men with free 25OHD% > 0.03 % had lower serum triglycerides (mmol/L) (0.8 vs. 1.0; p = 0.002), lower LDL (mmol/L) (2.7 vs. 3.1; p = 0.003), lower fasting blood glucose (mmol/L) (4.9 vs. 5.2; p = 0.012), and lower PTH (pmol/L) (3.8 vs. 4.6; p = 0.015) compared to men with free 25OHD% < 0.02 %. When the study population was stratified according to total 25OHD or free 25OHD, the metabolic markers and bone variables did not show any differences. Cholecalciferol supplementation increased total 25OHD after 150 days compared to placebo and the difference was highest in men with lowest vitamin D status. Cholecalciferol supplementation did not change free 25OHD%. CONCLUSION The free 25OHD% is better associated with metabolic health markers such as serum triglycerides, LDL, and fasting blood glucose, but not bone or calciotrophic markers except parathyroid hormone. The free 25OHD% is not affected by cholecalciferol supplementation.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Denmark; Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Holt
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Mads Joon Jorsal
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Lív Bech Árting
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Denmark
| | - Ebbe Eldrup
- Department of Endocrinology, Herlev-Gentofte University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Zhou RH, Li L, Ou QJ, Wang YF, Fang YJ, Zhang CX. CYP24A1 DNA Methylation in Colorectal Cancer as Potential Prognostic and Predictive Markers. Biomolecules 2025; 15:104. [PMID: 39858498 PMCID: PMC11763947 DOI: 10.3390/biom15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The DNA methylation of CYP24A1 can regulate its gene expression and may play a role in the occurrence and progression of colorectal cancer (CRC). However, the association between CYP24A1 DNA methylation and the prognosis of CRC patients has not yet been reported. In this study, differential methylation analysis was conducted in both blood and tissue cohorts, and differential expression analysis was performed in the tissue cohort with in vitro validation. GO and KEGG enrichment analyses were performed on CYP24A1-related genes. A correlation between CYP24A1 promoter methylation and its gene expression was explored. Kaplan-Meier survival and Cox regression analyses were performed to investigate the impact of CYP24A1 DNA methylation on the prognosis of CRC patients. Prognostic risk scores were constructed for survival prediction. Immune infiltration analysis was also conducted. Our results showed that the hypermethylation of cg02712555 in tumor tissues (hazard ratio, 0.48; 95% confidence interval, 0.24-0.94; p = 0.032) and CpG site 41 in peripheral leukocytes (HR, 0.35; 95%CI, 0.14-0.84; p = 0.019) were both associated with decreased overall mortality in CRC patients. Prognostic risk scores showed robust predictive capabilities of these two CpG loci for the prognosis of CRC patients. CYP24A1 hypermethylation was positively correlated with infiltration levels of activated CD4 + T cells, activated CD8 + T cells, activated B cells, activated dendritic cells, and macrophages. Taken together, our findings indicate that the methylation levels of specific CpG sites within the CYP24A1 promoter region in blood leukocytes and tumors are potential prognostic and predictive markers for overall survival in CRC patients.
Collapse
Affiliation(s)
- Ru-Hua Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-H.Z.); (L.L.); (Y.-F.W.)
| | - Lei Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-H.Z.); (L.L.); (Y.-F.W.)
| | - Qing-Jian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Yi-Fan Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-H.Z.); (L.L.); (Y.-F.W.)
| | - Yu-Jing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-H.Z.); (L.L.); (Y.-F.W.)
| |
Collapse
|
7
|
Jiang Z, Mei L, Li Y, Guo Y, Yang B, Huang Z, Li Y. Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules 2024; 14:1638. [PMID: 39766345 PMCID: PMC11727233 DOI: 10.3390/biom14121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The gut microbiota, a complex ecosystem, is vital to host health as it aids digestion, modulates the immune system, influences metabolism, and interacts with the brain-gut axis. Various factors influence the composition of this microbiota. Enzymes, as essential catalysts, actively participate in biochemical reactions that have an impact on the gut microbial community, affecting both the microorganisms and the gut environment. Enzymes play an important role in the regulation of the intestinal microbiota, but the interactions between enzymes and microbial communities, as well as the precise mechanisms of enzymes, remain a challenge in scientific research. Enzymes serve both traditional nutritional functions, such as the breakdown of complex substrates into absorbable small molecules, and non-nutritional roles, which encompass antibacterial function, immunomodulation, intestinal health maintenance, and stress reduction, among others. This study categorizes enzymes according to their source and explores the mechanistic principles by which enzymes drive gut microbial activity, including the promotion of microbial proliferation, the direct elimination of harmful microbes, the modulation of bacterial interaction networks, and the reduction in immune stress. A systematic understanding of enzymes in regulating the gut microbiota and the study of their associated molecular mechanisms will facilitate the application of enzymes to precisely regulate the gut microbiota in the future and suggest new therapeutic strategies and dietary recommendations. In conclusion, this review provides a comprehensive overview of the role of enzymes in modulating the gut microbiota. It explores the underlying molecular and cellular mechanisms and discusses the potential applications of enzyme-mediated microbiota regulation for host gut health.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liang Mei
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuqi Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuguang Guo
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiyi Huang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yangyuan Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| |
Collapse
|
8
|
Whitfield M. The annulus: composition, role and importance in sperm flagellum biogenesis and male fertility. Basic Clin Androl 2024; 34:25. [PMID: 39676174 DOI: 10.1186/s12610-024-00241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024] Open
Abstract
The annulus is an electron-dense ring structure that surrounds the axoneme and compartmentalizes the sperm flagellum into two parts: the midpiece and the principal piece. The function of the annulus as a diffusion barrier in the mature spermatozoon is now well described but its function during spermiogenesis remains unclear. The intriguing spatio-temporal dynamics of the annulus during spermiogenesis and its position at the interface of the two main flagellar compartments have been highlighted for more than 50 years, and suggest a major role in this process. During the last decade, numerous studies contributed in establishing a repertoire of proteins known to be located at the annulus. Mutant mouse models of invalidation of these proteins have provided essential information and clues for novel hypotheses regarding the functions and regulation of this structure. Importantly, the recent identification in humans of homozygous mutations of genes coding for annulus proteins and leading to sterility have reinforced the importance of this ring structure for sperm physiology and male fertility. This review provides a comprehensive description of all the knowledge obtained in the last several years regarding the annulus composition and functions, both in mice and in humans.
Collapse
Affiliation(s)
- Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team 'Physiopathology and Pathophysiology of Sperm cells', 38000, Grenoble, France.
| |
Collapse
|
9
|
Fryar-Williams S, Tucker G, Clements P, Strobel J. Gene Variant Related Neurological and Molecular Biomarkers Predict Psychosis Progression, with Potential for Monitoring and Prevention. Int J Mol Sci 2024; 25:13348. [PMID: 39769114 PMCID: PMC11677369 DOI: 10.3390/ijms252413348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
The (MTHFR) C677T gene polymorphism is associated with neurological disorders and schizophrenia. Patients diagnosed with schizophrenia and schizoaffective disorder and controls (n 134) had data collected for risk factors, molecular and neuro-sensory variables, symptoms, and functional outcomes. Promising gene variant-related predictive biomarkers were identified for diagnosis by Receiver Operating Characteristics and for illness duration by linear regression. These were then analyzed using Spearman's correlation in relation to the duration of illness. Significant correlations were ranked by strength and plotted on graphs for each MTHFR C677T variant. Homozygous MTHFR 677 TT carriers displayed a mid-illness switch to depression, with suicidality and a late-phase shift from lower to higher methylation, with activated psychosis symptoms. MTHFR 677 CC variant carriers displayed significant premorbid correlates for family history, developmental disorder, learning disorder, and head injury. These findings align with those of low methylation, oxidative stress, multiple neuro-sensory processing deficits, and disability outcomes. Heterozygous MTHFR 677 CT carriers displayed multiple shifts in mood and methylation with multiple adverse outcomes. The graphically presented ranked biomarker correlates for illness duration allow a perspective of psychosis development across gene variants, with the potential for phase of illness monitoring and new therapeutic insights to prevent or delay psychosis and its adverse outcomes.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley, SA 5061, Australia
- Department of Medical Specialities, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Graeme Tucker
- Department of Public Health, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Peter Clements
- Department of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jörg Strobel
- Department of Psychiatry, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Bellavia D, Costa V, De Luca A, Maglio M, Pagani S, Fini M, Giavaresi G. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis. Curr Osteoporos Rep 2024; 22:599-610. [PMID: 27734322 DOI: 10.1007/s11914-016-0331-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vitamin D is a key molecule in calcium and phosphate homeostasis; however, increasing evidence has recently shown that it also plays a crucial role in the immune system, both innate and adaptive. A deregulation of vitamin D levels, due also to mutations and polymorphisms in the genes of the vitamin D pathway, determines severe alterations in the homeostasis of the organism, resulting in a higher risk of onset of some diseases, including osteoporosis. This review gives an overview of the influence of vitamin D levels on the pathogenesis of osteoporosis, between bone homeostasis and immune system.
Collapse
Affiliation(s)
- Daniele Bellavia
- Innovative Technology Platforms for Tissue Engineering, Theranostics and Oncology, Rizzoli Orthopaedic Institute, Via Divisi, 83, 90100, Palermo, Italy
| | - Viviana Costa
- Innovative Technology Platforms for Tissue Engineering, Theranostics and Oncology, Rizzoli Orthopaedic Institute, Via Divisi, 83, 90100, Palermo, Italy
| | - Angela De Luca
- Innovative Technology Platforms for Tissue Engineering, Theranostics and Oncology, Rizzoli Orthopaedic Institute, Via Divisi, 83, 90100, Palermo, Italy
| | - Melania Maglio
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Stefania Pagani
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Milena Fini
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Gianluca Giavaresi
- Innovative Technology Platforms for Tissue Engineering, Theranostics and Oncology, Rizzoli Orthopaedic Institute, Via Divisi, 83, 90100, Palermo, Italy.
| |
Collapse
|
11
|
Pu D, Wang P, Wang X, Tian Y, Gong H, Ma X, Li M, Zhang D. Focusing on non-responders to infliximab with ulcerative colitis, what can we do first and next? Int Immunopharmacol 2024; 141:112943. [PMID: 39191122 DOI: 10.1016/j.intimp.2024.112943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic immune-mediated inflammation of the colorectum, for which infliximab (IFX) is currently the mainstay of treatment. However, one-third of patients with UC still fail to benefit from the IFX therapy, and early exposure to IFX impairs the efficacy of other subsequent biologics. Therefore, personalized therapeutic system is urgently needed to assist in clinical decision-making and precision treatment. METHODS Four microarray datasets of colonic biopsies from UC patients treated with IFX were obtained from the GEO database to form the Training Cohort and Validation Cohort. Differentially expressed genes (DEGs) in Training Cohort were identified and enriched for GO, KEGG and immune cell infiltration analysis. A prediction model for IFX efficacy was developed based on the LASSO and Logistic regression. The predictive accuracy of the model was verified by the Validation Cohort, and the model-genes/proteins were validated by immunohistochemistry. Gene-drug, gene-ncRNA interaction analysis were performed to identify drugs or non-coding RNAs (ncRNAs) that potentially interacted with the model-genes. Homology Modeling and Molecular Docking were conducted to filter the optimal candidate as the subsequent adjuvant or alternative for IFX in predicted non-responders. At last, the down-regulation of the key model-gene/protein CYP24A1 by the drug candidate Deferasirox was verified by Western Blot and qRT-PCR Assay based on cellular experiments. RESULTS A total of 113 DEGs were identified in the Training Cohort, mainly enriched in inflammatory cell chemotaxis, migration, and response to molecules derived from intestinal microbiota. Activated pro-inflammatory innate immune cells, including neutrophils, M1 macrophages, activated dendritic cells and mast cells, were significantly enriched in colons of non-responders. The prediction model based on three model-genes (IFI44L, CYP24A1, and RGS1) exhibited strong predictive efficacy, with AUC values of 0.901 and 0.80 in the Training and Validation Cohorts, respectively. Higher expression of the three model-genes/proteins in colons of non-responders to IFX was confirmed by clinical colonic mucosal biopsies. 4 Drugs (Calcitriol, Lunacalcipol, Deferasirox, Telaprevir), 15 miRNAs and 66 corresponding lnRNAs interacting with model-genes were identified. The protein 3D structure of the key model-gene/protein (human-derived CYP24A1) was developed. Through the Molecular Docking and cellular experimental validation, Deferasirox, which significantly down-regulated both the RNA and protein expression of CYP24A1, was identified as the optimal adjuvant or alternative for IFX in predicted non-responders with UC. CONCLUSION This study developed a novel prediction model for pre-assessing the efficacy of IFX in patients with UC, as the first step towards personalized therapy. Meanwhile, drugs and non-coding RNAs were provided as potential candidates to develop the next-step precise treatment for the predicted non-responders. In particular, Defeasirox appears to hold promise as an adjuvant or alternative to IFX for the optimization of UC therapy.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Pengfei Wang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Xiang Wang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Yonggang Tian
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Xueni Ma
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Muyang Li
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China; Key Laboratory of Digestive Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
12
|
Tuey SM, Ghimire A, Guzy S, Prebehalla L, Roque AA, Roda G, West RE, Chonchol MB, Shah N, Nolin TD, Joy MS. Population Pharmacokinetic Model of Vitamin D 3 and Metabolites in Chronic Kidney Disease Patients with Vitamin D Insufficiency and Deficiency. Int J Mol Sci 2024; 25:12279. [PMID: 39596344 PMCID: PMC11595143 DOI: 10.3390/ijms252212279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Vitamin D insufficiency and deficiency are highly prevalent in patients with chronic kidney disease (CKD), and their pharmacokinetics are not well described. The primary study objective was to develop a population pharmacokinetic model of oral cholecalciferol (VitD3) and its three major metabolites, 25-hydroxyvitamin D3 (25D3), 1,25-dihydroxyvitamin D3 (1,25D3), and 24,25-dihydroxyvitamin D3 (24,25D3), in CKD patients with vitamin D insufficiency and deficiency. CKD subjects (n = 29) were administered one dose of oral VitD3 (5000 I.U.), and nonlinear mixed effects modeling was used to describe the pharmacokinetics of VitD3 and its metabolites. The simultaneous fit of a two-compartment model for VitD3 and a one-compartment model for each metabolite represented the observed data. A proportional error model explained the residual variability for each compound. No assessed covariate significantly affected the pharmacokinetics of VitD3 and metabolites. Visual predictive plots demonstrated the adequate fit of the pharmacokinetic data of VitD3 and metabolites. This is the first reported population pharmacokinetic modeling of VitD3 and metabolites and has the potential to inform targeted dose individualization strategies for therapy in the CKD population. Based on the simulation, doses of 600 International Unit (I.U.)/day to 1000 I.U./day for 6 months are recommended to obtain the target 25D3 concentration of between 30 and 60 ng/mL. These simulation findings could potentially contribute to the development of personalized dosage regimens for vitamin D treatment in patients with CKD.
Collapse
Affiliation(s)
- Stacey M. Tuey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA (A.G.); (A.-A.R.); (G.R.)
| | - Avisek Ghimire
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA (A.G.); (A.-A.R.); (G.R.)
| | - Serge Guzy
- Pop—Pharm Pharmacometrics Service, Albany, CA 94706, USA;
| | - Linda Prebehalla
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.P.); (T.D.N.)
| | - Amandla-Atilano Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA (A.G.); (A.-A.R.); (G.R.)
| | - Gavriel Roda
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA (A.G.); (A.-A.R.); (G.R.)
| | - Raymond E. West
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.P.); (T.D.N.)
| | - Michel B. Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO 80045, USA;
| | - Nirav Shah
- Department of Medicine Renal Electrolyte Division, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Thomas D. Nolin
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.P.); (T.D.N.)
| | - Melanie S. Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA (A.G.); (A.-A.R.); (G.R.)
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
13
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Wang JY, Chang HC, Lin CH. Vitamin D is involved in the regulation of Cl - uptake in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111678. [PMID: 38885808 DOI: 10.1016/j.cbpa.2024.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Cl- is a major anion in the bodily fluids of vertebrates, and maintaining its homeostasis is essential for normal physiological functions. Fishes inhabiting freshwater (FW) passively lose body fluid ions, including Cl-, to the external environment because of the electrochemical gradient of ions across the body surface. Therefore, FW fishes have to actively absorb Cl- from the surroundings to maintain ion homeostasis in their bodily fluids. Hormonal control is vital for modulating ion uptake in fish. Vitamin D is involved in the regulation of Ca2+ uptake and acid secretion in fish. In the present study, we found that the levels of bioactive vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), significantly increased in zebrafish embryos and adults after exposure to water containing low levels of Cl-. Moreover, the administration of 1α,25(OH)2D3 treatment (20 μg/L) in zebrafish embryos, and intraperitoneal (i.p.) injection of 1α,25(OH)2D3 (5 μg/kg body mass) in zebrafish adults, resulting the increased Cl- content in bodily fluid in zebrafish. Na+-Cl- cotransporter 2b (NCC2b) and Cl- channel 2c (CLC2c) are specifically expressed during Cl- uptake by ionocytes in zebrafish. Our results indicated that the mRNA and protein expression of NCC2b and CLC2c considerably increased in the zebrafish with exogenous 1α,25(OH)2D3 treatment. Additionally, exogenous 1α,25(OH)2D3 administration increased the number of NCC2b- and CLC2c-expressing cells in yolk skins of zebrafish embryos and the gill filaments of zebrafish adults. Transcript signals of vitamin D receptors (VDRs) were identified in NCC2b-expressing cells. Knockdown of VDRa and VDRb significantly reduced the expression of NCC2b and CLC2c and the number of NCC2b- and CLC2c-expressing cells. These results indicate that vitamin D can affect Cl- uptake in zebrafish and extend our knowledge of the role of vitamin D in fish physiology.
Collapse
Affiliation(s)
- Jun-Yi Wang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hung-Chi Chang
- Department of Golden-Ager Industry Management, College of Management, Chaoyang University of Technology, Taichung 413, Taiwan
| | - Chia-Hao Lin
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
15
|
Giustina A, Bilezikian JP, Adler RA, Banfi G, Bikle DD, Binkley NC, Bollerslev J, Bouillon R, Brandi ML, Casanueva FF, di Filippo L, Donini LM, Ebeling PR, Fuleihan GEH, Fassio A, Frara S, Jones G, Marcocci C, Martineau AR, Minisola S, Napoli N, Procopio M, Rizzoli R, Schafer AL, Sempos CT, Ulivieri FM, Virtanen JK. Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocr Rev 2024; 45:625-654. [PMID: 38676447 PMCID: PMC11405507 DOI: 10.1210/endrev/bnae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 04/28/2024]
Abstract
The 6th International Conference, "Controversies in Vitamin D," was convened to discuss controversial topics, such as vitamin D metabolism, assessment, actions, and supplementation. Novel insights into vitamin D mechanisms of action suggest links with conditions that do not depend only on reduced solar exposure or diet intake and that can be detected with distinctive noncanonical vitamin D metabolites. Optimal 25-hydroxyvitamin D (25(OH)D) levels remain debated. Varying recommendations from different societies arise from evaluating different clinical or public health approaches. The lack of assay standardization also poses challenges in interpreting data from available studies, hindering rational data pooling and meta-analyses. Beyond the well-known skeletal features, interest in vitamin D's extraskeletal effects has led to clinical trials on cancer, cardiovascular risk, respiratory effects, autoimmune diseases, diabetes, and mortality. The initial negative results are likely due to enrollment of vitamin D-replete individuals. Subsequent post hoc analyses have suggested, nevertheless, potential benefits in reducing cancer incidence, autoimmune diseases, cardiovascular events, and diabetes. Oral administration of vitamin D is the preferred route. Parenteral administration is reserved for specific clinical situations. Cholecalciferol is favored due to safety and minimal monitoring requirements. Calcifediol may be used in certain conditions, while calcitriol should be limited to specific disorders in which the active metabolite is not readily produced in vivo. Further studies are needed to investigate vitamin D effects in relation to the different recommended 25(OH)D levels and the efficacy of the different supplementary formulations in achieving biochemical and clinical outcomes within the multifaced skeletal and extraskeletal potential effects of vitamin D.
Collapse
Affiliation(s)
- Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - John P Bilezikian
- Department of Medicine, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Robert A Adler
- Richmond Veterans Affairs Medical Center and Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Giuseppe Banfi
- IRCCS Galeazzi Sant’Ambrogio Hospital, Milano 20161, Italy
- San Raffaele Vita–Salute University, Milan 20132, Italy
| | - Daniel D Bikle
- Department of Medicine, University of California and San Francisco Veterans Affairs Health Center, San Francisco, CA 94121-1545, USA
- Department of Endocrinology, University of California and San Francisco Veterans Affairs Health Center, San Francisco, CA 94121-1545, USA
| | - Neil C Binkley
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53726, USA
| | | | - Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Maria Luisa Brandi
- Italian Foundation for the Research on Bone Diseases (F.I.R.M.O.), Florence 50129, Italy
| | - Felipe F Casanueva
- Department of Medicine, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario and CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela University, Santiago de Compostela 15706, Spain
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - Lorenzo M Donini
- Department of Experimental Medicine, Sapienza University, Rome 00161, Italy
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton 3168, Australia
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program, WHO CC for Metabolic Bone Disorders, Division of Endocrinology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona 37129, Italy
| | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, ON K7L 3N6, Canada
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Adrian R Martineau
- Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome 00161, Italy
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes Campus Bio-Medico, University of Rome, Rome 00128, Italy
| | - Massimo Procopio
- Division of Endocrinology, Diabetology and Metabolic Diseases, “Molinette” Hospital, University of Turin, Turin 10126, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva 1205, Switzerland
| | - Anne L Schafer
- Department of Medicine, University of California and San Francisco Veterans Affairs Health Center, San Francisco, CA 94121-1545, USA
| | | | - Fabio Massimo Ulivieri
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
16
|
Lin Y, Chen J, Xin S, Lin Y, Chen Y, Zhou X, Chen H, Li X. CYP24A1 affected macrophage polarization through degradation of vitamin D as a candidate biomarker for ovarian cancer prognosis. Int Immunopharmacol 2024; 138:112575. [PMID: 38963981 DOI: 10.1016/j.intimp.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological malignancy with a poor prognosis in which mitochondria-related genes are involved deeply. In this study, we aim to screen mitochondria-related genes that play a role in OC prognosis and investigate its effects. Through single-cell sequencing technology and bioinformatics analysis, including TCGA ovarian cancer data analysis, gene expression signature analysis (GES), immune infiltration analysis, Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Principal Component Analysis (PCA), our findings revealed that CYP24A1 regulated macrophage polarization through vitamin D (VD) degradation and served as a target gene for the second malignant subtype of OC through bioinformatics analyses. For further validation, the expression and function of CYP24A1 in OC cells was investigated. And the expression of CYP24A1 was much higher in carcinoma than in paracancerous tissue, whereas the VD content decreased in the OC cell lines with CYP24A1 overexpression. Moreover, macrophages were polarized towards M1 after the intervention of VD-treated OC cell lines and inhibited the malignant phenotypes of OC. However, the effect could be reversed by overexpressing CYP24A1, resulting in the polarization of M2 macrophages, thereby promoting tumor progression, as verified by constructing xenograft models in vitro. In conclusion, our findings suggested that CYP24A1 induced M2 macrophage polarization through interaction with VD, thus promoting the malignant progression of OC.
Collapse
Affiliation(s)
- YaoXiang Lin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - JiongFei Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - SiJia Xin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Ya Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - YongChao Chen
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaojing Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Hao Chen
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| | - XiangJuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| |
Collapse
|
17
|
Jin N, Wang L, Song K, Lu K, Li X, Zhang C. Combination of Transcriptomics and Metabolomics Analyses Provides Insights into the Mechanisms of Growth Differences in Spotted Seabass ( Lateolabrax maculatus) Fed a Low-Phosphorus Diet. Metabolites 2024; 14:406. [PMID: 39195503 DOI: 10.3390/metabo14080406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
To analyze the potential mechanisms of growth differences in spotted seabass (Lateolabrax maculatus) fed a low-phosphorus diet, a total of 150 spotted seabass with an initial body weight of 4.49 ± 0.01 g were used (50 fish per tank) and fed a low-phosphorus diet for eight weeks. At the end of the experiment, five of the heaviest and five of the lightest fish were selected from each tank as fast-growing spotted seabass (FG) and slow-growing spotted seabass (SG), respectively, and their livers were analyzed by metabolomics and transcriptomics. The hepatic antioxidant capacity of the FG fed a low-phosphorus diet was significantly higher than that of the SG. A total of 431 differentially expressed genes (DEGs) were determined in the two groups, and most of the DEGs were involved in metabolism-related pathways such as steroid biosynthesis, glycolysis/gluconeogenesis, and protein digestion and absorption. Substance transport-related regulators and transporters were predominantly up-regulated. Furthermore, a large number of metabolites in the liver of FG were significantly up-regulated, especially amino acids, decanoyl-L-carnitine and dehydroepiandrosterone. The integration analysis of differential metabolites and genes further revealed that the interaction between protein digestion and absorption, as well as phenylalanine metabolism pathways were significantly increased in the liver of FG compared to those of the SG. In general, FG fed a low-phosphorus diet induced an enhancement in hepatic immune response, substance transport, and amino acid metabolism. This study provides new information on genetic mechanisms and regulatory pathways underlying differential growth rate and provides a basis for the foundation of efficient utilization of low-phosphorus diets and selective breeding programs for spotted seabass.
Collapse
Affiliation(s)
- Nan Jin
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
18
|
Meyer MB, Lee SM, Cichanski SR, Cobice DF, Pike JW. Spatial detection and consequences of nonrenal calcitriol production as assessed by targeted mass spectrometry imaging. JCI Insight 2024; 9:e181763. [PMID: 38916957 PMCID: PMC11383599 DOI: 10.1172/jci.insight.181763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
The immune benefits of vitamin D3 supplementation beyond calcium and phosphate maintenance are highly clinically debated. Kidney expression of CYP27B1 is the source of endocrine, circulating 1,25(OH)2D3 (active form of vitamin D) that maintains serum calcium and phosphate. 1,25(OH)2D3 may also be made by the CYP27B1 enzyme in nonrenal cells, like immune cells, in a process driven by cellular availability of 25(OH)D3 and inflammation. Due to the endocrine nature of 1,25(OH)2D3 in circulation, it is difficult to discern between these 2 sources. We recently created a regulatory deletion model of Cyp27b1 (M1/M21-DIKO) where mice have normal inflammatory-regulated Cyp27b1 expression in nonrenal tissues (unlike global Cyp27b1-KO) but no expression within the kidney. Here, utilizing on-tissue chemical derivatization and matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), we investigated the distribution of 1,25(OH)2D3 and 25(OH)D3 in the kidney, liver, spleen, and thymus. MALDI-MSI demonstrated increased 1,25(OH)2D3 in nonrenal tissues such as the spleen after vitamin D3 supplementation in M1/M21-DIKO mice. Additionally, from this, we found increased Il4 and decreased Tnfa in the spleen after vitamin D3 supplementation. Taken together, these data demonstrate nonrenal production of 1,25(OH)2D3 in vivo and provide a consequence of vitamin D3 supplementation and nonrenal 1,25(OH)2D3 production in cytokine changes.
Collapse
Affiliation(s)
- Mark B Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seong Min Lee
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shannon R Cichanski
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego F Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Rühl R, Bánáti D. Analysis of the current vitamin A terminology and dietary regulations from vitamin A 1 to vitamin A 5. INT J VITAM NUTR RES 2024; 94:326-333. [PMID: 38506673 DOI: 10.1024/0300-9831/a000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Dietary recommendations on vitamin intake for human food fortification concerning vitamin A in various countries, larger economic zones and international organizations are mainly based on the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) "Codex Alimentarius standards". The general vitamin A terminology is based on regulations of the International Union of Pure and Applied Chemistry (IUPAC) that are used to describe the involved derivatives. These regulations and terminology were set up in the middle of the last century. Starting with the decade of the 80ies in the 20th century a large improvement of molecular biological methodologies, background physiological mechanisms as well as analytical techniques contributed to a large diversification of this simply claimed vitamin A terminology. Unfortunately, the following terminology and governmental regulations for food fortification are imprecise and non-harmonized. In this article we tried to unravel this terminology for updating terminology, nutritional suggestions and governmental regulations for vitamin A, which are currently based on various uncertainties. According to the current regulations, the newly found vitamin A5/X can be included in the current vitamin A terminology as "vitamin A5" or alternatively or even in parallel as a new vitamin A-independent terminology as "vitamin X". Based on the detailed knowledge of research from the early beginning of general vitamin A pathway identification towards detailed research of the last decades the commonly used and simplified term vitamin A with relevance for governmental recommendations on vitamin intake and food fortification advice was now more correctly sub-categorized to further vitamin A1, and A5 sub-categories with vitamin A1-alcohol as retinol, vitamin A2-alcohol as 3,4-didehydroretinol and vitamin A5-alcohol as 9-cis-13,14-dihydroretinol as their mainly relevant vitamin forms present in the human organism. Here we suggest and advise how the vitamin A terminology and further governmental regulations should be organized depending on a successful unraveling of the organization of the current vitamin A terminology.
Collapse
Affiliation(s)
| | - Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| |
Collapse
|
20
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
21
|
Yahyavi SK, Boisen IM, Cui Z, Jorsal MJ, Kooij I, Holt R, Juul A, Blomberg Jensen M. Calcium and vitamin D homoeostasis in male fertility. Proc Nutr Soc 2024; 83:95-108. [PMID: 38072394 DOI: 10.1017/s002966512300486x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Calcium and vitamin D have well-established roles in maintaining calcium balance and bone health. Decades of research in human subjects and animals have revealed that calcium and vitamin D also have effects on many other organs including male reproductive organs. The presence of calcium-sensing receptor, vitamin D receptor, vitamin D activating and inactivating enzymes and calcium channels in the testes, male reproductive tract and human spermatozoa suggests that vitamin D and calcium may modify male reproductive function. Functional animal models have shown that vitamin D deficiency in male rodents leads to a decrease in successful mating and fewer pregnancies, often caused by impaired sperm motility and poor sperm morphology. Human studies have to a lesser extent validated these findings; however, newer studies suggest a positive effect of vitamin D supplementation on semen quality in cases with vitamin D deficiency, which highlights the need for initiatives to prevent vitamin D deficiency. Calcium channels in male reproductive organs and spermatozoa contribute to the regulation of sperm motility and capacitation, both essential for successful fertilisation, which supports a need to avoid calcium deficiency. Studies have demonstrated that vitamin D, as a regulator of calcium homoeostasis, influences calcium influx in the testis and spermatozoa. Emerging evidence suggests a potential link between vitamin D deficiency and male infertility, although further investigation is needed to establish a definitive causal relationship. Understanding the interplay between vitamin D, calcium and male reproductive health may open new avenues for improving fertility outcomes in men.
Collapse
Affiliation(s)
- Sam Kafai Yahyavi
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ida Marie Boisen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Zhihui Cui
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Joon Jorsal
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ireen Kooij
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Holt
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
22
|
Ben-Eltriki M, Gayle EJ, Paras JM, Nyame-Addo L, Chhabra M, Deb S. Vitamin D in Melanoma: Potential Role of Cytochrome P450 Enzymes. Life (Basel) 2024; 14:510. [PMID: 38672780 PMCID: PMC11050855 DOI: 10.3390/life14040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin D is a promising anticancer agent for the prevention and treatment of several cancers, including melanoma. Low 25-hydroxyvitamin D levels, a routinely used marker for vitamin D, have been suggested as one of the factors in the development and progression of melanoma. The parent vitamin D needs activation by cytochrome P450 (CYP) enzymes to exert its actions via the vitamin D receptor (VDR). This review discusses the role of vitamin D in melanoma and how CYP-mediated metabolism can potentially affect the actions of vitamin D. Through interacting with the retinoid X receptor, VDR signaling leads to anti-inflammatory, antioxidative, and anticancer actions. Calcitriol, the dihydroxylated form of vitamin D3, is the most active and potent ligand of VDR. CYP27A1, CYP27B1, and CYP2R1 are involved in the activation of vitamin D, whereas CYP24A1 and CYP3A4 are responsible for the degradation of the active vitamin D. CYP24A1, the primary catabolic enzyme of calcitriol, is overexpressed in melanoma tissues and cells. Several drug classes and natural health products can modulate vitamin D-related CYP enzymes and eventually cause lower levels of vitamin D and its active metabolites in tissues. Although the role of vitamin D in the development of melanoma is yet to be fully elucidated, it has been proposed that melanoma prevention may be significantly aided by increased vitamin D signaling. Furthermore, selective targeting of the catabolic enzymes responsible for vitamin D degradation could be a plausible strategy in melanoma therapy. Vitamin D signaling can be improved by utilizing dietary supplements or by modulating CYP metabolism. A positive association exists between the intake of vitamin D supplements and improved prognosis for melanoma patients. Further investigation is required to determine the function of vitamin D supplementation and specific enzyme targeting in the prevention of melanoma.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Clinical Pharmacology Lab, Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Erysa J. Gayle
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA; (E.J.G.); (J.M.P.)
| | - Jhoanne M. Paras
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA; (E.J.G.); (J.M.P.)
| | - Louisa Nyame-Addo
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA; (E.J.G.); (J.M.P.)
| | - Manik Chhabra
- Clinical Pharmacology Lab, Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
23
|
Leszczyńska D, Szatko A, Latocha J, Kochman M, Duchnowska M, Wójcicka A, Misiorowski W, Zgliczyníski W, Glinicki P. Persistent hypercalcaemia associated with two pathogenic variants in the CYP24A1 gene and a parathyroid adenoma-a case report and review. Front Endocrinol (Lausanne) 2024; 15:1355916. [PMID: 38665259 PMCID: PMC11043563 DOI: 10.3389/fendo.2024.1355916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction 24-Hydroxylase, encoded by the CYP24A1 gene, is a crucial enzyme involved in the catabolism of vitamin D. Loss-of-function mutations in CYP24A1 result in PTH-independent hypercalcaemia with high levels of 1,25(OH)2D3. The variety of clinical manifestations depends on age, and underlying genetic predisposition mutations can lead to fatal infantile hypercalcaemia among neonates, whereas adult symptoms are usually mild. Aim of the study We report a rare case of an adult with primary hyperparathyroidism and loss-of-function mutations in the CYP24A1 gene and a review of similar cases. Case presentation We report the case of a 58-year-old woman diagnosed initially with primary hyperparathyroidism. Preoperatively, the suspected mass adjoining the upper pole of the left lobe of the thyroid gland was found via ultrasonography and confirmed by 99mTc scintigraphy and biopsy as the parathyroid gland. The patient underwent parathyroidectomy (a histopathology report revealed parathyroid adenoma), which led to normocalcaemia. After 10 months, vitamin D supplementation was introduced due to deficiency, and the calcium level remained within the reference range. Two years later, biochemical tests showed recurrence of hypercalcaemia with suppressed parathyroid hormone levels and elevated 1,25(OH)2D3 concentrations. Further investigation excluded the most common causes of PTH-independent hypercalcaemia, such as granulomatous disease, malignancy, and vitamin D intoxication. Subsequently, vitamin D metabolites were measured using LC-MS/MS, which revealed high levels of 25(OH)D3, low levels of 24,25(OH)2D3 and elevated 25(OH)2D3/24,25(OH)2D3 ratios, suggesting a defect in vitamin D catabolism. Molecular analysis of the CYP24A1 gene using the NGS technique revealed two pathogenic variants: p.(Arg396Trp) and p.(Glu143del) (rs114368325 and rs777676129, respectively). Conclusions The diagnostic process for hypercalcaemia becomes complicated when multiple causes of hypercalcaemia coexist. The measurement of vitamin D metabolites using LC-MS/MS may help to identify carriers of CYP24A1 mutations. Subsequent molecular testing may contribute to establishing the exact frequency of pathogenic variants of the CYP24A1 gene and introducing personalized treatment.
Collapse
Affiliation(s)
- Dorota Leszczyńska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Alicja Szatko
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Julia Latocha
- Students’ Scientific Group Affiliated with the Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Magdalena Kochman
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Maria Duchnowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Wójcicka
- Warsaw Genomics, Warsaw, Poland
- Fundacja Wiedzieć Więcej, Warsaw, Poland
| | - Waldemar Misiorowski
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Wojciech Zgliczyníski
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Glinicki
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
24
|
Cheng K, Yang G, Huang M, Wang Y, Huang Y, Wang C. Physiological and transcriptomic analysis revealed the alleviating effect of 1,25(OH) 2D 3 on environmental iron overloading induced ferroptosis in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123626. [PMID: 38395136 DOI: 10.1016/j.envpol.2024.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Iron overload in the aquatic environment can cause damage in fish bodies. Vitamin D3 (VD3) has been proven to have antioxidant and regulatory effects on iron transport. The current research investigated the effects of environmental iron overload on larval zebrafish and explored the effects of 1,25(OH)2D3 on ferroptosis in zebrafish larvae and zebrafish liver cells (ZFL) caused by iron overload in the environment and its possible regulatory mechanisms. The results showed that 1,25(OH)2D3 alleviated liver damage in zebrafish larvae and mitochondrial damage in ZFL after excessive ammonium ferric citrate (FAC) treatment, and improved the survival rate of ZFL. 1,25(OH)2D3 cleared and inhibited excessive FAC induced abnormal accumulation of ROS, lipid ROS, MDA, and Fe2+ in zebrafish larvae and ZFL, as well as enhanced the activity of antioxidant enzyme GPx4. Transcriptomic analysis showed that 1,25(OH)2D3 can regulate ferroptosis in ZFL by regulating signaling pathways related to oxidative stress, iron homeostasis, mitochondrial function, and ERS, mainly including ferroptosis, neoptosis, p53 signaling pathway, apoptosis, FoxO signaling pathway. Validation of transcriptome data showed that 1,25(OH)2D3 inhibits ferroptosis in zebrafish larvae and ZFL caused by excessive FAC via promoting the expression of slc40a1 and hmox1a genes and increasing SLC40A1 protein levels. In summary, 1,25(OH)2D3 can resist ferroptosis in zebrafish caused by iron overload in the environment mainly via regulating antioxidant capacity and iron ion transport.
Collapse
Affiliation(s)
- Ke Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Gang Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Min Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yijia Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
25
|
Yang G, Cheng K, Huang Y, Wang C. Vitamin D3 promotes fish oocyte development by directly regulating gonadal steroid hormone synthesis†. Biol Reprod 2024; 110:521-535. [PMID: 38145497 DOI: 10.1093/biolre/ioad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023] Open
Abstract
Vitamin D receptors and vitamin D3-metabolizing enzymes have been found to be highly expressed in the ovaries and spermatophores of fish. However, the role of vitamin D3 on fish gonadal development has rarely been reported. In this study, 2-month-old female zebrafish were fed with different concentrations of vitamin D3 diets (0, 700, 1400, and 11 200 IU/kg) to investigate the effects of vitamin D3 on ovarian development. The diet with 0 IU/kg vitamin D3 resulted in elevated interstitial spaces, follicular atresia, and reproductive toxicity in zebrafish ovaries. Supplementation with 700 and 1400 IU/kg of vitamin D3 significantly increased the oocyte maturation rate; upregulated ovarian gonadal steroid hormone synthesis capacity; and elevated plasma estradiol, testosterone, and ovarian vitellogenin levels. Furthermore, the current study identified a vitamin D response element in the cyp19a1a promoter and demonstrated that 1.25(OH)2D3-vitamin D response directly activated cyp19a1a production through activating the vitamin D response element. In conclusion, this study shows that an appropriate concentration of vitamin D3 can promote zebrafish ovarian development and affect vitellogenin synthesis through the vdr/cyp19a1a/er/vtg gene axis.
Collapse
Affiliation(s)
- Gang Yang
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Cheng
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanqing Huang
- Department of Aquaculture Technology, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chunfang Wang
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
26
|
Brown G, Marchwicka A, Marcinkowska E. Vitamin D and immune system. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:1-41. [PMID: 38777411 DOI: 10.1016/bs.afnr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The active metabolite of vitamin D 1,25(OH)2D is well known for its role in regulating calcium-phosphate homeostasis of the human body. However, the immunomodulating activity of 1,25(OH)2D has been known for many years. There are numerous reports correlating low vitamin D levels in blood serum with the onset of autoimmune diseases and with the severe course of acute infections. In this chapter, we address the role of 1,25(OH)2D in these diseases, and we discuss the possible mechanisms of action of 1,25(OH)2D in immune cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aleksandra Marchwicka
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Ewa Marcinkowska
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
27
|
Arabi SM, Shahraki-Jazinaki M, Chambari M, Bahrami LS, Sabeti S, Gubari MIM, Roufogalis BD, Sahebkar A. The effect of oral supplementation of Paricalcitol on C-reactive protein levels in chronic kidney disease patients: GRADE-assessed systematic review and dose-response meta-analysis of data from randomized controlled trials. BMC Pharmacol Toxicol 2024; 25:19. [PMID: 38395972 PMCID: PMC10885610 DOI: 10.1186/s40360-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Previous studies investigating the effect of oral supplementation of paricalcitol on reactive protein levels in chronic kidney disease (CKD) patients reported inconsistent findings. In this systematic review and meta-analysis, we have analyzed and interpreted the results obtained from previous randomized clinical trials on the effect of paricalcitol on C-reactive protein in CKD patients in the literature. METHODS MEDLINE, SciVerse Scopus, and Clarivate Analytics Web of Science databases were searched until January 2023 and related articles were obtained through a careful screening process allowing extraction of required data from selected articles. The effect size was calculated using a random effect model and weighted mean differences (WMD) and 95% confidence intervals (CI). Heterogeneity among studies was evaluated using Cochran's Q test and I2. RESULTS Amongst the 182 articles obtained from the initial search, 4 studies (6 arms) were finally included in the meta-analysis. Pooled analysis shows that C-reactive protein levels significantly decrease after oral supplementation with paricalcitol (WMD: -2.55 mg/L, 95% CI (-4.99 to -0.11; P = 0.04). The studies used in this meta-analysis showed significant heterogeneity (I2 = 66.3% and P = 0.01). CONCLUSION Oral paricalcitol supplementation in CKD patients can significantly reduce C-reactive protein levels, which may prevent CKD progression.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Mahla Chambari
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Sabeti
- Department of food science and nutrition, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Wu M, Wang J, Zhou W, Wang M, Hu C, Zhou M, Jiao K, Li Z. Vitamin D inhibits tamoxifen-induced non-alcoholic fatty liver disease through a nonclassical estrogen receptor/liver X receptor pathway. Chem Biol Interact 2024; 389:110865. [PMID: 38191086 DOI: 10.1016/j.cbi.2024.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is one of the common side effects of tamoxifen treatment for estrogen receptor-positive breast cancer, and is representative of disorders of energy metabolism. Fatty liver is induced after tamoxifen (TAM) inhibition of estrogen receptor activity, but the exact mechanism is not clear. This study investigated the effects and mechanisms of TAM-induced steatosis in the liver. The effects and mechanisms of TAM on hepatocyte lipid metabolism were assessed using C57BL/6 female mice and human hepatoma cells. TAM promoted fat accumulation in the liver by upregulation of Srebp-1c expression. Regarding the molecular mechanism, TAM promoted the recruitment of the auxiliary transcriptional activator, p300, and dissociated the auxiliary transcriptional repressor, nuclear receptor corepressor (NCOR), of the complexes, which led to enhancement of Srebp-1c transcription and an increase of triglyceride (TG) synthesis. Vitamin D (VD), a common fat-soluble vitamin, can decrease TAM-induced NAFLD by promoting p300 dissociation and NCOR recruitment. Tamoxifen promoted the recruitment and dissociation of co-transcription factors on the LXR/ER/RXR receptor complex, leading to a disorder of liver lipid metabolism. VD interfered with TAM-induced liver lipid metabolism disorders by reversing this process.
Collapse
Affiliation(s)
- Maoxuan Wu
- Nantong Center for Disease Control and Prevention, Nantong, 226000, China
| | - Jie Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wanqing Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengting Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunyan Hu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Zhou
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Kailin Jiao
- Department of Nutrition, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Zhong Li
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
29
|
Cheng K, Yang G, Huang M, Huang Y, Wang C. Exogenous 1,25(OH) 2D 3/VD 3 counteracts RSL3-Induced ferroptosis by enhancing antioxidant capacity and regulating iron ion transport: Using zebrafish as a model. Chem Biol Interact 2024; 387:110828. [PMID: 38081571 DOI: 10.1016/j.cbi.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
RSL3 is a common inhibitor of glutathione peroxidase 4 (GPx4) that can induce ferroptosis. Ferroptosis is an iron ion-dependent, oxidative-type of programmed cell death. In this study, larval/adult zebrafish were stimulated with RSL3 to construct a ferroptosis model, and CYP2R1-/- zebrafish was used as a 1,25(OH)2D3 knock-down model to explore the regulatory effect and mechanism of 1,25(OH)2D3/VD3 on RSL3-induced ferroptosis. The results showed that 1,25(OH)2D3/VD3 alleviated RSL3 induced mitochondrial damage in liver of larval/adult zebrafish, reversed the decline of GPx4 activity, and reduced the accumulation of ROS, LPO and MDA. VD3 also inhibited hepcidin (HEPC) in adult fish liver, promoted the production of ferroportin (FPN), and reduced the aggregation of Fe2+. Exogenous 1,25(OH)2D3 increased the CYP2R1-/- survival and liver GPx4 activity after RSL3 treatment. At the gene level, 1,25(OH)2D3/VD3 activated Keap1-Nrf2-GPx4 and inhibited the NFκB-hepcidin axis. In the ferroptosis context, deletion of the cyp2r1 gene resulted in a more severe decline in gpx4 expression, but the exogenous 1,25(OH)2D3 increased the expression of the GPx4 gene and protein in CYP2R1-/- zebrafish liver after RSL3 treatment. The collective results indicated that 1,25(OH)2D3/VD3 can inhibit ferroptosis induced by RSL3 in liver of larval/adult zebrafish by improving the antioxidant capacity and regulating iron ion transport. Exogenous 1,25(OH)2D3 reverses the downregulation of GPx4 in the CYP2R1-/- zebrafish liver in the ferroptosis state. Compared with the ferroptosis inhibitor Fer-1, the mechanism of action of 1,25(OH)2D3/VD3 is diversified and nonspecific. This study demonstrated the resistance of VD3 to RSL3-induced ferroptosis at different developmental stages in zebrafish.
Collapse
Affiliation(s)
- Ke Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Gang Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Min Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Yanqing Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
30
|
Radhakrishna U, Sadhasivam S, Radhakrishnan R, Forray A, Muvvala SB, Metpally RP, Patel S, Rawal RM, Vishweswaraiah S, Bahado-Singh RO, Nath SK. Placental cytochrome P450 methylomes in infants exposed to prenatal opioids: exploring the effects of neonatal opioid withdrawal syndrome on health horizons. Front Genet 2024; 14:1292148. [PMID: 38264209 PMCID: PMC10805101 DOI: 10.3389/fgene.2023.1292148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Neonatal opioid withdrawal syndrome (NOWS), arises due to increased opioid use during pregnancy. Cytochrome P450 (CYP) enzymes play a pivotal role in metabolizing a wide range of substances in the human body, including opioids, other drugs, toxins, and endogenous compounds. The association between CYP gene methylation and opioid effects is unexplored and it could offer promising insights. Objective: To investigate the impact of prenatal opioid exposure on disrupted CYPs in infants and their anticipated long-term clinical implications. Study Design: DNA methylation levels of CYP genes were analyzed in a cohort of 96 placental tissues using Illumina Infinium MethylationEPIC (850 k) BeadChips. This involved three groups of placental tissues: 32 from mothers with infants exposed to opioids prenatally requiring pharmacologic treatment for NOWS, 32 from mothers with prenatally opioid-exposed infants not needing NOWS treatment, and 32 from unexposed control mothers. Results: The study identified 20 significantly differentially methylated CpG sites associated with 17 distinct CYP genes, with 14 CpGs showing reduced methylation across 14 genes (CYP19A1, CYP1A2, CYP4V2, CYP1B1, CYP24A1, CYP26B1, CYP26C1, CYP2C18, CYP2C9, CYP2U1, CYP39A1, CYP2R1, CYP4Z1, CYP2D7P1 and), while 8 exhibited hypermethylation (CYP51A1, CYP26B1, CYP2R1, CYP2U1, CYP4X1, CYP1A2, CYP2W1, and CYP4V2). Genes such as CYP1A2, CYP26B1, CYP2R1, CYP2U1, and CYP4V2 exhibited both increased and decreased methylation. These genes are crucial for metabolizing eicosanoids, fatty acids, drugs, and diverse substances. Conclusion: The study identified profound methylation changes in multiple CYP genes in the placental tissues relevant to NOWS. This suggests that disruption of DNA methylation patterns in CYP transcripts might play a role in NOWS and may serve as valuable biomarkers, suggesting a future pathway for personalized treatment. Further research is needed to confirm these findings and explore their potential for diagnosis and treatment.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Srinivas B. Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Raghu P. Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, United States
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, India
| | - Rakesh M. Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, MI, United States
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
31
|
Wall-Gremstrup G, Holt R, Yahyavi SK, Jorsal MJ, Juul A, Jørgensen N, Blomberg Jensen M. High-dose vitamin D 3 supplementation shows no beneficial effects on white blood cell counts, acute phase reactants, or frequency of respiratory infections. Respir Res 2024; 25:11. [PMID: 38178229 PMCID: PMC10765571 DOI: 10.1186/s12931-023-02642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Vitamin D has been suggested to influence the immune system, and vitamin D metabolites and the vitamin D receptor (VDR) are generated and expressed in white blood cells (WBC). Moreover, vitamin D status has been associated with incidence and prognosis of some respiratory tract infections (RTI). Therefore, we investigated the effect of vitamin D3 supplementation on WBC, acute phase reactants (APR), and the risk of developing RTIs. METHODS A double-blinded, randomized, placebo-controlled clinical trial of 307 infertile men with multiple secondary immunological endpoints. The vitamin D3 group (n = 151) initially received 300,000 IU (7,500 µg) cholecalciferol once - followed by 1,400 IU (35 µg) daily for 150 days. The placebo group (n = 156) did not receive active ingredients. RESULTS At baseline, stratification into clinically relevant groups of vitamin D status (< 25; 25-50; 50-75; >75 nmol/L), showed an inverse association with total leucocyte concentrations (7.0 vs. 6.0 vs. 6.0 vs. 5.5 (109/L); p = 0.007), lymphocytes (2.4 vs. 2.1 vs. 2.0 vs. 2.0 (109/L); p = 0.048), CRP (2.0 vs. 1.7 vs. 1.2 vs. 1.2 (mg/L); p = 0.037), and orosomucoid (0.82 vs. 0.77 vs. 0.76 vs. 0.70 (g/L); p = 0.015). After 150 days, no differences were detected in WBC counts or APRs between the vitamin D3 and the placebo group. However, vitamin D3 treated men had a higher prevalence of self-reported RTIs compared with the placebo group (55% vs. 39%; p = 0.005). CONCLUSIONS High-dose vitamin D3 supplementation did not alter WBCs or APRs, but a higher prevalence of respiratory infections was observed in the vitamin D3 group. Serum 25(OH)D3 was negatively correlated with most WBCs, indicating that vitamin D status may be linked with inflammation and WBC turnover, but not an important determinant of developing RTIs. TRIAL REGISTRATION NCT01304927 (ClinicalTrials.gov). Registered February 20, 2011.
Collapse
Affiliation(s)
- Gustav Wall-Gremstrup
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Rune Holt
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Sam Kafai Yahyavi
- Group of Skeletal, Mineral, and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Mads Joon Jorsal
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Adams JS, Shieh A, Bishop CW. Calcifediol as a therapeutic. FELDMAN AND PIKE'S VITAMIN D 2024:457-474. [DOI: 10.1016/b978-0-323-91338-6.00023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Wunderlich S, Griffiths T, Baines F. UVB-emitting LEDs for reptile lighting: Identifying the risks of nonsolar UV spectra. Zoo Biol 2024; 43:61-74. [PMID: 37870081 DOI: 10.1002/zoo.21806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
UVB lamps are used to provide reptiles housed indoors with the UV radiation necessary to synthesize vitamin D3 in their skin. Since 2019, UVB-LED lamps have been on sale for use in reptile husbandry. We performed spectral analysis and mapped the UV irradiance for 18 of these lamps. The positive benefits of UVB-LED lamps over traditional products include greater energy efficiency, freedom from mercury and easy installation without external ballasts. However, the spectra of all the UVB-LED lamps tested had little similarity to the solar UV spectrum. Some lamps emitted short-wavelength, non-terrestrial, radiation known to cause acute photo-kerato-conjunctivitis; we report one case. All lamps were lacking significant output in the range 315-335 nm, essential for natural self-regulation of cutaneous vitamin D3 synthesis, preventing overproduction. We describe a possible risk of serious hypervitaminosis D based on our spectral analysis. We call for long-term animal studies to assess this risk, in which the reptiles under these lamps are exposed to species-appropriate UV index levels according to their Ferguson Zone allocation and serum levels of vitamin D3 and 25(OH)D3 monitored. Spectral modifications of the lamps to make the spectrum more like sunlight may be an essential way of mitigating this risk.
Collapse
|
34
|
Hayes CE, Astier AL, Lincoln MR. Vitamin D mechanisms of protection in multiple sclerosis. FELDMAN AND PIKE'S VITAMIN D 2024:1129-1166. [DOI: 10.1016/b978-0-323-91338-6.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Fryar-Williams S, Tucker G, Strobel J, Huang Y, Clements P. Molecular Mechanism Biomarkers Predict Diagnosis in Schizophrenia and Schizoaffective Psychosis, with Implications for Treatment. Int J Mol Sci 2023; 24:15845. [PMID: 37958826 PMCID: PMC10650772 DOI: 10.3390/ijms242115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Diagnostic uncertainty and relapse rates in schizophrenia and schizoaffective disorder are relatively high, indicating the potential involvement of other pathological mechanisms that could serve as diagnostic indicators to be targeted for adjunctive treatment. This study aimed to seek objective evidence of methylenetetrahydrofolate reductase MTHFR C677T genotype-related bio markers in blood and urine. Vitamin and mineral cofactors related to methylation and indolamine-catecholamine metabolism were investigated. Biomarker status for 67 symptomatically well-defined cases and 67 asymptomatic control participants was determined using receiver operating characteristics, Spearman's correlation, and logistic regression. The 5.2%-prevalent MTHFR 677 TT genotype demonstrated a 100% sensitive and specific case-predictive biomarkers of increased riboflavin (vitamin B2) excretion. This was accompanied by low plasma zinc and indicators of a shift from low methylation to high methylation state. The 48.5% prevalent MTHFR 677 CC genotype model demonstrated a low-methylation phenotype with 93% sensitivity and 92% specificity and a negative predictive value of 100%. This model related to lower vitamin cofactors, high histamine, and HPLC urine indicators of lower vitamin B2 and restricted indole-catecholamine metabolism. The 46.3%-prevalent CT genotype achieved high predictive strength for a mixed methylation phenotype. Determination of MTHFR C677T genotype dependent functional biomarker phenotypes can advance diagnostic certainty and inform therapeutic intervention.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley, SA 5061, Australia
- The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
- Department of Nanoscale BioPhotonics, Faculty of Health and Medical Sciences, School of Biomedicine, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Graeme Tucker
- Department of Public Health, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Jörg Strobel
- Department of Psychiatry, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Yichao Huang
- Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Peter Clements
- Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia
- Department of Paediatrics, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
36
|
Fryar-Williams S, Strobel J, Clements P. Molecular Mechanisms Provide a Landscape for Biomarker Selection for Schizophrenia and Schizoaffective Psychosis. Int J Mol Sci 2023; 24:15296. [PMID: 37894974 PMCID: PMC10607016 DOI: 10.3390/ijms242015296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Research evaluating the role of the 5,10-methylenetetrahydrofolate reductase (MTHFR C677T) gene in schizophrenia has not yet provided an extended understanding of the proximal pathways contributing to the 5-10-methylenetetrahydrofolate reductase (MTHFR) enzyme's activity and the distal pathways being affected by its activity. This review investigates these pathways, describing mechanisms relevant to riboflavin availability, trace mineral interactions, and the 5-methyltetrahydrofolate (5-MTHF) product of the MTHFR enzyme. These factors remotely influence vitamin cofactor activation, histamine metabolism, catecholamine metabolism, serotonin metabolism, the oxidative stress response, DNA methylation, and nicotinamide synthesis. These biochemical components form a broad interactive landscape from which candidate markers can be drawn for research inquiry into schizophrenia and other forms of mental illness. Candidate markers drawn from this functional biochemical background have been found to have biomarker status with greater than 90% specificity and sensitivity for achieving diagnostic certainty in schizophrenia and schizoaffective psychosis. This has implications for achieving targeted treatments for serious mental illness.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- Youth in Mind Research Institute, Unley Annexe, Mary Street, Unley, SA 5061, Australia
- Department of Nanoscale BioPhotonics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jörg Strobel
- Department of Psychiatry, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Peter Clements
- Department of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia;
| |
Collapse
|
37
|
Bizerea-Moga TO, Chisavu F, Ilies C, Olah O, Marginean O, Gafencu M, Doros G, Stroescu R. Phenotype of Idiopathic Infantile Hypercalcemia Associated with the Heterozygous Pathogenic Variant of SLC34A1 and CYP24A1. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1701. [PMID: 37892364 PMCID: PMC10605249 DOI: 10.3390/children10101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Idiopathic infantile hypercalcemia (IIH) is a rare genetic disease, also called hypersensitivity to vitamin D3. The molecular heterogeneity allows for the differentiation between the two forms; IIH type 1 caused by CYP24A1 genetic variants and IIH type 2 associated with SLC34A1 mutations. The affected individuals express a variety of symptoms: hypercalcemia, hypercalciuria, suppressed intact parathormone levels (PTH), nephrocalcinosis, elevated levels of serum 1,25 (OH)2-vitamin D3 or inappropriately normal levels, and kidney phosphate wasting. The present paper describes three cases of IIH with heterozygous mutations in SLC34A1 and CYP24A1 genes, respectively. The genetic diagnosis is of paramount importance for proper treatment and the prediction of long-term outcomes.
Collapse
Affiliation(s)
- Teofana Otilia Bizerea-Moga
- Department XI of Pediatrics—1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.O.B.-M.); (O.M.); (R.S.)
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (C.I.); (O.O.)
| | - Flavia Chisavu
- 4th Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical sand Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (M.G.); (G.D.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine ‘Victor Babes’, 300041 Timișoara, Romania
| | - Cristina Ilies
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (C.I.); (O.O.)
- Department III of Functional Sciences—Pathophysiology Discipline, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Orsolya Olah
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (C.I.); (O.O.)
- Department VIII of Neuroscience—Psychology Discipline, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Otilia Marginean
- Department XI of Pediatrics—1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.O.B.-M.); (O.M.); (R.S.)
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (C.I.); (O.O.)
| | - Mihai Gafencu
- 4th Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical sand Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (M.G.); (G.D.)
- Department XI of Pediatrics—3rd Pediatric Discipline, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Gabriela Doros
- 4th Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical sand Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (M.G.); (G.D.)
- Department XI of Pediatrics—3rd Pediatric Discipline, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ramona Stroescu
- Department XI of Pediatrics—1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (T.O.B.-M.); (O.M.); (R.S.)
- 4th Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical sand Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania; (M.G.); (G.D.)
| |
Collapse
|
38
|
Kushioka T, Mano H, Matsuoka S, Nishikawa M, Yasuda K, Ikushiro S, Sakaki T. Analysis of vitamin D metabolites in biological samples using a nanoluc-based vitamin D receptor ligand sensing system: NLucVDR. J Steroid Biochem Mol Biol 2023; 233:106367. [PMID: 37517743 DOI: 10.1016/j.jsbmb.2023.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Many assays are currently being developed to measure the levels of vitamin D metabolites in various samples (such as blood, urine, and saliva). This study focused on the measurement of vitamin D metabolites in serum and urine using the NLucVDR assay system, which consists of a split-type nanoluciferase and ligand-binding domain (LBD) of the human vitamin D receptor. Blood and urine samples were collected from 23 participants to validate the NLucVDR assay. The 25(OH)D3 levels in the serum and urine determined by the NLucVDR assay showed good correlations with those determined by standard analytical methods (ECLIA for serum and LC-MS/MS for urine), with correlation coefficients of 0.923 and 0.844 for serum and urine samples, respectively. In the case of serum samples, 25(OH)D3 levels determined by the NLucVDR assay were in good agreement with those determined by ECLIA. Therefore, the NLucVDR assay is a useful tool for measuring serum 25(OH)D3 levels. The contribution of each vitamin D metabolite to the luminescence intensity obtained during the NLucVDR assay depends on its concentration and affinity for NLucVDR. Thus, the contribution of 25(OH)D3 in serum appears to be much higher than that of the other metabolites. In contrast, the 25(OH)D3 levels in the urine determined by the NLucVDR assay were more than 20-fold higher than those determined by a standard analytical method (LC-MS/MS), suggesting that some vitamin D metabolite(s) in the urine remarkably increased the luminescence intensity of the NLucVDR assay. Notably, the 25(OH)D3 concentration in the urine determined by the NLucVDR assay and the serum 25(OH)D3 concentration determined by standard analytical methods showed a significant positive correlation (r = 0.568). These results suggest that the analysis of a small amount of urine using the NLucVDR assay may be useful for predicting the serum 25(OH)D3 levels.
Collapse
Affiliation(s)
- Takuya Kushioka
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Sayuri Matsuoka
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
39
|
Peer GDG, Leal E, Raj VS, Chang CM, Pandey RP. Citrus fruits, vitamin D, and the RNA virus: A correlation and meta-analysis study in Taiwan and the USA. FOOD CHEMISTRY ADVANCES 2023; 2:100323. [DOI: 10.1016/j.focha.2023.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
40
|
Yuan R, Zhang W, You Y, Cui G, Gao Z, Wang X, Chen J. Vitamin D3 suppresses the cholesterol homeostasis pathway in patient-derived glioma cell lines. FEBS Open Bio 2023; 13:1789-1806. [PMID: 37489660 PMCID: PMC10476568 DOI: 10.1002/2211-5463.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Glioblastoma is one of the most common malignant brain tumors. Vitamin D, primarily its hormonally active form calcitriol, has been reported to have anti-cancer activity. In the present study, we used patient-derived glioma cell lines to examine the effect of vitamin D3 and calcitriol on glioblastoma. Surprisingly, vitamin D3 showed a more significant inhibitory effect than calcitriol on cell viability and proliferation. Vitamin D receptor (VDR) mediates most of the cellular effects of vitamin D, and thus we examined the expression level and function of VDR via gene silencing and gene knockout experiments. We observed that VDR does not affect the sensitivity of patient-derived glioma cell lines to vitamin D3, and the gene encoding VDR is not essential for growth of patient-derived glioma cell lines. RNA sequencing data analysis and sterolomics analysis revealed that vitamin D3 inhibits cholesterol synthesis and cholesterol homeostasis by inhibiting the expression level of 7-dehydrocholesterol reductase, which leads to the accumulation of 7-dehydrocholesterol and other sterol intermediates. In conclusion, our results suggest that vitamin D3, rather than calcitriol, inhibits growth of patient-derived glioma cell lines via inhibition of the cholesterol homeostasis pathway.
Collapse
Affiliation(s)
- Ran Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
- Chinese Institute for Brain ResearchBeijingChina
- Research Unit of Medical NeurobiologyChinese Academy of Medical SciencesBeijingChina
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yong‐Ping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityChina
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of MedicineShanghai UniversityNantongChina
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical SciencesNanjing Medical UniversityChina
| | - Jian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
- Chinese Institute for Brain ResearchBeijingChina
- Research Unit of Medical NeurobiologyChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
41
|
Huang D, Guo Y, Li X, Pan M, Liu J, Zhang W, Mai K. Vitamin D 3/VDR inhibits inflammation through NF-κB pathway accompanied by resisting apoptosis and inducing autophagy in abalone Haliotis discus hannai. Cell Biol Toxicol 2023; 39:885-906. [PMID: 34637036 DOI: 10.1007/s10565-021-09647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
Vitamin D3 is believed to be a contributing factor to innate immunity. Vitamin D receptor (VDR) has a positive effect on inhibiting nuclear factor κB (NF-κB)-mediated inflammation. The underlying molecular mechanisms remain unclear, particularly in mollusks. Consequently, this study will investigate the process of vitamin D3/VDR regulating NF-κB pathway and further explore their functions on inflammation, autophagy, and apoptosis in abalone Haliotis discus hannai. Results showed that knockdown of VDR by using siRNA and dsRNA of VDR in vitro and in vivo led to more intense response of NF-κB signaling to lipopolysaccharide and higher level of apoptosis and autophagy. In addition, 1,25(OH)2D3 stimulation after VDR silencing could partially alleviate apoptosis and induce autophagy. Overexpression of VDR restricted the K48-polyubiquitin chain-dependent inhibitor of κB (IκB) ubiquitination and apoptosis-associated speck-like protein containing CARD (ASC) oligomerization. Besides, VDR silencing resulted in increase of ASC speck formation. In further mechanistic studies, we showed that VDR can directly bind to IκB and IKK1 in vitro and in vivo. In the feeding trial, H&E staining, TUNEL, and electron microscope results showed that vitamin D3 deficiency (0 IU/kg) could recruit more basophilic cells and increase more TUNEL-positive apoptotic cells and lipid droplets (LDs) than vitamin D3 supplement (1000 IU/kg and 5000 IU/kg). In summary, abalone VDR plays a negative regulator role in NF-κB-mediated inflammation via interacting with IκB and inhibiting ubiquitin-dependent degradation of IκB. Vitamin D3 in combination with VDR is essential to establish a delicate balance between autophagy and apoptosis in response to inflammation.
Collapse
Affiliation(s)
- Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yanlin Guo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
42
|
Norlin M, Wikvall K. Enzymatic activation in vitamin D signaling - Past, present and future. Arch Biochem Biophys 2023; 742:109639. [PMID: 37196753 DOI: 10.1016/j.abb.2023.109639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Vitamin D signaling is important in regulating calcium homeostasis essential for bone health but also displays other functions in cells of several tissues. Disturbed vitamin D signaling is linked to a large number of diseases. The multiple cytochrome P450 (CYP) enzymes catalyzing the different hydroxylations in bioactivation of vitamin D3 are crucial for vitamin D signaling and function. This review is focused on the progress achieved in identification of the bioactivating enzymes and their genes in production of 1α,25-dihydroxyvitamin D3 and other active metabolites. Results obtained on species- and tissue-specific expression, catalytic reactions, substrate specificity, enzyme kinetics, and consequences of gene mutations are evaluated. Matters of incomplete understanding regarding the physiological roles of some vitamin D hydroxylases are critically discussed and the authors will give their view of the importance of each enzyme for vitamin D signaling. Roles of different vitamin D receptors and an alternative bioactivation pathway, leading to 20-hydroxylated vitamin D3 metabolites, are also discussed. Considerable progress has been achieved in knowledge of the vitamin D3 bioactivating enzymes. Nevertheless, several intriguing areas deserve further attention to understand the pleiotropic and diverse activities elicited by vitamin D signaling and the mechanisms of enzymatic activation necessary for vitamin D-induced responses.
Collapse
Affiliation(s)
- Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Cutolo M, Smith V, Paolino S, Gotelli E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat Rev Rheumatol 2023; 19:265-287. [PMID: 36977791 PMCID: PMC10043872 DOI: 10.1038/s41584-023-00944-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/30/2023]
Abstract
Evidence supporting the extra-skeletal role of vitamin D in modulating immune responses is centred on the effects of its final metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, also known as calcitriol), which is regarded as a true steroid hormone. 1,25(OH)2D3, the active form of vitamin D, can modulate the innate immune system in response to invading pathogens, downregulate inflammatory responses and support the adaptive arm of the immune system. Serum concentrations of its inactive precursor 25-hydroxyvitamin D3 (25(OH)D3, also known as calcidiol) fluctuate seasonally (being lowest in winter) and correlate negatively with the activation of the immune system as well as with the incidence and severity of autoimmune rheumatic diseases such as rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. Thus, a low serum concentration of 25(OH)D3 is considered to be a risk factor for autoimmune rheumatic diseases and vitamin D3 supplementation seems to improve the prognosis; moreover, long-term vitamin D3 supplementation seems to reduce their incidence (i.e. rheumatoid arthritis). In the setting of COVID-19, 1,25(OH)2D3 seems to downregulate the early viral phase (SARS-CoV-2 infection), by enhancing innate antiviral effector mechanisms, as well as the later cytokine-mediated hyperinflammatory phase. This Review provides an update of the latest scientific and clinical evidence concerning vitamin D and immune response in autoimmune rheumatic diseases and COVID-19, which justify the need for monitoring of serum 25(OH)D3 concentrations and for appropriate supplementation following clinical trial-based approaches.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DiMI), University of Genova-IRCCS San Martino Polyclinic Hospital, Genoa, Italy.
| | - Vanessa Smith
- Department of Internal Medicine, Department of Rheumatology, University Hospital Ghent, Ghent, Belgium
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DiMI), University of Genova-IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Specialties (DiMI), University of Genova-IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
44
|
Marchwicka A, Nowak K, Satyr A, Wołowiec D, Marcinkowska E. Immuno-Stimulating Activity of 1,25-Dihydroxyvitamin D in Blood Cells from Five Healthy People and in Blasts from Five Patients with Leukemias and Pre-Leukemic States. Int J Mol Sci 2023; 24:ijms24076504. [PMID: 37047477 PMCID: PMC10094698 DOI: 10.3390/ijms24076504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
(1) Hematological malignancies are characterized by an immortalization, uncontrolled proliferation of blood cells and their differentiation block, followed by the loss of function. The primary goal in the treatment of leukemias is the elimination of rapidly proliferating leukemic cells (named blasts). However, chemotherapy, which removes proliferating blasts, also prevents the remaining immune cells from being activated. Acute leukemias affect elderly people, who are often not fit to survive aggressive chemotherapy. Therefore, there is a need of milder treatment, named differentiation therapy, which might simulate the immune system of the patient. 1,25-Dihydroxyvitamin D, or low-calcemic analogs of this compound, were proposed as supporting therapy in acute leukemias. (2) Bone marrow blasts from patients with hematological malignancies, and leukocytes from healthy volunteers were ex vivo exposed to 1,25-dihydroxyvitamin D, and then their genomes and transcriptomes were investigated. (3) Our analysis indicates that 1,25-dihydroxyvitamin D regulates in blood cells predominantly genes involved in immune response, such as CAMP (cathelicidin antimicrobial peptide), CP (ceruloplasmin), CXCL9 (C-X-C motif chemokine ligand 9), CD14 (CD14 molecule) or VMO1 (vitelline membrane outer layer 1 homolog). This concerns blood cells from healthy people, as well as blasts from patients with hematological malignancies. In addition, in one patient, 1,25-dihydroxyvitamin D significantly downregulated transcription of genes responsible for cell division and immortalization. (4) In conclusion, the data presented in this paper suggest that addition of 1,25-dihydroxyvitamin D to the currently available treatments would stimulate immune system, inhibit proliferation and reduce immortal potential of blasts.
Collapse
Affiliation(s)
- Aleksandra Marchwicka
- Department of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Kuba Nowak
- Faculty of Mathematics and Computer Science, University of Wrocław, Joliot-Curie 15, 50-383 Wrocław, Poland
| | - Anastasiia Satyr
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Dariusz Wołowiec
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wrocław Medical University, Pasteura 4, 50-367 Wrocław, Poland
| | - Ewa Marcinkowska
- Department of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
45
|
Gharibeh N, Razaghi M, Vanstone CA, Sotunde OF, Glenn L, Mullahoo K, Farahnak Z, Khamessan A, Wei SQ, McNally D, Rauch F, Jones G, Kaufmann M, Weiler HA. Effect of Vitamin D Supplementation on Bone Mass in Infants With 25-Hydroxyvitamin D Concentrations Less Than 50 nmol/L: A Prespecified Secondary Analysis of a Randomized Clinical Trial. JAMA Pediatr 2023; 177:353-362. [PMID: 36780180 PMCID: PMC9926359 DOI: 10.1001/jamapediatrics.2022.5837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
IMPORTANCE The dose of supplemental vitamin D needed in infants born with serum 25-hydroxyvitamin D (25[OH]D) concentrations less than 50 nmol/L (ie, 20 ng/mL) is unclear. OBJECTIVE To determine whether a higher dose (1000 IU vs 400 IU per day) is required in infants born with 25(OH)D concentrations less than 50 nmol/L for bone mineral accretion across infancy. DESIGN, SETTING, AND PARTICIPANTS In this prespecified secondary analysis of a double-blinded randomized clinical trial, conducted from March 2016 to March 2019 in a single center in Greater Montreal, Quebec, Canada, a consecutive sample of 139 healthy term singletons were recruited from 866 infants screened for vitamin D status at birth. Data were analyzed from June 2021 to November 2022. INTERVENTIONS Capillary blood was collected 24 to 36 hours after birth to measure serum total 25(OH)D concentrations. Infants with 25(OH)D concentrations less than 50 nmol/L were randomized to receive either 1000 IU or 400 IU per day of oral vitamin D3 supplementation from age 1 to 12 months. Infants with 25(OH)D concentrations of 50 nmol/L or greater formed a reference group. MAIN OUTCOMES AND MEASURES Measures at age 1, 3, 6, and 12 months were preplanned and included whole-body bone mineral content, lumbar spine bone mineral content, and bone mineral density using dual-energy x-ray absorptiometry, and serum 25(OH)D3 using liquid chromatography tandem mass spectrometry. RESULTS Of 139 included infants, 81 (58.3%) were male, and the median (IQR) gestational age at birth was 39.6 (38.9-40.6) weeks. A total of 49 infants were included in the 1000 IU per day group, 49 infants in the 400 IU per day group, and 41 in the reference group. Mean (SD) whole-body bone mineral content was not different between trial groups over time (1000 IU per day, 173.09 [2.36] g; 400 IU per day, 165.94 [66.08] g). Similarly, no differences were observed in lumbar spine bone mineral content or density. Mean (SD) serum 25(OH)D3 concentrations were significantly higher in the 1000 IU per day group from age 3 to 12 months (3 months, 115.2 [35.3] nmol/L; 6 months, 121.6 [34.4] nmol/L; 12 months, 99.6 [28.8] nmol/L) compared with the 400 IU per day trial group (3 months, 77.4 [23.3] nmol/L; 6 months, 85.1 [18.6] nmol/L; 12 months, 82.3 [14.3] nmol/L). CONCLUSIONS AND RELEVANCE In this study, a higher dose of vitamin D supplementation in infants born with 25(OH)D concentrations less than 50 nmol/L did not present advantages to bone mass in infancy. This study supports a standard dose of 400 IU per day of vitamin D supplementation for breastfed infants in Montreal. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02563015.
Collapse
Affiliation(s)
- Nathalie Gharibeh
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Maryam Razaghi
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Catherine A. Vanstone
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Olusola F. Sotunde
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Laura Glenn
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Kristina Mullahoo
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Zahra Farahnak
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada,Department of Biochemistry, Memorial University of Newfoundland, St John’s, Newfoundland and Labrador, Canada
| | - Ali Khamessan
- Europharm International Canada Inc, Montreal, Quebec, Canada
| | - Shu Qin Wei
- Institut National de Santé Publique du Québec, Montreal, Quebec, Canada
| | - Dayre McNally
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Frank Rauch
- Shriners Hospital for Children, Montreal, Quebec, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Hope A. Weiler
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada,Nutrition Research Division, Bureau of Nutritional Sciences, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Abouzid M, Karaźniewicz-Łada M, Abdelazeem B, Brašić JR. Research Trends of Vitamin D Metabolism Gene Polymorphisms Based on a Bibliometric Investigation. Genes (Basel) 2023; 14:215. [PMID: 36672957 PMCID: PMC9859253 DOI: 10.3390/genes14010215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Vitamin D requires activation to show its pharmacological effect. While most studies investigate the association between vitamin D and disease, only a few focus on the impact of vitamin D metabolism gene polymorphisms (vitDMGPs). This bibliometric study aims to provide an overview of current publications on vitDMGPs (CYP27B1, CYP24A1, CYP2R1, CYP27A1, CYP2R1, DHCR7/NADSYN1), compare them across countries, affiliations, and journals, and inspect keywords, co-citations, and citation bursts to identify trends in this research field. CiteSpace© (version 6.1.R3, Chaomei Chen), Bibliometrix© (R version 4.1.3 library, K-Synth Srl, University of Naples Federico II, Naples, Italy), VOSviewer© (version 1.6.1, Nees Jan van Eck and Ludo Waltman, Leiden University, Leiden, Netherlands) and Microsoft® Excel 365 (Microsoft, Redmond, Washington, USA) classified and summarized Web of Science articles from 1998 to November 2022. We analyzed 2496 articles and built a timeline of co-citations and a bibliometric keywords co-occurrence map. The annual growth rate of vitDMGPs publications was 18.68%, and their relative research interest and published papers were increasing. The United States of America leads vitDMGPs research. The University of California System attained the highest quality of vitDMGPs research, followed by the American National Institutes of Health and Harvard University. The three productive journals on vitDMGPs papers are J. Steroid. Biochem. Mol. Biol., PLOS ONE, and J. Clin. Endocrinol. Metab. We highlighted that the vitDMGPs domain is relatively new, and many novel research opportunities are available, especially those related to studying single nucleotide polymorphisms or markers in a specific gene in the vitamin D metabolism cycle and their association with disease. Genome-wide association studies, genetic variants of vitDMGPs, and vitamin D and its role in cancer risk were the most popular studies. CYP24A1 and CYB27A1 were the most-studied genes in vitDMGPs. Insulin was the longest-trending studied hormone associated with vitDMGPs. Trending topics in this field relate to bile acid metabolism, transcriptome and gene expression, biomarkers, single nucleotide polymorphism, and fibroblast growth factor 23. We also expect an increase in original research papers investigating the association between vitDMGPs and coronavirus disease 2019, hypercalcemia, Smith-Lemli-Opitz syndrome, 27-hydroxycholesterol, and mendelian randomization. These findings will provide the foundations for innovations in the diagnosis and treatment of a vast spectrum of conditions.
Collapse
Affiliation(s)
- Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Basel Abdelazeem
- Department of Internal Medicine, McLaren Health Care, Flint, MI 48532, USA
- Department of Internal Medicine, Michigan State University, East Lansing, MI 48823, USA
| | - James Robert Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
47
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
48
|
Benson R, Unnikrishnan MK, Kurian SJ, Velladath SU, Rodrigues GS, Chandrashekar Hariharapura R, Muraleedharan A, Bangalore Venkateshiah D, Banerjee B, Mukhopadhyay C, Johnson AS, Munisamy M, Rao M, Kochikuzhyil BM, Sekhar Miraj S. Vitamin D attenuates biofilm-associated infections via immunomodulation and cathelicidin expression: a narrative review. Expert Rev Anti Infect Ther 2023; 21:15-27. [PMID: 36440493 DOI: 10.1080/14787210.2023.2151439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Infections are becoming more difficult to treat, at least partly on account of microbes that produce biofilms. Reports suggest that decreased levels of antimicrobial peptides like cathelicidin, elevated levels of inflammatory cytokines, and biofilm formation are all associated with vitamin D deficiency, making vitamin D - deficient individuals more susceptible to infection. Infections attributable to biofilm-producing microbes can be managed by adjuvant therapy with vitamin D because of its immunomodulatory role, particularly because of the ability of vitamin D-pathway to induce the antimicrobial peptides like cathelicidin and decrease proinflammatory cytokines. AREAS COVERED This narrative review covers biofilm formation, infections associated with biofilm due to vitamin D deficiency, putative role of vitamin D in host protection and the effect of vitamin D supplementation in biofilm-associated infections. A comprehensive literature search in PubMed and Google Scholar utilizing suitable keywords at multiple time points extracted relevant articles. EXPERT OPINION Although vitamin D deficiency has been associated with infections by biofilm producing microbes, comprehensive clinical trials in various ethnicities are required to understand the likely relationships between vitamin D receptor gene expression, cathelicidin levels, and infection outcome. Current evidence hypothesizes that maintaining normal vitamin D level can help prevent and treat these infections.
Collapse
Affiliation(s)
- Ruby Benson
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Saleena Ummer Velladath
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.,College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman
| | | | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anju Muraleedharan
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Dinesh Bangalore Venkateshiah
- Department of General Surgery, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Barnini Banerjee
- Department of Microbiology, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Aieshel Serafin Johnson
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Benson Mathai Kochikuzhyil
- Department of Pharmacology, Dr. Joseph Mar Thoma Institute of Pharmaceutical Sciences and Research, Kattanam, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
49
|
Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The Association between Vitamin D and the Components of Male Fertility: A Systematic Review. Biomedicines 2022; 11:90. [PMID: 36672602 PMCID: PMC9912266 DOI: 10.3390/biomedicines11010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Previous systematic reviews of the effects of vitamin D on the components of male fertility have been inconclusive. This article systematically reviews the latest research to examine the relationship between vitamin D, semen quality parameters, and sex hormones production. METHODS MEDLINE, Cochrane, and Web of Science databases were searched using the appropriate keywords. RESULTS Observational studies indicate significant correlation between vitamin D levels and sperm parameters, with a particular emphasis on sperm motility, and partially suggest a relationship between higher serum testosterone and vitamin D levels. Additionally, interventional studies confirmed that vitamin D supplementation has a positive effect on sperm motility, especially progressive. However, most randomized clinical trials indicate that vitamin D treatment does not have any significant effect on testosterone or other hormone levels. CONCLUSIONS Although our findings add to the discussion regarding the effect of vitamin D on male fertility, there is still no solid evidence to support the use of vitamin D supplementation to improve the outcomes of patients with impaired sperm parameters and hormonal disorders. Additional dedicated clinical studies are needed to clarify the relationship between vitamin D and male fertility, along with its components.
Collapse
Affiliation(s)
- Daria Adamczewska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland
| | | | | |
Collapse
|
50
|
Carallo C, Capozza A, Gnasso A. Effects of Vitamin D Supplementation in Patients with Statin-Associated Muscle Symptoms and Low Vitamin D Levels. Metab Syndr Relat Disord 2022; 20:567-575. [PMID: 36346279 DOI: 10.1089/met.2021.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Statin therapy is a cornerstone of cardiovascular disease treatment and prevention. Unfortunately, 7%-29% of statin-treated patients complain of muscular fatigue, cramps, and/or pain (statin-associated muscle symptoms [SAMS]). In recent years, the important role of vitamin D in muscle health maintenance has been highlighted. In addition, hypovitaminosis D is very prevalent, and might be a reversible risk factor for SAMS occurrence. Methods: In our controlled intervention study, patients suffering from both SAMS and hypovitaminosis D underwent vitamin D replacement for 6 months. SAMS intensity and its impact on the quality of life were evaluated with a questionnaire during follow-up. A subgroup of patients who were not at the low-density lipoprotein cholesterol (LDL-C) target attempted a statin rechallenge after 3 months. Control subjects, with SAMS only, were not treated. Results: Blood vitamin D levels reached 261% of baseline values. Pain intensity was reduced by 63%, and all life quality indicators improved. At follow-up, percentage variations in SAMS intensity and in vitamin D levels were inversely related (r = 0.57, P = 0.002). In a multiple regression analysis, this association was found to be independent. Among the rechallenge subgroup, 75% successfully tolerated high-intensity statins during the follow-up. The parameters of interest were unchanged in control subjects. Conclusions: In our findings, the amount of increase in vitamin D concentrations is directly related to SAMS improvement. Although randomized studies are needed, 25(OH)D levels can be measured, and eventually supplemented, in all patients suffering from SAMS, and this can be done together with a statin rechallenge after 3 months for patients who are not at the LDL-C target. Register: The study protocol was registered with the EudraCT clinical trial register [ID: 2019-003250-83] in date April 8, 2020.
Collapse
Affiliation(s)
- Claudio Carallo
- Metabolic Diseases Unit, Department of Clinical and Experimental Medicine, "Magna Graecia" University, Catanzaro, Italy
| | - Alessandro Capozza
- Metabolic Diseases Unit, Department of Clinical and Experimental Medicine, "Magna Graecia" University, Catanzaro, Italy
| | - Agostino Gnasso
- Metabolic Diseases Unit, Department of Clinical and Experimental Medicine, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|