1
|
Calandriello DC, Cunha VA, Batista D, Genevcius BC. Genetic architecture of morphological adaptation and plasticity in insects: gaps, biases, and future directions. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101362. [PMID: 40089149 DOI: 10.1016/j.cois.2025.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Insects exhibit a vast array of morphological specializations. Recent eco-evo-devo studies have provided a fresh perspective into how insect morphology can respond to the environment, both plastically and adaptively. Here, we performed a systematic literature analysis to identify biases and gaps in research on the molecular mechanisms underlying insect morphological adaptation and plasticity. We found that plasticity studies are increasingly present in the literature, while adaptation studies lag behind. Additionally, we observed a disproportionate focus on a few insect orders and specific traits like wings and body size. We highlight the need to explore the broader insect diversity, including understudied groups and unexplored traits like reproductive organs, as well as utilize advanced methods to capture subtle morphological variation. Studying a wider range of species with diverse morphologies and ecological features, as well as implementing modern genome-wide tools, can reveal the full spectrum of mechanisms underlying morphological adaptation and plasticity in insects.
Collapse
Affiliation(s)
- Denis C Calandriello
- University of São Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, São Paulo, SP, Brazil
| | - Vanessa As Cunha
- University of São Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, São Paulo, SP, Brazil
| | - Daniel Batista
- University of São Paulo, Institute of Biosciences, Department of Genetics and Evolutionary Biology, São Paulo, SP, Brazil; University of São Paulo, Institute of Biosciences, Department of Zoology, São Paulo, SP, Brazil
| | - Bruno C Genevcius
- University of São Paulo, Institute of Biosciences, Department of Zoology, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Elsabaawy M, Badran H, Ragab A, Abdelhafiz R, Nageeb M, Ashour R. ALBI-sarcopenia score as a predictor of treatment outcomes in hepatocellular carcinoma. Sci Rep 2025; 15:14621. [PMID: 40287454 PMCID: PMC12033259 DOI: 10.1038/s41598-025-97295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
The recently developed ALBI-Sarcopenia score has demonstrated effectiveness in predicting mortality in hepatocellular carcinoma (HCC), emerging as a crucial factor in guiding treatment decisions. To assess the utility of the ALBI-Sarcopenia score in predicting the success of HCC treatment. A prospective study involving 262 liver cirrhosis with HCC patients were assigned to various treatment strategies according to Barcelona clinics of liver disease (BCLC) classification. Patients were followed up for 12 months reporting laboratory data, sarcopenia, ALBI-Sarcopenia score, and outcomes. Sarcopenia was prevalent in 43.1% (48.35% males and 31.25% females, P = 0.042). Most patients were HCV-positive (88.9%) and classified as CTP A (55.7%) or BCLC B (54.2%). Over the study period, TACE was the most administered treatment (41.2% at baseline), followed by a progressive shift toward best supportive care as disease severity increased. Complete response rates declined from 31.7% at 1 month to 21.4% at 12 months, while progressive disease rates increased from 21.8 to 37.8% over the same period. At 12 months, the ALBI-Sarcopenia score demonstrated the highest predictive accuracy for treatment response (AUC:0.69, p = 0.001), outperforming both the ALBI (AUC: 0.631, p = 0.001) and MELD (AUC:0.623, p = 0.003) scores. Logistic regression identified ALBI-Sarcopenia as a significant independent predictor of response at 1 month (OR:1.25, 95% CI:0.881-1.971, p = 0.002) and 12 months (OR:2.189, 95% CI:0.992-4.937, p = 0.001). The ALBI-Sarcopenia score is a robust predictor of treatment outcomes in HCC, offering superior prognostic accuracy compared to traditional scoring systems, and enhancing patient stratification for optimized treatment planning.
Collapse
Affiliation(s)
- Maha Elsabaawy
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt.
| | - Hanaa Badran
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt
| | - Amr Ragab
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt
| | - Rasha Abdelhafiz
- Radiodiagnosis and Interventional Radiology Department, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt
| | - Madiha Nageeb
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt
| | - Reham Ashour
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Shebeen El-Koom, Egypt
| |
Collapse
|
3
|
Golub Y, Wulff A, Plösch T. From haze to horizon: epigenetic research and artificial intelligence in child and adolescent psychiatry. Eur Child Adolesc Psychiatry 2025; 34:1245-1248. [PMID: 40111558 PMCID: PMC12000212 DOI: 10.1007/s00787-025-02686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Yulia Golub
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Antje Wulff
- Big Data in Medicine, Department of Health Services Research, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Torsten Plösch
- Department of Human Medicine, Division of Perinatal Neurobiology, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Choza JI, Virani M, Kuhn NC, Adams M, Kochmanski J, Bernstein AI. Parkinson's disease-associated alterations in DNA methylation and hydroxymethylation in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.21.595193. [PMID: 39975085 PMCID: PMC11838189 DOI: 10.1101/2024.05.21.595193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Epigenetic mechanisms are mediators of interactions between aging, genetics, and environmental factors in sporadic Parkinson's disease (PD). Multiple studies have explored the DNA modifications in PD, but few focus on 5-hydroxymethylcytosine (5-hmC), which is important in the central nervous system and sensitive to environmental exposures. To date, studies have not differentiated between 5-methylcytosine (5-mC) and 5-hmC or have analyzed them separately. In this study, we modeled paired 5-mC and 5-hmC data simultaneously. We identified 108 cytosines with significant PD-associated shifts between these marks in an enriched neuronal population from PD postmortem parietal cortex, within 83 genes and 34 enhancers associated with 67 genes. These data potentially link epigenetic regulation of genes related to LRRK2 and endolysosomal sort (RAB32 and AGAP1), and genes involved in neuroinflammation, the inflammasome, and neurodevelopment with early changes in PD and suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes not captured by standard methods.
Collapse
Affiliation(s)
- Juliana I Choza
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Alison I Bernstein
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
5
|
Blair HJ, Morales L, Cryan JF, Aburto MR. Neuroglia and the microbiota-gut-brain axis. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:171-196. [PMID: 40122624 DOI: 10.1016/b978-0-443-19104-6.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Glial cells are key players in the regulation of nervous system functioning in both the central and enteric nervous systems. Glial cells are dynamic and respond to environmental cues to modulate their activity. Increasing evidence suggests that these signals include those originating from the gut microbiota, the community of microorganisms, including bacteria, viruses, archaea, and protozoa, that inhabit the gut. The gut microbiota and the brain communicate in a bidirectional manner across multiple signaling pathways and interfaces that together comprise the microbiota-gut-brain axis. Here, we detail the role of glial cells, including astrocytes, microglia, and oligodendrocytes in the central nervous system, and glial cells in the enteric nervous system along this gut-brain axis. We review what is known regarding the modulation of glia by microbial signals, in particular by microbial metabolites which signal to the brain through systemic circulation and via the vagus nerve. In addition, we highlight what is yet to be discovered regarding the role of other gut microbiota signaling pathways in glial cell modulation and the challenges of research in this area.
Collapse
Affiliation(s)
- Hugo J Blair
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorena Morales
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - María R Aburto
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
6
|
Talebi Anaraki K, Ghanbarian Alavijeh N, Bemanalizadeh M, Yaghini O, Badihian N, Khoshhali M, Badihian S, Hosseini N, Purpirali M, Abadian M, Daniali SS, Kelishadi R. The lasting influence of parenting intervention on child behavior: findings from a randomized clinical trial using care for child development guidelines. BMC Pediatr 2024; 24:772. [PMID: 39604899 PMCID: PMC11600820 DOI: 10.1186/s12887-024-05253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Studies have investigated the role of different parenting intervention programs in the early development of children. Here we aimed to determine the long-term efficacy of Care for Child Development (CCD) guideline interventions on behavioral dimensions of children's development. METHODS This randomized clinical trial took place at an outpatient public Pediatrics clinic in Isfahan, Iran from February 2020 to May 2024. Pregnant women between the ages of 18 and 45 in their third trimester were included in the study, and their children were followed for 48 months. The intervention group participated in 5 educational group sessions, each session lasting approximately 45 min. The control group underwent routine education on childcare, as suggested by WHO. The main outcome was the children's socio-emotional behavior problems using the Children Behavior Checklist (CBCL) at 18, 36, and 48 months. The comparisons between groups were done using independent two-sample t-tests, or the Mann-Whitney test and the Chi-square test. Statistical software SPSS 22 was utilized for data analysis. RESULTS Finally, the data of 166 participants (70 in the intervention group and 96 in the control group) were included in the current study. The adjusted mean differences between the intervention and control groups significantly differed in some scales after follow-up. After 36 months of follow-up, the scores in the following aspects were significantly lower in the intervention group: emotional problems, anxiety, seclusion problems, sleep disorders, aggressive behavior, and the total problem. After 48 months, only sleep problems were significantly lower in the intervention group. CONCLUSION According to the results of this intervention, delivering parenting interventions through group sessions according to the CCD recommendation indicated weak efficacy during long-term follow-ups. Further trials are needed to assess the effects of these programs on parents. TRIAL REGISTRATION IRCT20190128042533N2, Date of Registration: 16 January 2020, www.irct.ir .
Collapse
Affiliation(s)
- Kasra Talebi Anaraki
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Maryam Bemanalizadeh
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Child Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Yaghini
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Child Neurology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Negin Badihian
- Department of Neurology, Neurological Institute, Cleveland, OH, USA
| | - Mehri Khoshhali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shervin Badihian
- Department of Neurology, Neurological Institute, Cleveland, OH, USA
| | - Neda Hosseini
- Department of Child Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marziye Purpirali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Occupational Therapy Department, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoore Abadian
- Occupational Therapy Department, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyede Shahrbanoo Daniali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Shi R, Chang X, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot17, MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Holz N, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Feng J. Gene-environment interactions in the influence of maternal education on adolescent neurodevelopment using ABCD study. SCIENCE ADVANCES 2024; 10:eadp3751. [PMID: 39546599 PMCID: PMC11567010 DOI: 10.1126/sciadv.adp3751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Maternal education was strongly correlated with adolescent brain morphology, cognitive performances, and mental health. However, the molecular basis for the effects of maternal education on the structural neurodevelopment remains unknown. Here, we conducted gene-environment-wide interaction study using the Adolescent Brain Cognitive Development cohort. Seven genomic loci with significant gene-environment interactions (G×E) on regional gray matter volumes were identified, with enriched biological functions related to metabolic process, inflammatory process, and synaptic plasticity. Additionally, genetic overlapping results with behavioral and disease-related phenotypes indicated shared biological mechanism between maternal education modified neurodevelopment and related behavioral traits. Finally, by decomposing the multidimensional components of maternal education, we found that socioeconomic status, rather than family environment, played a more important role in modifying the genetic effects on neurodevelopment. In summary, our study provided analytical evidence for G×E effects regarding adolescent neurodevelopment and explored potential biological mechanisms as well as social mechanisms through which maternal education could modify the genetic effects on regional brain development.
Collapse
Affiliation(s)
- Runye Shi
- School of Data Science, Fudan University, Shanghai, China
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité–Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | | | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité–Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Xiaolei Lin
- School of Data Science, Fudan University, Shanghai, China
| | - Jianfeng Feng
- School of Data Science, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | | |
Collapse
|
8
|
Villmoare B, Klein D, Liénard P, McHale TS. Evolutionary origins of temporal discounting: Modeling how time and uncertainty constrain optimal decision-making strategies across taxa. PLoS One 2024; 19:e0310658. [PMID: 39531436 PMCID: PMC11556739 DOI: 10.1371/journal.pone.0310658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
The propensity of humans and non-human animals to discount future returns for short-term benefits is well established. This contrasts with the ability of organisms to unfold complex developmental sequences over months or years efficiently. Research has focused on various descriptive and predictive parameters of 'temporal discounting' in behavior, and researchers have proposed models to explain temporal preference in terms of fitness-maximizing outcomes. Still, the underlying ultimate cause of this phenomenon has not been deeply explored across taxa. Here, we propose an ultimate (i.e., evolutionary) causal explanation for the selection of temporal discounting largely conserved across taxa. We propose that preference for a short-term reward (e.g., heightened impulsivity) often is less than optimal and likely is the product of constraints imposed on natural selection with respect to predicting events in a temporal framework in the context of future uncertainty. Using a simple Newtonian model for time across a fitness landscape in which movement by organisms is only possible in one direction, we examine several factors that influence the ability of an organism to choose a distant reward over a more temporally proximate reward: including the temporal distance of the far reward, the relative value of the distant reward, and the effect of uncertainty about the value and presence of the distant reward. Our results indicate that an organism may choose a more distant reward, but only if it is not too far into the future and has a substantially higher-value fitness payoff relative to the short-term reward. Notably, any uncertainty about the distant reward made it extremely unlikely for an organism to choose the delayed reward strategy compared to choosing a closer reward, even if the distant reward had a much higher payoff because events that are uncertain are only partially visible to natural selection pressures. The results help explain why natural selection is constrained to promote more optimal behavioral strategies and why it has difficulty selecting a distant reward over a lower-value short-term reward. The degree of uncertainty is an especially salient ecological variable in promoting and preferencing short-term behavioral strategies across taxa. These results further help illustrate why, from an ultimate causal perspective, human and non-human taxa have difficulty making more optimal long-term decisions.
Collapse
Affiliation(s)
- Brian Villmoare
- Department of Anthropology, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - David Klein
- University of California, San Luis Obispo, California, United States of America
| | - Pierre Liénard
- Department of Anthropology, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
| | - Timothy S. McHale
- Social Sciences Department, California Polytechnic State University, San Luis Obispo, California, United States of America
| |
Collapse
|
9
|
Sibomana O. Genetic Diversity Landscape in African Population: A Review of Implications for Personalized and Precision Medicine. Pharmgenomics Pers Med 2024; 17:487-496. [PMID: 39555236 PMCID: PMC11566596 DOI: 10.2147/pgpm.s485452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Africa, a continent considered to be the cradle of human beings has the largest genetic diversity among its population than other continents. This review discusses the implications of this high African genetic diversity to the development of personalized and precision medicine. Methodology A comprehensive search across PubMed, Google Scholar, Science Direct, DOAJ, AJOL, and the Cochrane Library electronic databases and manual Google searches was conducted using key terms "genetics", "genetic diversity", "Africa", "precision medicine", and "personalized medicine". Updated original and review studies focusing on the implications of African high genetic diversity on personalized and precision medicine were included. Included studies were thematically synthesized to elucidate their positive or negative implications for personalized healthcare, aiming to foster informed clinical practice and scientific inquiry. Results African populations' high genetic diversity presents opportunities for personalized and precision medicine including improving pharmacogenomics, understanding gene interactions, discovering new variants, mapping disease genes, creating updated genomic reference panels, and validating biomarkers. However, challenges include underrepresentation in studies, scarcity of reference genomes, inaccuracy of genetic testing and interpretation, and ancestry misclassification. Addressing these requires the establishment of genomic research centers, increasing funding, creating biobanks and repositories, education, infrastructure, and international cooperation to enhance healthcare equity and outcomes through personalized and precision medicine. Conclusion High African genetic diversity presents both positive and negative implications for personalized and precision medicine. Deep further research is recommended to harness the challenges and use the opportunities to develop customized treatments.
Collapse
Affiliation(s)
- Olivier Sibomana
- Department of General Medicine and Surgery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
10
|
Rana TK, Mohanty P, Dash PP, Mishra S, Tripathi SS, Mohapatra P, Barick AK, Jena PK, Bhaskaran R, Khan MS, Khan MR, Behera L, Jali BR. Unveiling Fluorescence Spectroscopy, Molecular Docking and Dynamic Simulations: Interactions Between Protein and 2, 4-Dinitrophenylhydrazine Schiff Base. J Fluoresc 2024:10.1007/s10895-024-03939-8. [PMID: 39422873 DOI: 10.1007/s10895-024-03939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
In this study, we aimed to explore the interaction mechanism between bovine serum albumin (BSA) and a Schiff base compound derived from 2,4-dinotrophenyl hydrazine (L) using various spectroscopic techniques. The interaction between BSA and synthesizing molecule can provide insights into binding affinity, conformational changes and potential applications in drug delivery or biochemistry. The interaction between BSA and L was studied by using UV-Vis and fluorescence titration analysis. The fluorescence quenching emission was observed at 343 nm, upon addition of L to the buffer solution of BSA. The binding between BSA and ligand is static in nature using fluorescence quenching emission. The thermodynamic parameters were calculated from the temperature-dependent binding constants (i.e., ∆H = -0.318 kcal/mol, ∆G = -7.857 kcal/mol and ∆S = 0.023 kcal/mol), which indicated that the protein-ligand complex formation between L and BSA is mainly due to the electrostatic interactions. The experimental and theoretical results showed excellent agreement with respect to the mechanism of binding and binding constants. The molecular docking and molecular dynamic analysis experiments were performed to establish the interaction between protein and ligand.
Collapse
Affiliation(s)
- Tapan K Rana
- Department of Chemistry, Maharaja SriRam Chandra Bhanja Deo University, Baripada, Mayurbhanj, Odisha, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Swagatika Mishra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Sorav Sagar Tripathi
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Priyaranjan Mohapatra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Aruna Kumar Barick
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Pradip K Jena
- College of Basic Science and Humanities, OUAT, Bhubaneswar, 751003, Odisha, India
| | - R Bhaskaran
- Department of Chemistry, Madanapalle Institute of Technology and Science, Kadiri Road, Angallu, Madanapalle, 517325, Annamayya District, Andhra Pradesh, India
| | - Mohd S Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad R Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Lingaraj Behera
- Department of Chemistry, Maharaja SriRam Chandra Bhanja Deo University, Baripada, Mayurbhanj, Odisha, India.
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| |
Collapse
|
11
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
12
|
Choza JI, Virani M, Kuhn NC, Adams M, Kochmanski J, Bernstein AI. Parkinson's disease-associated shifts between DNA methylation and DNA hydroxymethylation in human brain in PD-related genes, including PARK19 (DNAJC6) and PTPRN2 (IA-2β). RESEARCH SQUARE 2024:rs.3.rs-4572401. [PMID: 39070644 PMCID: PMC11275970 DOI: 10.21203/rs.3.rs-4572401/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background The majority of Parkinson's disease (PD) cases are due to a complex interaction between aging, genetics, and environmental factors; epigenetic mechanisms are thought to act as important mediators of these risk factors. While multiple studies to date have explored the role of DNA modifications in PD, few focus on 5-hydroxymethylcytosine (5hmC). Because 5hmC occurs at its highest levels in the brain and is thought to be particularly important in the central nervous system, particularly in the response to neurotoxicants, it is important to explore the potential role of 5hmC in PD. This study expands on our previously published epigenome-wide association study (EWAS) performed on DNA isolated from neuron-enriched nuclei from human postmortem parietal cortex from the Banner Sun Health Research Institute Brain Bank. The study aimed to identify paired changes in 5hmC and 5mC in PD in enriched neuronal nuclei isolated from PD post-mortem parietal cortex and age- and sex-matched controls. We performed oxidative bisulfite (oxBS) conversion and paired it with our previously published bisulfite (BS)-based EWAS on the same samples to identify cytosines with significant shifts between these two related epigenetic marks. Interaction differentially modified cytosines (iDMCs) were identified using our recently published mixed-effects model for co-analyzing βmC and βhmC data. Results We identified 1,030 iDMCs with paired changes in 5mC and 5hmC (FDR < 0.05) that map to 695 genes, including PARK19 (DNAJC6), a familial PD gene, and PTPRN2 (IA-2), which has been previously implicated in PD in both epigenetic and mechanistic studies. The majority of iDMC-containing genes have not previously been implicated in PD and were not identified in our previous BS-based EWAS. Conclusions These data potentially link epigenetic regulation of the PARK19 and PTPRN2 loci in the pathogenesis of idiopathic PD. In addition, iDMC-containing genes have known functions in synaptic formation and function, cell cycle and senescence, neuroinflammation, and epigenetic regulation. These data suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes relevant to PD pathogenesis that are not captured by analyzing BS-based data alone or by analyzing each mark as a distinct dataset.
Collapse
|
13
|
Motsinger-Reif AA, Reif DM, Akhtari FS, House JS, Campbell CR, Messier KP, Fargo DC, Bowen TA, Nadadur SS, Schmitt CP, Pettibone KG, Balshaw DM, Lawler CP, Newton SA, Collman GW, Miller AK, Merrick BA, Cui Y, Anchang B, Harmon QE, McAllister KA, Woychik R. Gene-environment interactions within a precision environmental health framework. CELL GENOMICS 2024; 4:100591. [PMID: 38925123 PMCID: PMC11293590 DOI: 10.1016/j.xgen.2024.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Understanding the complex interplay of genetic and environmental factors in disease etiology and the role of gene-environment interactions (GEIs) across human development stages is important. We review the state of GEI research, including challenges in measuring environmental factors and advantages of GEI analysis in understanding disease mechanisms. We discuss the evolution of GEI studies from candidate gene-environment studies to genome-wide interaction studies (GWISs) and the role of multi-omics in mediating GEI effects. We review advancements in GEI analysis methods and the importance of large-scale datasets. We also address the translation of GEI findings into precision environmental health (PEH), showcasing real-world applications in healthcare and disease prevention. Additionally, we highlight societal considerations in GEI research, including environmental justice, the return of results to participants, and data privacy. Overall, we underscore the significance of GEI for disease prediction and prevention and advocate for integrating the exposome into PEH omics studies.
Collapse
Affiliation(s)
- Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA.
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - John S House
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - C Ryan Campbell
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kyle P Messier
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA; Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David C Fargo
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Tiffany A Bowen
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Srikanth S Nadadur
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Charles P Schmitt
- Office of the Scientific Director, Office of Data Science, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kristianna G Pettibone
- Program Analysis Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - David M Balshaw
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA; Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Cindy P Lawler
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Shelia A Newton
- Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Gwen W Collman
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA; Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Aubrey K Miller
- Office of Scientific Coordination, Planning and Evaluation, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - B Alex Merrick
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Yuxia Cui
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Benedict Anchang
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Quaker E Harmon
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kimberly A McAllister
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Rick Woychik
- Office of the Director, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
14
|
Scher MS. Interdisciplinary fetal-neonatal neurology training improves brain health across the lifespan. Front Neurol 2024; 15:1411987. [PMID: 39026582 PMCID: PMC11254674 DOI: 10.3389/fneur.2024.1411987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Integrated fetal, neonatal, and pediatric training constitute an interdisciplinary fetal-neonatal neurology (FNN) program. A dynamic neural exposome concept strengthens curriculum content. Trainees participate in mentoring committee selection for guidance during a proposed two-year program. Prenatal to postnatal clinical learning re-enforces early toxic stressor interplay that influences gene-environment interactions. Maternal-placental-fetal triad, neonatal, or childhood diseases require diagnostic and therapeutic decisions during the first 1,000 days when 80 % of neural connections contribute to life-course phenotypic expression. Pediatric follow-up through 3 years adjusts to gestational ages of preterm survivors. Cumulative reproductive, pregnancy, pediatric and adult exposome effects require educational experiences that emphasize a principle-to-practice approach to a brain capital strategy across the lifespan. More rigorous training during fetal, neonatal, and pediatric rotations will be offered to full time trainees. Adult neurology residents, medical students, and trainees from diverse disciplines will learn essential topics during time-limited rotations. Curriculum content will require periodic re-assessments using educational science standards that maintain competence while promoting creative and collaborative problem-solving. Continued career-long learning by FNN graduates will strengthen shared healthcare decisions by all stakeholders. Recognition of adaptive or maladaptive neuroplasticity mechanisms requires analytic skills that identify phenotypes associated with disease pathways. Developmental origins and life-course concepts emphasize brain health across the developmental-aging continuum, applicable to interdisciplinary research collaborations. Social determinants of health recognize diversity, equity, and inclusion priorities with each neurological intervention, particularly for those challenged with disparities. Diagnostic and therapeutic strategies must address resource challenges particularly throughout the Global South to effectively lower the worldwide burden of neurologic disease. Sustainable development goals proposed by the World Health Organization offer universally applicable guidelines in response to ongoing global and regional polycrises. Gender, race, ethnicity, and socio-economic equality promote effective preventive, rescue and reparative neuroprotective interventions. Global synergistic efforts can be enhanced by establishing leadership within academic teaching hubs in FNN training to assist with structure and guidance for smaller healthcare facilities in each community that will improve practice, education and research objectives. Reduced mortality with an improved quality of life must prioritize maternal-pediatric health and well-being to sustain brain health across each lifespan with transgenerational benefits.
Collapse
Affiliation(s)
- Mark S. Scher
- Department of Pediatrics and Neurology, Division of Pediatric Neurology, Fetal/Neonatal Neurology Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
15
|
Dharmage SC, Faner R, Agustí A. Treatable traits in pre-COPD: Time to extend the treatable traits paradigm beyond established disease. Respirology 2024; 29:551-562. [PMID: 38862131 DOI: 10.1111/resp.14760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
To date, the treatable traits (TTs) approach has been applied in the context of managing diagnosed diseases. TTs are clinical characteristics and risk factors that can be identified clinically and/or biologically, and that merit treatment if present. There has been an exponential increase in the uptake of this approach by both researchers and clinicians. Realizing the potential of the TTs approach to pre-clinical disease, this expert review proposes that it is timely to consider acting on TTs present before a clinical diagnosis is made, which might help to prevent development of the full disease. Such an approach is ideal for diseases where there is a long pre-clinical phase, such as in chronic obstructive pulmonary disease (COPD). The term 'pre-COPD' has been recently proposed to identify patients with respiratory symptoms and/or structural or functional abnormalities without airflow limitation. They may eventually develop airflow limitation with time but patients with pre-COPD are likely to have traits that are already treatable. This review first outlines the contribution of recently generated knowledge into lifetime lung function trajectories and the conceptual framework of 'GETomics' to the field of pre-COPD. GETomics is a dynamic and cumulative model of interactions between genes and the environment throughout the lifetime that integrates information from multi-omics to understand aetiology and mechanisms of diseases. This review then discusses the current evidence on potential TTs in pre-COPD patients and makes recommendations for practice and future research. At a broader level, this review proposes that introducing the TTs in pre-COPD may help reenergize the preventive approaches to health and diseases.
Collapse
Affiliation(s)
- Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosa Faner
- Universitat de Barcelona, Biomedicine Department. Immunology Unit, Barcelona, Spain
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
| | - Alvar Agustí
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
- Cathedra Salud Respiratoria, Department of Medicine, University of Barcelona, Barcelona, Spain
- Pulmonary Division, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Szakács H, Mutlu MC, Balestrieri G, Gombos F, Braun J, Kringelbach ML, Deco G, Kovács I. Navigating Pubertal Goldilocks: The Optimal Pace for Hierarchical Brain Organization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308364. [PMID: 38489748 DOI: 10.1002/advs.202308364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Adolescence is a timed process with an onset, tempo, and duration. Nevertheless, the temporal dimension, especially the pace of maturation, remains an insufficiently studied aspect of developmental progression. The primary objective is to estimate the precise influence of pubertal maturational tempo on the configuration of associative brain regions. To this end, the connection between maturational stages and the level of hierarchical organization of large-scale brain networks in 12-13-year-old females is analyzed. Skeletal maturity is used as a proxy for pubertal progress. The degree of maturity is defined by the difference between bone age and chronological age. To assess the level of hierarchical organization in the brain, the temporal dynamic of closed eye resting state high-density electroencephalography (EEG) in the alpha frequency range is analyzed. Different levels of hierarchical order are captured by the measured asymmetry in the directionality of information flow between different regions. The calculated EEG-based entropy production of participant groups is then compared with accelerated, average, and decelerated maturity. Results indicate that an average maturational trajectory optimally aligns with cerebral hierarchical order, and both accelerated and decelerated timelines result in diminished cortical organization. This suggests that a "Goldilocks rule" of brain development is favoring a particular maturational tempo.
Collapse
Affiliation(s)
- Hanna Szakács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Square, Budapest, 1088, Hungary
- Semmelweis University Doctoral School, Division of Mental Health Sciences, 26 Üllői road, Budapest, 1085, Hungary
| | - Murat Can Mutlu
- Institute of Biology, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
| | - Giulio Balestrieri
- Center for Brain and Cognition, Universitat Pompeu Fabra, 25-27 Ramon Trias Fargas, Barcelona, 08005, Spain
| | - Ferenc Gombos
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Square, Budapest, 1088, Hungary
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, 1 Mikszáth Kálmán Square, Budapest, 1088, Hungary
| | - Jochen Braun
- Institute of Biology, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Wellington Square, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Wellington Square, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra, 25-27 Ramon Trias Fargas, Barcelona, 08005, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 122-140 Carrer de Tànger, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), 23 Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Ilona Kovács
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, 1 Mikszáth Kálmán Square, Budapest, 1088, Hungary
- Institute of Psychology, Faculty of Education and Psychology, Eötvös Loránd University, 25-27 Kazinczy Street, Budapest, 1075, Hungary
| |
Collapse
|
17
|
Foreman AL, Warth B, Hessel EVS, Price EJ, Schymanski EL, Cantelli G, Parkinson H, Hecht H, Klánová J, Vlaanderen J, Hilscherova K, Vrijheid M, Vineis P, Araujo R, Barouki R, Vermeulen R, Lanone S, Brunak S, Sebert S, Karjalainen T. Adopting Mechanistic Molecular Biology Approaches in Exposome Research for Causal Understanding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7256-7269. [PMID: 38641325 PMCID: PMC11064223 DOI: 10.1021/acs.est.3c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.
Collapse
Affiliation(s)
- Amy L. Foreman
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, University
of Vienna, 1090 Vienna, Austria
| | - Ellen V. S. Hessel
- National
Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine, University
of Luxembourg, 6 avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gaia Cantelli
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helen Parkinson
- European
Molecular Biology Laboratory & European Bioinformatics Institute
(EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, U.K.
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Jelle Vlaanderen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Klara Hilscherova
- RECETOX,
Faculty of Science, Masaryk University, Kotlarska 2, Brno 60200, Czech Republic
| | - Martine Vrijheid
- Institute
for Global Health (ISGlobal), Barcelona
Biomedical Research Park (PRBB), Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat
Pompeu Fabra, Carrer
de la Mercè, 12, Ciutat Vella, 08002 Barcelona, Spain
- Centro de Investigación Biomédica en Red
Epidemiología
y Salud Pública (CIBERESP), Av. Monforte de Lemos, 3-5. Pebellón 11, Planta 0, 28029 Madrid, Spain
| | - Paolo Vineis
- Department
of Epidemiology and Biostatistics, School of Public Health, Imperial College, London SW7 2AZ, U.K.
| | - Rita Araujo
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| | | | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Heidelberglaan 8 3584 CS Utrecht, The Netherlands
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Søren Brunak
- Novo
Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Blegdamsvej 3B, 2200 København, Denmark
| | - Sylvain Sebert
- Research
Unit of Population Health, University of
Oulu, P.O. Box 8000, FI-90014 Oulu, Finland
| | - Tuomo Karjalainen
- European Commission, DG Research and Innovation, Sq. Frère-Orban 8, 1000 Bruxelles, Belgium
| |
Collapse
|
18
|
Vijayakumar N, Youssef G, Bereznicki H, Dehestani N, Silk TJ, Whittle S. The Social Determinants of Emotional and Behavioral Problems in Adolescents Experiencing Early Puberty. J Adolesc Health 2024; 74:674-681. [PMID: 37665306 DOI: 10.1016/j.jadohealth.2023.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE Earlier pubertal timing is an important predictor of emotional and behavioral problems during adolescence. The current study undertook a comprehensive investigation of whether the social environment can buffer or amplify the associations between pubertal timing and emotional and behavioral problems. METHODS Research questions were examined in the Adolescent Brain Cognitive Development (ABCD) Study, a large population representative sample in the United States. We examined interactions between pubertal timing and the shared effects of a range of proximal and distal social environmental influences (i.e., parents, peers, schools, neighborhoods, socioeconomic status) in 10- to 13-year-olds. RESULTS Results revealed significant interaction between timing and proximal social influences (i.e., the "microsystem") in predicting emotional and behavioral problems. In general, adolescents with earlier pubertal timing and unfavorable (high levels of negative and low levels of positive) influences in the microsystem exhibited greater problems. Both males and females exhibited such associations for rule-breaking problems, while females alone exhibited associations for depressive problems. Results also illustrate the relative strength of each social context at moderating risk for emotional and behavioral problems in earlier versus later pubertal maturers. DISCUSSION These findings highlight the importance of proximal social influences in buffering vulnerability for emotional and behavioral problems related to earlier puberty. Findings also illustrate the broad implications of latent environmental factors, reflecting common variance of multiple social influences that typically covary with one another.
Collapse
Affiliation(s)
- Nandita Vijayakumar
- Faculty of Health, School of Psychology, Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | - George Youssef
- Faculty of Health, School of Psychology, Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia
| | - Hannah Bereznicki
- Faculty of Health, School of Psychology, Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia
| | - Niousha Dehestani
- Faculty of Health, School of Psychology, Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - Timothy J Silk
- Faculty of Health, School of Psychology, Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sarah Whittle
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Victoria, Australia
| |
Collapse
|
19
|
Chukuigwe OA, Ilori EO, Agazie O, Umar UO, Okobi OE, Fatuki TA, Figueroa RS, Atueyi AE, Gonzalez J, Diaz-Miret M. Children With Special Health Care Needs: An Analysis of National Survey of Children's Health Database. Cureus 2024; 16:e59005. [PMID: 38800184 PMCID: PMC11127725 DOI: 10.7759/cureus.59005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Children with Special Health Care Needs (CSHCN) represent a diverse pediatric population requiring healthcare services beyond typical childhood needs. This study analyzes data from the 2016-2020 National Survey of Children's Health Database to elucidate demographic patterns, prevalence rates, and nuanced factors influencing the health and well-being of CSHCN. Methods This retrospective observational study focuses on children aged 0-17 who are identified as CSHCN based on Maternal and Child Health Bureau criteria. A comprehensive analysis of the National Survey of Children's Health (NSCH) database examines key variables, including health outcomes, healthcare utilization, parental-reported health status, and socio-demographic factors. Stratified random sampling ensures national representation. Results The study encompassed 40,335 patients, revealing that 14.6% (CI: 14.0-15.3, n=6,445) of CSHCN received care in a well-functioning system. Across age groups, 19.1% (CI: 14.0-15.3, n=6,445) of CSHCN aged 0-5 received ongoing treatment, contrasting with 5.7% (CI: 5.2-6.2, n=1,599) in the 12-17 years group. Males exhibited a prevalence of 15% (CI: 14.1-15.9, n=3,674), and females had 14.2% (CI: 13.2-15.2, n=2,771). Racial disparities were noted; non-Hispanic Native Hawaiian/Other Pacific Islander children had a 3% (CI: 1.1-8.1, n=6) prevalence. Across Federal Poverty Level categories, prevalence ranged from 12.5% (CI: 11.5-13.6, n=1,753) to 17.7% (CI: 16.6-18.9, n=2,856). Notably, 18.5% (CI: 17.4-19.7, n=3,515) of children without adverse experiences were CSHCN. Among CSHCN in two-parent currently married households, 15.9% (CI: 15.0-16.8, n=4,330) received treatment, while those in unmarried households had a prevalence of 12.9% (CI: 10.5-15.7, n=335). CSHCN with parents born in the United States showed a prevalence of 15.4% (CI: 14.7-16.1, n=5,257). Conclusion This study provides valuable insights into the prevalence and demographic patterns of CSHCN. Limitations include potential recall bias and the retrospective study design. Despite these constraints, the findings lay a foundation for future research and targeted interventions, fostering a deeper understanding of the evolving landscape of pediatric healthcare in the United States.
Collapse
Affiliation(s)
| | - Emmanuel O Ilori
- Psychiatry and Behavioral Sciences, Garnet Health Medical Center, Middletown, USA
| | - Ogochukwu Agazie
- General Medicine, College of Medicine University of Lagos, Idi Araba, NGA
| | - Umi O Umar
- Family Medicine, Medical Institute of Tambov State University Named After G.R. Derzhavin, Tambov, RUS
| | - Okelue E Okobi
- Family Medicine, Larkin Community Hospital Palm Springs Campus, Miami, USA
| | | | - Raphael S Figueroa
- Family Medicine, Larkin Community Hospital Palm Springs Campus, Miami, USA
| | - Adaobi E Atueyi
- Family Medicine, Larkin Community Hospital Palm Springs Campus, Miami, USA
| | - Julio Gonzalez
- Family Medicine, Larkin Community Hospital Palm Springs Campus, Miami, USA
| | - Miguel Diaz-Miret
- Family Medicine, Larkin Community Hospital Palm Springs Campus, Miami, USA
| |
Collapse
|
20
|
Barreca J, Swiggum M. Trauma-Informed Care in Pediatric Physical Therapy as a Standard Precaution: The Time Is Here. Pediatr Phys Ther 2024; 36:278-284. [PMID: 38568276 DOI: 10.1097/pep.0000000000001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
In this special communication, an overview of the research on trauma, resilience, and action items for the pediatric physical therapist (PT) is addressed. The experiences of early childhood, positive and negative, impact overall development and well-being throughout the lifespan. Childhood trauma can include exposure to abuse, neglect, violence, racism, or medical procedures. These adverse childhood experiences are associated with poor physical and mental health outcomes that can extend into adulthood and can appear in the pediatric rehabilitative realm as caregivers who become labeled noncompliant. Trauma is common and impacts all children; however, some populations, such as children with disabilities, have greater risk for experiencing adversity. An individual's trauma history is not always visible, necessitating a standard approach. Pediatric PTs must take an intentional approach to address the detrimental effects of trauma on those we serve. Many organizations recommend adopting trauma-informed care as the standard of care for all populations.
Collapse
Affiliation(s)
- Jessica Barreca
- Center for Interprofessional Education and Research (Dr Barreca), Saint Louis University, Saint Louis, Missouri; Doctor of Physical Therapy Program (Dr Swiggum), Wingate University, Wingate, North Carolina
| | | |
Collapse
|
21
|
Lovejoy JC. Expanding our thought horizons in systems biology and medicine. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4. [DOI: 10.3389/fsysb.2024.1385458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Kumar AAW, Huangfu G, Figtree GA, Dwivedi G. Atherosclerosis as the Damocles' sword of human evolution: insights from nonhuman ape-like primates, ancient human remains, and isolated modern human populations. Am J Physiol Heart Circ Physiol 2024; 326:H821-H831. [PMID: 38305751 DOI: 10.1152/ajpheart.00744.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Atherosclerosis is the leading cause of death worldwide, and the predominant risk factors are advanced age and high-circulating low-density lipoprotein cholesterol (LDL-C). However, the findings of atherosclerosis in relatively young mummified remains and a lack of atherosclerosis in chimpanzees despite high LDL-C call into question the role of traditional cardiovascular risk factors. The inflammatory theory of atherosclerosis may explain the discrepancies between traditional risk factors and observed phenomena in current literature. Following the divergence from chimpanzees several millennia ago, loss of function mutations in immune regulatory genes and changes in gene expression have resulted in an overactive human immune system. The ubiquity of atherosclerosis in the modern era may reflect a selective pressure that enhanced the innate immune response at the cost of atherogenesis and other chronic disease states. Evidence provided from the fields of genetics, evolutionary biology, and paleoanthropology demonstrates a sort of circular dependency between inflammation, immune system functioning, and evolution at both a species and cellular level. More recently, the role of proinflammatory stimuli, somatic mutations, and the gene-environment effect appear to be underappreciated elements in the development and progression of atherosclerosis. Neurobiological stress, metabolic syndrome, and traditional cardiovascular risk factors may instead function as intermediary links between inflammation and atherosclerosis. Therefore, considering evolution as a mechanistic process and atherosclerosis as part of the inertia of evolution, greater insight into future preventative and therapeutic interventions for atherosclerosis can be gained by examining the past.
Collapse
Affiliation(s)
- Annora Ai-Wei Kumar
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gavin Huangfu
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - Gemma A Figtree
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, St. Leonards, New South Wales, Australia
- Department of Cardiology, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Girish Dwivedi
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| |
Collapse
|
23
|
Hoang T, Cho S, Choi JY, Kang D, Shin A. Genome-Wide Interaction Study of Dietary Intake and Colorectal Cancer Risk in the UK Biobank. JAMA Netw Open 2024; 7:e240465. [PMID: 38411962 PMCID: PMC10900970 DOI: 10.1001/jamanetworkopen.2024.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Importance Candidate gene analysis approaches have shown that colorectal cancer (CRC) risk attributable to diet may differ according to genotype. A genome-wide approach further allows for the exploration of underlying pathways for associations between diet and CRC risk across the genome. Objectives To identify genetic variants that modify diet-CRC associations and to further explore the underlying pathways in the cause of CRC. Design, Setting, and Participants This nested case-control study used data on White British participants from the prospective cohort UK Biobank. Participants were recruited between March 13, 2006, and October 1, 2010, and data were censored June 25, 2021. Exposures The average frequency intake of 11 dietary factors in the year preceding baseline was obtained via a touchscreen questionnaire. After quality control for more than 93 million variants of imputed genetic data, 4 122 345 variants remained. Main Outcomes and Measures Colorectal cancer cases were identified according to the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision. Genome-wide interaction analysis was performed to test interactions between dietary factors and variants using a conditional logistic regression model. Summary statistics of interactions at the variant level were used to calculate empirical P values for interactions at gene and gene-set levels in gene-based and gene-set enrichment analyses. Results A total of 4686 participants with CRC (mean [SD] age, 60.7 [6.6] years; 2707 men [57.8%]) received a new diagnosis during a median of 12.4 years (IQR, 11.6-13.1 years) of follow-up. Once a case was detected, 3 matched controls were identified, for a total of 14 058 controls (mean [SD] age, 60.4 [6.6] years; 8121 men [57.8%]). A total of 324 variants were identified that interacted with diet consumption at the suggestive threshold (P < 1 × 10-5). In gene-based analysis, aggregation of multiple EPDR1 gene variants was found to interact with fish intake regarding CRC risk. Furthermore, gene-set enrichment analysis found that several sets of protein-coding genes, which were overrepresented with particular functions and pathways, interacted with the consumption of milk (ART), cheese (OR), tea (KRT), and alcohol (PRM and TNP). Conclusions and Relevance In this nested case-control study, the risk of CRC associated with fish intake was modified by multiple single-nucleotide polymorphisms of the EPDR1 gene. The findings further suggested possible functions and pathways that might link the consumption of milk, cheese, tea, and alcohol with CRC development.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea
| | - Sooyoung Cho
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- BK21plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Institute of Health Policy and Management, Medical Research Center, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
Wang W, Dong Y, Guo W, Zhang X, Degen AA, Bi S, Ding L, Chen X, Long R. Linkages between rumen microbiome, host, and environment in yaks, and their implications for understanding animal production and management. Front Microbiol 2024; 15:1301258. [PMID: 38348184 PMCID: PMC10860762 DOI: 10.3389/fmicb.2024.1301258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Livestock on the Qinghai-Tibetan Plateau is of great importance for the livelihood of the local inhabitants and the ecosystem of the plateau. The natural, harsh environment has shaped the adaptations of local livestock while providing them with requisite eco-services. Over time, unique genes and metabolic mechanisms (nitrogen and energy) have evolved which enabled the yaks to adapt morphologically and physiologically to the Qinghai-Tibetan Plateau. The rumen microbiota has also co-evolved with the host and contributed to the host's adaptation to the environment. Understanding the complex linkages between the rumen microbiota, the host, and the environment is essential to optimizing the rumen function to meet the growing demands for animal products while minimizing the environmental impact of ruminant production. However, little is known about the mechanisms of host-rumen microbiome-environment linkages and how they ultimately benefit the animal in adapting to the environment. In this review, we pieced together the yak's adaptation to the Qinghai-Tibetan Plateau ecosystem by summarizing the natural selection and nutritional features of yaks and integrating the key aspects of its rumen microbiome with the host metabolic efficiency and homeostasis. We found that this homeostasis results in higher feed digestibility, higher rumen microbial protein production, higher short-chain fatty acid (SCFA) concentrations, and lower methane emissions in yaks when compared with other low-altitude ruminants. The rumen microbiome forms a multi-synergistic relationship among the rumen microbiota services, their communities, genes, and enzymes. The rumen microbial proteins and SCFAs act as precursors that directly impact the milk composition or adipose accumulation, improving the milk or meat quality, resulting in a higher protein and fat content in yak milk and a higher percentage of protein and abundant fatty acids in yak meat when compared to dairy cow or cattle. The hierarchical interactions between the climate, forage, rumen microorganisms, and host genes have reshaped the animal's survival and performance. In this review, an integrating and interactive understanding of the host-rumen microbiome environment was established. The understanding of these concepts is valuable for agriculture and our environment. It also contributes to a better understanding of microbial ecology and evolution in anaerobic ecosystems and the host-environment linkages to improve animal production.
Collapse
Affiliation(s)
- Weiwei Wang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yuntao Dong
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Wei Guo
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiao Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - A. Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sisi Bi
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Luming Ding
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, China
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Mao S, Huang X, Chen R, Zhang C, Diao Y, Li Z, Wang Q, Tang S, Guo S. STW-MD: a novel spatio-temporal weighting and multi-step decision tree method for considering spatial heterogeneity in brain gene expression data. Brief Bioinform 2024; 25:bbae051. [PMID: 38385881 PMCID: PMC10883420 DOI: 10.1093/bib/bbae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Gene expression during brain development or abnormal development is a biological process that is highly dynamic in spatio and temporal. Previous studies have mainly focused on individual brain regions or a certain developmental stage. Our motivation is to address this gap by incorporating spatio-temporal information to gain a more complete understanding of brain development or abnormal brain development, such as Alzheimer's disease (AD), and to identify potential determinants of response. In this study, we propose a novel two-step framework based on spatial-temporal information weighting and multi-step decision trees. This framework can effectively exploit the spatial similarity and temporal dependence between different stages and different brain regions, and facilitate differential gene analysis in brain regions with high heterogeneity. We focus on two datasets: the AD dataset, which includes gene expression data from early, middle and late stages, and the brain development dataset, spanning fetal development to adulthood. Our findings highlight the advantages of the proposed framework in discovering gene classes and elucidating their impact on brain development and AD progression across diverse brain regions and stages. These findings align with existing studies and provide insights into the processes of normal and abnormal brain development.
Collapse
Affiliation(s)
- Shanjun Mao
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Xiao Huang
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Runjiu Chen
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Chenyang Zhang
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Yizhu Diao
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Zongjin Li
- Central University of Finance and Economics
| | - Qingzhe Wang
- Shanghai Institute for Advanced Studies, University of Science and Technology of China
| | - Shan Tang
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Lushan Road, Changsha 410000, China
| |
Collapse
|
26
|
Lu K, Gong H, Yang D, Ye M, Fang Q, Zhang XY, Wu R. Genome-Wide Network Analysis of Above- and Below-Ground Co-growth in Populus euphratica. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0131. [PMID: 38188223 PMCID: PMC10769449 DOI: 10.34133/plantphenomics.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Tree growth is the consequence of developmental interactions between above- and below-ground compartments. However, a comprehensive view of the genetic architecture of growth as a cohesive whole is poorly understood. We propose a systems biology approach for mapping growth trajectories in genome-wide association studies viewing growth as a complex (phenotypic) system in which above- and below-ground components (or traits) interact with each other to mediate systems behavior. We further assume that trait-trait interactions are controlled by a genetic system composed of many different interactive genes and integrate the Lotka-Volterra predator-prey model to dissect phenotypic and genetic systems into pleiotropic and epistatic interaction components by which the detailed genetic mechanism of above- and below-ground co-growth can be charted. We apply the approach to analyze linkage mapping data of Populus euphratica, which is the only tree species that can grow in the desert, and characterize several loci that govern how above- and below-ground growth is cooperated or competed over development. We reconstruct multilayer and multiplex genetic interactome networks for the developmental trajectories of each trait and their developmental covariation. Many significant loci and epistatic effects detected can be annotated to candidate genes for growth and developmental processes. The results from our model may potentially be useful for marker-assisted selection and genetic editing in applied tree breeding programs. The model provides a general tool to characterize a complete picture of pleiotropic and epistatic genetic architecture in growth traits in forest trees and any other organisms.
Collapse
Affiliation(s)
- Kaiyan Lu
- College of Science,
Beijing Forestry University, Beijing 100083, P. R. China
| | - Huiying Gong
- Center for Computational Biology, College of Biological Sciences and Technology,
Beijing Forestry University, Beijing 100083, P. R. China
| | - Dengcheng Yang
- Center for Computational Biology, College of Biological Sciences and Technology,
Beijing Forestry University, Beijing 100083, P. R. China
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology,
Beijing Forestry University, Beijing 100083, P. R. China
| | - Qing Fang
- Faculty of Science,
Yamagata University, Yamagata 990, Japan
| | - Xiao-Yu Zhang
- College of Science,
Beijing Forestry University, Beijing 100083, P. R. China
| | - Rongling Wu
- Yanqi Lake BeijingInstitute of Mathematical Sciences and Applications, Beijing 101408, China
- Center for Computational Biology, College of Biological Sciences and Technology,
Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
27
|
Accardi G, Aiello A, Aprile S, Calabrò A, Caldarella R, Caruso C, Ciaccio M, Dieli F, Ligotti ME, Meraviglia S, Candore G. The Phenotypic Characterization of the Oldest Italian Man from December 28, 2020, to September 23, 2021, A.T., Strengthens the Idea That the Immune System can Play a Key Role in the Attainment of Extreme Longevity. J Clin Med 2023; 12:7591. [PMID: 38137660 PMCID: PMC10744028 DOI: 10.3390/jcm12247591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this paper, we present demographic, clinical, anamnestic, cognitive, and functional data, as well as haematological, haematochemical, immunological, and genetic parameters of an exceptional individual: A.T., a semi-supercentenarian who held the title of the oldest living Italian male centenarian from 28 December 2020, to 23 September 2021. The purpose of this study is to provide fresh insights into extreme phenotypes, with a particular focus on immune-inflammatory parameters. To the best of our knowledge, this study represents the first phenotypic investigation of a semi-supercentenarian, illustrating both INFLA-score, a metric designed to assess the cumulative impact of inflammatory markers and indicators of age-related immune phenotype (ARIP), recognized as significant gauges of biological ageing. The aim of this study was, indeed, to advance our understanding of the role of immune-inflammatory responses in achieving extreme longevity. The results of laboratory tests, as well as clinical history and interview data, when compared to the results of our recent study on Sicilian centenarians, demonstrate an excellent state of health considering his age. Consistent with previous studies, we observed increased IL-6 inflammatory markers and INFLA score in A.T. More interestingly, the semi-supercentenarian showed values of ARIP indicators such as naïve CD4+ cells, CD4+/CD8+ ratio, and CD4+TN/TM ratio in the range of young adult individuals, suggesting that his immune system's biological age was younger than the chronological one. The results support the notion that the immune system can play a role in promoting extreme longevity. However, this does not rule out the involvement of other body systems or organs in achieving extreme longevity.
Collapse
Affiliation(s)
- Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Stefano Aprile
- Unit of Transfusion Medicine, San Giovanni di Dio Hospital, 92100 Agrigento, Italy;
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Rosalia Caldarella
- Department of Laboratory medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Marcello Ciaccio
- Department of Laboratory medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
- Section of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (F.D.); (S.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (F.D.); (S.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| |
Collapse
|
28
|
Bollati V, Biganzoli EM, Carugno M. What if … ? A new hypothesis to approach the relationship between environmental stimuli, biological features, and health. Heliyon 2023; 9:e22985. [PMID: 38058436 PMCID: PMC10696241 DOI: 10.1016/j.heliyon.2023.e22985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
The "exposome" covers all disease determinants across a lifetime. Many exposome factors could induce epigenetic changes, especially in DNA methylation. Yet, the role of these modifications in disease development remains partly understood. Although the possible relationship among the exposome factors, epigenetic modifications, and health/disease has been investigated extensively, all previous studies start from the assumption that epigenetic changes are always detrimental to (or represent an adverse effect on) the health of the affected individual. We hereby propose a new approach to investigate these modifications, and their possible relation with human health, in the context of the exposome. Our hypothesis is based on the possibility that some environmentally-induced changes are plastic entities, responding physiologically to the environment to allow individual adaptation. Briefly, after evaluating the association between environmental exposure and the variation of a given biological parameter through regression models, we use the estimated regression function to predict values for each study subject. We then calculated the relative percent difference (PD) between the measured (i.e., observed) biological parameter and the predicted (i.e., expected) from the model. Notably, we have tested our hypothesis using two distinct models, specifically focusing on LINE-1 methylation and extracellular vesicles (EVs). We hypothesize that the greater the difference between the observed and the expected, the greater the inability of the subject to adapt to external stimuli.
Collapse
Affiliation(s)
- Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan – Italy
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan – Italy
| | - Elia Mario Biganzoli
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, 20157 Milan, Italy
- Data Science Research Center (DSRC), University of Milan, 20157 Milan, Italy
| | - Michele Carugno
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan – Italy
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan – Italy
| |
Collapse
|
29
|
Serrano-Juárez CA, Prieto-Corona B, Rodríguez-Camacho M, Sandoval-Lira L, Villalva-Sánchez ÁF, Yáñez-Téllez MG, López MFR. Neuropsychological Genotype-Phenotype in Patients with Williams Syndrome with Atypical Deletions: A Systematic Review. Neuropsychol Rev 2023; 33:891-911. [PMID: 36520254 DOI: 10.1007/s11065-022-09571-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/04/2022] [Indexed: 12/16/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a microdeletion in the q11.23 region of chromosome 7. Recent case series reports and clinical case studies have suggested that the cognitive, behavioral, emotional, and social profile in WS could depend on the genes involved in the deletion. The objective of this systematic review was to analyze and synthesize the variability of the cognitive and behavioral profile of WS with atypical deletion and its probable relationship with the affected genes. The medical subject headings searched were "Williams syndrome," "genotype," "phenotype," "cognitive profile," and "atypical deletion." The studies included were in English or Spanish, with children and adults, and published between January 2000 and October 2022. Twenty-three studies are reported. The characteristics of the participants, the genes involved, the neuropsychological domains and instruments, and the prevalence of the WS cognitive profile criteria were used for the genotype-phenotype analysis. The genes with a major impact on the cognitive profile of WS were (a) LIMK1 and those belonging to the GTF2I family, the former with a greater influence on visuospatial abilities; (b) GTF2IRD1 and GTF2I, which have an impact on intellectual capacity as well as on visuospatial and social skills; (c) FZD9, BAZ1B, STX1A, and CLIP2, which influence the cognitive profile if other genes are also effected; and (d) GTF2IRD2, which is related to the severity of the effect on visuospatial and social skills, producing a behavioral phenotype like that of the autism spectrum. The review revealed four neuropsychological phenotypes, depending on the genes involved, and established the need for more comprehensive study of the neuropsychological profile of these patients. Based on the results found, we propose a model for the investigation of and clinical approach to the WS neuropsychological phenotype.
Collapse
Affiliation(s)
- Carlos Alberto Serrano-Juárez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Belén Prieto-Corona
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México.
| | - Mario Rodríguez-Camacho
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Lucero Sandoval-Lira
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Ángel Fernando Villalva-Sánchez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Ma Guillermina Yáñez-Téllez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | | |
Collapse
|
30
|
Mucignat-Caretta C, Soravia G. Positive or negative environmental modulations on human brain development: the morpho-functional outcomes of music training or stress. Front Neurosci 2023; 17:1266766. [PMID: 38027483 PMCID: PMC10657192 DOI: 10.3389/fnins.2023.1266766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
In the last couple of decades, the study of human living brain has benefitted of neuroimaging and non-invasive electrophysiological techniques, which are particularly valuable during development. A number of studies allowed to trace the usual stages leading from pregnancy to adult age, and relate them to functional and behavioral measurements. It was also possible to explore the effects of some interventions, behavioral or not, showing that the commonly followed pathway to adulthood may be steered by external interventions. These events may result in behavioral modifications but also in structural changes, in some cases limiting plasticity or extending/modifying critical periods. In this review, we outline the healthy human brain development in the absence of major issues or diseases. Then, the effects of negative (different stressors) and positive (music training) environmental stimuli on brain and behavioral development is depicted. Hence, it may be concluded that the typical development follows a course strictly dependent from environmental inputs, and that external intervention can be designed to positively counteract negative influences, particularly at young ages. We also focus on the social aspect of development, which starts in utero and continues after birth by building social relationships. This poses a great responsibility in handling children education and healthcare politics, pointing to social accountability for the responsible development of each child.
Collapse
Affiliation(s)
| | - Giulia Soravia
- Department of Mother and Child Health, University of Padova, Padova, Italy
| |
Collapse
|
31
|
Button AM, Paluch RA, Schechtman KB, Wilfley DE, Geller N, Quattrin T, Cook SR, Eneli IU, Epstein LH. Parents, but not their children, demonstrate greater delay discounting with resource scarcity. BMC Public Health 2023; 23:1983. [PMID: 37828503 PMCID: PMC10568819 DOI: 10.1186/s12889-023-16832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Individuals with obesity tend to discount the future (delay discounting), focusing on immediate gratification. Delay discounting is reliably related to indicators of economic scarcity (i.e., insufficient resources), including lower income and decreased educational attainment in adults. It is unclear whether the impact of these factors experienced by parents also influence child delay discounting between the ages of 8 and 12-years in families with obesity. METHODS The relationship between indices of family income and delay discounting was studied in 452 families with parents and 6-12-year-old children with obesity. Differences in the relationships between parent economic, educational and Medicaid status, and parent and child delay discounting were tested. RESULTS Results showed lower parent income (p = 0.019) and Medicaid status (p = 0.021) were differentially related to greater parent but not child delay discounting among systematic responders. CONCLUSIONS These data suggest differences in how indicators of scarcity influence delay discounting for parents and children, indicating that adults with scarce resources may be shaped to focus on immediate needs instead of long-term goals. It is possible that parents can reduce the impact of economic scarcity on their children during preadolescent years. These findings suggest a need for policy change to alleviate the burden of scarce conditions and intervention to modify delay discounting rate and to improve health-related choices and to address weight disparities.
Collapse
Affiliation(s)
- Alyssa M Button
- Division of Population and Public Health Science, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Rocco A Paluch
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 3435 Main Street, Building #26, Buffalo, NY, 14214, USA
| | - Kenneth B Schechtman
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Denise E Wilfley
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nancy Geller
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 3435 Main Street, Building #26, Buffalo, NY, 14214, USA
| | - Stephen R Cook
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ihouma U Eneli
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Leonard H Epstein
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 3435 Main Street, Building #26, Buffalo, NY, 14214, USA.
| |
Collapse
|
32
|
Similuk M, Kuijpers T. Nature and nurture: understanding phenotypic variation in inborn errors of immunity. Front Cell Infect Microbiol 2023; 13:1183142. [PMID: 37780853 PMCID: PMC10538643 DOI: 10.3389/fcimb.2023.1183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
The overall disease burden of pediatric infection is high, with widely varying clinical outcomes including death. Among the most vulnerable children, those with inborn errors of immunity, reduced penetrance and variable expressivity are common but poorly understood. There are several genetic mechanisms that influence phenotypic variation in inborn errors of immunity, as well as a body of knowledge on environmental influences and specific pathogen triggers. Critically, recent advances are illuminating novel nuances for fundamental concepts on disease penetrance, as well as raising new areas of inquiry. The last few decades have seen the identification of almost 500 causes of inborn errors of immunity, as well as major advancements in our ability to characterize somatic events, the microbiome, and genotypes across large populations. The progress has not been linear, and yet, these developments have accumulated into an enhanced ability to diagnose and treat inborn errors of immunity, in some cases with precision therapy. Nonetheless, many questions remain regarding the genetic and environmental contributions to phenotypic variation both within and among families. The purpose of this review is to provide an updated summary of key concepts in genetic and environmental contributions to phenotypic variation within inborn errors of immunity, conceptualized as including dynamic, reciprocal interplay among factors unfolding across the key dimension of time. The associated findings, potential gaps, and implications for research are discussed in turn for each major influencing factor. The substantial challenge ahead will be to organize and integrate information in such a way that accommodates the heterogeneity within inborn errors of immunity to arrive at a more comprehensive and accurate understanding of how the immune system operates in health and disease. And, crucially, to translate this understanding into improved patient care for the millions at risk for serious infection and other immune-related morbidity.
Collapse
Affiliation(s)
- Morgan Similuk
- Centralized Sequencing Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Butera A, Smirnova L, Ferrando‐May E, Hartung T, Brunner T, Leist M, Amelio I. Deconvoluting gene and environment interactions to develop an "epigenetic score meter" of disease. EMBO Mol Med 2023; 15:e18208. [PMID: 37538003 PMCID: PMC10493573 DOI: 10.15252/emmm.202318208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Human health is determined both by genetics (G) and environment (E). This is clearly illustrated in groups of individuals who are exposed to the same environmental factor showing differential responses. A quantitative measure of the gene-environment interactions (GxE) effects has not been developed and in some instances, a clear consensus on the concept has not even been reached; for example, whether cancer is predominantly emerging from "bad luck" or "bad lifestyle" is still debated. In this article, we provide a panel of examples of GxE interaction as drivers of pathogenesis. We highlight how epigenetic regulations can represent a common connecting aspect of the molecular bases. Our argument converges on the concept that the GxE is recorded in the cellular epigenome, which might represent the key to deconvolute these multidimensional intricated layers of regulation. Developing a key to decode this epigenetic information would provide quantitative measures of disease risk. Analogously to the epigenetic clock introduced to estimate biological age, we provocatively propose the theoretical concept of an "epigenetic score-meter" to estimate disease risk.
Collapse
Affiliation(s)
- Alessio Butera
- Chair for Systems ToxicologyUniversity of KonstanzKonstanzGermany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMDUSA
| | - Elisa Ferrando‐May
- Deutsches Krebsforschungszentrum (DKFZ)HeidelbergGermany
- University of KonstanzKonstanzGermany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMDUSA
- Chair for Evidence‐based ToxicologyJohns Hopkins UniversityBaltimoreMDUSA
| | - Thomas Brunner
- Chair for in Biochemical PharmacologyUniversity of KonstanzKonstanzGermany
| | - Marcel Leist
- Chair for in vitro Toxicology and Biomedicine, Inaugurated by the Doerenkamp‐Zbinden FoundationUniversity of KonstanzKonstanzGermany
| | - Ivano Amelio
- Chair for Systems ToxicologyUniversity of KonstanzKonstanzGermany
| |
Collapse
|
34
|
Slopen N, Umaña-Taylor AJ, Shonkoff JP, Carle AC, Hatzenbuehler ML. State-Level Anti-Immigrant Sentiment and Policies and Health Risks in US Latino Children. Pediatrics 2023; 152:e2022057581. [PMID: 37581234 PMCID: PMC10565791 DOI: 10.1542/peds.2022-057581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Although systemic inequities, broadly defined, are associated with health disparities in adults, there is a dearth of research linking contextual measures of exclusionary policies or prejudicial attitudes to health impairments in children, particularly among Latino populations. In this study, we examined a composite measure of systemic inequities in relation to the cooccurrence of multiple health problems in Latino children in the United States. METHODS Participants included 17 855 Latino children aged 3 to 17 years from the National Survey of Children's Health (2016-2020). We measured state-level systemic inequities using a factor score that combined an index of exclusionary state policies toward immigrants and aggregated survey data on prejudicial attitudes toward immigrants and Latino individuals. Caregivers reported on 3 categories of child health problems: common health difficulties in the past year, current chronic physical health conditions, and current mental health conditions. For each category, we constructed a variable reflecting 0, 1, or 2 or more conditions. RESULTS In models adjusted for sociodemographic covariates, interpersonal discrimination, and state-level income inequality, systemic inequities were associated with 1.13 times the odds of a chronic physical health condition (95% confidence interval: 1.02-1.25) and 1.24 times the odds of 2 or more mental health conditions (95% confidence interval: 1.06-1.45). CONCLUSIONS Latino children residing in states with higher levels of systemic inequity are more likely to experience mental health or chronic physical health conditions relative to those in states with lower levels of systemic inequity.
Collapse
Affiliation(s)
- Natalie Slopen
- Department of Social & Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Center on the Developing Child
| | | | - Jack P. Shonkoff
- Department of Social & Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Center on the Developing Child
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Adam C. Carle
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Psychology University of Cincinnati College of Arts and Sciences
| | | |
Collapse
|
35
|
Gastellu T, Le Bizec B, Rivière G. Characterisation of the risk associated with chronic lifetime exposure to mixture of chemical hazards: case study of trace elements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:951-970. [PMID: 37428801 DOI: 10.1080/19440049.2023.2231086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Risk assessment methodology, mostly commonly used, faces the complexity of the environment. Populations are exposed to multiple sources of chemicals throughout life and the chemical mixtures they are exposed change during time (lifestyle factors, regulatory decisions, etc). The risk assessment needs to consider these dynamics and the evolution of the body with age, in order to refine the exposure assessment to chemicals and to predict the health impact of these exposures. This review highlights the latest methodologies developed to improve risk assessment, especially cor heavy metals. The methodologies aim to better describe the chemical toxicokinetic and toxicodynamic as well as the exposure assessment. Human Biomonitoring (HBM) data give great opportunities to link biomarkers of exposure with an adverse effect. Physiologically-Based Toxicokinetic (PBTK) models are more and more used to simulate the evolution of biomarkers in organisms, considering the external exposures and the physiological evolutions. PBTK models may also be used to determine the routes of exposure or to predict the impacts of schemes of exposure. The major limit is the integration of several chemicals in mixture with common adverse effects and the interactions between them.
Collapse
Affiliation(s)
- Thomas Gastellu
- Oniris, INRAE, LABERCA, Nantes, France
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Gilles Rivière
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
36
|
Sharma NK, Sarode SC. Artificial intelligence vs. evolving super-complex tumor intelligence: critical viewpoints. Front Artif Intell 2023; 6:1220744. [PMID: 37560445 PMCID: PMC10406576 DOI: 10.3389/frai.2023.1220744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Recent developments in various domains have led to a growing interest in the potential of artificial intelligence to enhance our lives and environments. In particular, the application of artificial intelligence in the management of complex human diseases, such as cancer, has garnered significant attention. The evolution of artificial intelligence is thought to be influenced by multiple factors, including human intervention and environmental factors. Similarly, tumors, being heterogeneous and complex diseases, continue to evolve due to changes in the physical, chemical, and biological environment. Additionally, the concept of cellular intelligence within biological systems has been recognized as a potential attribute of biological entities. Therefore, it is plausible that the tumor intelligence present in cancer cells of affected individuals could undergo super-evolution due to changes in the pro-tumor environment. Thus, a comparative analysis of the evolution of artificial intelligence and super-complex tumor intelligence could yield valuable insights to develop better artificial intelligence-based tools for cancer management.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
37
|
Alvizi L, Nani D, Brito LA, Kobayashi GS, Passos-Bueno MR, Mayor R. Neural crest E-cadherin loss drives cleft lip/palate by epigenetic modulation via pro-inflammatory gene-environment interaction. Nat Commun 2023; 14:2868. [PMID: 37225711 PMCID: PMC10209087 DOI: 10.1038/s41467-023-38526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Gene-environment interactions are believed to play a role in multifactorial phenotypes, although poorly described mechanistically. Cleft lip/palate (CLP), the most common craniofacial malformation, has been associated with both genetic and environmental factors, with little gene-environment interaction experimentally demonstrated. Here, we study CLP families harbouring CDH1/E-Cadherin variants with incomplete penetrance and we explore the association of pro-inflammatory conditions to CLP. By studying neural crest (NC) from mouse, Xenopus and humans, we show that CLP can be explained by a 2-hit model, where NC migration is impaired by a combination of genetic (CDH1 loss-of-function) and environmental (pro-inflammatory activation) factors, leading to CLP. Finally, using in vivo targeted methylation assays, we demonstrate that CDH1 hypermethylation is the major target of the pro-inflammatory response, and a direct regulator of E-cadherin levels and NC migration. These results unveil a gene-environment interaction during craniofacial development and provide a 2-hit mechanism to explain cleft lip/palate aetiology.
Collapse
Affiliation(s)
- Lucas Alvizi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Diogo Nani
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Luciano Abreu Brito
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gerson Shigeru Kobayashi
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
38
|
Vijayakumar N, Whittle S. A systematic review into the role of pubertal timing and the social environment in adolescent mental health problems. Clin Psychol Rev 2023; 102:102282. [PMID: 37094393 DOI: 10.1016/j.cpr.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/19/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Affiliation(s)
- Nandita Vijayakumar
- Deakin University, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| |
Collapse
|
39
|
Damiani F, Cornuti S, Tognini P. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023; 231:109491. [PMID: 36924923 DOI: 10.1016/j.neuropharm.2023.109491] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Neuroplasticity refers to the ability of brain circuits to reorganize and change the properties of the network, resulting in alterations in brain function and behavior. It is traditionally believed that neuroplasticity is influenced by external stimuli, learning, and experience. Intriguingly, there is new evidence suggesting that endogenous signals from the body's periphery may play a role. The gut microbiota, a diverse community of microorganisms living in harmony with their host, may be able to influence plasticity through its modulation of the gut-brain axis. Interestingly, the maturation of the gut microbiota coincides with critical periods of neurodevelopment, during which neural circuits are highly plastic and potentially vulnerable. As such, dysbiosis (an imbalance in the gut microbiota composition) during early life may contribute to the disruption of normal developmental trajectories, leading to neurodevelopmental disorders. This review aims to examine the ways in which the gut microbiota can affect neuroplasticity. It will also discuss recent research linking gastrointestinal issues and bacterial dysbiosis to various neurodevelopmental disorders and their potential impact on neurological outcomes.
Collapse
Affiliation(s)
| | - Sara Cornuti
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Paola Tognini
- Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| |
Collapse
|
40
|
Cecil CAM, Neumann A, Walton E. Epigenetics applied to child and adolescent mental health: Progress, challenges and opportunities. JCPP ADVANCES 2023; 3:jcv2.12133. [PMID: 36910008 PMCID: PMC7614304 DOI: 10.1002/jcv2.12133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Epigenetic processes are fast emerging as a promising molecular system in the search for both biomarkers and mechanisms underlying human health and disease risk, including psychopathology. Methods In this review, we discuss the application of epigenetics (specifically DNA methylation) to research in child and adolescent mental health, with a focus on the use of developmentally sensitive datasets, such as prospective, population-based cohorts. We look back at lessons learned to date, highlight current developments in the field and areas of priority for future research. We also reflect on why epigenetic research on child and adolescent mental health currently lags behind other areas of epigenetic research and what we can do to overcome existing barriers. Results To move the field forward, we advocate for the need of large-scale, harmonized, collaborative efforts that explicitly account for the time-varying nature of epigenetic and mental health data across development. Conclusion We conclude with a perspective on what the future may hold in terms of translational applications as more robust signals emerge from epigenetic research on child and adolescent mental health.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.,Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Neumann
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| |
Collapse
|
41
|
Honorato-Mauer J, Xavier G, Ota VK, Chehimi SN, Mafra F, Cuóco C, Ito LT, Ormond R, Asprino PF, Oliveira A, Bugiga AVG, Torrecilhas AC, Bressan R, Manfro GG, Miguel EC, Rohde LA, Pan PM, Salum GA, Pellegrino R, Belangero S, Santoro ML. Alterations in microRNA of extracellular vesicles associated with major depression, attention-deficit/hyperactivity and anxiety disorders in adolescents. Transl Psychiatry 2023; 13:47. [PMID: 36746925 PMCID: PMC9902559 DOI: 10.1038/s41398-023-02326-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are present in numerous peripheral bodily fluids and function in critical biological processes, including cell-to-cell communication. Most relevant to the present study, EVs contain microRNAs (miRNAs), and initial evidence from the field indicates that miRNAs detected in circulating EVs have been previously associated with mental health disorders. Here, we conducted an exploratory longitudinal and cross-sectional analysis of miRNA expression in serum EVs from adolescent participants. We analyzed data from a larger ongoing cohort study, evaluating 116 adolescent participants at two time points (wave 1 and wave 2) separated by three years. Two separate data analyses were employed: A cross-sectional analysis compared individuals diagnosed with Major Depressive Disorder (MDD), Anxiety disorders (ANX) and Attention deficit/Hyperactivity disorder (ADHD) with individuals without psychiatric diagnosis at each time point. A longitudinal analysis assessed changes in miRNA expression over time between four groups showing different diagnostic trajectories (persistent diagnosis, first incidence, remitted and typically developing/control). Total EVs were isolated, characterized by size distribution and membrane proteins, and miRNAs were isolated and sequenced. We then selected differentially expressed miRNAs for target prediction and pathway enrichment analysis. In the longitudinal analysis, we did not observe any statistically significant results. In the cross-sectional analysis: in the ADHD group, we observed an upregulation of miR-328-3p at wave 1 only; in the MDD group, we observed a downregulation of miR-4433b-5p, miR-584-5p, miR-625-3p, miR-432-5p and miR-409-3p at wave 2 only; and in the ANX group, we observed a downregulation of miR-432-5p, miR-151a-5p and miR-584-5p in ANX cases at wave 2 only. Our results identified previously observed and novel differentially expressed miRNAs and their relationship with three mental health disorders. These data are consistent with the notion that these miRNAs might regulate the expression of genes associated with these traits in genome-wide association studies. The findings support the promise of continued identification of miRNAs contained within peripheral EVs as biomarkers for mental health disorders.
Collapse
Affiliation(s)
- Jessica Honorato-Mauer
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Gabriela Xavier
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Samar Nasser Chehimi
- Center for Applied Genomics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Fernanda Mafra
- Center for Applied Genomics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Cássia Cuóco
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Lucas Toshio Ito
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Rafaella Ormond
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | | | - Adrielle Oliveira
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Amanda Victoria Gomes Bugiga
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Rodrigo Bressan
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
| | - Gisele Gus Manfro
- Departamento de Psiquiatria, Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- National Institute of Developmental Psychiatry, CNPq, São Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento de Psiquiatria, Faculdade de Medicina da USP- FMUSP, Instituto de Psiquiatria do HCFMUSP, São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry, CNPq, São Paulo, Brazil
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Mario Pan
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Giovanni Abrahão Salum
- National Institute of Developmental Psychiatry, CNPq, São Paulo, Brazil
- Child Mind Institute, New York, NY, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
- The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sintia Belangero
- Disciplina de Genética, Departamento de Morfologia e Genética - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcos Leite Santoro
- Laboratório de Neurociências Integrativas (LiNC - UNIFESP), São Paulo, Brazil.
- Disciplina de Biologia Molecular, Departamento de Bioquímica, - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
42
|
Sergouniotis PI, Fitzgerald T, Birney E. From genetic variation to precision medicine. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e7. [PMID: 38550939 PMCID: PMC10953743 DOI: 10.1017/pcm.2022.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2025]
Abstract
Genetics has been an important tool for discovering new aspects of biology across life. In humans, there is growing momentum behind the application of this knowledge to drive innovation in clinical care, most notably through developments in precision medicine. Nowhere has the impact of genetics on clinical practice been more striking than in the field of rare disorders. For most of these conditions, individual disease susceptibility is influenced by DNA sequence variation in a single or a small number of genes. In contrast, most common disorders are multifactorial and are caused by a complex interplay of multiple genetic, environmental and stochastic factors. The longstanding division of human disease genetics into rare and common components has obscured the continuum of human traits and echoes aspects of the century-old debate between the Mendelian and biometric views of human genetics. In this article, we discuss the differences in data and concepts between rare and common disease genetics. Opportunities to unify these two areas are noted and the importance of adopting a holistic perspective that integrates diverse genetic and environmental factors is discussed.
Collapse
Affiliation(s)
- Panagiotis I. Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Manchester Centre for Genomic Medicine, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Tomas Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| |
Collapse
|
43
|
Lu K, Wang X, Gong H, Yang D, Ye M, Fang Q, Zhang XY, Wu R. The genetic architecture of trait covariation in Populus euphratica, a desert tree. FRONTIERS IN PLANT SCIENCE 2023; 14:1149879. [PMID: 37089657 PMCID: PMC10113509 DOI: 10.3389/fpls.2023.1149879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction The cooperative strategy of phenotypic traits during the growth of plants reflects how plants allocate photosynthesis products, which is the most favorable decision for them to optimize growth, survival, and reproduction response to changing environment. Up to now, we still know little about why plants make such decision from the perspective of biological genetic mechanisms. Methods In this study, we construct an analytical mapping framework to explore the genetic mechanism regulating the interaction of two complex traits. The framework describes the dynamic growth of two traits and their interaction as Differential Interaction Regulatory Equations (DIRE), then DIRE is embedded into QTL mapping model to identify the key quantitative trait loci (QTLs) that regulate this interaction and clarify the genetic effect, genetic contribution and genetic network structure of these key QTLs. Computer simulation experiment proves the reliability and practicability of our framework. Results In order to verify that our framework is universal and flexible, we applied it to two sets of data from Populus euphratica, namely, aboveground stem length - underground taproot length, underground root number - underground root length, which represent relationships of phenotypic traits in two spatial dimensions of plant architecture. The analytical result shows that our model is well applicable to datasets of two dimensions. Discussion Our model helps to better illustrate the cooperation-competition patterns between phenotypic traits, and understand the decisions that plants make in a specific environment that are most conducive to their growth from the genetic perspective.
Collapse
Affiliation(s)
- Kaiyan Lu
- College of Science, Beijing Forestry University, Beijing, China
| | - Xueshun Wang
- Department of Artificial Intelligence and Data Science, Guangzhou Xinhua University, Guangzhou, China
| | - Huiying Gong
- College of Biological Sciences and Technology, Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Dengcheng Yang
- College of Biological Sciences and Technology, Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Meixia Ye
- College of Biological Sciences and Technology, Center for Computational Biology, Beijing Forestry University, Beijing, China
| | - Qing Fang
- Faculty of Science, Yamagata University, Yamagata, Japan
| | - Xiao-Yu Zhang
- College of Science, Beijing Forestry University, Beijing, China
- *Correspondence: Xiao-Yu Zhang, ; Rongling Wu,
| | - Rongling Wu
- College of Biological Sciences and Technology, Center for Computational Biology, Beijing Forestry University, Beijing, China
- Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
- *Correspondence: Xiao-Yu Zhang, ; Rongling Wu,
| |
Collapse
|
44
|
Scher MS. A Bio-Social Model during the First 1000 Days Optimizes Healthcare for Children with Developmental Disabilities. Biomedicines 2022; 10:3290. [PMID: 36552046 PMCID: PMC9775202 DOI: 10.3390/biomedicines10123290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Most children with developmental disabilities (DD) live in resource-limited countries (LMIC) or high-income country medical deserts (HICMD). A social contract between healthcare providers and families advocates for accurate diagnoses and effective interventions to treat diseases and toxic stressors. This bio-social model emphasizes reproductive health of women with trimester-specific maternal and pediatric healthcare interactions. Lifelong neuronal connectivity is more likely established across 80% of brain circuitries during the first 1000 days. Maladaptive gene-environment (G x E) interactions begin before conception later presenting as maternal-placental-fetal (MPF) triad, neonatal, or childhood neurologic disorders. Synergy between obstetrical and pediatric healthcare providers can reduce neurologic morbidities. Partnerships between healthcare providers and families should begin during the first 1000 days to address diseases more effectively to moderate maternal and childhood adverse effects. This bio-social model lowers the incidence and lessens the severity of sequalae such as DD. Access to genetic-metabolomic, neurophysiologic and neuroimaging evaluations enhances clinical decision-making for more effective interventions before full expression of neurologic dysfunction. Diagnostic accuracy facilitates developmental interventions for effective preschool planning. A description of a mother-child pair in a HIC emphasizes the time-sensitive importance for early interventions that influenced brain health throughout childhood. Partnership by her parents with healthcare providers and educators provided effective healthcare and lessened adverse effects. Effective educational interventions were later offered through her high school graduation. Healthcare disparities in LMIC and HICMD require that this bio-social model of care begin before the first 1000 days to effectively treat the most vulnerable women and children. Prioritizing family planning followed by prenatal, neonatal and child healthcare improves wellness and brain health. Familiarity with educational neuroscience for teachers applies neurologic diagnoses for effective individual educational plans. Integrating diversity and inclusion into medical and educational services cross socioeconomic, ethnic, racial, and cultural barriers with life-course benefits. Families require knowledge to recognize risks for their children and motivation to sustain relationships with providers and educators for optimal outcomes. The WHO sustainable development goals promote brain health before conception through the first 1000 days. Improved education, employment, and social engagement for all persons will have intergenerational and transgenerational benefits for communities and nations.
Collapse
Affiliation(s)
- Mark S. Scher
- Pediatrics and Neurology, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Pediatrics, Division of Pediatric Neurology Fetal/Neonatal Neurology Program, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
45
|
Diamanti T, Prete R, Battista N, Corsetti A, De Jaco A. Exposure to Antibiotics and Neurodevelopmental Disorders: Could Probiotics Modulate the Gut-Brain Axis? Antibiotics (Basel) 2022; 11:1767. [PMID: 36551423 PMCID: PMC9774196 DOI: 10.3390/antibiotics11121767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
In order to develop properly, the brain requires the intricate interconnection of genetic factors and pre-and postnatal environmental events. The gut-brain axis has recently raised considerable interest for its involvement in regulating the development and functioning of the brain. Consequently, alterations in the gut microbiota composition, due to antibiotic administration, could favor the onset of neurodevelopmental disorders. Literature data suggest that the modulation of gut microbiota is often altered in individuals affected by neurodevelopmental disorders. It has been shown in animal studies that metabolites released by an imbalanced gut-brain axis, leads to alterations in brain function and deficits in social behavior. Here, we report the potential effects of antibiotic administration, before and after birth, in relation to the risk of developing neurodevelopmental disorders. We also review the potential role of probiotics in treating gastrointestinal disorders associated with gut dysbiosis after antibiotic administration, and their possible effect in ameliorating neurodevelopmental disorder symptoms.
Collapse
Affiliation(s)
- Tamara Diamanti
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Natalia Battista
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
46
|
Mutua B, Chelangat R, Mustafa B, Were T, Makani J, Sowayi G, Okoth P. High-performance liquid chromatography local reference ranges of hemoglobin fractions (HbA, HbA2, and HbF) in detection of hemoglobinopathies in western Kenya. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.1186/s43162-022-00187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Western Kenya, being a malaria-endemic region, has a high prevalence of hemoglobinopathies mostly sickle cell and thalassemia. The hemoglobin fractions or variants, HbA, HbA2, and HbF, serve as biomarkers for the detection of hemoglobinopathies and are commonly used in laboratory screening and diagnosis of these diseases. Diagnosis of diseases entails accurate and precise representation of a patient’s condition. This is the main aim of International Organization for Standardization (ISO) certified laboratories of offering a reliable diagnostic guide for the various diseases. For this to be realized, valid normal reference ranges are required. Such are reference values that are valid for local population of the setting where they are to be used is critical in quantitative diagnostic tests. Local normal reference ranges are necessary because research has revealed variations in the phenotypic expression of the genes for biological characteristics in humans inhabiting different geographical regions, owing to epigenetic differences imposed by physical environments, and associated sociocultural influences, even in cases of similarity in gene patterns. No local normal reference ranges for hemoglobin fractions are reported for Kenya and Africa as a whole. Laboratories therefore continue to use those found in textbooks and brochures from manufacturers of diagnostic reagents, which are derived from populations of geographical locations faraway and socioculturally different from Kenya. This could be misleading in diagnosis of hemoglobinopathies in western Kenya and indeed all of Kenya. Therefore, the present study aimed at exploring the possibility of developing local normal reference ranges for the concentrations of hemoglobin fractions, HbA, HbA2, and HbF, based on hemoglobinopathy-free, non-anemic subjects attending the Aga Khan Hospital Kisumu in western Kenya and its satellites. The hospital serves the populations inhabiting in and predominantly indigenous to western Kenya.
Objectives
To derive the 95% confidence intervals for hemoglobin fractions (HbA, HbA2, and HbF), evaluate the potential of these intervals as normal reference values for the local population by use of concentrations for non-anemic hemoglobinopathy-free subjects and compare the performance of the current HPLC normal ranges with those intervals we derived, based on receiver operating characteristic (ROC) curve.
Materials and methods
This was an analytical retrospective study using routine assay results from laboratory database for 386 non-anemic, HPLC-confirmed hemoglobinopathy-free subjects. Blood samples were obtained at the Kisumu Aga Khan Hospital and its satellite sites in western Kenya, covering January 2015 to November 9, 2021. The data for Hb fractions were nonparametric, and so confidence intervals, together with the age of subjects, were thus expressed as the median and interquartile range (IQR). Data for the gender and other characteristics of study subjects were summarized in frequencies and proportions, Kruskal-Wallis H-test was used to test the significance of differences in Hb concentrations between stations and age groups, while Mann-Whitney U-test is between males and females. The receiver operating characteristic (ROC) curve was used to evaluate the potential of the derived confidence intervals as normal reference values in comparison with the commonly used normal values for hemoglobin fractions.
Results
The potential normal reference intervals were computed as 95% confidence intervals (CI) for median percentage levels for the concentrations of the Hb fractions HbA, HbA2, and HbF for the hemoglobinopathy-free patients. The overall confidence intervals were derived first for the combined sample of all the hemoglobinopathy-free patients combined together irrespective station where blood specimens were obtained, age or gender, and then followed by those for separate groups, stratified based on station, age, and gender. The overall median values for the hemoglobin fractions were hemoglobin: A (HbA) 87.7, IQR = 5.7, 95% CI = 76.3–99.1; hemoglobin A2 (HbA2), 3.0, IQR = 0.6; 95% CI = 1.8–4.2; and hemoglobin F (HbF), 0.8, IQR = 0.8; 95% CI = 0.00–2.4, with the P window, 4.98, IQR = 0.4; 95% CI = 4.18–5.78. The commonly used normal reference ranges for the hemoglobin fractions were as follows: HbA 95–98%, had an accuracy of 57.5%, HbA2 of 1.5–3.5%, had an accuracy of 95.9% in grading the presumed healthy population as hemoglobinopathy-free, while HbF 0–2.0 was equal to that established by the present study.
Conclusion
It is important to report that the use of normal range for HbA of 95–98% published by Kratz et al. [1] in western Kenya has a potential threat of misdiagnosis of normal population and thus needs urgent review as it lacked efficacy (p = 0.795) in grading hemoglobinopathy-free subjects as normal with a poor accuracy of 57.5%, a sensitivity of 100%, specificity of 0.3%, positive predictive validity of 15.1%, negative predictive validity of 1%, and 1.03 positive likelihood ratio. However, the traditional normal range for HbA2 of 1.5–3.5% on use in western Kenya may be retained as it was effective (p < 0.0001) in grading majority of study subjects as normal with an accuracy of 95.9%, sensitivity of 98.4%, specificity of 93.3%, positive predictive validity of 99.7%, negative predictive validity of 70.0%, 14.7 positive likelihood ratio, and 0.017 negative likelihood ratio. Similarly, the existing normal range for HbF of 0–2.0 on use was almost the same as the one we derived of 0–2.4 and therefore may be retained for use in western Kenya. It is anticipated that the finding of this study will help improve the management of hemoglobinopathies in Kenya and Africa at large, by contributing to improvement in the validity of the clinical-pathologic interpretation assay results for the percentage values for the Hb fractions.
Collapse
|
47
|
Lloyd S, Larivée A, Lutz PE. Homeorhesis: envisaging the logic of life trajectories in molecular research on trauma and its effects. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:65. [PMID: 36417009 DOI: 10.1007/s40656-022-00542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
What sets someone on a life trajectory? This question is at the heart of studies of 21st-century neurosciences that build on scientific models developed over the last 150 years that attempt to link psychopathology risk and human development. Historically, this research has documented persistent effects of singular, negative life experiences on people's subsequent development. More recently, studies have documented neuromolecular effects of early life adversity on life trajectories, resulting in models that frame lives as disproportionately affected by early negative experiences. This view is dominant, despite little evidence of the stability of the presumably early-developed molecular traits and their potential effects on phenotypes. We argue that in the context of gaps in knowledge and the need for scientists to reason across molecular and phenotypic scales, as well as time spans that can extend beyond an individual's life, specific interpretative frameworks shape the ways in which individual scientific findings are assessed. In the process, scientific reasoning oscillates between understandings of cellular homeostasis and organisms' homeorhesis, or life trajectory. Biologist and historian François Jacob described this framework as the "attitude" that researchers bring to bear on their "objects" of study. Through an analysis of, first, historical and contemporary scientific literature and then ethnographic research with neuroscientists, we consider how early life trauma came to be associated with specific psychological and neurobiological effects grounded in understandings of life trajectories. We conclude with a consideration of the conceptual, ontological, and ethical implications of interpreting life trajectories as the result of the persistence of long-embodied biological traits, persistent life environments, or both.
Collapse
Affiliation(s)
- Stephanie Lloyd
- Department of Anthropology, Université Laval, Québec, Québec, Canada.
| | - Alexandre Larivée
- Department of Anthropology, Université Laval, Québec, Québec, Canada
| | - Pierre-Eric Lutz
- Douglas Mental Health University Institute, McGill University, Montréal, Canada
- Centre National de la Recherche Scientifique, Fédération de Médecine Translationnelle de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
48
|
Different Brain Phenotypes in Magnetic Resonance Imaging of Healthy Children after Prenatal Insults. Diagnostics (Basel) 2022; 12:diagnostics12112748. [PMID: 36359591 PMCID: PMC9689447 DOI: 10.3390/diagnostics12112748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
In this study, we used magnetic resonance imaging (MRI) to identify the different brain phenotypes within apparently healthy children and to evaluate whether these phenotypes had different prenatal characteristics. We included 65 healthy children (mean age, 10 years old) with normal neurological examinations and without structural abnormalities. We performed cluster analyses to identify the different brain phenotypes in the brain MRI images. We performed descriptive analyses, including demographic and perinatal characteristics, to assess the differences between the clusters. We identified two clusters: Cluster 1, or the “small brain phenotype” (n = 44), which was characterized by a global reduction in the brain volumes, with smaller total intracranial volumes (1044.53 ± 68.37 vs. 1200.87 ± 65.92 cm3 (p < 0.001)), total grey-matter volumes (644.65 ± 38.85 vs. 746.79 ± 39.37 cm3 (p < 0.001)), and total white-matter volumes (383.68 ± 40.17 vs. 443.55 ± 36.27 cm3 (p < 0.001)), compared with Cluster 2, or the “normal brain phenotype” (n = 21). Moreover, almost all the brain areas had decreased volumes, except for the ventricles, caudate nuclei, and pallidum areas. The risk of belonging to “the small phenotype” was 82% if the child was preterm, 76% if he/she was born small for his/her gestational age and up to 80% if the mother smoked during the pregnancy. However, preterm birth appears to be the only substantially significant risk factor associated with decreased brain volumes.
Collapse
|
49
|
Gomaa N, Konwar C, Gladish N, Au-Young SH, Guo T, Sheng M, Merrill SM, Kelly E, Chau V, Branson HM, Ly LG, Duerden EG, Grunau RE, Kobor MS, Miller SP. Association of Pediatric Buccal Epigenetic Age Acceleration With Adverse Neonatal Brain Growth and Neurodevelopmental Outcomes Among Children Born Very Preterm With a Neonatal Infection. JAMA Netw Open 2022; 5:e2239796. [PMID: 36322087 PMCID: PMC9631102 DOI: 10.1001/jamanetworkopen.2022.39796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
IMPORTANCE Very preterm neonates (24-32 weeks' gestation) remain at a higher risk of morbidity and neurodevelopmental adversity throughout their lifespan. Because the extent of prematurity alone does not fully explain the risk of adverse neonatal brain growth or neurodevelopmental outcomes, there is a need for neonatal biomarkers to help estimate these risks in this population. OBJECTIVES To characterize the pediatric buccal epigenetic (PedBE) clock-a recently developed tool to measure biological aging-among very preterm neonates and to assess its association with the extent of prematurity, neonatal comorbidities, neonatal brain growth, and neurodevelopmental outcomes at 18 months of age. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted in 2 neonatal intensive care units of 2 hospitals in Toronto, Ontario, Canada. A total of 35 very preterm neonates (24-32 weeks' gestation) were recruited in 2017 and 2018, and neuroimaging was performed and buccal swab samples were acquired at 2 time points: the first in early life (median postmenstrual age, 32.9 weeks [IQR, 32.0-35.0 weeks]) and the second at term-equivalent age (TEA) at a median postmenstrual age of 43.0 weeks (IQR, 41.0-46.0 weeks). Follow-ups for neurodevelopmental assessments were completed in 2019 and 2020. All neonates in this cohort had at least 1 infection because they were originally enrolled to assess the association of neonatal infection with neurodevelopment. Neonates with congenital malformations, genetic syndromes, or congenital TORCH (toxoplasmosis, rubella, cytomegalovirus, herpes and other agents) infection were excluded. EXPOSURES The extent of prematurity was measured by gestational age at birth and PedBE age difference. PedBE age was computed using DNA methylation obtained from 94 age-informative CpG (cytosine-phosphate-guanosine) sites. PedBE age difference (weeks) was calculated by subtracting PedBE age at each time point from the corresponding postmenstrual age. MAIN OUTCOMES AND MEASURES Total cerebral volumes and cerebral growth during the neonatal intensive care unit period were obtained from magnetic resonance imaging scans at 2 time points: approximately the first 2 weeks of life and at TEA. Bayley Scales of Infant and Toddler Development, Third Edition, were used to assess neurodevelopmental outcomes at 18 months. RESULTS Among 35 very preterm neonates (21 boys [60.0%]; median gestational age, 27.0 weeks [IQR, 25.9-29.9 weeks]; 23 [65.7%] born extremely preterm [<28 weeks' gestation]), extremely preterm neonates had an accelerated PedBE age compared with neonates born at a later gestational age (β = 9.0; 95% CI, 2.7-15.3; P = .01). An accelerated PedBE age was also associated with smaller cerebral volumes (β = -5356.8; 95% CI, -6899.3 to -2961.7; P = .01) and slower cerebral growth (β = -2651.5; 95% CI, -5301.2 to -1164.1; P = .04); these associations remained significant after adjusting for clinical neonatal factors. These findings were significant at TEA but not earlier in life. Similarly, an accelerated PedBE age at TEA was associated with lower cognitive (β = -0.4; 95% CI, -0.8 to -0.03; P = .04) and language (β = -0.6; 95% CI, -1.1 to -0.06; P = .02) scores at 18 months. CONCLUSIONS AND RELEVANCE This cohort study of very preterm neonates suggests that biological aging may be associated with impaired brain growth and neurodevelopmental outcomes. The associations between epigenetic aging and adverse neonatal brain health warrant further attention.
Collapse
Affiliation(s)
- Noha Gomaa
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chaini Konwar
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie H. Au-Young
- Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ting Guo
- Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Min Sheng
- Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sarah M. Merrill
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edmond Kelly
- Division of Neonatology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Vann Chau
- Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Helen M. Branson
- Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Linh G. Ly
- Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neonatology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Emma G. Duerden
- Faculty of Education, Western University, London, Ontario, Canada
| | - Ruth E. Grunau
- Division of Neonatology, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven P. Miller
- Neuroscience and Mental Health Program, SickKids Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Liu M, Zhang Q, Ma S. A tree-based gene-environment interaction analysis with rare features. Stat Anal Data Min 2022; 15:648-674. [PMID: 38046814 PMCID: PMC10691867 DOI: 10.1002/sam.11578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/14/2022] [Indexed: 01/20/2023]
Abstract
Gene-environment (G-E) interaction analysis plays a critical role in understanding and modeling complex diseases. Compared to main-effect-only analysis, it is more seriously challenged by higher dimensionality, weaker signals, and the unique "main effects, interactions" variable selection hierarchy. In joint G-E interaction analysis under which a large number of G factors are analysed in a single model, effort tailored to rare features (e.g., SNPs with low minor allele frequencies) has been limited. Existing investigations on rare features have been mostly focused on marginal analysis, where various data aggregation techniques have been developed, and hypothesis testings have been conducted to identify significant aggregated features. However, such techniques cannot be extended to joint G-E interaction analysis. In this study, building on a very recent tree-based data aggregation technique, which has been developed for main-effect-only analysis, we develop a new G-E interaction analysis approach tailored to rare features. The adopted data aggregation technique allows for more efficient information borrowing from neighboring rare features. Similar to some existing state-of-the-art ones, the proposed approach adopts penalization for variable selection, regularized estimation, and respect of the variable selection hierarchy. Simulation shows that it has more accurate identification of important interactions and main effects than several competing alternatives. In the analysis of NFBC1966 study, the proposed approach leads to findings different from the alternatives and with satisfactory prediction and stability performance.
Collapse
Affiliation(s)
- Mengque Liu
- School of Journalism and New Media, Xi’an Jiaotong Universit0y, Shanxi Xi’an, China
| | - Qingzhao Zhang
- Department of Statistics and Data Science, School of Economics, Wang Yanan Institute for Studies in Economics, and Fujian Key Lab of Statistics, Xiamen University, Fujian Xiamen, China
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|