1
|
Cardoso DC, Baldez BCL, Pereira AH, Kalapothakis E, Rosse IC, Cristiano MP. De novo assembly of the complete mitochondrial genome of Mycetophylax simplex Emery, 1888 through organelle targeting revels no substantial expansion of gene spacers, but rather some slightly shorter genes. Mol Genet Genomics 2024; 299:16. [PMID: 38411741 DOI: 10.1007/s00438-024-02099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/10/2023] [Indexed: 02/28/2024]
Abstract
Mitochondria play a key role in cell biology and have their own genome, residing in a highly oxidative environment that induces faster changes than the nuclear genome. Because of this, mitochondrial markers have been exploited to reconstruct phylogenetic and phylogeographic relationships in studies of adaptation and molecular evolution. In this study, we determined the complete mitogenome of the fungus-farming ant Mycetophylax simplex (Hymenoptera, Formicidae) and conducted a comparative analysis among 29 myrmicine ant mitogenomes. Mycetophylax simplex is an endemic ant that inhabits sand dunes along the southern Atlantic coast. Specifically, the species occur in the ecosystem known as "restinga", within the Atlantic Forest biome. Due to habitat degradation, land use and decline of restinga habitats, the species is considered locally extinct in extremely urban beaches and is listed as vulnerable on the Brazilian Red List (ICMBio). We employed a mitochondrion-targeting approach to obtain the complete mitogenome through high-throughput DNA sequencing technology. This method allowed us to determine the mitogenome with high performance, coverage and low cost. The circular mitogenome has a length of 16,367 base pairs enclosing 37 genes (13 protein-coding genes, 22 tRNAs and 2 rRNAs) along with one control region (CR). All the protein-coding genes begin with a typical ATN codon and end with the canonical stop codons. All tRNAs formed the fully paired acceptor stems and fold into the typical cloverleaf-shaped secondary structures. The gene order is consistent with the shared Myrmicinae structure, and the A + T content of the majority strand is 81.51%. Long intergenic spacers were not found but some gene are slightly shorter. The phylogenetic relationships based on concatenated nucleotide and amino acid sequences of the 13 protein-coding genes, using Maximum Likelihood and Bayesian Inference methods, indicated that mitogenome sequences were useful in resolving higher-level relationship within Formicidae.
Collapse
Affiliation(s)
- Danon Clemes Cardoso
- Genetics and Evolution of Ants Research Group - GEF, Universidade Federal de Ouro Preto, Ouro Preto, Mina Gerais, 35400-000, Brazil.
| | - Brenda Carla Lima Baldez
- Programa de Pós-Graduação em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, Mina Gerais, 35400-000, Brazil
| | - Adriana Heloísa Pereira
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Izinara Cruz Rosse
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maykon Passos Cristiano
- Genetics and Evolution of Ants Research Group - GEF, Universidade Federal de Ouro Preto, Ouro Preto, Mina Gerais, 35400-000, Brazil
| |
Collapse
|
2
|
Featherstone LA, McGaughran A. The effect of missing data on evolutionary analysis of sequence capture bycatch, with application to an agricultural pest. Mol Genet Genomics 2024; 299:11. [PMID: 38381254 PMCID: PMC10881687 DOI: 10.1007/s00438-024-02097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
Sequence capture is a genomic technique that selectively enriches target sequences before high throughput next-generation sequencing, to generate specific sequences of interest. Off-target or 'bycatch' data are often discarded from capture experiments, but can be leveraged to address evolutionary questions under some circumstances. Here, we investigated the effects of missing data on a variety of evolutionary analyses using bycatch from an exon capture experiment on the global pest moth, Helicoverpa armigera. We added > 200 new samples from across Australia in the form of mitogenomes obtained as bycatch from targeted sequence capture, and combined these into an additional larger dataset to total > 1000 mitochondrial cytochrome c oxidase subunit I (COI) sequences across the species' global distribution. Using discriminant analysis of principal components and Bayesian coalescent analyses, we showed that mitogenomes assembled from bycatch with up to 75% missing data were able to return evolutionary inferences consistent with higher coverage datasets and the broader literature surrounding H. armigera. For example, low-coverage sequences broadly supported the delineation of two H. armigera subspecies and also provided new insights into the potential for geographic turnover among these subspecies. However, we also identified key effects of dataset coverage and composition on our results. Thus, low-coverage bycatch data can offer valuable information for population genetic and phylodynamic analyses, but caution is required to ensure the reduced information does not introduce confounding factors, such as sampling biases, that drive inference. We encourage more researchers to consider maximizing the potential of the targeted sequence approach by examining evolutionary questions with their off-target bycatch where possible-especially in cases where no previous mitochondrial data exists-but recommend stratifying data at different genome coverage thresholds to separate sampling effects from genuine genomic signals, and to understand their implications for evolutionary research.
Collapse
Affiliation(s)
- Leo A Featherstone
- Research School of Biology, Division of Ecology and Evolution, Australian National University, Canberra, ACT, 2601, Australia
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Angela McGaughran
- Research School of Biology, Division of Ecology and Evolution, Australian National University, Canberra, ACT, 2601, Australia.
- Te Aka Mātuatua, School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.
| |
Collapse
|
3
|
Xiong Z, He D, Guang X, Li Q. Novel tRNA Gene Rearrangements in the Mitochondrial Genomes of Poneroid Ants and Phylogenetic Implication of Paraponerinae (Hymenoptera: Formicidae). Life (Basel) 2023; 13:2068. [PMID: 37895449 PMCID: PMC10608118 DOI: 10.3390/life13102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Ants (Formicidae) are the most diverse eusocial insects in Hymenoptera, distributed across 17 extant subfamilies grouped into 3 major clades, the Formicoid, Leptanilloid, and Poneroid. While the mitogenomes of Formicoid ants have been well studied, there is a lack of published data on the mitogenomes of Poneroid ants, which requires further characterization. In this study, we first present three complete mitogenomes of Poneroid ants: Paraponera clavata, the only extant species from the subfamily Paraponerinae, and two species (Harpegnathos venator and Buniapone amblyops) from the Ponerinae subfamily. Notable novel gene rearrangements were observed in the new mitogenomes, located in the gene blocks CR-trnM-trnI-trnQ-ND2, COX1-trnK-trnD-ATP8, and ND3-trnA-trnR-trnN-trnS1-trnE-trnF-ND5. We reported the duplication of tRNA genes for the first time in Formicidae. An extra trnQ gene was identified in H. venator. These gene rearrangements could be explained by the tandem duplication/random loss (TDRL) model and the slipped-strand mispairing model. Additionally, one large duplicated region containing tandem repeats was identified in the control region of P. clavata. Phylogenetic analyses based on protein-coding genes and rRNA genes via maximum likelihood and Bayes methods supported the monophyly of the Poneroid clade and the sister group relationship between the subfamilies Paraponerinae and Amblyoponinae. However, caution is advised in interpreting the positions of Paraponerinae due to the potential artifact of long-branch attraction.
Collapse
Affiliation(s)
- Zijun Xiong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI Research, Wuhan 430074, China
| | - Ding He
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark;
| | | | - Qiye Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
- BGI Research, Wuhan 430074, China
- BGI Research, Shenzhen 518083, China;
| |
Collapse
|
4
|
Hebert PDN, Bock DG, Prosser SWJ. Interrogating 1000 insect genomes for NUMTs: A risk assessment for estimates of species richness. PLoS One 2023; 18:e0286620. [PMID: 37289794 PMCID: PMC10249859 DOI: 10.1371/journal.pone.0286620] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
The nuclear genomes of most animal species include NUMTs, segments of the mitogenome incorporated into their chromosomes. Although NUMT counts are known to vary greatly among species, there has been no comprehensive study of their frequency/attributes in the most diverse group of terrestrial organisms, insects. This study examines NUMTs derived from a 658 bp 5' segment of the cytochrome c oxidase I (COI) gene, the barcode region for the animal kingdom. This assessment is important because unrecognized NUMTs can elevate estimates of species richness obtained through DNA barcoding and derived approaches (eDNA, metabarcoding). This investigation detected nearly 10,000 COI NUMTs ≥ 100 bp in the genomes of 1,002 insect species (range = 0-443). Variation in nuclear genome size explained 56% of the mitogenome-wide variation in NUMT counts. Although insect orders with the largest genome sizes possessed the highest NUMT counts, there was considerable variation among their component lineages. Two thirds of COI NUMTs possessed an IPSC (indel and/or premature stop codon) allowing their recognition and exclusion from downstream analyses. The remainder can elevate species richness as they showed 10.1% mean divergence from their mitochondrial homologue. The extent of exposure to "ghost species" is strongly impacted by the target amplicon's length. NUMTs can raise apparent species richness by up to 22% when a 658 bp COI amplicon is examined versus a doubling of apparent richness when 150 bp amplicons are targeted. Given these impacts, metabarcoding and eDNA studies should target the longest possible amplicons while also avoiding use of 12S/16S rDNA as they triple NUMT exposure because IPSC screens cannot be employed.
Collapse
Affiliation(s)
- Paul D. N. Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Dan G. Bock
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Sean W. J. Prosser
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Complete Nucleotide Sequence of the Mitogenome of Tapinoma ibericum (Hymenoptera: Formicidae: Dolichoderinae), Gene Organization and Phylogenetics Implications for the Dolichoderinae Subfamily. Genes (Basel) 2022; 13:genes13081325. [PMID: 35893062 PMCID: PMC9332376 DOI: 10.3390/genes13081325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The ant Tapinoma ibericum Santschi, 1925 is native to the Iberian Peninsula. This species, as well as other species from the Tapinoma nigerrimum complex, could form supercolonies that make these species potentially invasive and could give rise to pests. Recently a mature colony from this species has been found in the Isle of Wight (United Kingdom). Mitogenomes have been used to study the taxonomy, biogeography and genetics of species, improving the development of strategies against pest invasion. However, the number of available mitogenomes from the subfamily Dolichoderinae is still scarce and only two of these mitogenomes belong to Tapinoma species. Herein, the complete mitogenome of T. ibericum is presented in order to increase the molecular information of the genus. The T. ibericum mitogenome, retrieved by Next-Generation Sequencing data, is 15,715 bp in length. It contains the typical set of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNAs and the A + T-rich control region. Comparisons of the T. ibericum mitogenome with other dolichoderine mitogenomes revealed the existence of four gene rearrangements in relation with the ancestral insect mitogenome. One of these rearrangements, involving the tRNA-Ile, tRNA-Gln and tRNA-Met genes, was found in most of the analyzed ant mitogenomes. Probably this rearrangement was an ancestral or plesiomorphic character in Formicidae. Interestingly, another rearrangement that affects to tRNA-Trp, tRNA-Cys and tRNA-Tyr genes was found only in Tapinoma species. This change could be a synapomorphic character for the genus Tapinoma, and could be used as a phylogenetic marker. Additionally, a phylogenetic analysis was performed using the protein-coding gene sequences from available Dolichoderinae mitogenomes, as well as mitogenomes from representative species from other Formicidae subfamilies. Results support the monophyletic nature of the genus Tapinoma placing it within the same clade as the rest of Dolichoderinae species.
Collapse
|
6
|
Luo XY, Yin RY, Huang XQ, Luo Y, Zhou ZM. The complete mitochondrial genome of Aphaenogaster japonica (Forel, 1911) (Hymenoptera: Formicidae). Mitochondrial DNA B Resour 2022; 7:1270-1272. [PMID: 35844975 PMCID: PMC9278423 DOI: 10.1080/23802359.2022.2095937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aphaenogaster japonica (Forel, 1911) is an omnivorous ant that is widely distributed in eastern Asia. The mitochondrial genome of A. japonica reported here was 18,607 bp in length, consisting of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region. The base composition was AT biased (the GC ratio is 18.9%). With A. japonica added, we obtain weak evidence that the sister group of the Stenammini group, including Aphaenogaster, is the Myrmicini group. Therefore, the Stenammini and Myrmicini groups may be not a robust monophyletic group, unlike the previous results based on the complete mitochondrial genome.
Collapse
Affiliation(s)
- Xin-Yu Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Ru-Yi Yin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Xiang-Qin Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yi Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Zhao-Min Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), China West Normal University, Nanchong, China
| |
Collapse
|
7
|
Liu D, Basso A, Babbucci M, Patarnello T, Negrisolo E. Macrostructural Evolution of the Mitogenome of Butterflies (Lepidoptera, Papilionoidea). INSECTS 2022; 13:insects13040358. [PMID: 35447800 PMCID: PMC9031222 DOI: 10.3390/insects13040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Papilionoidea is a superfamily of Lepidoptera encompassing about 19,000 species. In the present work, we study the evolution of the structure of the mitogenome of these lepidopterans. The mechanisms generating the eight arrangements known for Papilionoidea were investigated analysing the movements of different mitochondrial genes. Five newly sequenced/assembled mitogenomes were included in our analysis involving more than 600 genomes. We provide new findings that help to understand the evolution of the gene orders MIQGO, IMQGO, 2S1GO, ES1GO and S1NGO in different butterflies. We demonstrate that the evolution of the 2S1GO in Lycaenidae followed a complicated pathway with multiple events of duplication and loss of trnS1 and changes in anticodon. We describe two new gene orders 2FFGO and 4QGO for Ampittia subvittatus (Hesperiidae) and Bhutanitis thaidina (Papilionidae). Abstract The mitogenome of the species belonging to the Papilionodea (Lepidoptera) is a double stranded circular molecule containing the 37 genes shared by Metazoa. Eight mitochondrial gene orders are known in the Papilionoidea. MIQGO is the plesiomorphic gene order for this superfamily, while other mitochondrial arrangements have a very limited distribution. 2S1GO gene order is an exception and is present in several Lycaenidae and one species of Hesperiidae. We studied the macrostructural changes generating the gene orders of butterflies by analysing a large data set (611 taxa) containing 5 new mitochondrial sequences/assemblies and 87 de novo annotated mitogenomes. Our analysis supports a possible origin of the intergenic spacer trnQ-nad2, characterising MIQGO, from trnM. We showed that the homoplasious gene order IMQGO, shared by butterflies, species of ants, beetles and aphids, evolved through different transformational pathways. We identify a complicated evolutionary scenario for 2S1GO in Lycaenidae, characterised by multiple events of duplication/loss and change in anticodon of trnS1. We show that the gene orders ES1GO and S1NGO originated through a tandem duplication random loss mechanism. We describe two novel gene orders. Ampittia subvittatus (Hesperiidae) exhibits the gene order 2FFGO, characterised by two copies of trnF, one located in the canonical position and a second placed in the opposite strand between trnR and trnN. Bhutanitis thaidina (Papilionidae) exhibits the gene order 4QGO, characterised by the quadruplication of trnQ.
Collapse
Affiliation(s)
- Di Liu
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Andrea Basso
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
- Correspondence:
| |
Collapse
|
8
|
UCE sequencing-derived mitogenomes reveal the timing of mitochondrial replacement in Malagasy shrew tenrecs (Afrosoricida, Tenrecidae, Microgale). Mamm Biol 2022. [DOI: 10.1007/s42991-022-00246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractMalagasy shrew tenrecs (Microgale) have increasingly been used to study speciation genetics over the last years. A previous study recently uncovered gene flow between the Shrew-toothed shrew tenrec (M. soricoides) and sympatric southern population of the Pale shrew tenrec (M. fotsifotsy). This gene flow has been suggested to be accompanied by complete mitochondrial replacement in M. fotsifotsy. To explore the temporal framework of this replacement, we assembled mitogenomes from publicly available sequencing data of ultra-conserved elements. We were able to assemble complete and partial mitogenomes for 19 specimens from five species of shrew tenrecs, which represents a multifold increase in mitogenomic resources available for all tenrecs. Phylogenetic inferences and sequence simulations support the close relationship between the mitochondrial lineages of M. soricoides and the southern population of M. fotsifotsy. Based on the nuclear divergence of northern and southern populations of M. fotsifotsy and the mitochondrial divergence between the latter and M. soricoides, there was a mean time window for replacement of ~ 350,000 years. This timeframe implies that the effective size of the ancestral M. fotsifotsy southern population was less 70,000.
Collapse
|
9
|
Sang Y, Yin RY, Luo Y, Zhou ZM. The complete mitochondrial genome of Pheidole nodus (Smith, 1874) (Hymenoptera: Formicidae). Mitochondrial DNA B Resour 2022; 7:451-453. [PMID: 35274040 PMCID: PMC8903746 DOI: 10.1080/23802359.2022.2047118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Pheidole nodus (Smith, 1874) belongs to a famously hyperdiverse and ecologically dominant ant genus. The mitochondrial genome of P. nodus is 15,579 bp in length, and the overall base composition is 78.6% AT. It includes 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNAs, and a control region. Phylogenetic trees show that P. nodus is more closely related to Wasmannia than to Atta. These sequence data will play an important role in the investigation of the phylogenetic relationships and taxonomy of the group Attini.
Collapse
Affiliation(s)
- Yu Sang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Ru-Yi Yin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yi Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Zhao-Min Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), China West Normal University, Nanchong, China
| |
Collapse
|
10
|
Park J, Lee J, Park J. The investigation of intraspecific characteristics and comparative analyses of the complete mitochondrial genome of Stegobium paniceum (Linnaeus, 1758) (Coleoptera: Ptinidae) assembled from public NGS raw reads of the black truffle, Tuber melanosporum. Sci Prog 2022; 105:368504211072355. [PMID: 35040745 PMCID: PMC10358573 DOI: 10.1177/00368504211072355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Due to the rapid development of NGS technologies, a huge amount of NGS raw reads have been accumulated in public repositories, such as the Short Read Archive of NCBI. We successfully rescued the complete mitochondrial genome of Stegobium paniceum, a drug store beetle, from public NGS raw reads of truffle generated from the whole genome project. The circular mitogenome of S. paniceum is 15,474 bp long including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and a single large non-coding region of 803 bp. Intraspecific transfer RNAs structure and sequence variations were investigated and simple sequence repeats identified from three S. paniceum mitochondrial genomes were compared showing their diversities as fundamental data to utilize them in various aspects including developing efficient molecular markers in the family, Ptinidae. Phylogenetic analysis of 23 Bostrichoidea mitochondrial genomes presented better species identification based on phylogenetic analyses and the optimal options for constructing phylogenetic trees based on Bostrichoidea mitochondrial genomes. Our results present not only utilization of public NGS raw read sequences but also intraspecific features of S. paniceum mitochondrial genomes and comparative analysis of Bostrichoidea mitochondrial genomes in various aspects.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jungmo Lee
- InfoBoss Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jonghyun Park
- InfoBoss Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
11
|
Park J, Xi H, Park J. Complete Genome Sequence of a Blochmannia Endosymbiont of Colobopsis nipponica. Microbiol Resour Announc 2021; 10:e01195-20. [PMID: 33927044 PMCID: PMC8086219 DOI: 10.1128/mra.01195-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Blochmannia endosymbionts (Gammaproteobacteria) live in bacteriocytes, which are specialized cells found in the genus Camponotus and its neighbor genera. In this announcement, we describe the complete genome sequence of the Blochmannia endosymbiont of Colobopsis nipponica, which originated from a colony collected in the Republic of Korea.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jonghyun Park
- InfoBoss, Inc., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
12
|
Park J, Xi H, Park J. Complete mitochondrial genome of the acrobat ant Crematogaster teranishii Santschi, 1930 (Formicidae; Hymenoptera). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:593-595. [PMID: 33628942 PMCID: PMC7889108 DOI: 10.1080/23802359.2021.1875922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The genus Crematogaster is a diverse group of ants found around the world. We have completed the mitochondrial genome of Crematogaster teranishii, which is the first mitochondrial genome of the genus. The mitochondrial genome is 17,442 bp long and 20.3% in GC ratio, which is similar to those of other ants. It contains 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and a control region with same gene order to other myrmicine species. The intergenic region between nad3 and trnA was unusually long compared to other ant species. Phylogenetic analysis showed that C. teranishii was closely related to other members of tribe Crematogastrini.
Collapse
Affiliation(s)
- Jonghyun Park
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
13
|
Park J, Park J. Complete mitochondrial genome of the jet ant Lasius spathepus Wheeler, W.M., 1910 (Formicidae; Hymenoptera). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:505-507. [PMID: 33628905 PMCID: PMC7889116 DOI: 10.1080/23802359.2021.1872435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The genus Lasius is a conspicuous and popular genus of ants found in the Holarctic regions. We have completed the mitochondrial genome of Lasius spathepus as the first mitochondrial genome of Lasius. The mitochondrial genome is 18,951 bp long, which is the sixth longest ant mitochondrial genome known to science. It contains 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a control region in a gene order shared with other species of subfamily Formicinae. The control region is 2,147 bp long, longest of all ants. Phylogenetic analysis shows L. spathepus groups with Nylanderia flavipes of the same tribe Lasiini.
Collapse
Affiliation(s)
- Jonghyun Park
- InfoBoss Inc, Seoul, Gangnam-gu, Republic of Korea.,InfoBoss Research Center, Seoul, Gangnam-gu, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc, Seoul, Gangnam-gu, Republic of Korea.,InfoBoss Research Center, Seoul, Gangnam-gu, Republic of Korea
| |
Collapse
|
14
|
Park J, Park J. Complete mitochondrial genome of the gate-keeper ant Colobopsis nipponica (Wheeler, W.M., 1928) (Formicidae: Hymenoptera). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:86-88. [PMID: 33521277 PMCID: PMC7808388 DOI: 10.1080/23802359.2020.1845581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Colobopsis ants are unique ants known for their phragmotic behavior. We have completed the mitochondrial genome of Colobopsis nipponica (Wheeler, W.M., 1928) as the first mitochondrial genome of the genus. The mitogenome is 17,431 bp long and 19.4% in GC ratio, which is the third longest mitochondrial genome in subfamily Formicinae. It contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a large 1534 bp long control region. Both gene order and phylogenetic analysis agree with the recent elevation of Colobopsis from subgenus to genus.
Collapse
Affiliation(s)
- Jonghyun Park
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
15
|
Adrián‐Serrano S, Lozano‐Fernandez J, Pons J, Rozas J, Arnedo MA. On the shoulder of giants: Mitogenome recovery from non‐targeted genome projects for phylogenetic inference and molecular evolution studies. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Silvia Adrián‐Serrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Jesus Lozano‐Fernandez
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
- Institut de Biologia Evolutiva (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Joan Pons
- Departament de Biodiversitat i Conservació Institut Mediterrani d'Estudis Avançats (CSIC‐UIB) Esporles Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
16
|
Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour 2020; 20:892-905. [PMID: 32243090 PMCID: PMC7497042 DOI: 10.1111/1755-0998.13160] [Citation(s) in RCA: 908] [Impact Index Per Article: 181.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 11/27/2022]
Abstract
Thanks to the development of high-throughput sequencing technologies, target enrichment sequencing of nuclear ultraconserved DNA elements (UCEs) now allows routine inference of phylogenetic relationships from thousands of genomic markers. Recently, it has been shown that mitochondrial DNA (mtDNA) is frequently sequenced alongside the targeted loci in such capture experiments. Despite its broad evolutionary interest, mtDNA is rarely assembled and used in conjunction with nuclear markers in capture-based studies. Here, we developed MitoFinder, a user-friendly bioinformatic pipeline, to efficiently assemble and annotate mitogenomic data from hundreds of UCE libraries. As a case study, we used ants (Formicidae) for which 501 UCE libraries have been sequenced whereas only 29 mitogenomes are available. We compared the efficiency of four different assemblers (IDBA-UD, MEGAHIT, MetaSPAdes, and Trinity) for assembling both UCE and mtDNA loci. Using MitoFinder, we show that metagenomic assemblers, in particular MetaSPAdes, are well suited to assemble both UCEs and mtDNA. Mitogenomic signal was successfully extracted from all 501 UCE libraries, allowing us to confirm species identification using CO1 barcoding. Moreover, our automated procedure retrieved 296 cases in which the mitochondrial genome was assembled in a single contig, thus increasing the number of available ant mitogenomes by an order of magnitude. By utilizing the power of metagenomic assemblers, MitoFinder provides an efficient tool to extract complementary mitogenomic data from UCE libraries, allowing testing for potential mitonuclear discordance. Our approach is potentially applicable to other sequence capture methods, transcriptomic data and whole genome shotgun sequencing in diverse taxa. The MitoFinder software is available from GitHub (https://github.com/RemiAllio/MitoFinder).
Collapse
Affiliation(s)
- Rémi Allio
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Alex Schomaker-Bastos
- Laboratório Multidisciplinar para Análise de Dados (LAMPADA), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonathan Romiguier
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Francisco Prosdocimi
- Laboratório Multidisciplinar para Análise de Dados (LAMPADA), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Benoit Nabholz
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Frédéric Delsuc
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Park J, Xi H, Park J. The complete mitochondrial genome of Ochetellus glaber (Mayr, 1862) (Hymenoptera:Formicidae). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 5:147-149. [PMID: 33366461 PMCID: PMC7720996 DOI: 10.1080/23802359.2019.1698356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ochetellus glaber (Mayr, 1867) is a dolichoderine ant found in the warm regions of Asia and Australia. We have determined the mitochondrial genome of O. glaber whose length is 16,259 bp including 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNAs, and a single large control region. The base composition was AT-biased (GC ratio is 17.8%). Gene order of O. glaber is identical to other species of the subfamily Dolichoderinae. Phylogenetic trees show that O. glaber is nested in other mitochondrial genomes of tribe Leptomyrmecini, implying the neotropical genera are ancestral to Australian genera such as Ochetellus.
Collapse
Affiliation(s)
- Jonghyun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Co., Ltd., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea.,InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
18
|
Langley J, Van der Westhuizen S, Morland G, van Asch B. Mitochondrial genomes and polymorphic regions of Gonimbrasia belina and Gynanisa maja (Lepidoptera: Saturniidae), two important edible caterpillars of Southern Africa. Int J Biol Macromol 2019; 144:632-642. [PMID: 31830455 DOI: 10.1016/j.ijbiomac.2019.12.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 11/26/2022]
Abstract
Mopane worms are the vernacular designation for the edible caterpillars of the African emperor moths Gonimbrasia belina and Gynanisa maja. Both species, particularly G. belina, are widely harvested in Southern Africa, and their populations are declining. Despite their commercial, nutritional, and cultural importance, their genetic data are currently unavailable. We sequenced two complete mitogenomes from each species using Ion Torrent technology, and identified informative markers in the complete mitogenomes of the two species for use in future studies. Comparing the conspecific mitogenomes allowed the identification of regions with high nucleotide diversity in ATP6, ND1, ND4, ND5, ND6, and CYTB genes. The final panels of markers will allow for the survey of 3117 bp in G. belina, and 3990 bp in Gy. maja. Phylogenetic reconstruction within the family Saturniidae recovered the tribe Bunaeini as monophyletic and basal to Saturniidae, and the tribe Attacini as a monophyletic clade nested within the tribe Saturniini. The G. belina and Gy. maja mitogenomes are the first representatives of African Saturniidae, a taxonomic group with relevance as a food resource on the continent. This study represents the first step towards assessing the genetic diversity, population structure, and phylogeography of African edible caterpillars.
Collapse
Affiliation(s)
- Jethro Langley
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | - Gail Morland
- Department of Natural Resources Management, Faculty of Natural Resources and Spatial Sciences, Namibia University of Science and Technology, Private Bag 13388, Windhoek, Namibia
| | - Barbara van Asch
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
19
|
Brito RN, Geraldo JA, Monteiro FA, Lazoski C, Souza RCM, Abad-Franch F. Transcriptome-based molecular systematics: Rhodnius montenegrensis (Triatominae) and its position within the Rhodnius prolixus-Rhodnius robustus cryptic-species complex. Parasit Vectors 2019; 12:305. [PMID: 31208458 PMCID: PMC6580618 DOI: 10.1186/s13071-019-3558-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rhodnius montenegrensis (Triatominae), a potential vector of Chagas disease, was described after R. robustus-like bugs from southwestern Amazonia. Mitochondrial cytb sequence near-identity with sympatric R. robustus (genotype II) raised doubts about the taxonomic status of R. montenegrensis, but comparative studies have reported fairly clear morphological and genetic differences between R. montenegrensis and laboratory stocks identified as R. robustus. Here, we use a transcriptome-based approach to investigate this apparent paradox. RESULTS We retrieved publicly-available transcriptome sequence-reads from R. montenegrensis and from the R. robustus stocks used as the taxonomic benchmark in comparative studies. We (i) aligned transcriptome sequence-reads to mitochondrial (cytb) and nuclear (ITS2, D2-28S and AmpG) query sequences (47 overall) from members of the R. prolixus-R. robustus cryptic-species complex and related taxa; (ii) computed breadth- and depth-coverage for the 259 consensus sequences generated by these alignments; and, for each locus, (iii) appraised query sequences and full-breadth-coverage consensus sequences in terms of nucleotide-sequence polymorphism and phylogenetic relations. We found evidence confirming that R. montenegrensis and R. robustus genotype II are genetically indistinguishable and, hence, implying that they are, in all likelihood, the same species. Furthermore, we found compelling genetic evidence that the benchmark 'R. robustus' stocks used in R. montenegrensis description and in later transcriptome-based comparisons are in fact R. prolixus, although likely mixed to some degree with R. robustus (probably genotype II, a.k.a. R. montenegrensis). CONCLUSIONS We illustrate how public-domain genetic/transcriptomic data can help address challenging issues in disease-vector systematics. In our case-study, taxonomic confusion apparently stemmed from the misinterpretation of sequence-data analyses and misidentification of taxonomic-benchmark stocks. More generally, and together with previous reports of mixed and/or misidentified Rhodnius spp. laboratory colonies, our results call into question the conclusions of many studies (on morphology, genetics, physiology, behavior, bionomics or interactions with microorganisms including trypanosomes) based on non-genotyped 'R. prolixus' or 'R. robustus' stocks. Correct species identification is a prerequisite for investigating the factors that underlie the physiological, behavioral or ecological differences between primary domestic vectors of Chagas disease, such as R. prolixus, and their sylvatic, medically less-relevant relatives such as R. robustus (s.l.) including R. montenegrensis.
Collapse
Affiliation(s)
- Raíssa N. Brito
- Grupo Triatomíneos, Instituto René Rachou, Fiocruz Minas Gerais, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Juliana A. Geraldo
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto René Rachou, Fiocruz Minas Gerais, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Fernando A. Monteiro
- Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita C. M. Souza
- Grupo Triatomíneos, Instituto René Rachou, Fiocruz Minas Gerais, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Fernando Abad-Franch
- Grupo Triatomíneos, Instituto René Rachou, Fiocruz Minas Gerais, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|