1
|
Paramasivam S, Murugesan J, Vedagiri H, Perumal SS, Ekambaram SP. Virtual Probing on the Influence of Ca 2+ and Zn 2+ Bound S100A8 and S100A9 Proteins Towards their Interaction Against Pattern Recognition Receptors Aggravating Rheumatoid Arthritis. Cell Biochem Biophys 2025; 83:1919-1941. [PMID: 39576489 DOI: 10.1007/s12013-024-01600-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 05/20/2025]
Abstract
Danger-associated molecular patterns (DAMPs) are released on the onset of tissue injury or death, which tend to trigger innate immunity and regulate various immune pathways. Among the various DAMP molecules, S100A8 and S100A9 belonging to Ca2+ binding proteins with EF-hands and Zn2+ ion binding sites have been implicated in aggravating the pathogenesis of rheumatoid arthritis (RA), upon interaction with pattern recognition receptors (PRR) such as TLR4, RAGE and CD36 receptors. Thus, the present study aims to assess the effect of Ca2+ or Zn2+ ions on the interaction of S100A8 and S100A9 proteins towards the PRRs. Protein-protein interaction analysis showed that the TLR4-S100A8Ca2+Zn2+, TLR4-S100A8 Zn2+, RAGE-S100A8/A8Zn2+, RAGE-S100A8/A8Ca2+, CD36-S100A8Ca2+, and CD36-S100A9/A9Ca2+ showed higher affinity against each other. The 100 ns molecular dynamics simulation showed that the TLR4-S100A8Ca2+, RAGE-S100A8/A8Ca2+ and CD36-S100A8Ca2+ complexes showed minimal fluctuations in their trajectory indicating that Ca2+ bound complexes were more stable than the other complexes. Furthermore, SPR analysis showed that S100A9 exhibited higher binding affinity towards PRRs in the presence of Ca2+ and Zn2+ ions. Considering the fact that physiological levels of both Ca2+ and Zn2+ ions play a critical role in the binding of S100A8 and S100A9 proteins against the PRRs, it can be emphasized that the S100A9 and RAGE receptors could be the critical players in the RA pathogenesis due to its impeccable binding towards the PRRs in the presence of both Ca2+ and Zn2+ ions. Nonetheless, further in vivo, and in vitro studies are imperative to validate these findings and identify potential targets for RA treatment.
Collapse
Affiliation(s)
- Sivasakthi Paramasivam
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Janaranjani Murugesan
- Medical Genomics lab, Department of Bioinformatics, Bharathiar University, Coimbatore, 641 046, India
| | - Hemamalini Vedagiri
- Medical Genomics lab, Department of Bioinformatics, Bharathiar University, Coimbatore, 641 046, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Sanmuga Priya Ekambaram
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang H, Song L, Zhou L, Li X, Xuan M, Liu C, Zhao H. α -Lipoic acid alleviates Parkinson's disease by suppressing S100A9-mediated pyroptosis. Int Immunopharmacol 2025; 155:114539. [PMID: 40233449 DOI: 10.1016/j.intimp.2025.114539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and inflammation is a key factor in the progression of PD. S100A9 mediates pyroptosis and implicates in various diseases including PD. Pyroptosis, an emerging form of programmed cell death, usually causes cell rupture and death via an inflammatory response. α-Lipoic acid (α-ALA), a cellular coenzyme, participates in anti-inflammatory and antioxidant processes. Although its role in PD has been confirmed, but the exact mechanism of its anti-inflammatory effect remains unclear. In our research, we examined the potential mechanisms of pyroptosis mediated by S100A9 in PD and the neuroprotective effects of α-ALA. We used 6-hydroxydopamine (6-OHDA) to induce SH-SY5Y cells in vitro and in C57BL/6 mice in vivo. The cell viability of SH-SY5Y cells confirmed the neuroprotective effect of α-ALA. Proteomics analysis indicated that S100A9 was involved in 6-OHDA-mediated neuronal injury, while α-ALA could inhibit. We found that α-ALA ameliorated PD symptoms induced by 6-OHDA and decreased the levels of NLRP3 inflammasome, Gasdermin D, and IL-1β, which are major hallmarks of pyroptosis. Furthermore, our research demonstrated that α-ALA mitigated cell injury by suppressing NLRP3-dependent pyroptosis mediated by S100A9. In brief, pyroptosis is pivotal in PD, while α-ALA protects dopaminergic neurons by suppressing pyroptosis mediated through the NLRP3 inflammasome, directly reducing S100A9, and subsequently inhibiting the NLRP3/Gasdermin D signaling pathways. Our results collectively suggest that suppressing S100A9-mediated pyroptosis and administering α-ALA may represent a novel approach in treating of PD.
Collapse
Affiliation(s)
- Hongxu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ling Song
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lin Zhou
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiaoyuan Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Mingwen Xuan
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chang Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Hong Zhao
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
3
|
Distefano GL, D'Amico F. Deep Learning-Driven Computational Approaches for Studying Intrinsically Disordered Regions in S100-A9. Methods Mol Biol 2025. [PMID: 40106150 DOI: 10.1007/7651_2025_617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Intrinsically disordered regions (IDRs) are flexible protein regions and lack a fixed three-dimensional structure, which makes them difficult to study using traditional structural methods. However, artificial intelligence can be helpful in predicting, analyzing, and modeling these regions. This chapter provides a simple protocol for a preliminary-level approach to identifying protein IDRs. By reporting on the S100-A9 protein as a case study example, characterization of the IDRs of this molecule could provide further details on the complex molecular interactions involved in psoriasis, particularly those related to inflammation, immune dysregulation, and keratinocyte behavior.
Collapse
Affiliation(s)
- Gionathan L Distefano
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Fabio D'Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
4
|
Du J, Li Z, Kong Y, Song W, Chen Z, Zhang M, Huang Y, Zhang C, Guo X, Hou L, Tan Y, Liang L, Wang Y, Feng Y, Liu Q, Li J, Zhu D, Fu X, Huang S. Combined skin injury model from airblast overpressure and seawater immersion in rats: establishment, characterization, and mechanistic insights. J Mol Histol 2025; 56:105. [PMID: 40080211 DOI: 10.1007/s10735-025-10379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
In maritime operations, individuals often face the threat of combined injury caused by airblast overpressure and seawater immersion. Airblast overpressure, induced by explosions, leads to significant internal damage despite the absence of visible open wounds. Seawater immersion exacerbates injuries due to its high osmolarity, microbial content, and thermal conductivity. Given the critical role of the skin as the body's largest organ, understanding its specific injuries in this scenario is imperative but currently underexplored. To bridge this gap, the study developed a novel rat skin combined injury model (RSCIM) in which rats were exposed to calibrated airblast overpressure followed by immediate seawater immersion. Physical simulations, histopathological examinations, and immunological assessments were used to confirm the model's accuracy. Specifically, finite element analysis reveals that the epidermal layer could effectively disperse and resist the immediate effects of overpressure. Histologically, the epidermal layer after combined injury maintained a continuous and complete structure. The collagen fibers of dermis were dispersed and broken. There were scattered capillaries, red blood cells and no skin appendages within the adipose layer. The muscle layer was manifested by deformation and breakage of muscle fibers. The fluorescence intensity of iNOS tended to decrease as the distance from the explosion source increased, which demonstrated significant inflammatory effects in the skin with combined injury. Furthermore, the transcriptome sequencing data revealed major physiological changes caused by combined injury, including inflammatory response, ion transport, biomechanical response, apoptosis, etc. Notably, S100A9 serves as a critical marker for combined injuries in RSCIM, but its expression characteristics and localization during tissue injury still need to be further explored. The model provides a robust foundation for exploring the combined injury mechanisms of airblast overpressure and seawater immersion and developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Jinpeng Du
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Zhao Li
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yi Kong
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Wei Song
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Zhongming Chen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengde Zhang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yuyan Huang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Chao Zhang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Xu Guo
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Linhao Hou
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yaxin Tan
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Liting Liang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yuzhen Wang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Yu Feng
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Qinghua Liu
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Jianjun Li
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Dongzhen Zhu
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China
| | - Xiaobing Fu
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China.
| | - Sha Huang
- Research Center for Wound Repair and Tissue Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College, Beijing, 100853, China.
| |
Collapse
|
5
|
He G, Han W, Zhu Z, Wei R, Lin C. The role of S100A8 and S100A9 in external auditory canal cholesteatoma. Front Immunol 2024; 15:1457163. [PMID: 39575241 PMCID: PMC11578731 DOI: 10.3389/fimmu.2024.1457163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/10/2024] [Indexed: 11/24/2024] Open
Abstract
Background Studies indicated that diverse cellular mechanisms including epithelial migration and hyper-proliferation, inflammatory responses, and enzymatic bone erosion were involved in the pathogenesis of cholesteatoma. S100A8 and S100A9, which are Ca2+-binding proteins belonging to the S100 family, can trigger the signaling pathways involved in the inflammatory processes, and a variety of cellular processes includes cell cycle progression, proliferation, and cell migration. However, the role of S100A8 and S100A9 and their associated inflammation and other signaling pathways in cholesteatoma have not been investigated yet. This study aimed to investigate the role of S100A8 and S100A9 in external auditory canal cholesteatoma and their potential pathological mechanisms. Methods The study conducted histological staining, immunostaining, PCR, and Western blot to investigate the expression of S100A8/A9 and its related pathways in clinic EACC and the murine model of EACC. Results Our data showed that there were increased mRNA and protein levels of S100A8 and S100A9 in clinical and animal models of EACC and the S100A8/A9 heterodimer protein was increased in the EACC model. Our study further demonstrated that the increased S100A8 and S100A9 were associated with apoptosis as well as inflammatory (TGF-β, IFN-γ, and IL-10) and angiogenetic (VEGF, HGF/SF, and c-Met) molecular pathways. The correlation analysis indicated that S100A8 and S100A9 were correlated with clinic staging, apoptosis, and inflammatory and angiogenetic factors. Conclusion This study provided novel insight into the role of S100A8 and S100A9 associated with pathological mechanisms of EACC.
Collapse
Affiliation(s)
- Guanwen He
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Otolaryngology, Ningde Municipal Hospital Affiliated of Ningde Normal University, Ningde, Fujian, China
| | - Weijing Han
- Department of Pathology, Heze Medical College, Heze, Shandong, China
| | - Zhongshou Zhu
- Department of Otolaryngology, Ningde Municipal Hospital Affiliated of Ningde Normal University, Ningde, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Rifu Wei
- Department of Otolaryngology, Ningde Municipal Hospital Affiliated of Ningde Normal University, Ningde, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Chang Lin
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Fecal calprotectin in pediatric gastrointestinal diseases: Pros and cons. World J Clin Pediatr 2024; 13:93341. [PMID: 38948001 PMCID: PMC11212754 DOI: 10.5409/wjcp.v13.i2.93341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Fecal calprotectin is a valuable biomarker for assessing intestinal inflammation in pediatric gastrointestinal diseases. However, its role, pros, and cons in various conditions must be comprehensively elucidated. AIM To explore the role of fecal calprotectin in pediatric gastrointestinal diseases, including its advantages and limitations. METHODS A comprehensive search was conducted on PubMed, PubMed Central, Google Scholar, and other scientific research engines until February 24, 2024. The review included 88 research articles, 56 review articles, six meta-analyses, two systematic reviews, two consensus papers, and two letters to the editors. RESULTS Fecal calprotectin is a non-invasive marker for detecting intestinal inflammation and monitoring disease activity in pediatric conditions such as functional gastrointestinal disorders, inflammatory bowel disease, coeliac disease, coronavirus disease 2019-induced gastrointestinal disorders, gastroenteritis, and cystic fibrosis-associated intestinal pathology. However, its lack of specificity and susceptibility to various confounding factors pose challenges in interpretation. Despite these limitations, fecal calprotectin offers significant advantages in diagnosing, monitoring, and managing pediatric gastrointestinal diseases. CONCLUSION Fecal calprotectin holds promise as a valuable tool in pediatric gastroenterology, offering insights into disease activity, treatment response, and prognosis. Standardized protocols and guidelines are needed to optimize its clinical utility and mitigate interpretation challenges. Further research is warranted to address the identified limitations and enhance our understanding of fecal calprotectin in pediatric gastrointestinal diseases.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
- Department of Pediatrics, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Bahrain, Manama 26671, Manama, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Manama, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Manama, Bahrain
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
7
|
Boucher J, Gilbert C, Bose S, Tessier PA. S100A9: The Unusual Suspect Connecting Viral Infection and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1523-1529. [PMID: 38709994 PMCID: PMC11076006 DOI: 10.4049/jimmunol.2300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/20/2024] [Indexed: 05/08/2024]
Abstract
The study of S100A9 in viral infections has seen increased interest since the COVID-19 pandemic. S100A8/A9 levels were found to be correlated with the severity of COVID-19 disease, cytokine storm, and changes in myeloid cell subsets. These data led to the hypothesis that S100A8/A9 proteins might play an active role in COVID-19 pathogenesis. This review explores the structures and functions of S100A8/9 and the current knowledge on the involvement of S100A8/A9 and its constituents in viral infections. The potential roles of S100A9 in SARS-CoV-2 infections are also discussed.
Collapse
Affiliation(s)
- Julien Boucher
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Caroline Gilbert
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Philippe A. Tessier
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, and Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Paramasivam S, Perumal SS, Ekambaram SP. Computational Deciphering of the Role of S100A8 and S100A9 Proteins and Their Changes in the Structure Assembly Influences Their Interaction with TLR4, RAGE, and CD36. Protein J 2024; 43:243-258. [PMID: 38431537 DOI: 10.1007/s10930-024-10186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.
Collapse
Affiliation(s)
- Sivasakthi Paramasivam
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Sanmuga Priya Ekambaram
- Department of Pharmaceutical Technology, Bharathidasan Institute of Technology Campus, University College of Engineering, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
9
|
Zhang Y, Song Y, Du J, Liu W, Dong C, Huang Z, Zhang Z, Yang L, Wang T, Xiong S, Dong L, Guo Y, Dang J, He Q, Yu Z, Ma X. S100 calcium-binding protein A9 promotes skin regeneration through toll-like receptor 4 during tissue expansion. BURNS & TRAUMA 2023; 11:tkad030. [PMID: 37936894 PMCID: PMC10627002 DOI: 10.1093/burnst/tkad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 11/09/2023]
Abstract
Background In plastic surgery, tissue expansion is widely used for repairing skin defects. However, low expansion efficiency and skin rupture caused by thin, expanded skin remain significant challenges in promoting skin regeneration during expansion. S100 calcium-binding protein A9 (S100A9) is essential in promoting wound healing; however, its effects on skin regeneration during tissue expansion remain unclear. The aim of the present study was to explore the role of S100A9 in skin regeneration, particularly collagen production to investigate its importance in skin regeneration during tissue expansion. Methods The expression and distribution of S100A9 and its receptors-toll-like receptor 4 (TLR-4) and receptor for advanced glycation end products were studied in expanded skin. These characteristics were investigated in skin samples of rats and patients. Moreover, the expression of S100A9 was investigated in stretched keratinocytes in vitro. The effects of S100A9 on the proliferation and migration of skin fibroblasts were also observed. TAK-242 was used to inhibit the binding of S100A9 to TLR-4; the levels of collagen I (COL I), transforming growth factor beta (TGF-β), TLR-4 and phospho-extracellular signal-related kinase 1/2 (p-ERK1/2) in fibroblasts were determined. Furthermore, fibroblasts were co-cultured with stretched S100A9-knockout keratinocytes by siRNA transfection and the levels of COL I, TGF-β, TLR-4 and p-ERK1/2 in fibroblasts were investigated. Additionally, the area of expanded skin, thickness of the dermis, and synthesis of COL I, TGF-β, TLR-4 and p-ERK1/2 were analysed to determine the effects of S100A9 on expanded skin. Results Increased expression of S100A9 and TLR-4 was associated with decreased extracellular matrix (ECM) in the expanded dermis. Furthermore, S100A9 facilitated the proliferation and migration of human skin fibroblasts as well as the expression of COL I and TGF-β in fibroblasts via the TLR-4/ERK1/2 pathway. We found that mechanical stretch-induced S100A9 expression and secretion of keratinocytes stimulated COL I, TGF-β, TLR-4 and p-ERK1/2 expression in skin fibroblasts. Recombined S100A9 protein aided expanded skin regeneration and rescued dermal thinning in rats in vivo as well as increasing ECM deposition during expansion. Conclusions These findings demonstrate that mechanical stretch promoted expanded skin regeneration by upregulating S100A9 expression. Our study laid the foundation for clinically improving tissue expansion using S100A9.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Jing Du
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Chen Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhaosong Huang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhe Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Liu Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Shaoheng Xiong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Liwei Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Juanli Dang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Qiang He
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| |
Collapse
|
10
|
Aloh CH, Zeczycki TN, Ellis HR. Oligomeric Changes Regulate Flavin Transfer in Two-Component FMN Reductases Involved in Sulfur Metabolism. Biochemistry 2023; 62:2751-2762. [PMID: 37651343 DOI: 10.1021/acs.biochem.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The FMN reductases (SsuE and MsuE of the alkanesulfonate monooxygenase systems) supply reduced flavin to their partner monooxygenases for the desulfonation of alkanesulfonates. Flavin reductases that comprise two-component systems must be able to regulate both flavin reduction and transfer. One mechanism to control these distinct processes is through changes in the oligomeric state of the enzymes. Despite their similar overall structures, SsuE and MsuE showed clear differences in their oligomeric states in the presence of substrates. The oligomeric state of SsuE was converted from a tetramer to a dimer/tetramer equilibrium in the presence of FMN or NADPH in analytical ultracentrifugation studies. Conversely, MsuE shifted from a dimer to a single tetrameric state with FMN, and the NADPH substrate did not induce a similar oligomeric shift. There was a fast tetramer to dimer equilibrium shift occurring at the dimer/dimer interface in H/D-X investigations with apo SsuE. Formation of the SsuE/FMN complex slowed the tetramer/dimer conversion, leading to a slower exchange along the dimer/dimer interface. The oligomeric shift of the MsuE/FMN complex from a dimer to a distinct tetramer showed a decrease in H/D-X in the region around the π-helices at the dimer/dimer interface. Both SsuE and MsuE showed a comparable and significant increase in the melting temperature with the addition of FMN, indicating the conformers formed by each FMN-bound enzyme had increased stability. A mechanism that supports the different structural shifts is rationalized by the different roles these enzymes play in providing reduced flavin to single or multiple monooxygenase enzymes.
Collapse
Affiliation(s)
- Chioma H Aloh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
11
|
Sanders E, Csondor R, Šulskis D, Baronaitė I, Smirnovas V, Maheswaran L, Horrocks J, Munro R, Georgiadou C, Horvath I, Morozova-Roche LA, Williamson PTF. The Stabilization of S100A9 Structure by Calcium Inhibits the Formation of Amyloid Fibrils. Int J Mol Sci 2023; 24:13200. [PMID: 37686007 PMCID: PMC10488161 DOI: 10.3390/ijms241713200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The calcium-binding protein S100A9 is recognized as an important component of the brain neuroinflammatory response to the onset and development of neurodegenerative disease. S100A9 is intrinsically amyloidogenic and in vivo co-aggregates with amyloid-β peptide and α-synuclein in Alzheimer's and Parkinson's diseases, respectively. It is widely accepted that calcium dyshomeostasis plays an important role in the onset and development of these diseases, and studies have shown that elevated levels of calcium limit the potential for S100A9 to adopt a fibrillar structure. The exact mechanism by which calcium exerts its influence on the aggregation process remains unclear. Here we demonstrate that despite S100A9 exhibiting α-helical secondary structure in the absence of calcium, the protein exhibits significant plasticity with interconversion between different conformational states occurring on the micro- to milli-second timescale. This plasticity allows the population of conformational states that favour the onset of fibril formation. Magic-angle spinning solid-state NMR studies of the resulting S100A9 fibrils reveal that the S100A9 adopts a single structurally well-defined rigid fibrillar core surrounded by a shell of approximately 15-20 mobile residues, a structure that persists even when fibrils are produced in the presence of calcium ions. These studies highlight how the dysregulation of metal ion concentrations can influence the conformational equilibria of this important neuroinflammatory protein to influence the rate and nature of the amyloid deposits formed.
Collapse
Affiliation(s)
- Ella Sanders
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rebecca Csondor
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Darius Šulskis
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Ieva Baronaitė
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Luckshi Maheswaran
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jack Horrocks
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rory Munro
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Christina Georgiadou
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Istvan Horvath
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|