1
|
Jiang X, Yan Q, He J, Zheng Z, Peng X, Cao X, Zhou F, Nie J, Kang T. Interfering with Dusp2 alleviates high glucose-induced vascular endothelial cell dysfunction by promoting p38 MAPK pathway activation. Exp Cell Res 2023; 430:113720. [PMID: 37479052 DOI: 10.1016/j.yexcr.2023.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Hyperglycemia-induced vascular endothelial cell dysfunction is a major factor contributing to diabetic lower extremity ischemia. We intend to investigate the role of Dusp2 in hyperglycemia-induced vascular endothelial cell dysfunction and related mechanisms. METHODS The human umbilical vein endothelial cells (HUVECs) were treated with high glucose (HG) as the cell model. Streptozotocin injection was performed to induce diabetes and femoral artery ligation was to induce hind limb ischemia in mice. The levels of Dusp2, p-p38 MAPK, E2F4, and p38 MAPK were evaluated by Western blot or quantitative real-time PCR. The laser Doppler perfusion imaging was conducted to measure blood flow recovery. The cell counting kit-8, transwell, and tube formation assay were performed to evaluate cell proliferation, migration, and angiogenesis, respectively. CD31 immunohistochemical staining was carried out to detect the capillary density of gastrocnemius. The dual-luciferase reporter gene assay and Chromatin immunoprecipitation assay were executed to explore the interaction between E2F4 and Dusp2. RESULTS Dusp2 was highly expressed in HG-induced HUVECs and diabetic lower extremity ischemia model mice. Interference with Dusp2 promoted cell proliferation, migration, and angiogenesis, as well as alleviated mouse diabetic hindlimb ischemia. Dusp2 knockdown up-regulated p-p38 MAPK levels. We verified the binding between E2F4 and Dusp2. Overexpressing E2F4 suppressed Dusp2 levels and promoted cell proliferation, migration, and angiogenesis, co-overexpression of Dusp2 reversed the results. CONCLUSIONS Overexpressing E2F4 promotes endothelial cell proliferation, migration, and angiogenesis by inhibiting Dusp2 expression and activating p38 MAPK to alleviate vascular endothelial cell dysfunction under HG stimulation.
Collapse
Affiliation(s)
- Xinmiao Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qiong Yan
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jiaqi He
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaoyan Cao
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fangbin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jungang Nie
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ting Kang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
1H NMR-based metabolomic study of metabolic profiling for the urine of kidney stone patients. Urolithiasis 2019; 48:27-35. [DOI: 10.1007/s00240-019-01132-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/28/2019] [Indexed: 01/22/2023]
|
3
|
Lu Y, Qin B, Hu H, Zhang J, Wang Y, Wang Q, Wang S. Integrative microRNA-gene expression network analysis in genetic hypercalciuric stone-forming rat kidney. PeerJ 2016; 4:e1884. [PMID: 27069814 PMCID: PMC4824905 DOI: 10.7717/peerj.1884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background. MicroRNAs (miRNAs) influence a variety of biological functions by regulating gene expression post-transcriptionally. Aberrant miRNA expression has been associated with many human diseases. Urolithiasis is a common disease, and idiopathic hypercalciuria (IH) is an important risk factor for calcium urolithiasis. However, miRNA expression patterns and their biological functions in urolithiasis remain unknown. Methods and Results. A multi-step approach combining microarray miRNA and mRNA expression profile and bioinformatics analysis was adopted to analyze dysregulated miRNAs and genes in genetic hypercalciuric stone-forming (GHS) rat kidneys, using normal Sprague-Dawley (SD) rats as controls. We identified 2418 mRNAs and 19 miRNAs as significantly differentially expressed, over 700 gene ontology (GO) terms and 83 KEGG pathways that were significantly enriched in GHS rats. In addition, we constructed an miRNA-gene network that suggested that rno-miR-674-5p, rno-miR-672-5p, rno-miR-138-5p and rno-miR-21-3p may play important roles in the regulatory network. Furthermore, signal-net analysis suggested that NF-kappa B likely plays a crucial role in hypercalciuria urolithiasis. Conclusions. This study presents a global view of mRNA and miRNA expression in GHS rat kidneys, and suggests that miRNAs may be important in the regulation of hypercalciuria. The data provide valuable insights for future research, which should aim at validating the role of the genes featured here in the pathophysiology of hypercalciuria.
Collapse
Affiliation(s)
- Yuchao Lu
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Baolong Qin
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Henglong Hu
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Jiaqiao Zhang
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Yufeng Wang
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Qing Wang
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| | - Shaogang Wang
- Institute and Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , PR China
| |
Collapse
|
4
|
Liu J, Hao H, Xia L, Ti D, Huang H, Dong L, Tong C, Hou Q, Zhao Y, Liu H, Fu X, Han W. Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia. PLoS One 2015; 10:e0126715. [PMID: 25996677 PMCID: PMC4440823 DOI: 10.1371/journal.pone.0126715] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/07/2015] [Indexed: 01/21/2023] Open
Abstract
Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI). Mesenchymal stem cells (MSCs) are multipotent secretory cells that are suitable for clinical DLLI treatment, but their use has been hampered by poor survival after injection. Hypoxia can significantly enhance the capacity of MSCs to secrete angiogenic factors. We investigated transient hypoxia pretreatment of MSCs to facilitate revascularization in DLLI. Rat bone marrow MSCs (BM-MSCs) were cultured at different oxygen concentrations for varying time periods. The results indicated that transient pretreatment (5% O2, 48 h) not only increased the expression of VEGF-1α, ANG, HIF-1α and MMP-9 in BM-MSCs as assessed by real-time RT-PCR, but also increased the expression of Bcl-2 as determined by western blotting. The transplantation of pretreated BM-MSCs into rats with DLLI demonstrated accelerated vascular reconstruction when assayed by angiography and immunohistochemistry. CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days. The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle. Double immunofluorescence studies confirmed that the pretreated BM-MSCs promoted the proliferation and inhibited the apoptosis of endothelial cells. In vitro, pretreated BM-MSCs increased the migratory and tube forming capacity of endothelial cells (ECs). Hypoxia pretreatment of BM-MSCs significantly improved angiogenesis in response to tissue ischemia by ameliorating endothelial cell dysfunction and is a promising therapeutic treatment for DLLI.
Collapse
Affiliation(s)
- Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Lei Xia
- Department of Medical Administration, Chinese PLA General Hospital, Beijing, China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Hong Huang
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Liang Dong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Qian Hou
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Yali Zhao
- Central laboratory, Hainan branch of Chinese PLA General Hospital, Sanya, China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WH); ( (XF)
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WH); ( (XF)
| |
Collapse
|
5
|
Kawada N, Isaka Y, Rakugi H, Moriyama T. SCAD syndrome: A vicious cycle of kidney stones, CKD, and AciDosis. World J Clin Urol 2014; 3:113-118. [DOI: 10.5410/wjcu.v3.i2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 05/23/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
Cumulative evidence has shown that kidney stone formers are at high risk for developing end-stage renal disease (ESRD) and cardiovascular disease. The aim of this mini-review is to summarize the present knowledge about the close relationships among kidney stone formation, chronic kidney disease (CKD), and plasma and urine acidosis (SCAD). Part of the cause of the positive relationships between higher risk of developing ESRD and cardiovascular diseases in stone formers may be explained by inflammation and cell death due to the components of kidney stones. In CKD patients, acidic urine and loss of anti-crystallization factors may cause stone formation. Acidosis can promote tissue inflammation and may affect vascular tone. Correction of plasma and urine acidosis may improve renal and cardiovascular outcome of stone formers and CKD patients. More intensive and long-term interventions, which include correction of plasma and urine pH in patients with reduced renal function and correction of urine pH in patients with normal renal function, may be considered in treating patients with SCAD syndrome.
Collapse
|
6
|
Tanriverdi O, Telci D, Aydin M, Ekici ID, Miroglu C, Sarıca K. Hyperoxaluria-induced tubular ischemia: the effects of verapamil and vitamin E on apoptotic changes with an emphasis on renal papilla in rat model. ACTA ACUST UNITED AC 2011; 40:17-25. [PMID: 21607878 DOI: 10.1007/s00240-011-0388-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
An experimental study in rats was performed to evaluate the presence and the degree of both tubular apoptotic changes and crystallization at cortical, medullar and papillary regions of the kidney during hyperoxaluric phase and assess the possible protective effects of vitamin E and verapamil on these pathologic changes (particularly in papillary part of the affected kidneys). A total of 32 rats have been included into the study program. Hyperoxaluria was induced by continuous administration of ethylene glycol (0.75%). In addition to hyperoxaluria induction, animals in Groups 2 and 3 did receive a calcium channel-blocking agent (verapamil) and vitamin E, respectively. Histologic alterations of the kidneys including crystal formation together with apoptotic changes were evaluated on days 1, 14 and 28, respectively. Both apoptotic changes and the presence and degree of crystallization were assessed separately in renal cortical region, medulla and particularly papillary parts of the removed kidneys. Although verapamil did well limit the degree of crystal formation and apoptosis and brought it to the same levels observed in control group animals in all parts of the kidneys during intermediate phase, addition of vitamin E was failed to show the same protective effect during both intermediate and late phase evaluations. As demonstrated in our study, the limitation of both crystal deposition and apoptotic changes might be instituted by calcium channel-blocking agents. Clinical application of such agents in the prophylaxis of stone disease might limit the formation of urinary calculi, especially in recurrent stone formers.
Collapse
Affiliation(s)
- Orhan Tanriverdi
- The Second Urology Department, Sisli Etfal Training and Research Hospital, 2. Uroloji Klinigi, Istanbul 34360, Turkey.
| | | | | | | | | | | |
Collapse
|
7
|
Ischemia’s Proliferative and Morphological Effects: Analyzing the Roles of Hypoxia, Hypercapnia, and Glucose. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Wendt-Nordahl G, Evan AP, Spahn M, Knoll T. [Calcium oxalate stone formation. New pathogenetic aspects of an old disease]. Urologe A 2008; 47:538, 540-44. [PMID: 18392604 DOI: 10.1007/s00120-008-1707-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Calcium oxalate (CaOx) urolithiasis is a very common disorder. Surprisingly, the pathogenetic mechanisms leading to CaOx stone formation have been largely unknown so far. The long-accepted simple explanation by an exceeding of the solubility product of lithogenic substances in the urine cannot sufficiently describe the complex processes. Deviating from the hypothesis that proclaims that the initial crystal deposition takes place in the lumens of renal tubules, new insights suggest a primary plaque formation in the interstitial space of the renal papilla. Initially, calcium phosphate (CaPh) crystals and organic matrix are deposited along the basement membranes of the thin loops of Henle and extend further in the interstitial space to the urothelium, constituting the so-called Randall's plaques that can be regularly found during endoscopy of CaOx-stone-forming patients. These CaPh crystals seem to be the origin for the development of future CaOx stones, which form by the attachment of further matrix molecules and CaOx from the urine to the plaque. The driving forces, the exact pathogenetic mechanisms, and the involved matrix molecules remain largely unknown. Possibly, completely different pathomechanisms lead to the common clinical diagnosis of"CaOx stone former."
Collapse
Affiliation(s)
- G Wendt-Nordahl
- Urologische Klinik, Universitätsklinikum, Theodor-Kutzer-Ufer 1-3, 68135, Mannheim, Deutschland
| | | | | | | |
Collapse
|
9
|
Russ AL, Haberstroh KM, Rundell AE. Experimental strategies to improve in vitro models of renal ischemia. Exp Mol Pathol 2007; 83:143-59. [PMID: 17490640 DOI: 10.1016/j.yexmp.2007.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/15/2007] [Accepted: 03/15/2007] [Indexed: 12/11/2022]
Abstract
Ischemia has elicited a great deal of interest among the scientific community due to its role in life-threatening pathologies such as cancer, stroke, acute renal failure, and myocardial infarction. Oxygen deprivation (hypoxia) associated with ischemia has recently become a subject of intense scrutiny. New investigators may find it challenging to induce hypoxic injury in vitro. Researchers may not always be aware of the experimental barriers that contribute to this phenomenon. Furthermore, ischemia is associated with other major insults, such as excess carbon dioxide (hypercapnia), nutrient deprivation, and accumulation of cellular wastes. Ideally, these conditions should also be incorporated into in vitro models. Therefore, the motivation behind this review is to: i. delineate major in vivo ischemic insults; ii. identify and explain critical in vitro parameters that need to be considered when simulating ischemic pathologies; iii. provide recommendations to improve experiments; and as a result, iv. enhance the validity of in vitro results for understanding clinical ischemic pathologies. Undoubtedly, it is not possible to completely replicate the in vivo environment in an ex vivo model system. In fact, the primary goal of many in vitro studies is to elucidate the role of specific stimuli during in vivo pathological events. This review will present methodologies that may be implemented to improve the applicability of in vitro models for understanding the complex pathological mechanisms of ischemia. Finally, although these topics will be discussed within the context of renal ischemia, many are pertinent for cellular models of other organ systems and pathologies.
Collapse
Affiliation(s)
- Alissa L Russ
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Intramural Dr. West Lafayette, IN 47907-1791, USA
| | | | | |
Collapse
|