1
|
Agrawal A, Varshney R, Gattani A, Kirthika P, Gupta R, Kumar D, Singh RP, Singh P. SLAM (CD150) receptor homologous peptides block the peste des petits ruminants virus entry into B95a cells. Proteins 2024; 92:356-369. [PMID: 37881117 DOI: 10.1002/prot.26595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023]
Abstract
The fusion of haemagglutinin-neuraminidase (HN) protein of peste des petits ruminant (PPR) virus with signaling lymphocyte activation molecules (SLAM) host cell receptor consequences the virus entry and multiplication inside the host cell. The use of synthetic SLAM homologous peptides (i.e., molecular decoy for HN protein of PPR virus) may check PPR infection at the preliminary stage. Hence, the predicted SLAM homologous peptides using bioinformatics tools were synthesized by solid phase chemistry with standard Merrifield's 9-fluorenylmethoxycarbonyl (Fmoc) chemistry and were purified by reverse phase high performance liquid chromatography. The secondary structures of synthesized peptides were elucidated by circular dichroism spectroscopy. The in vitro interactions of these peptides were studied through indirect Enzyme Linked Immuno Sorbent Assay (ELISA) and visual surface plasmon UV-visible spectroscopy. The SLAM homologous peptides were able to interact with the peste des petits ruminant virus (PPRV) with varying binding efficiency. The interaction of SLAM homologous peptide with the PPR virus was ascertained by the change in the plasmon color from red wine to purple during visual detection and also by bathochromic shift in absorbance spectra under UV-visible spectrophotometry. The cytotoxic and anti-PPRV effect of these peptides were also evaluated in B95a cell line using PPR virus (Sungri/96). The cytotoxic concentration 50 (CC50 ) value of each peptide was greater than 1000 μg mL-1 . The anti-PPRV efficiency of SLAM-22 was relatively high among SLAM homologous peptides, SLAM-22 at 25 μg mL-1 concentration showed a reduction of more than log10 3 virus titer by priming of B95a cell line while the use of SLAM-15 and Muco-17 at the same concentration dropped virus titer from log10 4.8 to log10 2.5 and log10 3.1 respectively. The concentration of SLAM homologous peptide (25 μg mL-1 ) to exert its anti-PPRV effect was much less than its CC50 level (>1000 μg mL-1 ). Therefore, the synthetic SLAM homologous peptides may prove to be better agents to target PPRV.
Collapse
Affiliation(s)
- Aditya Agrawal
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, Madhya Pradesh, India
| | - Rajat Varshney
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
- Division of Bacteriology and Mycology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | - Anil Gattani
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Biochemistry, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Perumalraja Kirthika
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohini Gupta
- Department of Veterinary Medicine, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | | | - Praveen Singh
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Biophysics Section, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| |
Collapse
|
2
|
Supabowornsathit K, Faikhruea K, Ditmangklo B, Jaroenchuensiri T, Wongsuwan S, Junpra-Ob S, Choopara I, Palaga T, Aonbangkhen C, Somboonna N, Taechalertpaisarn J, Vilaivan T. Dicationic styryl dyes for colorimetric and fluorescent detection of nucleic acids. Sci Rep 2022; 12:14250. [PMID: 35995925 PMCID: PMC9395382 DOI: 10.1038/s41598-022-18460-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
Nucleic acid staining dyes are important tools for the analysis and visualizing of DNA/RNA in vitro and in the cells. Nevertheless, the range of commercially accessible dyes is still rather limited, and they are often very costly. As a result, finding nontoxic, easily accessible dyes, with desirable optical characteristics remains important. Styryl dyes have recently gained popularity as potential biological staining agents with many appealing properties, including a straightforward synthesis procedure, excellent photostability, tunable fluorescence, and high fluorescence quantum yield in the presence of nucleic acid targets with low background fluorescence signals. In addition to fluorescence, styryl dyes are strongly colored and exhibit solvatochromic properties which make them useful as colorimetric stains for low-cost and rapid testing of nucleic acids. In this work, novel dicationic styryl dyes bearing quaternary ammonium groups are designed to improve binding strength and optical response with target nucleic acids which contain a negatively charged phosphate backbone. Optical properties of the newly synthesized styryl dyes have been studied in the presence and absence of nucleic acid targets with the aim to find new dyes that can sensitively and specifically change fluorescence and/or color in the presence of nucleic acid targets. The binding interaction and optical response of the dicationic styryl dyes with nucleic acid were superior to the corresponding monocationic styryl dyes. Applications of the developed dyes for colorimetric detection of DNA in vitro and imaging of cellular nucleic acids are also demonstrated.
Collapse
Affiliation(s)
- Kotchakorn Supabowornsathit
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Boonsong Ditmangklo
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Theeranuch Jaroenchuensiri
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sutthida Wongsuwan
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirikarn Junpra-Ob
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Ilada Choopara
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Department of Chemistry, Faculty of Science, Center of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jaru Taechalertpaisarn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Du B, Mu X, Xu J, Liu S, Liu Z, Tong Z, Wu Z, Qi ZM. A Au nanoparticle- and polydopamine-modified biosensor: A strategy for in situ and label-free surface plasmon resonance immunoassays. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
Daramola OB, Omole RK, Akinwale IV, Otuyelu FO, Akinsanola BA, Fadare TO, George RC, Torimiro N. Bio-Receptors Functionalized Nanoparticles: A Resourceful Sensing and Colorimetric Detection Tool for Pathogenic Bacteria and Microbial Biomolecules. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.885803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pathogenic bacteria and several biomolecules produced by cells and living organisms are common biological components posing a harmful threat to global health. Several studies have devised methods for the detection of varying pathogenic bacteria and biomolecules in different settings such as food, water, soil, among others. Some of the detection studies highlighting target pathogenic bacteria and biomolecules, mechanisms of detection, colorimetric outputs, and detection limits have been summarized in this review. In the last 2 decades, studies have harnessed various nanotechnology-based methods for the detection of pathogenic bacteria and biomolecules with much attention on functionalization techniques. This review considers the detection mechanisms, colorimetric prowess of bio-receptors and compares the reported detection efficiency for some bio-receptor functionalized nanoparticles. Some studies reported visual, rapid, and high-intensity colorimetric detection of pathogenic bacteria and biomolecules at a very low concentration of the analyte. Other studies reported slight colorimetric detection only with a large concentration of an analyte. The effectiveness of bio-receptor functionalized nanoparticles as detection component varies depending on their selectivity, specificity, and the binding interaction exhibited by nanoparticles, bio-receptor, and analytes to form a bio-sensing complex. It is however important to note that the colorimetric properties of some bio-receptor functionalized nanoparticles have shown strong and brilliant potential for real-time and visual-aided diagnostic results, not only to assess food and water quality but also for environmental monitoring of pathogenic bacteria and a wide array of biomolecules.
Collapse
|
5
|
Faikhruea K, Choopara I, Somboonna N, Assavalapsakul W, Kim BH, Vilaivan T. Enhancing Peptide Nucleic Acid-Nanomaterial Interaction and Performance Improvement of Peptide Nucleic Acid-Based Nucleic Acid Detection by Using Electrostatic Effects. ACS APPLIED BIO MATERIALS 2022; 5:789-800. [PMID: 35119822 DOI: 10.1021/acsabm.1c01177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single-stranded peptide nucleic acid (PNA) probes interact strongly with several nanomaterials, and the interaction was diminished in the presence of complementary nucleic acid targets which forms the basis of many nucleic acid sensing platforms. As opposed to the negatively charged DNA probes, the charges on the PNA probes may be fine-tuned by incorporating amino acids with charged side chains. The contribution of electrostatic effects to the interaction between PNA probes and nanomaterials has been largely overlooked. This work reveals that electrostatic effects substantially enhanced the quenching of dye-labeled conformationally constrained pyrrolidinyl PNA probes by several nanomaterials including graphene oxide (GO), reduced graphene oxide, gold nanoparticles (AuNPs), and silver nanoparticles. The fluorescence quenching and the color change from red to purple in the case of AuNPs because of aggregation were inhibited in the presence of complementary nucleic acid targets. Thus, fluorescence and colorimetric assays for DNA and RNA that can distinguish even single-base-mismatched nucleic acids with improved sensitivity over conventional DNA probes were established. Both the GO- and AuNP-based sensing platforms have been successfully applied for the detection of real DNA and RNA samples in vitro and in living cells. This study emphasizes the active roles of electrostatic effects in the PNA-nanomaterial interactions, which paves the way toward improving the performance of PNA-nanomaterial based assays of nucleic acids.
Collapse
Affiliation(s)
- Kriangsak Faikhruea
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Ilada Choopara
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Byeang Hyean Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Novel peptide (RATH) mediated delivery of peptide nucleic acids for antiviral interventions. Appl Microbiol Biotechnol 2021; 105:6669-6677. [PMID: 34427763 DOI: 10.1007/s00253-021-11502-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
The peptide nucleic acid (PNA) is a chimeric molecule with the nucleobases connected by peptide bonds. This chimeric nature gives the PNA certain therapeutic advantages over natural antisense nucleic acid molecules. The PNA probes are known for its better and stronger complementation with target nucleic acids. However, cellular delivery of PNA is a major hurdle due to the charge-neutral nature of the PNA. For cellular delivery of PNA, peptide-PNA conjugates are used. This approach may face some practical limitation in terms of PNA antisense activity. In this study, we propose a novel RATH-2 peptide-based non-covalent PNA delivery mechanism. We observed RATH-2 shows a favorable molecular interaction with PNA at 16:1 (peptide:PNA) molar ratio resulting in co-centric nanoparticle formation. With this combination, we could achieve as high as 93% cellular delivery of the PNA. The proposed non-covalent RATH:PNA delivery model showed endocytic entrapment free delivery of PNA. The study further demonstrated the therapeutic application of PNA with in vitro antiviral intervention model. Using RATH-2 non-covalent PNA delivery system, we could inhibit 69.5% viral load. The present study demonstrates a cell-penetrating peptide:PNA interaction can lead to nanoparticle formations that facilitated cellular delivery of PNA.Key points• A novel cell-penetrating peptide (RATH-2) was identified for non-covalent delivery of PNA.• RATH-2 and PNA formed co-centric nanoparticles at appropriate molar combination.• PNA delivered through the RATH-2 inhibited the viral gene expression and reduced the viral load.
Collapse
|
7
|
Patel R, Sarma S, Shukla A, Parmar P, Goswami D, Saraf M. Walking through the wonder years of artificial DNA: peptide nucleic acid. Mol Biol Rep 2020; 47:8113-8131. [PMID: 32990905 DOI: 10.1007/s11033-020-05819-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
Peptide Nucleic Acid (PNA) serves as an artificial functional analog of DNA. Being immune to enzymatic degradation and possessing strong affinity towards DNA and RNA, it is an ideal candidate for many medical and biotechnological applications that are of antisense and antigene in nature. PNAs are anticipated to have its application in DNA and RNA detection as well as quantification, to serve as antibacterial and antiviral agents, and silencing gene for developing anticancer strategies. Although, their restricted entry in both eukaryotic and prokaryotic cells limit their applications. In addition, aggregation of PNA in storage containers reduces the quality and quantity of functional PNA that makes it inadequate for their mass production and storage. To overcome these limitations, researchers have modified PNA either by the addition of diverse functional groups at various loci on its backbone, or by synthesizing chimeras with other moieties associated with various delivery agents that aids their entry into the cell. Here, this review article summarizes few of the structural modifications that are performed with PNA, methods used to improve their cellular uptake and shedding light on the applications of PNA in various prospects in biological sciences.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Sameera Sarma
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Arpit Shukla
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Paritosh Parmar
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
8
|
Malik YS, Verma A, Kumar N, Deol P, Kumar D, Ghosh S, Dhama K. Biotechnological innovations in farm and pet animal disease diagnosis. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7150312 DOI: 10.1016/b978-0-12-816352-8.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The application of innovative diagnostic technologies for the detection of animal pathogens at an early stage is essential in restricting the economic loss incurred due to emerging infectious animal diseases. The desirable characteristics of such diagnostic methods are easy to use, cost-effective, highly sensitive, and specific, coupled with the high-throughput detection capabilities. The enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are still the most common assays used for the detection of animal pathogens across the globe. However, utilizing the principles of ELISA and PCR, several serological and molecular technologies have been developed to achieve higher sensitivity, rapid, and point-of-care (POC) detection such as lateral flow assays, biosensors, loop-mediated isothermal amplification, recombinase polymerase amplification, and molecular platforms for field-level detection of animal pathogens. Furthermore, animal disease diagnostics need to be updated regularly to capture new, emerging and divergent infectious pathogens, and biotechnological innovations are helpful in fulfilling the rising demand for such diagnostics for the welfare of the society. Therefore, this chapter primarily describes and discusses in detail the serological, molecular, novel high-throughput, and POC assays to detect pathogens affecting farm and companion animals.
Collapse
|
9
|
Kumar N, Bhatia S, Pateriya AK, Sood R, Nagarajan S, Murugkar HV, Kumar S, Singh P, Singh VP. Label-free peptide nucleic acid biosensor for visual detection of multiple strains of influenza A virus suitable for field applications. Anal Chim Acta 2019; 1093:123-130. [PMID: 31735205 DOI: 10.1016/j.aca.2019.09.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023]
Abstract
Accurate and rapid diagnosis of Influenza A viruses (IAVs) is challenging because of multiple strains circulating in humans and animal populations, and the emergence of new strains. In this study, we demonstrate a simple and rapid strategy for visual detection of multiple strains of IAVs (H1 to H16 subtypes) using peptide nucleic acid (PNA) as a biosensor and unmodified gold nanoparticles (AuNPs) as a reporter. The design principle of the assay is based on the color change on account of free PNA-induced aggregation of AuNPs in the presence of non-complementary viral RNA sequence and vice-versa. The assay could detect IAV RNA with a visual limit of detection of 2.3 ng. The quantification of RNA with a considerable accuracy on a simple spectrophotometer was achieved on plotting the PNA-induced colorimetric changes (absorption ratio of A640/A520) in the presence of a varying concentration of complementary RNA. As a proof-of-concept, the visual assay was validated on 419 avian clinical samples and receiver operating characteristic (ROC) curve analysis showed a high diagnostic specificity (96.46%, 95% CI = 93.8 to 98.2) and sensitivity (82.41%, 95% CI = 73.9 to 89.1) when RT-qPCR was used as reference test. Hence, the simplicity, rapidity, and universality of this strategy make it a potential candidate visual assay for clinical diagnosis and surveillance of IAVs, especially in the resource-limited settings. The proposed strategy establishes new avenues for developing a simple and rapid diagnostic system for viral infections and biomolecules.
Collapse
Affiliation(s)
- Naveen Kumar
- Diagnostics & Vaccines Section, ICAR-National Institute of High Security Animal Diseases, Bhopal, 462022, India.
| | - Sandeep Bhatia
- Diagnostics & Vaccines Section, ICAR-National Institute of High Security Animal Diseases, Bhopal, 462022, India
| | - Atul Kumar Pateriya
- Diagnostics & Vaccines Section, ICAR-National Institute of High Security Animal Diseases, Bhopal, 462022, India
| | - Richa Sood
- Diagnostics & Vaccines Section, ICAR-National Institute of High Security Animal Diseases, Bhopal, 462022, India
| | - S Nagarajan
- Avian Diseases Section, ICAR-National Institute of High Security Animal Diseases, Bhopal, 462022, India
| | - Harshad V Murugkar
- Avian Diseases Section, ICAR-National Institute of High Security Animal Diseases, Bhopal, 462022, India
| | - Satish Kumar
- Central Instrumentation Facility- Bioengineering, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Praveen Singh
- Central Instrumentation Facility- Bioengineering, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India; Biophysics and Electron Microscopy Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Vijendra Pal Singh
- Diagnostics & Vaccines Section, ICAR-National Institute of High Security Animal Diseases, Bhopal, 462022, India
| |
Collapse
|
10
|
Xing S, Xu X, Fu P, Xu M, Gao T, Zhang X, Zhao C. Colorimetric detection of single base-pair mismatches based on the interactions of PNA and PNA/DNA complexes with unmodified gold nanoparticles. Colloids Surf B Biointerfaces 2019; 181:333-340. [PMID: 31154144 DOI: 10.1016/j.colsurfb.2019.05.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 01/14/2023]
Abstract
Rapid and sensitive single nucleotide polymorphisms (SNPs) genotyping is of particular important for early diagnosis, prevention, and treatment of specific human diseases. A simple and low-cost SNP detection method would be valuable for routine analysis in resource-limited settings. Here, we demonstrated a novel and convenient gold nanoparticle (AuNPs) based colorimetric approach for efficient screening of SNPs at room temperature without instrumentation. SNP detection is performed in a single tube with one set of unmodified AuNPs, a label-free peptide nucleic acid (PNA) probe, a single exonuclease (S1 nuclease), and the target to be tested. S1 nuclease could digest DNAs in DNA/PNA duplexes involving a mismatch into small fragments, while DNAs in the fully-matched DNA/PNA duplexes can be effectively protected by PNA from enzymatic degradation. This difference could be easily discriminated by color changes associated with gold aggregation. PNA oligomers can induce immediate AuNP aggregation even in the presence of nucleoside monophosphates (dNMPs), the digestion products of DNA. Whereas PNA/DNA duplexes can effectively stabilize unmodified AuNPs, and the stabilization effect of PNA/DNA is better than single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). Without the need of precise temperature control and extra salt addition, SNPs are detected with a detection limit of 2.3 nM in cell lysate. Moreover, this system can effectively discriminate a range of different mismatches even in spiked cell lysate, demonstrate the potential use of this biosensor for biological samples.
Collapse
Affiliation(s)
- Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Xiaojun Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Institute of Pharmaceutical Chemistry, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mengjia Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tingting Gao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Xiaokang Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Chao Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| |
Collapse
|
11
|
Boby N, Ali SA, Preena P, Kaur G, Kumar S, Chaudhuri P. Detection of multiple organisms based on the distance-dependent optical properties of gold nanoparticle and dark-field microscopy. Talanta 2018; 188:325-331. [DOI: 10.1016/j.talanta.2018.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/27/2023]
|
12
|
Hamdy ME, Del Carlo M, Hussein HA, Salah TA, El-Deeb AH, Emara MM, Pezzoni G, Compagnone D. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J Nanobiotechnology 2018; 16:48. [PMID: 29751767 PMCID: PMC5946443 DOI: 10.1186/s12951-018-0374-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/28/2018] [Indexed: 12/22/2022] Open
Abstract
Background Nano-PCR is a recent tool that is used in viral diseases diagnosis. The technique depends on the fundamental effects of gold nanoparticles (AuNPs) and is considered a very effective and sensitive tool in the diagnosis of different diseases including viral diseases. Although several techniques are currently available to diagnose foot and mouth disease virus (FMDV), a highly sensitive, highly specific technique is needed for specific diagnosis of the disease. In the present work, a novel AuNPs biosensor has been designed using thiol-linked oligonucleotides that recognize the conserved 3D gene of FMDV. Results The AuNPs-FMDV biosensor specifically recognizes RNA standards of FMDV, but not that of swine vesicular disease virus (SVDV) isolates. The analytical sensitivity of the AuNPs-FMDV biosensor was 10 copy number RNA standards in RT-PCR and 1 copy number RNA standard in real-time rRT-PCR with a 94.5% efficiency, 0.989 R2, a − 3.544 slope and 100% specificity (no cross-reactivity with SVDV). These findings were confirmed by the specific and sensitive recognition of 31 Egyptian FMDV clinical isolates that represents the three FMDV serotypes (O, A, and SAT2). Conclusions The AuNPs-FMDV biosensor presents in this study demonstrates a superior analytical and clinical performance for FMDV diagnosis. In addition, this biosensor has a simple workflow and accelerates epidemiological surveillance, hence, it is qualified as an efficient FMDV diagnosis tool for quarantine stations and farms particularly in FMDV endemic areas. Electronic supplementary material The online version of this article (10.1186/s12951-018-0374-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mervat E Hamdy
- Department of Biotechnology Animal Health Research Institute, Agriculture Research Centre, Giza, 12618, Egypt
| | - Michele Del Carlo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy
| | - Hussein A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Taher A Salah
- Nanotechnology Research Centre, British University, Cairo, Egypt.,Nanotechnology and Advanced Materials Central Lab, Agricultural Research Centre, Giza, Egypt
| | - Ayman H El-Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Emara
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Guilia Pezzoni
- Department of Biotechnology, Zooprofilattico Institute of Lombardy and Emilia Romagna (IZSLER), 25124, Brescia, Italy
| | - Dario Compagnone
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy
| |
Collapse
|
13
|
Askaravi M, Rezatofighi SE, Rastegarzadeh S, Seifi Abad Shapouri MR. Development of a new method based on unmodified gold nanoparticles and peptide nucleic acids for detecting bovine viral diarrhea virus-RNA. AMB Express 2017; 7:137. [PMID: 28655215 PMCID: PMC5484653 DOI: 10.1186/s13568-017-0432-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/16/2017] [Indexed: 11/21/2022] Open
Abstract
A simple colorimetric assay is presented for detecting bovine viral diarrhea virus (BVDV)-RNA based on aggregation of gold nanoparticles (AuNPs) in the presence of charge-neutral peptide nucleic acids (PNA). Free charge-neutral PNA oligomers tended to be adsorbed onto AuNPs and act as a coagulant, whereas hybridizing complementary RNA with PNA disrupted PNA-induced AuNP aggregation, and the NPs remained stable. However, non-complementary RNA did not have this effect, and PNA induced aggregation of the AuNPs that resulted in a color change of the reaction from red to blue. The label-free colorimetric assay developed was estimated to have a 10.48 ng/reaction BVDV-RNA detection limit for the visual assay and 1.05 ng/reaction BVDV-RNA using a spectrophotometer. Diagnostic sensitivity and specificity for the assay was in accordance with real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and nested RT-PCR results were 98 and 100%, respectively. Absorption of the 520/620 nm ratio was linear, along with an increase in the target RNA concentration of 1.64–52.4 ng/reaction (R2 = 0.992), which showed a linear correlation for the quantitative assay. This study established a rapid visual label and enzyme-free diagnostic assay for detecting BVDV that is applicable in any clinical laboratory.
Collapse
|
14
|
Tsai TT, Huang CY, Chen CA, Shen SW, Wang MC, Cheng CM, Chen CF. Diagnosis of Tuberculosis Using Colorimetric Gold Nanoparticles on a Paper-Based Analytical Device. ACS Sens 2017; 2:1345-1354. [PMID: 28901134 DOI: 10.1021/acssensors.7b00450] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have developed a colorimetric sensing strategy employing gold nanoparticles and a paper-based analytical platform for the diagnosis of tuberculosis (TB). By utilizing the surface plasmon resonance effect, we were able to monitor changes in the color of a gold nanoparticle colloid based on the effects of single-stranded DNA probe molecules hybridizing with targeted double-stranded TB DNA. The hybridization event changes the surface charge density of the nanoparticles, causing them to aggregate to various degrees, which modifies the color of the solution in a manner that can be readily measured to determine the concentration of the targeted DNA analyte. In order to adapt this TB diagnosis method to resource-limited settings, we extended this label-free oligonucleotide and unmodified gold nanoparticle solution-based technique to a paper-based system that can be measured using a smartphone to obtain rapid parallel colorimetric results with low reagent consumption and without the need for sophisticated analytical equipment. In this study, we investigated various assay conditions, including the denaturing temperature and time, different oligonucleotide probe sequences, as well as the ratio of single stranded probe and double stranded target DNA. After optimizing these variables, we were able to achieve a detection limit of 1.95 × 10-2 ng/mL for TB DNA. Furthermore, multiple tests could be performed simultaneously with a 60 min turnaround time.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Department
of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chia-Yu Huang
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chung-An Chen
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Wei Shen
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Chia Wang
- Department
of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chao-Min Cheng
- Institute
of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chien-Fu Chen
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
15
|
Zhao X, Lin CW. Rapid label-free visual detection of KRAS mutations using peptide nucleic acid and unmodified gold nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra09088a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is among the most commonly diagnosed cancers worldwide.
Collapse
Affiliation(s)
- Xihong Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education
- Key Laboratory for Hubei Novel Reactor & Green Chemical Technology
- Research Center for Environmental Ecology and Engineering
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
| | - Chii-Wann Lin
- Institute of Biomedical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
16
|
Guo JF, Huo DQ, Yang M, Hou CJ, Li JJ, Fa HB, Luo HB, Yang P. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor. Talanta 2016; 161:819-825. [DOI: 10.1016/j.talanta.2016.09.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 01/07/2023]
|
17
|
A label-free colorimetric assay for detection of c-Myc mRNA based on peptide nucleic acid and silver nanoparticles. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1004-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Gupta A, Bahal R, Gupta M, Glazer PM, Saltzman WM. Nanotechnology for delivery of peptide nucleic acids (PNAs). J Control Release 2016; 240:302-311. [PMID: 26776051 DOI: 10.1016/j.jconrel.2016.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/10/2015] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Over the past three decades, peptide nucleic acids have been employed in numerous chemical and biological applications. Peptide nucleic acids possess enormous potential because of their superior biophysical properties, compared to other oligonucleotide chemistries. However, for therapeutic applications, intracellular delivery of peptide nucleic acids remains a challenge. In this review, we summarize the progress that has been made in delivering peptide nucleic acids to intracellular targets. In addition, we emphasize recent nanoparticle-based strategies for efficient delivery of conventional and chemically-modified peptides nucleic acids.
Collapse
Affiliation(s)
- Anisha Gupta
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Raman Bahal
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Meera Gupta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Chemical Engineering, Indian Institute of Technology-Delhi, New Delhi, India
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA.
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Abstract
Recent advances in Au NP based optical sensing systems for various analytes based on absorption, fluorescence and SERS are summarized.
Collapse
Affiliation(s)
- Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Cho-Chun Hu
- Department of Applied Science
- National Taitung University
- Taitung 95002
- Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry
- National Taiwan University
- Taipei 106
- Taiwan
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
20
|
Ultrasensitive and accelerated detection of ciguatoxin by capillary electrophoresis via on-line sandwich immunoassay with rotating magnetic field and nanoparticles signal enhancement. Anal Chim Acta 2015; 888:27-35. [DOI: 10.1016/j.aca.2015.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 01/24/2023]
|
21
|
Silva RM, Pratas D, Castro L, Pinho AJ, Ferreira PJSG. Three minimal sequences found in Ebola virus genomes and absent from human DNA. Bioinformatics 2015; 31:2421-5. [PMID: 25840045 PMCID: PMC4514932 DOI: 10.1093/bioinformatics/btv189] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/27/2015] [Indexed: 01/03/2023] Open
Abstract
Motivation: Ebola virus causes high mortality hemorrhagic fevers, with more than 25 000 cases and 10 000 deaths in the current outbreak. Only experimental therapies are available, thus, novel diagnosis tools and druggable targets are needed. Results: Analysis of Ebola virus genomes from the current outbreak reveals the presence of short DNA sequences that appear nowhere in the human genome. We identify the shortest such sequences with lengths between 12 and 14. Only three absent sequences of length 12 exist and they consistently appear at the same location on two of the Ebola virus proteins, in all Ebola virus genomes, but nowhere in the human genome. The alignment-free method used is able to identify pathogen-specific signatures for quick and precise action against infectious agents, of which the current Ebola virus outbreak provides a compelling example. Availability and Implementation: EAGLE is freely available for non-commercial purposes at http://bioinformatics.ua.pt/software/eagle. Contact:raquelsilva@ua.pt; pratas@ua.pt Supplementary Information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Diogo Pratas
- IEETA and DETI, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Armando J Pinho
- IEETA and DETI, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo J S G Ferreira
- IEETA and DETI, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
22
|
Cao M, Deng L, Xu H. Study of PNA–DNA hybridization by AFM-based single-molecule force spectroscopy. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Eissa S, Matboli M. Integrated technologies in the post-genomic era for discovery of bladder cancer urinary markers. World J Clin Urol 2013; 2:20-31. [DOI: 10.5410/wjcu.v2.i3.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/10/2013] [Accepted: 11/21/2013] [Indexed: 02/06/2023] Open
Abstract
The incidence of bladder cancer (BC) continues to rise with high recurrence and mortality rate, especially in the past three decades. The development of accurate and successful BC treatment relies mainly on early diagnosis. BC is a heterogeneous disease reflected by the presence of many potential biomarkers associated with different disease phenotypes. Nowadays, cystoscopy and urinary cytology are considered the gold standard diagnostic tools for BC. There are many limitations to cystoscopy including being invasive, labor-intensive and carcinoma in situ of the bladder may easily be missed. Urinary cytology is still a noninvasive technique with high accuracy in high-grade BC with a median sensitivity of 35%. Furthermore, the need for a sensitive, specific, non invasive, easily accessible BC biomarker is a major clinical need. The field of urinary BC biomarkers discovery is still a rapidly evolving discipline in which more recent technologies are evaluated and often optimized if they are not clinically significant to the urologists. Most of the current strategies for BC urinary biomarker detection depend on integration of information gleaned from the fields of genomics, transcriptomics, proteomics, epigenetics, metabolomics and bionanotechnology. Effort is currently being made to identify the most potentially beneficial urinary biomarkers. The purpose of this review is to summarize and explore the efficacy of gathering the information revealed from the cooperation of different omic strategies that paves the way towards various urinary markers discovery for screening, diagnosis and prognosis of human BC.
Collapse
|
24
|
Eissa S, Shawky SM, Matboli M, Mohamed S, Azzazy HME. Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis. Clin Biochem 2013; 47:104-10. [PMID: 24183881 DOI: 10.1016/j.clinbiochem.2013.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To develop a gold nanoparticle (AuNP) assay for direct detection of unamplified HURP RNA in urine. DESIGN AND METHODS HURP RNA was extracted from urine samples (50 bladder carcinoma patients, 25 benign bladder lesions, and 25 controls) and further purified using magnetic nanoparticles (MNPs), functionalized with HURP RNA-specific oligonucleotides, and then detected by RT-PCR or gold nanoparticles. RESULTS The developed HURP RNA AuNP assay has a sensitivity and a specificity of 88.5% and 94%, respectively, and a detection limit of 2.4 nmol/L. The concordance between the HURP AuNP assay with RT-PCR after RNA purification using functionalized MNPs was 97%. CONCLUSIONS The developed colorimetric HURP RNA AuNP assay is sensitive, simple, and can aid noninvasive diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt
| | - Sherif M Shawky
- Youssef Jameel Science & Technology Research Center, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| | - Marwa Matboli
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt
| | - Shaymaa Mohamed
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt
| | - Hassan M E Azzazy
- Youssef Jameel Science & Technology Research Center, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; Department of Chemistry, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt.
| |
Collapse
|
25
|
Multiple antigenic peptide (MAP): a synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:312-20. [PMID: 24426293 PMCID: PMC3832690 DOI: 10.1007/s13337-013-0162-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/27/2013] [Indexed: 01/02/2023]
Abstract
The peptide dendrimer provides novel strategies for various biological applications. Assembling of peptide in macromolecular structure is expected to give rational models as drugs, their delivery and diagnostic reagents. Improved understanding of virus structure and their molecular interactions with ligands have paved the way for treatment and control of emerging and re-emerging viral diseases. This review presents a brief account of a synthetic peptide dendrimer used for diagnostic, therapeutic and prophylactic applications. The designs comprise of multiple antigenic peptides which are being used as alternate synthetic antigens for different viruses.
Collapse
|