1
|
Barr SI, Abd El-Azeem EM, Bessa SS, Mohamed TM. Role of exosomes in pathogenesis, diagnosis, and treatment of diabetic nephropathy. BMC Nephrol 2025; 26:230. [PMID: 40340661 PMCID: PMC12063312 DOI: 10.1186/s12882-025-04120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication that can progress to end-stage renal disease, with its prevalence and associated mortality increasing globally. However extensive research, the precise mechanisms underlying DN pathogenesis remain unclear, and the current treatment options for DN are limited to dialysis or renal replacement therapy, although several experimental approaches have shown potential, they remain investigational and lack clinical translation. Exosomes play a pivotal role in disease diagnosis and prognosis. Urinary exosomes, originating from various kidney cells, reflect the kidney's pathological condition and are involved in cell-to-cell communication through autocrine or paracrine signaling; therefore, they could contribute to the pathogenesis of DN and potential therapeutic approaches. Additionally, due to their diverse cargo, which depend on cellular origin and pathological state, exosomes may act as biomarkers for the early prediction of DN. This review presents a comprehensive overview of the latest findings on the role of exosomes in the diagnosis, pathogenesis, and treatment of DN.
Collapse
Affiliation(s)
- Shaimaa I Barr
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Eman M Abd El-Azeem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sahar S Bessa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
3
|
Zheng S, Zeng Y, Chu L, Gong T, Li S, Yang M. Renal Tissue-Derived Exosomal miRNA-34a in Diabetic Nephropathy Induces Renal Tubular Cell Fibrosis by Promoting the Polarization of M1 Macrophages. IET Nanobiotechnol 2024; 2024:5702517. [PMID: 38863972 PMCID: PMC11095076 DOI: 10.1049/2024/5702517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/13/2024] Open
Abstract
Background Diabetic nephropathy (DN) is the leading cause of chronic kidney disease, and the activation and infiltration of phagocytes are critical steps of DN. This study aimed to explore the mechanism of exosomes in macrophages and diabetes nephropathy and the role of miRNA-34a, which might provide a new path for treating DN. Materials and Methods The DN model was established, and the success of the model establishment was confirmed by detecting general indicators, HE staining, and immunohistochemistry. Electron microscopy and NanoSight Tracking Analysis (NTA) were used to see the morphology and size of exosomes. MiRNA-34a inhibitor, miRNA-34a mimics, pc-PPARGC1A, and controls were transfected in macrophages with or without kidney exosomal. A dual-luciferase reporter gene experiment verifies the targeting relationship between miRNA-34a and PPARGC1A. After exosomal culture, macrophages are co-cultured with normal renal tubular cells to detect renal tubular cell fibrosis. Q-PCR and western blot were undertaken to detect related RNA and proteins. Results An animal model of diabetic nephropathy was successfully constructed. Macrophages could phagocytose exosomes. After ingesting model exosomes, M1 macrophages were activated, while M2 macrophages were weakened, indicating the model mice's kidney exosomes caused the polarization. MiRNA-34a inhibitor increased PPARGC1A expression. MiRNA-34a expressed higher in diabetic nephropathy Model-Exo. MiRNA-34a negatively regulated PPARGC1A. PPARGC1A rescued macrophage polarization and renal tubular cell fibrosis. Conclusion Exosomal miRNA-34a of tubular epithelial cells promoted M1 macrophage activation in diabetic nephropathy via negatively regulating PPARGC1A expression, which may provide a new direction for further exploration of DN treatment.
Collapse
Affiliation(s)
- Shuai Zheng
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Yi Zeng
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Liqing Chu
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Taiyang Gong
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Sihong Li
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Min Yang
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| |
Collapse
|
4
|
Zhu S, Tang X, Zhang J, Hu J, Gao X, Li D, Jia W. Urinary extracellular vesicles prevent di-(2-ethylhexyl) phthalate-induced hypospadias by facilitating epithelial-mesenchymal transition via PFN2 delivery. Cell Biol Toxicol 2023; 39:2569-2586. [PMID: 37953354 DOI: 10.1007/s10565-023-09838-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Urinary extracellular vesicles (EVs) have gained increasing interest in recent years as a potential source of noninvasive biomarkers of diseases related to urinary organs, but knowledge of the mechanism is still limited. The current study sought to clarify the mechanism of urinary EVs behind di-(2-ethylhexyl) phthalate (DEHP)-induced hypospadias via PFN2 delivery. METHOD PFN2 expression in hypospadias was predicted by bioinformatics analysis. Following the induction of a hypospadias rat model using DEHP, rats were injected with EVs and/or underwent alteration of PFN2 and TGF-β1 to assess their effects in vivo. The extracted rat urothelial cells (UECs) were co-cultured with EVs extracted from urine for in vitro experiments. RESULT Microarray analysis predicted poor PFN2 expression in hypospadias. Upregulated PFN2 was found in urinary EVs, and restrained epithelial-mesenchymal transition (EMT) was observed in DEHP-exposed rats. Urinary EVs or PFN2 overexpression increased SMAD2, SMAD3, and TGF-β1 protein expression and SMAD2 and SMAD3 phosphorylation in UECs and DEHP-exposed rats. UEC migration, invasion, and EMT were augmented by EV co-culture or upregulation of PFN2. Of note, the silencing of TGF-β1 counterweighed the effect of PFN2. Besides, EV co-culture or overexpression of PFN2 or TGF-β1 elevated the body weight, anal-genital distance (AGD), anal-genital index (AGI), and EMT of DEHP-exposed rats. CONCLUSION In summary, urinary EVs activated the SMAD/TGF-β1 pathway to induce EMT via PFN2 delivery, thus protecting against DEHP-induced hypospadias. (1) EMT in epithelial cells inhibits DEHP-induced hypospadias. (2) Urine-derived EVs deliver PFN2 to promote EMT in epithelial cells. (3) PFN2 can activate the SMAD/TGF-β1 signaling axis. (4) Urine-derived EVs can transmit PFN2 to activate the SMAD/TGF-β1 signaling axis, thus promoting EMT and inhibiting the occurrence of hypospadias.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Jin Zhang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Jinhua Hu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Xiaofeng Gao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Dian Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China.
| |
Collapse
|
5
|
Du S, Zhai L, Ye S, Wang L, Liu M, Tan M. In-depth urinary and exosome proteome profiling analysis identifies novel biomarkers for diabetic kidney disease. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2587-2603. [PMID: 37405567 DOI: 10.1007/s11427-022-2348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 07/06/2023]
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of type 2 diabetes mellitus (T2DM). Monitoring the early diagnostic period and disease progression plays a crucial role in treating DKD. In this study, to comprehensively elucidate the molecular characteristics of urinary proteins and urinary exosome proteins in type 2 DKD, we performed large-scale urinary proteomics (n=144) and urinary exosome proteomics (n=44) analyses on T2DM patients with albuminuria in varying degrees. The dynamics analysis of the urinary and exosome proteomes in our study provides a valuable resource for discovering potential urinary biomarkers in patients with DKD. A series of potential biomarkers, such as SERPINA1 and transferrin (TF), were detected and validated to be used for DKD diagnosis or disease monitoring. The results of our study comprehensively elucidated the changes in the urinary proteome and revealed several potential biomarkers reflecting the progression of DKD, which provide a reference for DKD biomarker screening.
Collapse
Affiliation(s)
- Shichun Du
- Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Shu Ye
- Department of Endocrinology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Le Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China.
| |
Collapse
|
6
|
Satyadev N, Rivera MI, Nikolov NK, Fakoya AOJ. Exosomes as biomarkers and therapy in type 2 diabetes mellitus and associated complications. Front Physiol 2023; 14:1241096. [PMID: 37745252 PMCID: PMC10515224 DOI: 10.3389/fphys.2023.1241096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent metabolic disorders worldwide. However, T2DM still remains underdiagnosed and undertreated resulting in poor quality of life and increased morbidity and mortality. Given this ongoing burden, researchers have attempted to locate new therapeutic targets as well as methodologies to identify the disease and its associated complications at an earlier stage. Several studies over the last few decades have identified exosomes, small extracellular vesicles that are released by cells, as pivotal contributors to the pathogenesis of T2DM and its complications. These discoveries suggest the possibility of novel detection and treatment methods. This review provides a comprehensive presentation of exosomes that hold potential as novel biomarkers and therapeutic targets. Additional focus is given to characterizing the role of exosomes in T2DM complications, including diabetic angiopathy, diabetic cardiomyopathy, diabetic nephropathy, diabetic peripheral neuropathy, diabetic retinopathy, and diabetic wound healing. This study reveals that the utilization of exosomes as diagnostic markers and therapies is a realistic possibility for both T2DM and its complications. However, the majority of the current research is limited to animal models, warranting further investigation of exosomes in clinical trials. This review represents the most extensive and up-to-date exploration of exosomes in relation to T2DM and its complications.
Collapse
Affiliation(s)
- Nihal Satyadev
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Milagros I. Rivera
- University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis
| | | | | |
Collapse
|
7
|
Erdbrügger U, Hoorn EJ, Le TH, Blijdorp CJ, Burger D. Extracellular Vesicles in Kidney Diseases: Moving Forward. KIDNEY360 2023; 4:245-257. [PMID: 36821616 PMCID: PMC10103258 DOI: 10.34067/kid.0001892022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are evolving as novel cell mediators, biomarkers, and therapeutic targets in kidney health and disease. They are naturally derived from cells both within and outside the kidney and carry cargo which mirrors the state of the parent cell. Thus, they are potentially more sensitive and disease-specific as biomarkers and messengers in various kidney diseases. Beside their role as novel communicators within the nephron, they likely communicate between different organs affected by various kidney diseases. Study of urinary EVs (uEVs) can help to fill current knowledge gaps in kidney diseases. However, separation and characterization are challenged by their heterogeneity in size, shape, and cargo. Fortunately, more sensitive and direct EV measuring tools are in development. Many clinical syndromes in nephrology from acute to chronic kidney and glomerular to tubular diseases have been studied. Yet, validation of biomarkers in larger cohorts is warranted and simpler tools are needed. Translation from in vitro to in vivo studies is also urgently needed. The therapeutic role of uEVs in kidney diseases has been studied extensively in rodent models of AKI. On the basis of the current exponential growth of EV research, the field of EV diagnostics and therapeutics is moving forward.
Collapse
Affiliation(s)
- Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Urinary Extracellular Vesicles in Chronic Kidney Disease: From Bench to Bedside? Diagnostics (Basel) 2023; 13:diagnostics13030443. [PMID: 36766548 PMCID: PMC9913975 DOI: 10.3390/diagnostics13030443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Extracellular vesicles are a diverse group of particles that include exosomes, microvesicles, and apoptotic bodies and are defined by size, composition, site of origin, and density. They incorporate various bioactive molecules from their cell of origin during formation, such as soluble proteins, membrane receptors, nucleic acids (mRNAs and miRNAs), and lipids, which can then be transferred to target cells. Extracellular vesicles/exosomes have been extensively studied as a critical factor in pathophysiological processes of human diseases. Urinary extracellular vesicles could be a promising liquid biopsy for determining the pattern and/or severity of kidney histologic injury. The signature of urinary extracellular vesicles may pave the way for noninvasive methods to supplement existing testing methods for diagnosing kidney diseases. We discuss the potential role of urinary extracellular vesicles in various chronic kidney diseases in this review, highlighting open questions and discussing the potential for future research.
Collapse
|
9
|
Thongboonkerd V, Kanlaya R. The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics. Int J Biochem Cell Biol 2022; 149:106262. [PMID: 35787447 DOI: 10.1016/j.biocel.2022.106262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Exosomes are the self-packed nanoscale vesicles (nanovesicles) derived from late endosomes and released from the cells to the extracellular milieu. Exosomal biogenesis is based on endosomal pathway to form the nanovesicles surrounded by membrane originated from plasma membranes of the parental cells. During biogenesis, exosomes selectively encapsulate an array of biomolecules (proteins, nucleic acids, lipids, metabolites, etc.), thereby conveying diverse messages for cell-cell communications. Once released, these exosomal contents trigger signaling and trafficking that play roles in cell growth, development, immune responses, homeostasis, remodeling, etc. Recent advances in exosomal research have provided a wealth of useful information that enhances our knowledge on the roles for exosomes in pathogenic mechanisms of human diseases involving a wide variety of organ systems. In the kidney, exosomes play divergent roles, ranging from pathogenesis to therapeutics, based on their original sources and type of interventions. Herein, we summarize and update the current knowledge on the divergent roles of exosomes involving the pathogenesis, diagnostics, prognostics, and therapeutics in various groups of kidney diseases, including acute kidney injury, immune-mediated kidney diseases (e.g., IgA nephropathy, lupus nephritis, membranous nephropathy, focal segmental glomerulosclerosis), chronic kidney disease (caused by diabetic nephropathy and others), renal cell carcinoma, nephrolithiasis, kidney transplantation and related complications, and polycystic kidney disease. Finally, the future perspectives on research in this area are discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Li X, Yang L. Urinary exosomes: Emerging therapy delivery tools and biomarkers for urinary system diseases. Biomed Pharmacother 2022; 150:113055. [PMID: 35658226 DOI: 10.1016/j.biopha.2022.113055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Urinary exosomes (UE) are small circular membranous vesicles with a lipid bilayer with a diameter of 40-160 nm secreted by epithelial cells of the kidney and genitourinary system, which can reflect the physiological and functional status of secretory cells. Protein and RNA in exosomes can be used as markers for diseases diagnosis. Urine specimens are available and non-invasive. The protein and RNA in UE are more stable than the soluble protein and RNA in urine, which have broad application prospects in the diagnosis of urinary system diseases. This article reviews the recent advances in the application of protein or RNA in UE as markers to the diagnosis of urinary system diseases.
Collapse
Affiliation(s)
- Xin Li
- Departments of Infectious Disease, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Suire CN, Hade MD. Extracellular Vesicles in Type 1 Diabetes: A Versatile Tool. Bioengineering (Basel) 2022; 9:105. [PMID: 35324794 PMCID: PMC8945706 DOI: 10.3390/bioengineering9030105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease affecting nearly 35 million people. This disease develops as T-cells continually attack the β-cells of the islets of Langerhans in the pancreas, which leads to β-cell death, and steadily decreasing secretion of insulin. Lowered levels of insulin minimize the uptake of glucose into cells, thus putting the body in a hyperglycemic state. Despite significant progress in the understanding of the pathophysiology of this disease, there is a need for novel developments in the diagnostics and management of type 1 diabetes. Extracellular vesicles (EVs) are lipid-bound nanoparticles that contain diverse content from their cell of origin and can be used as a biomarker for both the onset of diabetes and transplantation rejection. Furthermore, vesicles can be loaded with therapeutic cargo and delivered in conjunction with a transplant to increase cell survival and long-term outcomes. Crucially, several studies have linked EVs and their cargos to the progression of type 1 diabetes. As a result, gaining a better understanding of EVs would help researchers better comprehend the utility of EVs in regulating and understanding type 1 diabetes. EVs are a composition of biologically active components such as nucleic acids, proteins, metabolites, and lipids that can be transported to particular cells/tissues through the blood system. Through their varied content, EVs can serve as a flexible aid in the diagnosis and management of type 1 diabetes. In this review, we provide an overview of existing knowledge about EVs. We also cover the role of EVs in the pathogenesis, detection, and treatment of type 1 diabetes and the function of EVs in pancreas and islet β-cell transplantation.
Collapse
|
12
|
Chen J, Zhang Q, Liu D, Liu Z. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy. Metabolism 2021; 122:154834. [PMID: 34217734 DOI: 10.1016/j.metabol.2021.154834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Exosomes, a major type of extracellular vesicles (EVs), are nanoscale vesicles excreted by almost all cell types via invagination of the endosomal membrane pathway. Exosomes play a crucial role in the mediation of intercellular communication both in health and disease, which can be ascribed to their capacity to be transported to neighboring or distant cells, thus regulating the biological function of recipient cells through cargos such as DNA, mRNA, proteins and microRNA. Diabetic nephropathy (DN) is a serious microvascular complication associated with diabetes mellitus as well as a significant cause of end-stage renal disease worldwide, which has resulted in a substantial economic burden on individuals and society. However, despite extensive efforts, therapeutic approaches that prevent the progression of DN do not exist, which implies new approaches are required. An increasing number of studies suggest that exosomes are involved in the pathophysiological processes associated with DN, which may potentially provide novel biomarkers and therapeutic targets for DN. Hence, this review summarizes recent advances involving exosome mechanisms in DN and their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jingfang Chen
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China
| | - Qing Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, China; Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou 450052, China.
| |
Collapse
|
13
|
Saenz-Pipaon G, Echeverria S, Orbe J, Roncal C. Urinary Extracellular Vesicles for Diabetic Kidney Disease Diagnosis. J Clin Med 2021; 10:jcm10102046. [PMID: 34064661 PMCID: PMC8151759 DOI: 10.3390/jcm10102046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end stage renal disease (ESRD) in developed countries, affecting more than 40% of diabetes mellitus (DM) patients. DKD pathogenesis is multifactorial leading to a clinical presentation characterized by proteinuria, hypertension, and a gradual reduction in kidney function, accompanied by a high incidence of cardiovascular (CV) events and mortality. Unlike other diabetes-related complications, DKD prevalence has failed to decline over the past 30 years, becoming a growing socioeconomic burden. Treatments controlling glucose levels, albuminuria and blood pressure may slow down DKD evolution and reduce CV events, but are not able to completely halt its progression. Moreover, one in five patients with diabetes develop DKD in the absence of albuminuria, and in others nephropathy goes unrecognized at the time of diagnosis, urging to find novel noninvasive and more precise early diagnosis and prognosis biomarkers and therapeutic targets for these patient subgroups. Extracellular vesicles (EVs), especially urinary (u)EVs, have emerged as an alternative for this purpose, as changes in their numbers and composition have been reported in clinical conditions involving DM and renal diseases. In this review, we will summarize the current knowledge on the role of (u)EVs in DKD.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Saioa Echeverria
- Endocrinology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
14
|
Charest A. Experimental and Biological Insights from Proteomic Analyses of Extracellular Vesicle Cargos in Normalcy and Disease. ADVANCED BIOSYSTEMS 2020; 4:e2000069. [PMID: 32815324 PMCID: PMC8091982 DOI: 10.1002/adbi.202000069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) offer a vehicle for diagnostic and therapeutic utility. EVs carry bioactive cargo and an accrued interest in their characterization has emerged. Efforts at identifying EV-enriched protein or RNA led to a surprising realization that EVs are excessively heterogeneous in nature. This diversity is originally attributed to vesicle sizes but it is becoming evident that different classes of EVs vehiculate distinct molecular cargos. Therefore, one of the current challenges in EV research is their selective isolation in quantities sufficient for efficient downstream analyses. Many protocols have been developed; however, reproducibility between research groups can be difficult to reach and inter-studies analyses of data from different isolation protocols are unmanageable. Therefore, there is an unmet need to optimize and standardize methods and protocols for the isolation and purification of EVs. This review focuses on the diverse techniques and protocols used over the years to isolate and purify EVs with a special emphasis on their adequacy for proteomics applications. By combining recent advances in specific isolation methods that yield superior quality of EV preparations and mass spectrometry techniques, the field is now prepared for transformative advancements in establishing distinct categorization and cargo identification of subpopulations based on EV surface markers.
Collapse
|
15
|
Insights into predicting diabetic nephropathy using urinary biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140475. [DOI: 10.1016/j.bbapap.2020.140475] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/27/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022]
|
16
|
Lu Y, Liu D, Feng Q, Liu Z. Diabetic Nephropathy: Perspective on Extracellular Vesicles. Front Immunol 2020; 11:943. [PMID: 32582146 PMCID: PMC7283536 DOI: 10.3389/fimmu.2020.00943] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a major microvascular complication of diabetes mellitus. It is the most frequent cause of end-stage renal disease with no definitive therapy available so far. Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are nano- and micron-sized heterogeneous vesicles that can be secreted by almost all cell types. Importantly, EVs contain many biologically active materials, such as RNAs, DNAs, proteins, and lipids, from their parental cells, which can be transported to their recipient cells to mediate intercellular communication and signaling. Accumulating studies demonstrated that EVs, mainly exosomes and microvesicles, participated in the pathophysiological process of DN. Recently emerging studies also found that the contents of EVs in the urine (miRNAs, mRNAs, and proteins) could be used as potential biomarkers for DN. Therefore, in this mini-review, the generation, isolation methods, and biological function of EVs were introduced, and then the current information about the mechanism and the diagnostic value in the development of DN was summarized. Moreover, the review also discussed the future challenges of exploring the role of EVs in kidney disease.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Qi Feng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, China
| |
Collapse
|
17
|
Alawi LF, Emberesh SE, Owuor BA, Chodavarapu H, Fadnavis R, El‐Amouri SS, Elased KM. Effect of hyperglycemia and rosiglitazone on renal and urinary neprilysin in db/db diabetic mice. Physiol Rep 2020; 8:e14364. [PMID: 32026607 PMCID: PMC7002536 DOI: 10.14814/phy2.14364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Alteration in renin-angiotensin system (RAS) has been implicated in the pathophysiology of diabetic kidney disease (DKD). The deleterious actions of angiotensin II (Ang II) could be antagonized by the formation of Ang-(1-7), generated by the actions of angiotensin-converting enzyme 2 (ACE2) and neprilysin (NEP). NEP degrades several peptides, including natriuretic peptides, bradykinin, amyloid beta, and Ang I. Although combination of Ang II receptor and NEP inhibitor treatment benefits patients with heart failure, the role of NEP in renal pathophysiology is a matter of active research. NEP pathway is a potent enzyme in Ang I to Ang-(1-7) conversion in the kidney of ACE2-deficient mice, suggesting a renoprotective role of NEP. The aim of the study is to test the hypothesis that chronic hyperglycemia downregulates renal NEP protein expression and activity in db/db diabetic mice and treatment with rosiglitazone normalizes hyperglycemia, renal NEP expression, and attenuates albuminuria. Mice received rosiglitazone (20 mg kg-1 day-1 ) for 10 weeks. Western blot analysis, immunohistochemistry, and enzyme activity revealed a significant decrease in renal and urinary NEP expression and activity in 16-wk db/db mice compared with lean control (p < .0001). Rosiglitazone also attenuated albuminuria and increased renal and urinary NEP expressions (p < .0001). In conclusion, data support the hypothesis that diabetes decreases intrarenal NEP, which could have a pivotal role in the pathogenesis of DKD. Urinary NEP may be used as an index of intrarenal NEP status. The renoprotective effects of rosiglitazone could be mediated by upregulation of renal NEP expression and activity in db/db diabetic mice.
Collapse
Affiliation(s)
- Laale F. Alawi
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Sana E. Emberesh
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Brenda A. Owuor
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Harshita Chodavarapu
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Rucha Fadnavis
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Salim S. El‐Amouri
- Boonshoft School of MedicineDepartment of NeuroscienceCell Biology and PhysiologyWright State UniversityDaytonOHUSA
| | - Khalid M. Elased
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| |
Collapse
|
18
|
Wang S, Kojima K, Mobley JA, West AB. Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine 2019; 45:351-361. [PMID: 31229437 PMCID: PMC6642358 DOI: 10.1016/j.ebiom.2019.06.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Background Extracellular vesicles (EVs) harbor thousands of proteins that hold promise for biomarker development. Usually difficult to purify, EVs in urine are relatively easily obtained and have demonstrated efficacy for kidney disease prediction. Herein, we further characterize the proteome of urinary EVs to explore the potential for biomarkers unrelated to kidney dysfunction, focusing on Parkinson's disease (PD). Methods Using a quantitative mass spectrometry approach, we measured urinary EV proteins from a discovery cohort of 50 subjects. EVs in urine were classified into subgroups and EV proteins were ranked by abundance and variability over time. Enriched pathways and ontologies in stable EV proteins were identified and proteins that predict PD were further measured in a cohort of 108 subjects. Findings Hundreds of commonly expressed urinary EV proteins with stable expression over time were distinguished from proteins with high variability. Bioinformatic analyses reveal a striking enrichment of endolysosomal proteins linked to Parkinson's, Alzheimer's, and Huntington's disease. Tissue and biofluid enrichment analyses show broad representation of EVs from across the body without bias towards kidney or urine proteins. Among the proteins linked to neurological diseases, SNAP23 and calbindin were the most elevated in PD cases with 86% prediction success for disease diagnosis in the discovery cohort and 76% prediction success in the replication cohort. Interpretation Urinary EVs are an underutilized but highly accessible resource for biomarker discovery with particular promise for neurological diseases like PD.
Collapse
Affiliation(s)
- Shijie Wang
- Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Kyoko Kojima
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew B West
- Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Sun H, Wang D, Liu D, Guo Z, Shao C, Sun W, Zeng Y. Differential urinary proteins to diagnose coronary heart disease based on iTRAQ quantitative proteomics. Anal Bioanal Chem 2019; 411:2273-2282. [PMID: 30806752 DOI: 10.1007/s00216-019-01668-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
Abstract
Coronary artery disease (CAD) is a manifestation of systemic atherosclerotic disease. It is assessed by intervention or traditional scoring risk factors. Diagnosis is limited by inaccurate and invasive methods. Developing noninvasive methods to screen for the risk of CAD is a major challenge. We aimed to identify urinary proteins associated with CAD. We utilized iTRAQ labeling followed by 2D LC-MS/MS to compare the urinary proteome of CAD patients to healthy cohorts. The multiple reaction monitoring (MRM) was used to verify the differential proteins. ROC analysis based on MRM data was used to evaluate the diagnostic application. A total of 876 proteins were quantified, and 100 differential proteins were found. Functional analysis revealed that the differential proteins were mainly associated with Liver X Receptor/Retinoid X Receptor (LXR/RXR) pathway activation, atherosclerosis signaling, production of nitric oxide and reactive oxygen species, and the top upstream regulator of the differential proteins by IPA analysis indicated to the APOE. Nineteen differential proteins were verified by MRM analysis. ROC based on MRM data revealed that the combination of two proteins (APOD and TFF1) could diagnose CAD with 85% sensitivity and 99% specificity (AUC 0.95). The urinary proteome might reflect the pathophysiological changes in CAD and be used for the clinical study of CAD.
Collapse
Affiliation(s)
- Haidan Sun
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Danqi Wang
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Dongfang Liu
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zhengguang Guo
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chen Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wei Sun
- Core facility of instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yong Zeng
- Department of Cardiology, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
20
|
D'Aronco S, Crotti S, Agostini M, Traldi P, Chilelli NC, Lapolla A. The role of mass spectrometry in studies of glycation processes and diabetes management. MASS SPECTROMETRY REVIEWS 2019; 38:112-146. [PMID: 30423209 DOI: 10.1002/mas.21576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 06/09/2023]
Abstract
In the last decade, mass spectrometry has been widely employed in the study of diabetes. This was mainly due to the development of new, highly sensitive, and specific methods representing powerful tools to go deep into the biochemical and pathogenetic processes typical of the disease. The aim of this review is to give a panorama of the scientifically valid results obtained in this contest. The recent studies on glycation processes, in particular those devoted to the mechanism of production and to the reactivity of advanced glycation end products (AGEs, AGE peptides, glyoxal, methylglyoxal, dicarbonyl compounds) allowed to obtain a different view on short and long term complications of diabetes. These results have been employed in the research of effective markers and mass spectrometry represented a precious tool allowing the monitoring of diabetic nephropathy, cardiovascular complications, and gestational diabetes. The same approaches have been employed to monitor the non-insulinic diabetes pharmacological treatments, as well as in the discovery and characterization of antidiabetic agents from natural products. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 38:112-146, 2019.
Collapse
Affiliation(s)
- Sara D'Aronco
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sara Crotti
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Pietro Traldi
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | | | | |
Collapse
|
21
|
Chen Y, Liu L, Li J, Du Y, Wang J, Liu J. Effects of long noncoding RNA (linc-VLDLR) existing in extracellular vesicles on the occurrence and multidrug resistance of esophageal cancer cells. Pathol Res Pract 2018; 215:470-477. [PMID: 30606658 DOI: 10.1016/j.prp.2018.12.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/05/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the relationship between the expression of linc-VLDLR in extracellular vesicles (EVs) and esophageal carcinomas development and drug resistance. METHODS The expression of linc-VLDLR and ABCG2 mRNA in 60 cases of esophageal carcinoma tissue, para-carcinoma tissue and the normal esophagus tissue were detected using Fluorescence quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fifty percent inhibiting concentration (IC50) of adriamycin (ADM) to Eca109 cells was detected by MTT assay, after the treatment of different concentrations of adriamycin (ADM) on esophageal squamous cell carcinoma Eca109 cell line for 24 h. EVs were extracted from culture medium after the treatment of three concentrations of ADM (setting based on the IC50) on Eca109 cells for 24 h. Linc-VLDLR expression in EVs was detected by qRT-PCR. After the treatment of the extracted EVs on virgin Eca109 cells for 48 h, then intervening these cells for 24 h by different concentrations of ADM, the new values of IC50 were detected by MTT assay. Cell cycle, cell apoptosis and ABCG2 protein expression of these Eca109 cells were detected by flow cytometry (FCM). Linc-VLDLR and ABCG2 mRNA expression in these Eca109 cells were detected by qRT-PCR. RESULTS Expression of linc-VLDLR and ABCG2 mRNA in esophageal squamous cell carcinoma tissue were significantly higher than that in esophageal atypical hyperplasia and normal esophagus tissue, P < 0.01. After the treatment of ADM on Eca109 cells for 24 h, IC50 of Eca109 cells was detected as (0.44 ± 0.02) μg/mL, thus ADM concentrations of 0, 0.2, 0.4 and 0.8 μg/mL were selected to accomplish the following parts of this study. After four groups of Eca109 cells were treated by ADM in different concentrations separately, extracted EVs from the supernatant of all four groups, then labeling these four groups as EVs1, 2, 3 and 4. Linc-VLDLR expression in EVs4 was significantly higher than that in EVs1-3, P < 0.01. After the treatment of EVs1-4 on virgin Eca109 cells for 48 h, new values of IC50 of Eca109 to ADM were detected by MTT. It was found that the IC50 value of group EVs4 was significantly higher than that of other groups, P < 0.05. Flow cytometry results showed that the proliferation index of Eca109 cells in EVs4 was significantly higher than that in EVs1-3 and control groups, P < 0.01. Whereas, there was an obviously downward trend in the apoptosis rate of EVs4, compared to other three groups, P < 0.01. Linc-VLDLR and ABCG2 mRNA and protein expression level in Eca109 cells of EVs4 group were significantly higher than that of EVs1-3 and control groups, P < 0.05. CONCLUSIONS High expression of Linc-VLDLR and ABCG2 gene in esophageal cancer cells affected the formation of esophageal cancer drug resistance. EVs released by drug-resistant cells were proved that they could upregulate the expression of ABCG2 in esophageal cancer cells and thus regulate the drug resistance of esophageal cancer cells, which was related to the linc-VLDLR carried by EVs.
Collapse
Affiliation(s)
- YueTong Chen
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Liang Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China.
| | - Jie Li
- Division of Medical Affairs, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Yu Du
- Department of CT, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Jing Wang
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - JiangHui Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| |
Collapse
|
22
|
Shin H, Jeong H, Park J, Hong S, Choi Y. Correlation between Cancerous Exosomes and Protein Markers Based on Surface-Enhanced Raman Spectroscopy (SERS) and Principal Component Analysis (PCA). ACS Sens 2018; 3:2637-2643. [PMID: 30381940 DOI: 10.1021/acssensors.8b01047] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes, which are nanovesicles secreted by cells, are promising biomarkers for cancer diagnosis and prognosis, based on their specific surface protein compositions. Here, we demonstrate the correlation of nonsmall cell lung cancer (NSCLC) cell-derived exosomes and potential protein markers by unique Raman scattering profiles and principal component analysis (PCA) for cancer diagnosis. On the basis of surface enhanced Raman scattering (SERS) signals of exosomes from normal and NSCLC cells, we extracted Raman patterns of cancerous exosomes by PCA and clarified specific patterns as unique peaks through quantitative analysis with ratiometric mixtures of cancerous and normal exosomes. The unique peaks correlated well with cancerous exosome ratio ( R2 > 90%) as the unique Raman band of NSCLC exosome. To examine the origin of the unique peaks, we compared these unique peaks with characteristic Raman bands of several exosomal protein markers (CD9, CD81, EpCAM, and EGFR). EGFR had 1.97-fold similarity in Raman profiles than other markers, and it showed dominant expression against the cancerous exosomes in an immunoblotting result. We expect that these results will contribute to studies on exosomal surface protein markers for diagnosis of cancers.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, South Korea
| | - Hyesun Jeong
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, South Korea
| | - Jaena Park
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, South Korea
| | - Sunghoi Hong
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, South Korea
- School of Biosystem and Biomedical Science, Korea University, Seoul 02841, South Korea
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, South Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
23
|
Chen W, Tang D, Dai Y, Diao H. Establishment of microRNA, transcript and protein regulatory networks in Alport syndrome induced pluripotent stem cells. Mol Med Rep 2018; 19:238-250. [PMID: 30483741 PMCID: PMC6297794 DOI: 10.3892/mmr.2018.9672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is an inherited progressive disease caused by mutations in genes encoding for the α3, α4 and α5 chains, which are an essential component of type IV collagen and are required for formation of the glomerular basement membrane. However, the underlying etiology of AS remains largely unknown, and the aim of the present study was to examine the genetic mechanisms in AS. Induced pluripotent stem cells (iPSCs) were generated from renal tubular cells. The Illumina HiSeq™ 2000 system and iTRAQ‑coupled 2D liquid chromatography‑tandem mass spectrometry were used to generate the sequences of microRNAs (miRNAs), transcripts and proteins from AS‑iPSCs. Integration of miRNA, transcript and protein expression data was used to construct regulatory networks and identify specific miRNA targets amongst the transcripts and proteins. Relative quantitative proteomics using iTRAQ technology revealed 383 differentially abundant proteins, and high‑throughput sequencing identified 155 differentially expressed miRNAs and 1,168 differentially expressed transcripts. Potential miRNA targets were predicted using miRanda, TargetScan and Pictar. All target proteins and transcripts were subjected to network analysis with miRNAs. Gene ontology analysis of the miRNAs and their targets revealed functional information on the iPSCs, including biological process and cell signaling. Kyoto Encyclopedia of Genes and Genomes pathways analysis revealed that the transcripts and proteins were primarily enriched in metabolic and cell adhesion molecule pathways. In addition, the network maps identified hsa‑miRNA (miR)‑4775 as a prominent miRNA that was associated with a number of targets. Similarly, the prominent ELV‑like protein 1‑A and epidermal growth factor receptor (EGFR)‑associated transcripts were identified. Reverse transcription‑quantitative polymerase chain reaction analysis was used to confirm the upregulation of hsa‑miR‑4775 and EGFR. The integrated approach used in the present study provided a comprehensive molecular characterization of AS. The results may also further understanding of the genetic pathogenesis of AS and facilitate the identification of candidate biomarkers for AS.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
24
|
Lonati E, Sala G, Tresoldi V, Coco S, Salerno D, Milani C, Losurdo M, Farina F, Botto L, Ferrarese C, Palestini P, Bulbarelli A. Ischemic Conditions Affect Rerouting of Tau Protein Levels: Evidences for Alteration in Tau Processing and Secretion in Hippocampal Neurons. J Mol Neurosci 2018; 66:604-616. [DOI: 10.1007/s12031-018-1199-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/17/2018] [Indexed: 11/30/2022]
|
25
|
Raimondo F, Chinello C, Stella M, Santorelli L, Magni F, Pitto M. Effects of Hematuria on the Proteomic Profile of Urinary Extracellular Vesicles: Technical Challenges. J Proteome Res 2018; 17:2572-2580. [DOI: 10.1021/acs.jproteome.7b00763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Raimondo
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Clizia Chinello
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Martina Stella
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Lucia Santorelli
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Fulvio Magni
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| | - Marina Pitto
- School of Medicine and Surgery, University Milan Bicocca, 20900 Monza, Italy
| |
Collapse
|
26
|
Conigliaro A, Fontana S, Raimondo S, Alessandro R. Exosomes: Nanocarriers of Biological Messages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 998:23-43. [PMID: 28936730 DOI: 10.1007/978-981-10-4397-0_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-cell communication is crucial to maintain homeostasis in multicellular organism. Cells communicate each other by direct contact or by releasing factors that, soluble or packaged in membrane vesicles, can reach different regions of the organism. To date numerous studies highlighted the existence of several types of extracellular vesicles that, differing for dimension, origin and contents, play a role in physiological and/or pathological processes. Among extracellular vesicles, exosomes are emerging as efficient players to modulate target cells phenotype and as new non-invasive diagnostic and prognostic tools in multiple diseases. They, in fact, strictly reflect the type and functional status of the producing cells and are able to deliver their contents even over a long distance. The results accumulated in the last two decades and collected in this chapter, indicated that exosomes, can carry RNAs, microRNAs, long non-coding RNAs, DNA, lipids, metabolites and proteins; a deeper understanding of their contents is therefore needed to get the most from this incredible cell product.
Collapse
Affiliation(s)
- Alice Conigliaro
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sapienza University of Rome, Rome, 00185, Italy
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo, 90133, Italy
| | - Simona Fontana
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo, 90133, Italy
| | - Stefania Raimondo
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo, 90133, Italy
| | - Riccardo Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche, University of Palermo, Palermo, 90133, Italy.
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy.
| |
Collapse
|
27
|
Genome-wide Profiling of Urinary Extracellular Vesicle microRNAs Associated With Diabetic Nephropathy in Type 1 Diabetes. Kidney Int Rep 2017; 3:555-572. [PMID: 29854963 PMCID: PMC5976846 DOI: 10.1016/j.ekir.2017.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Diabetic nephropathy (DN) is a form of progressive kidney disease that often leads to end-stage renal disease (ESRD). It is initiated by microvascular complications due to diabetes. Although microalbuminuria (MA) is the earliest clinical indication of DN among patients with type 1 diabetes (T1D), it lacks the sensitivity and specificity to detect the early onset of DN. Recently, microRNAs (miRNAs) have emerged as critical regulators in diabetes as well as various forms of kidney disease, including renal fibrosis, acute kidney injury, and progressive kidney disease. Additionally, circulating extracellular miRNAs, especially miRNAs packaged in extracellular vesicles (EVs), have garnered significant attention as potential noninvasive biomarkers for various diseases and health conditions. Methods As part of the University of Pittsburgh Epidemiology of Diabetes Complications (EDC) study, urine was collected from individuals with T1D with various grades of DN or MA (normal, overt, intermittent, and persistent) over a decade at prespecified intervals. We isolated EVs from urine and analyzed the small-RNA using NextGen sequencing. Results We identified a set of miRNAs that are enriched in urinary EVs compared with EV-depleted samples, and identified a number of miRNAs showing concentration changes associated with DN occurrence, MA status, and other variables, such as hemoglobin A1c levels. Conclusion Many of the miRNAs associated with DN occurrence or MA status directly target pathways associated with renal fibrosis (including transforming growth factor-β and phosphatase and tensin homolog), which is one of the major contributors to the pathology of DN. These miRNAs are potential biomarkers for DN and MA.
Collapse
|
28
|
The comparison of CHCA solvent compositions for improving LC-MALDI performance and its application to study the impact of aflatoxin B1 on the liver proteome of diabetes mellitus type 1 mice. PLoS One 2017; 12:e0181423. [PMID: 28738076 PMCID: PMC5524319 DOI: 10.1371/journal.pone.0181423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/19/2017] [Indexed: 01/16/2023] Open
Abstract
In nanoflow liquid chromatography-matrix-assisted laser desorption/ionization tandem time-of-flight (nanoLC-MALDI-TOF/TOF) approaches, it is critical to directly apply small amounts of the sample elutes on the sample target using a nanoLC system due to its low flow rate of 200 ~ 300 nl/min. It is recommended to apply a sheath liquid containing a matrix with a several μL/min flow rate at the end of the nanoLC column to ensure a larger co-eluted droplet for more reproducible sample spotting and avoid the laborious task of post-manual matrix spotting. In this study, to achieve a better nanoLC-MALDI performance on sample spotting, we first compared α-Cyano-4-hydroxycinnamic acid (CHCA) solvent composition for efficiently concentrating nanoLC elutes on an anchor chip. The solvent composition of isopropanol (IPA): acetonitrile (ACN):acetone:0.1% Trifluoroacetic acid (TFA) (2:7:7:2) provided strong and homogeneous signals with higher peptide ion yields than the other solvent compositions. Then, nanoLC-MALDI-TOF/TOF was applied to study the impact of aflatoxin B1 on the liver proteome from diabetes mellitus type 1 mice. Aflatoxin B1 (AFB1), produced by Aspergillus flavus and Aspergillus parasiticus is a carcinogen and a known causative agent of liver cancer. To evaluate the effects of long-term exposure to AFB1 on type 1 diabetes mellitus (TIDM), the livers of T1DM control mice and mice treated with AFB1 were analyzed using isotope-coded protein labeling (ICPL)-based quantitative proteomics. Our results showed that gluconeogenesis, lipid, and oxidative phosphorylation mechanisms, normally elevated in T1DM, were disordered following AFB1 treatment. In addition, major urinary protein 1 (MUP1), an indicator of increased insulin sensitivity, was significantly decreased in the T1DM/AFB1 group and may have resulted in higher blood glucose levels compared to the T1DM group. These results indicate that T1DM patients should avoid the AFB1 intake, as they could lead to increased blood glucose levels and disorders of energy-producing mechanisms.
Collapse
|
29
|
Abramowicz A, Widlak P, Pietrowska M. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. MOLECULAR BIOSYSTEMS 2017; 12:1407-19. [PMID: 27030573 DOI: 10.1039/c6mb00082g] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The re-discovery of exosomes as intercellular messengers with high potential for diagnostic and therapeutic utility has led to them becoming a popular topic of research in recent years. One of the essential research areas in this field is the characterization of exosomal cargo, which includes numerous non-randomly packed proteins and nucleic acids. Unexpectedly, a very challenging aspect of exploration of extracellular vesicles has turned out to be their effective and selective isolation. The plurality of developed protocols leads to qualitative and quantitative variability in terms of the obtained exosomes, which significantly affects the results of downstream analyses and makes them difficult to compare, reproduce and interpret between research groups. Currently, there is a general consensus among the exosome-oriented community concerning the urgent need for the optimization and standardization of methods employed for the purification of these vesicles. Hence, we review here several strategies for exosome preparation including ultracentrifugation, chemical precipitation, affinity capturing and filtration techniques. The advantages and disadvantages of different approaches are discussed with special emphasis being placed on their adequacy for proteomics applications, which are particularly sensitive to sample quality. We conclude that certain methods, exemplified by ultracentrifugation combined with iodixanol density gradient centrifugation or gel filtration, although labor-intensive, provide superior quality exosome preparations suitable for reliable analysis by mass spectrometry.
Collapse
Affiliation(s)
- Agata Abramowicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Piotr Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Monika Pietrowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| |
Collapse
|
30
|
Campion CG, Sanchez-Ferras O, Batchu SN. Potential Role of Serum and Urinary Biomarkers in Diagnosis and Prognosis of Diabetic Nephropathy. Can J Kidney Health Dis 2017; 4:2054358117705371. [PMID: 28616250 PMCID: PMC5461910 DOI: 10.1177/2054358117705371] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
PURPOSE OF REVIEW Diabetic nephropathy (DN) is a progressive kidney disease caused by alterations in kidney architecture and function, and constitutes one of the leading causes of end-stage renal disease (ESRD). The purpose of this review is to summarize the state of the art of the DN-biomarker field with a focus on the new strategies that enhance the sensitivity of biomarkers to predict patients who will develop DN or are at risk of progressing to ESRD. OBJECTIVE In this review, we provide a description of the pathophysiology of DN and propose a panel of novel putative biomarkers associated with DN pathophysiology that have been increasingly investigated for diagnosis, to predict disease progression or to provide efficient personal treatment. METHODS We performed a review of the literature with PubMed and Google Scholar to collect baseline data about the pathophysiology of DN and biomarkers associated. We focused our research on new and emerging biomarkers of DN. KEY FINDINGS In this review, we summarized the critical signaling pathways and biological processes involved in DN and highlighted the pathogenic mediators of this disease. We next proposed a large review of the major advances that have been made in identifying new biomarkers which are more sensitive and reliable compared with currently used biomarkers. This includes information about emergent biomarkers such as functional noncoding RNAs, microRNAs, long noncoding RNAs, exosomes, and microparticles. LIMITATIONS Despite intensive strategies and constant investigation, no current single treatment has been able to reverse or at least mitigate the progression of DN, or reduce the morbidity and mortality associated with this disease. Major difficulties probably come from the renal disease being heterogeneous among the patients. IMPLICATIONS Expanding the proteomics screening, including oxidative stress and inflammatory markers, along with metabolomics approaches may further improve the prognostic value and help in identifying the patients with diabetes who are at high risk of developing kidney diseases.
Collapse
Affiliation(s)
- Carole G. Campion
- Centre de recherche, Centre Hospitalier de l’Université de Montréal (CRCHUM), Québec, Canada
| | - Oraly Sanchez-Ferras
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Québec, Canada
| | - Sri N. Batchu
- St. Michael’s Hospital, University of Toronto, Ontario, Canada
| |
Collapse
|
31
|
Extracellular vesicles mediate signaling between the aqueous humor producing and draining cells in the ocular system. PLoS One 2017; 12:e0171153. [PMID: 28241021 PMCID: PMC5328276 DOI: 10.1371/journal.pone.0171153] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/15/2017] [Indexed: 01/10/2023] Open
Abstract
Purpose Canonical Wnt signaling is associated with glaucoma pathogenesis and intraocular pressure (IOP) regulation. Our goal was to gain insight into the influence of non-pigmented ciliary epithelium (NPCE)-derived exosomes on Wnt signaling by trabecular meshwork (TM) cells. The potential impact of exosomes on Wnt signaling in the ocular drainage system remains poorly understood. Methods Exosomes isolated from media collected from cultured NPCE cells by differential ultracentrifugation were characterized by dynamic light scattering (DLS), tunable resistive pulse sensing (TRPS), and nanoparticle tracking analysis (NTA), sucrose density gradient migration and transmission electron microscopy (TEM). The cellular target specificity of the NPCE-derived exosomes was investigated by confocal microscopy-based monitoring of the uptake of DiD-labeled exosomes over time, as compared to uptake by various cell lines. Changes in Wnt protein levels in TM cells induced by NPCE exosomes were evaluated by Western blot. Results Exosomes derived from NPCE cells were purified and detected as small rounded 50–140 nm membrane vesicles, as defined by DLS, NTA, TRPS and TEM. Western blot analysis indicated that the nanovesicles were positive for classic exosome markers, including Tsg101 and Alix. Isolated nanoparticles were found in sucrose density fractions typical of exosomes (1.118–1.188 g/mL sucrose). Using confocal microscopy, we demonstrated time-dependent specific accumulation of the NPCE-derived exosomes in NTM cells. Other cell lines investigated hardly revealed any exosome uptake. We further showed that exosomes induced changes in Wnt signaling protein expression in the TM cells. Western blot analysis further revealed decreased phosphorylation of GKS3β and reduced β-catenin levels. Finally, we found that treatment of NTM cells with exosomes resulted in a greater than 2-fold decrease in the level of β-catenin in the cytosolic fraction. In contrast, no remarkable difference in the amount of β-catenin in the nuclear fraction was noted, relative to the control. Conclusions The data suggest that NPCE cells release exosome-like vesicles and that these nanoparticles affect canonical Wnt signaling in TM cells. These findings may have therapeutic relevance since canonical Wnt pathway is involved in intra-ocular pressure regulation. Further understanding of NPCE-derived exosome-responsive signaling pathways may reveal new targets for pharmacological intervention within the drainage system as a target for glaucoma therapy.
Collapse
|
32
|
Lou NJ, Ni YH, Jia HY, Deng JT, Jiang L, Zheng FJ, Sun AL. Urinary Microvesicle-Bound Uromodulin: A Potential Molecular Biomarker in Diabetic Kidney Disease. J Diabetes Res 2017; 2017:3918681. [PMID: 28182086 PMCID: PMC5274657 DOI: 10.1155/2017/3918681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/27/2016] [Accepted: 12/04/2016] [Indexed: 11/17/2022] Open
Abstract
This study was designed to investigate the changes of urinary microvesicle-bound uromodulin and total urinary uromodulin levels in human urine and the correlations with the severity of diabetic kidney disease (DKD). 31 healthy subjects without diabetes and 100 patients with type 2 diabetes mellitus (T2DM) were included in this study. The patients with T2DM were divided into three groups based on the urinary albumin/creatinine ratio (UACR): normoalbuminuria group (DM, n = 46); microalbuminuria group (DN1, n = 32); and macroalbuminuria group (DN2, n = 22). We use a specific monoclonal antibody AD-1 to capture the urinary microvesicles. Urinary microvesicle-bound uromodulin and total urinary uromodulin levels were determined by enzyme-linked immunosorbent assay (ELISA). Our results showed that the levels of urinary microvesicle-bound uromodulin in DN1 and DN2 groups were significantly higher than those in control group and DM group (P < 0.01). Multiple stepwise linear regression analysis showed that UACR was independent determinant for urinary microvesicle-bound uromodulin (P < 0.05) but not for total urinary uromodulin. These findings suggest that the levels of urinary microvesicle-bound uromodulin are associated with the severity of DKD. The uromodulin in urinary microvesicles may be a specific marker of DKD and potentially may be used to predict the onset and/or monitor the progression of DKD.
Collapse
Affiliation(s)
- Neng-jun Lou
- The Second Hospital of Shandong University, 247 Beiyuan Street, Ji'nan, Shandong 250033, China
| | - Yi-hong Ni
- The Second Hospital of Shandong University, 247 Beiyuan Street, Ji'nan, Shandong 250033, China
| | - Hong-ying Jia
- The Second Hospital of Shandong University, 247 Beiyuan Street, Ji'nan, Shandong 250033, China
| | - Jing-ti Deng
- Department of Biochemistry, School of Medicine of Shandong University, Shandong, China
| | - Lu Jiang
- The Second Hospital of Shandong University, 247 Beiyuan Street, Ji'nan, Shandong 250033, China
| | - Feng-jie Zheng
- The Second Hospital of Shandong University, 247 Beiyuan Street, Ji'nan, Shandong 250033, China
| | - Ai-li Sun
- The Second Hospital of Shandong University, 247 Beiyuan Street, Ji'nan, Shandong 250033, China
- *Ai-li Sun:
| |
Collapse
|
33
|
Street J, Koritzinsky E, Glispie D, Star R, Yuen P. Urine Exosomes: An Emerging Trove of Biomarkers. Adv Clin Chem 2017; 78:103-122. [PMID: 28057185 DOI: 10.1016/bs.acc.2016.07.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exosomes are released by most cells and can be isolated from all biofluids including urine. Exosomes are small vesicles formed as part of the endosomal pathway that contain cellular material surrounded by a lipid bilayer that can be traced to the plasma membrane. Exosomes are potentially a more targeted source of material for biomarker discovery than unfractionated urine, and provide diagnostic and pathophysiological information without an invasive tissue biopsy. Cytoplasmic contents including protein, mRNA, miRNA, and lipids have all been studied within the exosomal fraction. Many prospective urinary exosomal biomarkers have been successfully identified for a variety of kidney or genitourinary tract conditions; detection of systemic conditions may also be possible. Isolation and analysis of exosomes can be achieved by several approaches, although many require specialized equipment or involve lengthy protocols. The need for timely analysis in the clinical setting has driven considerable innovation with several promising options recently emerging. Consensus on exosome isolation, characterization, and normalization procedures would resolve critical clinical translational bottlenecks for existing candidate exosomal biomarkers and provide a template for additional discovery studies.
Collapse
|
34
|
Rossi L, Nicoletti MC, Carmosino M, Mastrofrancesco L, Di Franco A, Indrio F, Lella R, Laviola L, Giorgino F, Svelto M, Gesualdo L, Procino G. Urinary Excretion of Kidney Aquaporins as Possible Diagnostic Biomarker of Diabetic Nephropathy. J Diabetes Res 2017; 2017:4360357. [PMID: 28246612 PMCID: PMC5299189 DOI: 10.1155/2017/4360357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 12/26/2016] [Indexed: 11/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a microangiopathic complication of diabetes mellitus (DM) affecting one-third of diabetic patients. The large variability in the clinical presentation of renal involvement in patients with DM makes kidney biopsy a prerequisite for a correct diagnosis. However, renal biopsy is an invasive procedure associated with risk of major complications. Numerous studies aimed to identify a noninvasive biomarker of DN but, so far, none of these is considered to be sufficiently specific and sensitive. Water channel aquaporins (AQPs), expressed at the plasma membrane of epithelial tubular cells, are often dysregulated during DN. In this work, we analyzed the urine excretion of AQP5 and AQP2 (uAQP5 and uAQP2), via exosomes, in 35 diabetic patients: 12 normoalbuminuric with normal renal function (DM), 11 with proteinuric nondiabetic nephropathy (NDN), and 12 with histological diagnosis and classification of DN. ELISA and WB analysis independently showed that uAQP5 was significantly increased in DN patients. Interestingly, linear regression analysis showed a positive correlation between uAQP5 and the histological class of DN. The same analysis, focusing on uAQP2, showed comparable results. Taken together, these data suggest a possible use of AQP5 and AQP2 as novel noninvasive biomarkers to help in classifying the clinical stage of DN.
Collapse
Affiliation(s)
| | - Maria Celeste Nicoletti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Monica Carmosino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Lisa Mastrofrancesco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | | | | | | | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- *Giuseppe Procino:
| |
Collapse
|
35
|
Abstract
The last decade has seen a surge in publications describing novel biomarkers for early detection of diabetic nephropathy (DN), but as yet none have outperformed albuminuria in well-designed prospective studies. This is partially attributable to our incomplete understanding of the many complex interrelated mechanisms underlying DN development, a heterogeneous process unlikely to be captured by a single biomarker. Proteomics offers the advantage of simultaneously analysing the entire protein content of a biological sample, and the technique has gained attention as a potential tool for a more accurate diagnosis of disease at an earlier stage as well as a means by which to unravel the pathogenesis of complex diseases such as DN using an untargeted approach. This review will discuss the potential of proteomics as both a clinical and research tool, evaluating exploratory work in animal models as well as diagnostic potential in human subjects.
Collapse
Affiliation(s)
- G Currie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| | - C Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
36
|
Zhang W, Zhou X, Zhang H, Yao Q, Liu Y, Dong Z. Extracellular vesicles in diagnosis and therapy of kidney diseases. Am J Physiol Renal Physiol 2016; 311:F844-F851. [PMID: 27582107 DOI: 10.1152/ajprenal.00429.2016] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/29/2016] [Indexed: 01/14/2023] Open
Abstract
Extracellular vesicles (EV) are endogenously produced, membrane-bound vesicles that contain various molecules. Depending on their size and origins, EVs are classified into apoptotic bodies, microvesicles, and exosomes. A fundamental function of EVs is to mediate intercellular communication. In kidneys, recent research has begun to suggest a role of EVs, especially exosomes, in cell-cell communication by transferring proteins, mRNAs, and microRNAs to recipient cells as nanovectors. EVs may mediate the cross talk between various cell types within kidneys for the maintenance of tissue homeostasis. They may also mediate the cross talk between kidneys and other organs under physiological and pathological conditions. EVs have been implicated in the pathogenesis of both acute kidney injury and chronic kidney diseases, including renal fibrosis, end-stage renal disease, glomerular diseases, and diabetic nephropathy. The release of EVs with specific molecular contents into urine and plasma may be useful biomarkers for kidney disease. In addition, EVs produced by cultured cells may have therapeutic effects for these diseases. However, the role of EVs in kidney diseases is largely unclear, and the mechanism underlying EV production and secretion remains elusive. In this review, we introduce the basics of EVs and then analyze the present information about the involvement, diagnostic value, and therapeutic potential of EVs in major kidney diseases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Xiangjun Zhou
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qisheng Yao
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia; .,Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
37
|
Raimondo F, Cerra D, Magni F, Pitto M. Urinary proteomics for the study of genetic kidney diseases. Expert Rev Proteomics 2016; 13:309-24. [DOI: 10.1586/14789450.2016.1136218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Pocsfalvi G, Stanly C, Fiume I, Vékey K. Chromatography and its hyphenation to mass spectrometry for extracellular vesicle analysis. J Chromatogr A 2016; 1439:26-41. [PMID: 26830636 DOI: 10.1016/j.chroma.2016.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes, microvesicles and apoptotic bodies are released by cells, both under physiological and pathological conditions. EVs can participate in a novel type of intercellular communication and deliver cargo of nucleic acids, proteins and lipids near or to distant host cells. EV research is proceeding at a fast pace; now they start to appear as promising therapeutic targets, diagnostic tools and drug delivery systems. Isolation and analysis of EVs are prerequisites for understanding their biological roles and for their clinical exploitation. In this process chromatography and mass spectrometry (MS)-based strategies are rapidly gaining importance; and are reviewed in the present communication. Isolation and purification of EVs is mostly performed by ultracentrifugation at present. Chromatography-based strategies are gaining ground, among which affinity and size exclusion chromatography (SEC) are particularly strong contenders. Their major advantages are the relative simplicity, robustness and throughput. Affinity chromatography has the added advantage of separating EV subtypes based on molecular recognition of EV surface motifs. SEC has the advantage that isolated EVs may retain their biological activity. EVs are typically isolated in small amounts, therefore high sensitivity is required for their analysis. Study of the molecular content of EVs (all compounds beside nucleic acids) is predominantly based on liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The chromatographic separation is mostly performed by reverse phase, nanoscale, ultra high performance LC technique. The MS analysis relying typically on nano-electrospray ionization MS/MS provides high sensitivity, selectivity and resolution, so that thousand(s) of proteins can be detected/identified/quantified in a EV sample. Beside protein identification, quantitation and characterization of protein post-translational modifications (PTMs), like glycosylation and phosphorylation are becoming feasible and increasingly important. Along with conventional LC-MS/MS, other chromatographic approaches hyphenated to MS are gaining importance for EV characterization. Hydrophilic interaction LC is used to characterize PTMs; LC-inductively coupled plasma/MS to identify metal containing molecules; while gas chromatography-MS to analyze some lipids and metabolites.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy.
| | - Christopher Stanly
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Károly Vékey
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
39
|
Gluhovschi C, Gluhovschi G, Petrica L, Timar R, Velciov S, Ionita I, Kaycsa A, Timar B. Urinary Biomarkers in the Assessment of Early Diabetic Nephropathy. J Diabetes Res 2016; 2016:4626125. [PMID: 27413755 PMCID: PMC4927990 DOI: 10.1155/2016/4626125] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is a frequent and severe complication of diabetes mellitus (DM). Its diagnosis in incipient stages may allow prompt interventions and an improved prognosis. Towards this aim, biomarkers for detecting early DN can be used. Microalbuminuria has been proven a remarkably useful biomarker, being used for diagnosis of DN, for assessing its associated condition-mainly cardiovascular ones-and for monitoring its progression. New researches are pointing that some of these biomarkers (i.e., glomerular, tubular, inflammation markers, and biomarkers of oxidative stress) precede albuminuria in some patients. However, their usefulness is widely debated in the literature and has not yet led to the validation of a new "gold standard" biomarker for the early diagnosis of DN. Currently, microalbuminuria is an important biomarker for both glomerular and tubular injury. Other glomerular biomarkers (transferrin and ceruloplasmin) are under evaluation. Tubular biomarkers in DN seem to be of a paramount importance in the early diagnosis of DN since tubular lesions occur early. Additionally, biomarkers of inflammation, oxidative stress, podocyte biomarkers, and vascular biomarkers have been employed for assessing early DN. The purpose of this review is to provide an overview of the current biomarkers used for the diagnosis of early DN.
Collapse
Affiliation(s)
- Cristina Gluhovschi
- Division of Nephrology, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
- *Cristina Gluhovschi:
| | | | - Ligia Petrica
- Division of Nephrology, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Romulus Timar
- Department of Diabetes and Metabolic Diseases, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Silvia Velciov
- Division of Nephrology, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Ioana Ionita
- Division of Hematology, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Adriana Kaycsa
- Department of Biochemistry, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| | - Bogdan Timar
- Department of Diabetes and Metabolic Diseases, University of Medicine and Pharmacy “V. Babes”, 300041 Timisoara, Romania
| |
Collapse
|
40
|
Pocsfalvi G, Stanly C, Vilasi A, Fiume I, Capasso G, Turiák L, Buzas EI, Vékey K. Mass spectrometry of extracellular vesicles. MASS SPECTROMETRY REVIEWS 2016; 35:3-21. [PMID: 25705034 DOI: 10.1002/mas.21457] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
The review briefly summaries main features of extracellular vesicles, a joint terminology for exosomes, microvesicles, and apoptotic vesicles. These vesicles are in the center of interest in biology and medical sciences, and form a very active field of research. Mass spectrometry (MS), with its specificity and sensitivity, has the potential to identify and characterize molecular composition of these vesicles; but as yet there are only a limited, but fast-growing, number of publications that use MS workflows in this field. MS is the major tool to assess protein composition of extracellular vesicles: qualitative and quantitative proteomics approaches are both reviewed. Beside proteins, lipid and metabolite composition of vesicles might also be best assessed by MS techniques; however there are few applications as yet in this respect. The role of alternative analytical approaches, like gel-based proteomics and antibody-based immunoassays, are also mentioned. The objective of the review is to give an overview of this fast-growing field to help orient MS-based research on extracellular vesicles.
Collapse
Affiliation(s)
- Gabriella Pocsfalvi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Christopher Stanly
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Annalisa Vilasi
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Immacolata Fiume
- Mass Spectrometry and Proteomics, Institute of Biosciences and BioResources, National Research Council of Italy, Naples, Italy
| | - Giovambattista Capasso
- Division of Nephrology, Department of Cardio-Vascular Sciences, Second University of Naples, Naples, Italy
| | - Lilla Turiák
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Edit I Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Károly Vékey
- Mass Spectrometry Proteomics Group, Institute of Organic Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
41
|
Lindoso RS, Sandim V, Collino F, Carvalho AB, Dias J, da Costa MR, Zingali RB, Vieyra A. Proteomics of cell-cell interactions in health and disease. Proteomics 2015; 16:328-44. [PMID: 26552723 DOI: 10.1002/pmic.201500341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/29/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
The mechanisms of cell-cell communications are now under intense study by proteomic approaches. Proteomics has unraveled changes in protein profiling as the result of cell interactions mediated by ligand/receptor, hormones, soluble factors, and the content of extracellular vesicles. Besides being a brief overview of the main and profitable methodologies now available (evaluating theory behind the methods, their usefulness, and pitfalls), this review focuses on-from a proteome perspective-some signaling pathways and post-translational modifications (PTMs), which are essential for understanding ischemic lesions and their recovery in two vital organs in mammals, the heart, and the kidney. Knowledge of misdirection of the proteome during tissue recovery, such as represented by the convergence between fibrosis and cancer, emerges as an important tool in prognosis. Proteomics of cell-cell interaction is also especially useful for understanding how stem cells interact in injured tissues, anticipating clues for rational therapeutic interventions. In the effervescent field of induced pluripotency and cell reprogramming, proteomic studies have shown what proteins from specialized cells contribute to the recovery of infarcted tissues. Overall, we conclude that proteomics is at the forefront in helping us to understand the mechanisms that underpin prevalent pathological processes.
Collapse
Affiliation(s)
- Rafael S Lindoso
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil
| | - Vanessa Sandim
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil.,Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Federica Collino
- Department of Medical Sciences and Molecular Biotechnology Center, University of Turin, Turin, Italy.,Translational Center of Regenerative Medicine, University of Turin/Fresenius Medical Care, Turin, Italy
| | - Adriana B Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil
| | - Juliana Dias
- National Institute of Cancer, Rio de Janeiro, RJ, Brazil
| | - Milene R da Costa
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Russolina B Zingali
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil.,Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Proteomic Network of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil.,Translational Biomedicine Graduate Program, Grand Rio University, Duque de Caxias, RJ, Brazil
| |
Collapse
|
42
|
Bergman N, Bergquist J. Recent developments in proteomic methods and disease biomarkers. Analyst 2015; 139:3836-51. [PMID: 24975697 DOI: 10.1039/c4an00627e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic methodologies for identification and analysis of biomarkers have gained more attention during recent years and have evolved rapidly. Identification and detection of disease biomarkers are important to foresee outbreaks of certain diseases thereby avoiding surgery and other invasive and expensive medical treatments for patients. Thus, more research into discovering new biomarkers and new methods for faster and more accurate detection is needed. It is often difficult to detect and measure biomarkers because of their low concentrations and the complexity of their respective matrices. Therefore it is hard to find and validate methods for accurate screening methods suitable for clinical use. The most recent developments during the last three years and also some historical considerations of proteomic methodologies for identification and validation of disease biomarkers are presented in this review.
Collapse
Affiliation(s)
- Nina Bergman
- Analytical Chemistry, BMC, Department of Chemistry, Uppsala University, Sweden.
| | | |
Collapse
|
43
|
Arul AB, Byambadorj M, Han NY, Park JM, Lee H. Development of an Automated, High-throughput Sample Preparation Protocol for Proteomics Analysis. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Albert-Baskar Arul
- Lee Gil Ya Cancer and Diabetes Institute; Gachon University; Incheon Republic of Korea
| | | | - Na-Young Han
- Lee Gil Ya Cancer and Diabetes Institute; Gachon University; Incheon Republic of Korea
| | - Jong Moon Park
- Lee Gil Ya Cancer and Diabetes Institute; Gachon University; Incheon Republic of Korea
| | - Hookeun Lee
- Lee Gil Ya Cancer and Diabetes Institute; Gachon University; Incheon Republic of Korea
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy; Gachon University; Incheon 406-799 Republic of Korea
- Gachon Medical Research Institute; Gil Medical Center; Incheon 405-760 Republic of Korea
| |
Collapse
|
44
|
Exosomes in urine biomarker discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 845:43-58. [PMID: 25355568 DOI: 10.1007/978-94-017-9523-4_5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanovesicles present in urine the so-called urinary exosomes have been found to be secreted by every epithelial cell type lining the urinary tract system in human. Urinary exosomes are an appealing source for biomarker discovery as they contain molecular constituents of their cell of origin, including proteins and genetic materials, and they can be isolated in a non-invasive manner. Following the discovery of urinary exosomes in 2004, many studies have been performed using urinary exosomes as a starting material to identify biomarkers in various renal, urogenital, and systemic diseases. Here, we describe the discovery of urinary exosomes and address the issues on the collection, isolation, and normalization of urinary exosomes as well as delineate the systems biology approach to biomarker discovery using urinary exosomes.
Collapse
|
45
|
Kumar A, Baycin-Hizal D, Shiloach J, Bowen MA, Betenbaugh MJ. Coupling enrichment methods with proteomics for understanding and treating disease. Proteomics Clin Appl 2015; 9:33-47. [PMID: 25523641 DOI: 10.1002/prca.201400097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
Owing to recent advances in proteomics analytical methods and bioinformatics capabilities there is a growing trend toward using these capabilities for the development of drugs to treat human disease, including target and drug evaluation, understanding mechanisms of drug action, and biomarker discovery. Currently, the genetic sequences of many major organisms are available, which have helped greatly in characterizing proteomes in model animal systems and humans. Through proteomics, global profiles of different disease states can be characterized (e.g. changes in types and relative levels as well as changes in PTMs such as glycosylation or phosphorylation). Although intracellular proteomics can provide a broad overview of physiology of cells and tissues, it has been difficult to quantify the low abundance proteins which can be important for understanding the diseased states and treatment progression. For this reason, there is increasing interest in coupling comparative proteomics methods with subcellular fractionation and enrichment techniques for membranes, nucleus, phosphoproteome, glycoproteome as well as low abundance serum proteins. In this review, we will provide examples of where the utilization of different proteomics-coupled enrichment techniques has aided target and biomarker discovery, understanding the drug targeting mechanism, and mAb discovery. Taken together, these improvements will help to provide a better understanding of the pathophysiology of various diseases including cancer, autoimmunity, inflammation, cardiovascular disease, and neurological conditions, and in the design and development of better medicines for treating these afflictions.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Antibody Discovery and Protein Engineering, MedImmune LLC, One MedImmune Way, Gaithersburg, MD, USA; Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
46
|
Pitto M, Corbetta S, Raimondo F. Preparation of urinary exosomes: methodological issues for clinical proteomics. Methods Mol Biol 2015; 1243:43-53. [PMID: 25384739 DOI: 10.1007/978-1-4939-1872-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Urinary exosomes are small (<100 nm) vesicles secreted into urine from renal epithelial cells. They are coated with lipid bilayer, they contain an array of membrane and cytosolic proteins, and selected RNA species, reflecting the molecular composition of their cell of origin. Thus, urinary exosomes have received considerable attention as potential biomarker source, as their proteomic analysis could lead to the discovery of new non-invasive site-specific biomarkers for renal diseases. Here, we describe a robust method for urinary exosome preparation, additional protocols for their biochemical characterization and for the quantitation of different preparations, to be used for comparative proteomic studies.
Collapse
Affiliation(s)
- Marina Pitto
- Department of Health Sciences, University of Milano-Bicocca, Via Cadore 48, 20900, Monza, Italy,
| | | | | |
Collapse
|
47
|
Raimondo F, Corbetta S, Savoia A, Chinello C, Cazzaniga M, Rocco F, Bosari S, Grasso M, Bovo G, Magni F, Pitto M. Comparative membrane proteomics: a technical advancement in the search of renal cell carcinoma biomarkers. MOLECULAR BIOSYSTEMS 2015; 11:1708-16. [DOI: 10.1039/c5mb00020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Set-up of a specific protocol for membrane protein analysis, applied to label free, comparative proteomics of renal cell carcinoma microdomains.
Collapse
Affiliation(s)
| | | | - Andrea Savoia
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Clizia Chinello
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Marta Cazzaniga
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Francesco Rocco
- Department of Specialistic Surgical Sciences
- Urology unit
- Ospedale Maggiore Policlinico Foundation
- IRCCS
- Milano
| | - Silvano Bosari
- Department of Medicine
- Surgery and Dental Sciences
- Pathology Unit
- Ospedale Maggiore Policlinico Foundation Milano
- IRCCS
| | - Marco Grasso
- Department of Surgical Pathology
- Cytology
- Medical Genetics and Nephropathology
- Azienda Ospedaliera San Gerardo
- Monza
| | - Giorgio Bovo
- Department of Surgical Pathology
- Cytology
- Medical Genetics and Nephropathology
- Azienda Ospedaliera San Gerardo
- Monza
| | - Fulvio Magni
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| | - Marina Pitto
- Department of Health Sciences
- Univ. of Milano-Bicocca
- Monza
- Italy
| |
Collapse
|
48
|
Morhayim J, Baroncelli M, van Leeuwen JP. Extracellular vesicles: Specialized bone messengers. Arch Biochem Biophys 2014; 561:38-45. [DOI: 10.1016/j.abb.2014.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 05/08/2014] [Indexed: 12/22/2022]
|
49
|
Gonzalez-Calero L, Martin-Lorenzo M, Alvarez-Llamas G. Exosomes: a potential key target in cardio-renal syndrome. Front Immunol 2014; 5:465. [PMID: 25339951 PMCID: PMC4189416 DOI: 10.3389/fimmu.2014.00465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022] Open
Abstract
Exosomes have proven roles in regulating immune response, antigen presentation, RNA and protein transfer, and cell–cell (organ–organ) interaction/signaling. These microvesicles can be considered a mechanism of non-classical secretion of proteins, and they represent a subproteome, thus assisting in the difficult task of biomarker discovery in a biological fluid as urine, plasma, or serum. A potential role of exosomes in the cardio-renal syndrome is currently underexplored. Cardiovascular disease continues to be the leading cause of morbidity and mortality worldwide and, particularly, rates of cardiovascular events and death consistently increase as kidney function worsens. In other words, chronic kidney disease acts as a risk multiplier. Unfortunately, the relationship between markers of cardiovascular risk in kidney pathology often differs from that in the general population. Efforts in the search for novel action mechanisms simultaneously operating in both pathologies are thus of maximum interest. This article focuses to the role of exosomes in cardiovascular and renal diseases, in the search for novel key targets of interaction between heart and kidneys.
Collapse
Affiliation(s)
- Laura Gonzalez-Calero
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Marta Martin-Lorenzo
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| | - Gloria Alvarez-Llamas
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid , Madrid , Spain
| |
Collapse
|
50
|
Iwamoto M, Miura Y, Tsumoto H, Tanaka Y, Morisawa H, Endo T, Toda T. Antioxidant effects of carnitine supplementation on 14-3-3 protein isoforms in the aged rat hippocampus detected using fully automated two-dimensional chip gel electrophoresis. Free Radic Res 2014; 48:1409-16. [PMID: 25179439 DOI: 10.3109/10715762.2014.960411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We here described the antioxidant effects of carnitine supplementation on 14-3-3 protein isoforms in the aged rat hippocampus detected using the fully automated two-dimensional chip gel electrophoresis system (Auto2D). This system was easy and convenient to use, and the resolution obtained was more sensitive and higher than that of conventional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). We separated and identified five isoforms of the 14-3-3 protein (beta/alpha, gamma, epsilon, zeta/delta, and eta) using the Auto2D system. We then examined the antioxidant effects of carnitine supplementation on the protein profiles of the cytosolic fraction in the aged rat hippocampus, demonstrating that carnitine supplementation suppressed the oxidation of methionine residues in these isoforms. Since methionine residues are easily oxidized to methionine sulfoxide, the convenient and high-resolution 2-D PAGE system can be available to analyze methionine oxidation avoiding artifactual oxidation. We showed here that the Auto2D system was a very useful tool for studying antioxidant effects through proteomic analysis of protein oxidation.
Collapse
Affiliation(s)
- M Iwamoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology , Tokyo , Japan
| | | | | | | | | | | | | |
Collapse
|