1
|
Zhang H, Qiao W, Liu Y, Yao X, Zhai Y, Du L. Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials. J Nanobiotechnology 2025; 23:257. [PMID: 40158189 PMCID: PMC11954225 DOI: 10.1186/s12951-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Infectious bone defects present a substantial clinical challenge due to the complex interplay between infection control and bone regeneration. These defects often result from trauma, autoimmune diseases, infections, or tumors, requiring a nuanced approach that simultaneously addresses infection and promotes tissue repair. Recent advances in tissue engineering and materials science, particularly in nanomaterials and nano-drug formulations, have led to the development of bifunctional biomaterials with combined osteogenic and antibacterial properties. These materials offer an alternative to traditional bone grafts, minimizing complications such as multiple surgeries, high antibiotic dosages, and lengthy recovery periods. This review examines the repair mechanisms in the infectious microenvironment and highlights various bifunctional biomaterials that foster both anti-infective and osteogenic processes. Emerging design strategies are also discussed to provide a forward-looking perspective on treating infectious bone defects with clinically significant outcomes.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Liu
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xizhou Yao
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
2
|
Franco CE, Rients EL, Diaz FE, Hansen SL, McGill JL. Dietary Zinc Supplementation in Steers Modulates Labile Zinc Concentration and Zinc Transporter Gene Expression in Circulating Immune Cells. Biol Trace Elem Res 2024; 202:5489-5501. [PMID: 38438601 PMCID: PMC11502596 DOI: 10.1007/s12011-024-04123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Zinc (Zn) is critical for immune function, and marginal Zn deficiency in calves can lead to suboptimal growth and increased disease susceptibility. However, in contrast to other trace minerals such as copper, tissue concentrations of Zn do not change readily in conditions of supplementation or marginal deficiency. Therefore, the evaluation of Zn status remains challenging. Zinc transporters are essential for maintaining intracellular Zn homeostasis, and their expression may indicate changes in Zn status in the animal. Here, we investigated the effects of dietary Zn supplementation on labile Zn concentration and Zn transporter gene expression in circulating immune cells isolated from feedlot steers. Eighteen Angus crossbred steers (261 ± 14 kg) were blocked by body weight and randomly assigned to two dietary treatments: a control diet (58 mg Zn/kg DM, no supplemental Zn) or control plus 150 mg Zn/kg DM (HiZn; 207 mg Zn/kg DM total). After 33 days, Zn supplementation increased labile Zn concentrations (as FluoZin-3 fluorescence) in monocytes, granulocytes, and CD4 T cells (P < 0.05) but had the opposite effect on CD8 and γδ T cells (P < 0.05). Zn transporter gene expression was analyzed on purified immune cell populations collected on days 27 or 28. ZIP11 and ZnT1 gene expression was lower (P < 0.05) in CD4 T cells from HiZn compared to controls. Expression of ZIP6 in CD8 T cells (P = 0.02) and ZnT7 in B cells (P = 0.01) was upregulated in HiZn, while ZnT9 tended (P = 0.06) to increase in B cells from HiZn. These results suggest dietary Zn concentration affects both circulating immune cell Zn concentrations and Zn transporter gene expression in healthy steers.
Collapse
Affiliation(s)
- Carlos E Franco
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 1907 ISU C-Drive, Ames, IA, USA
| | - Emma L Rients
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Fabian E Diaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 1907 ISU C-Drive, Ames, IA, USA
| | | | - Jodi L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 1907 ISU C-Drive, Ames, IA, USA.
| |
Collapse
|
3
|
Rana S, Singh P, Bhardwaj T, Somvanshi P. A Comprehensive Metagenome Study Identifies Distinct Biological Pathways in Asthma Patients: An In-Silico Approach. Biochem Genet 2024; 62:4264-4279. [PMID: 38285123 DOI: 10.1007/s10528-023-10635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Asthma is a multifactorial disease with phenotypes and several clinical and pathophysiological characteristics. Besides innate and adaptive immune responses, the gut microbiome generates Treg cells, mediating the allergic response to environmental factors and exposure to allergens. Because of the complexity of asthma, microbiome analysis and other precision medicine methods are now widely regarded as essential elements of efficient disease therapy. An in-silico pipeline enables the comparative taxonomic profiling of 16S rRNA metagenomic profiles of 20 asthmatic patients and 15 healthy controls utilizing QIIME2. Further, PICRUSt supports downstream gene enrichment and pathway analysis, inferring the enriched pathways in a diseased state. A significant abundance of the phylum Proteobacteria, Sutterella, and Megamonas is identified in asthma patients and a diminished genus Akkermansia. Nasal samples reveal a high relative abundance of Mycoplasma in the nasal samples. Further, differential functional profiling identifies the metabolic pathways related to cofactors and amino acids, secondary metabolism, and signaling pathways. These findings support that a combination of bacterial communities is involved in mediating the responses involved in chronic respiratory conditions like asthma by exerting their influence on various metabolic pathways.
Collapse
Affiliation(s)
- Samiksha Rana
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, JNU Campus, New Delhi, 110067, India
| | - Pooja Singh
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, JNU Campus, New Delhi, 110067, India
| | - Tulika Bhardwaj
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Pallavi Somvanshi
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, JNU Campus, New Delhi, 110067, India.
- Special Centre of Systems Medicine (SCSM), Jawaharlal Nehru University, JNU Campus, New Delhi, 110067, India.
| |
Collapse
|
4
|
Ghazizadeh M, Roshanaie E, Barati B. Comparison of serum zinc levels between patients with sinonasal neutrophilic and eosinophilic inflammatory polyposis and healthy individuals. Immun Inflamm Dis 2024; 12:e70016. [PMID: 39588927 PMCID: PMC11590031 DOI: 10.1002/iid3.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVES Some changes in nasal mucus and paranasal sinuses may occur due to zinc deficiency, which can cause chronic rhinosinusitis with nasal polyps (CRSwNP). The current study was designed to compare the serum zinc concentration between patients with chronic rhinosinusitis complicated with eosinophilic or neutrophilic nasal polyps and a control group. METHODS A total of 105 patients participated in the study. Patients in three different groups were evaluated for CRSwNP (35 in the eosinophilia group and 35 in the neutrophil group), and 35 patients underwent surgery for reasons other than polyposis (control group). The serum zinc level was determined. RESULTS The mean age of the patients was 39.4 ± 12.61 years. Forty-one patients (39%) were female. Based on the enzyme linked immunosorbent assay results, the average serum zinc level in the control group was 137.01 ± 19.42 (μgm/100 mL), and in all patients with CRSwNP, it was 127.27 ± 21.7 (μgm/100 mL). The serum zinc concentration in patients with CRSwNP was significantly lower than that in the control group (p = .027). Among the CRSwNP patients with eosinophilic polyps and neutrophilic polyps, 130.42 ± 21.92 (μgm/100 mL) and 127.27 ± 21.7 (μgm/100 mL), respectively, were detected. Based on the statistical analysis, the neutrophilic and eosinophilic groups were homogenous according to the average serum zinc concentration (p = .631), and the same conditions prevailed for the eosinophilic and control groups (p = .574). There was a noticeable distinction between the neutrophilic group and the control group (p = .034). CONCLUSION Serum zinc concentrations were significantly lower in patients with neutrophilic polyps than in the general population. This difference may be due to the essential role of zinc in the inflammatory process in patients with neutrophilic polyposis.
Collapse
Affiliation(s)
- Matin Ghazizadeh
- Department of Otorhinolaryngology, Head and Neck SurgeryTaleghani Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Elahe Roshanaie
- Department of Otorhinolaryngology, Head and Neck SurgeryTaleghani Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Behrouz Barati
- Department of Otorhinolaryngology, Head and Neck SurgeryTaleghani Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Kageyama A, Terakawa J, Takarabe S, Sugita H, Kawata Y, Ito J, Kashiwazaki N. Zinc transporter ZnT3/Slc30a3 has a potential role in zinc ion influx in mouse oocytes. J Reprod Dev 2024; 70:338-342. [PMID: 39048372 PMCID: PMC11461517 DOI: 10.1262/jrd.2024-044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Zinc is an essential trace element for various physiological functions, including reproduction. The influx/efflux of zinc ions is regulated by zinc transporters (Zip1-14 and ZnT1-8, 10). However, the precise roles of zinc transporters and zinc dynamics in reproductive functions are unknown. In this study, ZnT3/Slc30a3 gene knockout (KO) mice were used to analyze the role of ZnT3. In ZnT3 KO mice, intracellular zinc ions in oocytes/zygotes were significantly reduced compared to those in controls, and free zinc ions did not accumulate in the oocyte cytoplasm. However, fertilization of these oocytes and the average litter size were comparable to those of control mice. Our results suggest that ZnT3 plays an important role in the accumulation of zinc ions in oocytes but not in the developmental ability of mice. ZnT3 KO mice will be useful for examining zinc dynamics in oocytes and other tissues.
Collapse
Affiliation(s)
- Atsuko Kageyama
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Jumpei Terakawa
- Laboratory of Toxicology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Shunsuke Takarabe
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Hibiki Sugita
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Yui Kawata
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
- Graduate School of Veterinary Sciences, Azabu University, Sagamihara 252-5201, Japan
| |
Collapse
|
6
|
Maywald M, Rink L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules 2024; 14:863. [PMID: 39062576 PMCID: PMC11274920 DOI: 10.3390/biom14070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, it has become clear that allergic diseases are on the rise in both Western and developing countries. The exact reason for the increase in prevalence has not been conclusively clarified yet. Multidimensional approaches are suspected in which diet and nutrition seem to play a particularly important role. Allergic diseases are characterized by a hyper-reactive immune system to usually harmless allergens, leading to chronic inflammatory diseases comprising respiratory diseases like asthma and allergic rhinitis (AR), allergic skin diseases like atopic dermatitis (AD), and food allergies. There is evidence that diet can have a positive or negative influence on both the development and severity of allergic diseases. In particular, the intake of the essential trace element zinc plays a very important role in modulating the immune response, which was first demonstrated around 60 years ago. The most prevalent type I allergies are mainly based on altered immunoglobulin (Ig)E and T helper (Th)2 cytokine production, leading to type 2 inflammation. This immune status can also be observed during zinc deficiency and can be positively influenced by zinc supplementation. The underlying immunological mechanisms are very complex and multidimensional. Since zinc supplements vary in dose and bioavailability, and clinical trials often differ in design and structure, different results can be observed. Therefore, different results are not surprising. However, the current literature suggests a link between zinc deficiency and the development of allergies, and shows positive effects of zinc supplementation on modulating the immune system and reducing allergic symptoms, which are discussed in more detail in this review.
Collapse
Affiliation(s)
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
7
|
Li L, Hajam I, McGee JS, Tang Z, Zhang Y, Badey N, Mintzer E, Zhang Z, Liu GY, Church GM, Wang Y. Comparative transcriptome analysis of acne vulgaris, rosacea, and hidradenitis suppurativa supports high-dose dietary zinc as a therapeutic agent. Exp Dermatol 2024; 33:e15145. [PMID: 39046322 PMCID: PMC11299850 DOI: 10.1111/exd.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Acne vulgaris, rosacea, and hidradenitis suppurativa are enduring inflammatory skin conditions that frequently manifest with akin clinical attributes, posing a considerable challenge for their distinctive diagnosis. While these conditions do exhibit certain resemblances, they also demonstrate distinct underlying pathophysiological mechanisms and treatment modalities. Delving into both the molecular parallels and disparities among these three disorders can yield invaluable insights for refined diagnostics, effective management, and targeted therapeutic interventions. In this report, we present a comparative analysis of transcriptomic data across these three diseases, elucidating differentially expressed genes and enriched pathways specific to each ailment, as well as those shared among them. Specifically, we identified multiple zinc-binding proteins (SERPINA1, S100A7, S100A8, S100A9 and KRT16) as consistently highly upregulated genes across all three diseases. Our hypothesis suggests that these proteins could bind and sequester zinc, potentially leading to localized zinc deficiency and heightened inflammation. We identified high-dose dietary zinc as a promising therapeutic approach and confirmed its effectiveness through validation in an acne mouse model.
Collapse
Affiliation(s)
- Li Li
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Irshad Hajam
- Department of Pediatrics, School of Medicine, UC San Diego, San Diego, California, USA
| | - Jean S McGee
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Zhengkuan Tang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Ye Zhang
- School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Nikil Badey
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Esther Mintzer
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Zhenrui Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - George Y Liu
- Department of Pediatrics, School of Medicine, UC San Diego, San Diego, California, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Yu Wang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Gori A, Brindisi G, Daglia M, del Giudice MM, Dinardo G, Di Minno A, Drago L, Indolfi C, Naso M, Trincianti C, Tondina E, Brunese FP, Ullah H, Varricchio A, Ciprandi G, Zicari AM. Exploring the Role of Lactoferrin in Managing Allergic Airway Diseases among Children: Unrevealing a Potential Breakthrough. Nutrients 2024; 16:1906. [PMID: 38931261 PMCID: PMC11206375 DOI: 10.3390/nu16121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of allergic diseases has dramatically increased among children in recent decades. These conditions significantly impact the quality of life of allergic children and their families. Lactoferrin, a multifunctional glycoprotein found in various biological fluids, is emerging as a promising immunomodulatory agent that can potentially alleviate allergic diseases in children. Lactoferrin's multifaceted properties make it a compelling candidate for managing these conditions. Firstly, lactoferrin exhibits potent anti-inflammatory and antioxidant activities, which can mitigate the chronic inflammation characteristic of allergic diseases. Secondly, its iron-binding capabilities may help regulate the iron balance in allergic children, potentially influencing the severity of their symptoms. Lactoferrin also demonstrates antimicrobial properties, making it beneficial in preventing secondary infections often associated with respiratory allergies. Furthermore, its ability to modulate the immune response and regulate inflammatory pathways suggests its potential as an immune-balancing agent. This review of the current literature emphasises the need for further research to elucidate the precise roles of lactoferrin in allergic diseases. Harnessing the immunomodulatory potential of lactoferrin could provide a novel add-on approach to managing allergic diseases in children, offering hope for improved outcomes and an enhanced quality of life for paediatric patients and their families. As lactoferrin continues to capture the attention of researchers, its properties and diverse applications make it an intriguing subject of study with a rich history and a promising future.
Collapse
Affiliation(s)
- Alessandra Gori
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome, Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy;
- UOC Laboratory of Clinical Medicine, MultiLab Department, IRCCS Multimedica, 20138 Milan, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Chiara Trincianti
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Enrico Tondina
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
| | - Attilio Varricchio
- Department of Otolaryngology, University of Molise, 86100 Campobasso, Italy;
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| |
Collapse
|
9
|
Agrawal A. Unveiling childhood asthma: Exploring biomarkers, zinc, and beyond. World J Clin Pediatr 2024; 13:91699. [PMID: 38947994 PMCID: PMC11212756 DOI: 10.5409/wjcp.v13.i2.91699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 06/07/2024] Open
Abstract
This editorial discusses a case-control study by Ibrahim et al, published in the recent issue of the World Journal of Clinical Pediatrics. Childhood bronchial asthma is a chronic inflammatory respiratory disease. It was found that an increase in oxidative stress leads to a decrease in antioxidants causing oxidative damage to mitochondrial respiratory chain complexes resulting in the inflammation of the airway, hypersecretion of mucus causing a cascade of clinical manifestations ranging from recurrent episodes of coughing, wheezing, and breathlessness to shortness of breath. Since oxidative stress mediates the inflammatory response in asthma, the supplementation of anti-oxidants can be one strategy to manage this disease. Zinc is one such antioxidant that has attracted much attention about asthma and airway inflammation. Zinc is a crucial trace element for human metabolism that helps to regulate gene expression, enzyme activity, and protein structure. Apart from zinc, free serum ferritin levels are also elevated in case of inflammation. Several previous studies found that ferritin levels may also help determine the pathology of disease and predict prognosis in addition to tracking disease activity. However, this study's results were different from the findings of the previous studies and the zinc levels did not show a significant difference between asthmatic children and non-asthmatic children but ferritin levels were significantly high in asthmatic children as compared to the controls. Hence, the possible role of the biochemical nutritional assessment including zinc and ferritin as biomarkers for asthma severity should be assessed in the future.
Collapse
Affiliation(s)
- Amit Agrawal
- Department of Pediatrics, Gandhi Medical College, Hamidia Hospital Campus, Bhopal 462022, India
| |
Collapse
|
10
|
Lan L, Feng Z, Liu X, Zhang B. The roles of essential trace elements in T cell biology. J Cell Mol Med 2024; 28:e18390. [PMID: 38801402 PMCID: PMC11129730 DOI: 10.1111/jcmm.18390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
T cells are crucial for adaptive immunity to regulate proper immune response and immune homeostasis. T cell development occurs in the thymus and mainly differentiates into CD4+ and CD8+ T cell subsets. Upon stimulation, naive T cells differentiate into distinct CD4+ helper and CD8+ cytotoxic T cells, which mediate immunity homeostasis and defend against pathogens or tumours. Trace elements are minimal yet essential components of human body that cannot be overlooked, and they participate in enzyme activation, DNA synthesis, antioxidant defence, hormone production, etc. Moreover, trace elements are particularly involved in immune regulations. Here, we have summarized the roles of eight essential trace elements (iron, zinc, selenium, copper, iodine, chromium, molybdenum, cobalt) in T cell development, activation and differentiation, and immune response, which provides significant insights into developing novel approaches to modulate immunoregulation and immunotherapy.
Collapse
Affiliation(s)
- Linbo Lan
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anChina
- Clinical Teaching and Research Center, School of NursingWeinan vocational and technical collegeWeinanChina
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Xi'an Jiaotong University Health Science Center, Institute of Infection and Immunity, Translational Medicine InstituteXi'anShaanxiChina
| | - Xiaobin Liu
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anChina
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Xi'an Jiaotong University Health Science Center, Institute of Infection and Immunity, Translational Medicine InstituteXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
11
|
Kaliniak S, Fiedoruk K, Spałek J, Piktel E, Durnaś B, Góźdź S, Bucki R, Okła S. Remodeling of Paranasal Sinuses Mucosa Functions in Response to Biofilm-Induced Inflammation. J Inflamm Res 2024; 17:1295-1323. [PMID: 38434581 PMCID: PMC10906676 DOI: 10.2147/jir.s443420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
Rhinosinusitis (RS) is an acute (ARS) or chronic (CRS) inflammatory disease of the nasal and paranasal sinus mucosa. CRS is a heterogeneous condition characterized by distinct inflammatory patterns (endotypes) and phenotypes associated with the presence (CRSwNP) or absence (CRSsNP) of nasal polyps. Mucosal barrier and mucociliary clearance dysfunction, inflammatory cell infiltration, mucus hypersecretion, and tissue remodeling are the hallmarks of CRS. However, the underlying factors, their priority, and the mechanisms of inflammatory responses remain unclear. Several hypotheses have been proposed that link CRS etiology and pathogenesis with host (eg, "immune barrier") and exogenous factors (eg, bacterial/fungal pathogens, dysbiotic microbiota/biofilms, or staphylococcal superantigens). The abnormal interplay between these factors is likely central to the pathophysiology of CRS by triggering compensatory immune responses. Here, we discuss the role of the sinonasal microbiota in CRS and its biofilms in the context of mucosal zinc (Zn) deficiency, serving as a possible unifying link between five host and "bacterial" hypotheses of CRS that lead to sinus mucosa remodeling. To date, no clear correlation between sinonasal microbiota and CRS has been established. However, the predominance of Corynebacteria and Staphylococci and their interspecies relationships likely play a vital role in the formation of the CRS-associated microbiota. Zn-mediated "nutritional immunity", exerted via calprotectin, alongside the dysregulation of Zn-dependent cellular processes, could be a crucial microbiota-shaping factor in CRS. Similar to cystic fibrosis (CF), the role of SPLUNC1-mediated regulation of mucus volume and pH in CRS has been considered. We complement the biofilms' "mechanistic" and "mucin" hypotheses behind CRS pathogenesis with the "structural" one - associated with bacterial "corncob" structures. Finally, microbiota restoration approaches for CRS prevention and treatment are reviewed, including pre- and probiotics, as well as Nasal Microbiota Transplantation (NMT).
Collapse
Affiliation(s)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Jakub Spałek
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Bonita Durnaś
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Stanisław Góźdź
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| | - Sławomir Okła
- Holy-Cross Cancer Center, Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-317, Poland
| |
Collapse
|
12
|
Tsuda T, Suzuki M, Kato Y, Kidoguchi M, Kumai T, Fujieda S, Sakashita M. The current findings in eosinophilic chronic rhinosinusitis. Auris Nasus Larynx 2024; 51:51-60. [PMID: 37574421 DOI: 10.1016/j.anl.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammatory disease of the nasal cavity and paranasal sinuses. Traditional classification is denoted by the presence (CRSwNP) or absence of nasal polyps (CRSsNP). Particularly, CRSwNP is distinguished by the presence of infiltrating cells and inflammatory markers in the nasal mucosa. Patients with CRSwNP in Western countries predominantly display a type 2 endotype, whereas those in Asian regions display a mixed type 2 endotype. Nevertheless, recent transcriptome analyses have revealed two types of nasal polyps - type 2 and non-type 2 polyps, suggesting that geographical differences in endotypes likely resulted from the different proportions of each endotype. Moreover, various endotypes of CRSsNP have been identified, making phenotype a crucial factor for predicting treatment efficacy. Type 2 endotypes, designated as eosinophilic CRS (ECRS) in Japan, are characterized by severe eosinophilic infiltration into the paranasal sinus tissue and are particularly refractory. In this review, we discuss the latest developments in ECRS. We also provide recent findings on the involvement of nasal epithelial cells in pathogenesis.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masanobu Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 14-jo nishi 5, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yukinori Kato
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan
| | - Masanori Kidoguchi
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan.
| |
Collapse
|
13
|
Si Y, Luo H, Zhang P, Zhang C, Li J, Jiang P, Yuan W, Cha R. CD-MOFs: From preparation to drug delivery and therapeutic application. Carbohydr Polym 2024; 323:121424. [PMID: 37940296 DOI: 10.1016/j.carbpol.2023.121424] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrin metal-organic frameworks (CD-MOFs) show considerable advantages of edibility, degradability, low toxicity, and high drug loading, which have attracted enormous interest, especially in drug delivery. This review summarizes the typical synthesis approaches of CD-MOFs, the drug loading methods, and the mechanism of encapsulation and release. The influence of the structure of CD-MOFs on their drug encapsulation and release is highlighted. Finally, the challenges CD-MOFs face are discussed regarding biosafety assessment systems, stability in aqueous solution, and metal ion effect.
Collapse
Affiliation(s)
- Yanxue Si
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Huize Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China.
| | - Pai Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Juanjuan Li
- School of Life Sciences, Hainan University, Haikou 570228, Hainan, PR China.
| | - Peng Jiang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wenbing Yuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing 100050, PR China.
| |
Collapse
|
14
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
15
|
Jahankhani K, Taghipour N, Mashhadi Rafiee M, Nikoonezhad M, Mehdizadeh M, Mosaffa N. Therapeutic effect of trace elements on multiple myeloma and mechanisms of cancer process. Food Chem Toxicol 2023; 179:113983. [PMID: 37567355 DOI: 10.1016/j.fct.2023.113983] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
In the human body, trace elements and other micronutrients play a vital role in growth, health and immune system function. The trace elements are Iron, Manganese, Copper, Iodine, Zinc, Cobalt, Fluoride, and Selenium. Estimating the serum levels of trace elements in hematologic malignancy patients can determine the severity of the tumor. Multiple myeloma (MM) is a hematopoietic malignancy and is characterized by plasma cell clonal expansion in bone marrow. Despite the advances in treatment methods, myeloma remains largely incurable. In addition to conventional medicine, treatment is moving toward less expensive noninvasive alternatives. One of the alternative treatments is the use of dietary supplements. In this review, we focused on the effect of three trace elements including iron, zinc and selenium on important mechanisms such as the immune system, oxidative and antioxidant factors and cell cycle. Using some trace minerals in combination with approved drugs can increase patients' recovery speed. Trace elements can be used as not only a preventive but also a therapeutic tool, especially in reducing inflammation in hematological cancers such as multiple myeloma. We hope that the prospect of the correct use of trace element supplements in the future could be promising for the treatment of diseases.
Collapse
Affiliation(s)
- Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nikoonezhad
- Department of Immunology, School of Medicine, Tarbiat Modarres University, Tehran, Iran
| | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: From Biological Functions to Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24054822. [PMID: 36902254 PMCID: PMC10003636 DOI: 10.3390/ijms24054822] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The trace element zinc (Zn) displays a wide range of biological functions. Zn ions control intercellular communication and intracellular events that maintain normal physiological processes. These effects are achieved through the modulation of several Zn-dependent proteins, including transcription factors and enzymes of key cell signaling pathways, namely those involved in proliferation, apoptosis, and antioxidant defenses. Efficient homeostatic systems carefully regulate intracellular Zn concentrations. However, perturbed Zn homeostasis has been implicated in the pathogenesis of several chronic human diseases, such as cancer, diabetes, depression, Wilson's disease, Alzheimer's disease, and other age-related diseases. This review focuses on Zn's roles in cell proliferation, survival/death, and DNA repair mechanisms, outlines some biological Zn targets, and addresses the therapeutic potential of Zn supplementation in some human diseases.
Collapse
Affiliation(s)
- Maria Inês Costa
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-061 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH), University Clinics of Hematology and Oncology, Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-023
| |
Collapse
|
17
|
Oxidative Stress, Environmental Pollution, and Lifestyle as Determinants of Asthma in Children. BIOLOGY 2023; 12:biology12010133. [PMID: 36671825 PMCID: PMC9856068 DOI: 10.3390/biology12010133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Exposure to cigarette smoke, allergens, viruses, and other environmental contaminants, as well as a detrimental lifestyle, are the main factors supporting elevated levels of airway oxidative stress. Elevated oxidative stress results from an imbalance in reactive oxygen species (ROS) production and efficiency in antioxidant defense systems. Uncontrolled increased oxidative stress amplifies inflammatory processes and tissue damage and alters innate and adaptive immunity, thus compromising airway homeostasis. Oxidative stress events reduce responsiveness to corticosteroids. These events can increase risk of asthma into adolescence and prompt evolution of asthma toward its most severe forms. Development of new therapies aimed to restore oxidant/antioxidant balance and active interventions aimed to improve physical activity and quality/quantity of food are all necessary strategies to prevent asthma onset and avoid in asthmatics evolution toward severe forms of the disease.
Collapse
|
18
|
Chen H, Yu Z, Ren S, Qiu Y. Fluorescent Probes Design Strategies for Imaging Mitochondria and Lysosomes. Front Pharmacol 2022; 13:915609. [PMID: 35928260 PMCID: PMC9343947 DOI: 10.3389/fphar.2022.915609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Modern cellular biology faces several major obstacles, such as the determination of the concentration of active sites corresponding to chemical substances. In recent years, the popular small-molecule fluorescent probes have completely changed the understanding of cellular biology through their high sensitivity toward specific substances in various organisms. Mitochondria and lysosomes are significant organelles in various organisms, and their interaction is closely related to the development of various diseases. The investigation of their structure and function has gathered tremendous attention from biologists. The advanced nanoscopic technologies have replaced the diffraction-limited conventional imaging techniques and have been developed to explore the unknown aspects of mitochondria and lysosomes with a sub-diffraction resolution. Recent progress in this field has yielded several excellent mitochondria- and lysosome-targeted fluorescent probes, some of which have demonstrated significant biological applications. Herein, we review studies that have been carried out to date and suggest future research directions that will harness the considerable potential of mitochondria- and lysosome-targeted fluorescent probes.
Collapse
Affiliation(s)
- Huimin Chen
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Biochemistry, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Zhenjie Yu
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shiwei Ren
- Institute of Materia Medica, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuyu Qiu
- Department of Biochemistry, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| |
Collapse
|
19
|
Liu X, Ali MK, Dua K, Xu R. The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients 2022; 14:nu14102115. [PMID: 35631256 PMCID: PMC9143957 DOI: 10.3390/nu14102115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
Lung diseases, such as asthma, chronic obstructive pulmonary diseases (COPD), and cystic fibrosis (CF), are among the leading causes of mortality and morbidity globally. They contribute to substantial economic burdens on society and individuals. Currently, only a few treatments are available to slow the development and progression of these diseases. Thus, there is an urgent unmet need to develop effective therapies to improve quality of life and limit healthcare costs. An increasing body of clinical and experimental evidence suggests that altered zinc and its regulatory protein levels in the systemic circulation and in the lungs are associated with these disease’s development and progression. Zinc plays a crucial role in human enzyme activity, making it an essential trace element. As a cofactor in metalloenzymes and metalloproteins, zinc involves a wide range of biological processes, such as gene transcription, translation, phagocytosis, and immunoglobulin and cytokine production in both health and disease. Zinc has gained considerable interest in these lung diseases because of its anti-inflammatory, antioxidant, immune, and metabolic modulatory properties. Here we highlight the role and mechanisms of zinc in the pathogenesis of asthma, COPD, CF, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, and pulmonary hypertension.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| | - Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang 110022, China
- Correspondence: ; Tel.: +86-189-4025-8514
| |
Collapse
|
20
|
Suzuki M, Cooksley C, Suzuki T, Ramezanpour M, Nakazono A, Nakamaru Y, Homma A, Vreugde S. TLR Signals in Epithelial Cells in the Nasal Cavity and Paranasal Sinuses. FRONTIERS IN ALLERGY 2022; 2:780425. [PMID: 35387020 PMCID: PMC8974762 DOI: 10.3389/falgy.2021.780425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The respiratory tract is constantly at risk of invasion by microorganisms such as bacteria, viruses, and fungi. In particular, the mucosal epithelium of the nasal cavity and paranasal sinuses is at the very forefront of the battles between the host and the invading pathogens. Recent studies have revealed that the epithelium not only constitutes a physical barrier but also takes an essential role in the activation of the immune system. One of the mechanisms equipped in the epithelium to fight against microorganisms is the Toll-like receptor (TLR) response. TLRs recognize common structural components of microorganisms and activate the innate immune system, resulting in the production of a plethora of cytokines and chemokines in the response against microbes. As the epithelia-derived cytokines are deeply involved in the pathogenesis of inflammatory conditions in the nasal cavity and paranasal sinuses, such as chronic rhinosinusitis (CRS) and allergic rhinitis (AR), the molecules involved in the TLR response may be utilized as therapeutic targets for these diseases. There are several differences in the TLR response between nasal and bronchial epithelial cells, and knowledge of the TLR signals in the upper airway is sparse compared to that in the lower airway. In this review, we provide recent evidence on TLR signaling in the upper airway, focusing on the expression, regulation, and responsiveness of TLRs in human nasal epithelial cells (HNECs). We also discuss how TLRs in the epithelium are involved in the pathogenesis of, and possible therapeutic targeting, for CRS and AR.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Clare Cooksley
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Akira Nakazono
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
21
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
22
|
Mineral Micronutrients in Asthma. Nutrients 2021; 13:nu13114001. [PMID: 34836256 PMCID: PMC8625329 DOI: 10.3390/nu13114001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Asthma represents one of the most common medical issues in the modern world. It is a chronic inflammatory disease characterized by persistent inflammation of the airways and disturbances in redox status, leading to hyperresponsiveness of bronchi and airway obstruction. Apart from classical risk factors such as air pollution, family history, allergies, or obesity, disturbances of the levels of micronutrients lead to impairments in the defense mechanisms of the affected organism against oxidative stress and proinflammatory stimuli. In the present review, the impact of micronutrients on the prevalence, severity, and possible risk factors of asthma is discussed. Although the influence of classical micronutrients such as selenium, copper, or zinc are well known, the effects of those such as iodine or manganese are only rarely mentioned. As a consequence, the aim of this paper is to demonstrate how disturbances in the levels of micronutrients and their supplementation might affect the course of asthma.
Collapse
|
23
|
Ahmed MH, Hassan A, Molnár J. The Role of Micronutrients to Support Immunity for COVID-19 Prevention. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:361-374. [PMID: 34493880 PMCID: PMC8412872 DOI: 10.1007/s43450-021-00179-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022]
Abstract
The World Health Organization declared the novel coronavirus, named as SARS-CoV-2, as a global pandemic in early 2020 after the disease spread to more than 180 countries leading to tens of thousands of cases and many deaths within a couple of months. Consequently, this paper aims to summarize the evidence for the relationships between nutrition and the boosting of the immune system in the fight against the disease caused by SARS-CoV-2. This review, in particular, assesses the impact of vitamin and mineral supplements on the body's defence mechanisms against SARS-CoV-2. The results revealed that there is a strong relationship between the ingestion of biological ingredients like vitamins C-E, and minerals such as zinc, and a reduction in the effects of coronavirus infection. These can be received from either nutrition rich food sources or from vitamin supplements. Furthermore, these macromolecules might have roles to play in boosting the immune response, in the healing process and the recovery time. Hence, we recommend that eating healthy foods rich in vitamins C-E with zinc and flavonoids could boost the immune system and consequently protect the body from serious infections. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Mukhtar H. Ahmed
- Sisaf Nanotechnology Drug Delivery, Ulster University, Belfast, BT37 0QB UK
| | - Arez Hassan
- School of Medicine, Queen’s University, Belfast, BT9 7BL UK
| | - Judit Molnár
- Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
24
|
Suzuki M, Ramezanpour M, Cooksley C, Ogi K, Psaltis AJ, Nakamaru Y, Homma A, Wormald PJ, Vreugde S. Metallothionein-3 is a clinical biomarker for tissue zinc levels in nasal mucosa. Auris Nasus Larynx 2021; 48:890-897. [PMID: 33526321 DOI: 10.1016/j.anl.2021.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/25/2020] [Accepted: 01/20/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Recently, depleted tissue zinc levels were found in nasal mucosa from patients with chronic rhinosinusitis (CRS) in correlation with tissue eosinophilia, however, no clinical biomarkers for tissue zinc levels have been identified. Metallothionein-3 (MT3) is an intracellular zinc chelator and previous data showed MT3 mRNA levels to be reduced in CRS patients with nasal polyps (CRSwNP). In this study, we examined the correlation between MT3 expression and zinc levels in nasal mucosa and primary human nasal epithelial cells (HNECs) to investigate whether MT3 could be a clinical biomarker for tissue zinc levels. METHOD Tissue was harvested from 36 patients and mounted on tissue micro-array (TMA) slides. MT3 expression and tissue zinc fluorescence intensity were measured at different areas within the mucosa (surface epithelium and lamina propria) and compared between controls, CRSwNP and CRS without nasal polyps (CRSsNP) patients. MT3 mRNA and protein expression were examined in zinc-depleted HNECs by qPCR and immunofluorescence microscopy. RESULTS MT3 expression in CRSwNP was significantly decreased in both surface epithelium (p<0.001 to controls) and lamina propria (p = 0.0491 to controls). There was a significant positive correlation between tissue zinc levels and MT3 expression in nasal mucosa (r = 0.45, p = 0.007). In zinc-deplete HNECs, MT3 expression was significantly decreased at mRNA (p = 0.02) and protein level (p<0.01). There was a significant positive correlation between tissue zinc levels and MT3 expression within individual HNECs (r = 0.59, p<0.001). CONCLUSIONS MT3 expression reflects intramucosal zinc levels in both nasal mucosa and HNECs indicating MT3 could be used as a clinical biomarker for monitoring intracellular zinc levels in the nasal mucosa.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, SA 5061, Australia; Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| | - Mahnaz Ramezanpour
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, SA 5061, Australia
| | - Clare Cooksley
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, SA 5061, Australia
| | - Kazuhiro Ogi
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, SA 5061, Australia
| | - Alkis J Psaltis
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, SA 5061, Australia
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Peter-John Wormald
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, SA 5061, Australia
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, the Queen Elizabeth Hospital, and the University of Adelaide, Adelaide, SA 5061, Australia.
| |
Collapse
|