1
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
2
|
Yarahmadi A, Sohan R, McAllister B, Caromile LA. Therapeutic potential of targeting mirnas to prostate cancer tumors: using psma as an active target. Mol Cell Oncol 2022; 9:2136476. [PMID: 36313480 PMCID: PMC9601542 DOI: 10.1080/23723556.2022.2136476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023]
Abstract
Prostate cancer (PC) is a commonly diagnosed malignancy in men and is associated with high mortality rates. Current treatments for PC include surgery, chemotherapy, and radiation therapy. However, recent advances in targeted delivery systems have yielded promising new approaches to PC treatment. As PC epithelial cells express high levels of prostate-specific membrane antigen (PSMA) on the cell surface, new drug conjugates focused on PSMA targeting have been developed. microRNAs (miRNAs) are small noncoding RNAs that regulate posttranscriptional gene expression in cells and show excellent possibilities for use in developing new therapeutics for PC. PSMA-targeted therapies based on a miRNA payload and that selectively target PC cells enhances therapeutic efficacy without eliciting damage to normal surrounding tissue. This review discusses the rationale for utilizing miRNAs to target PSMA, revealing their potential in therapeutic approaches to PC treatment. Different delivery systems for miRNAs and challenges to miRNA therapy are also explored.
Collapse
Affiliation(s)
- Amir Yarahmadi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Romoye Sohan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Brenna McAllister
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Leslie A. Caromile
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
3
|
SMAD3 and FTO are involved in miR-5581-3p-mediated inhibition of cell migration and proliferation in bladder cancer. Cell Death Dis 2022; 8:199. [PMID: 35418191 PMCID: PMC9007965 DOI: 10.1038/s41420-022-01010-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/17/2023]
Abstract
Previous research evidence suggests that microRNAs (miRNAs) play an indispensable role in onset and progression of bladder cancer (BCa). Here, we explored the functions and mechanisms of miR-5581-3p in BCa. miR-5581-3p, as a tumor suppressor in BCa, was detected at a lower expression level in BCa tissue and cells in contrast with the non-malignant bladder tissue and cells. Over-expression of miR-5581-3p remarkably dampened the migration and proliferation of BCa in vitro and in vivo. SMAD3 and FTO were identified as the direct targets of miR-5581-3p by online databases prediction and mRNA-seq, which were further verified. SMAD3 as a star molecule in modulating EMT progress of BCa had been formulated in former studies. Meanwhile, FTO proved as an N6-methyladenosine (m6A) demethylase in decreasing m6A modification was confirmed to regulate the migration and proliferation in BCa. In addition, we conducted rescue experiments and confirmed overexpressing miR-5581-3p partially rescued the effects of the overexpressing SMAD3 and FTO in BCa cells. In conclusion, our studies exhibit that miR-5581-3p is a novel tumor inhibitor of BCa.
Collapse
|
4
|
Crosstalk between Long Non Coding RNAs, microRNAs and DNA Damage Repair in Prostate Cancer: New Therapeutic Opportunities? Cancers (Basel) 2022; 14:cancers14030755. [PMID: 35159022 PMCID: PMC8834032 DOI: 10.3390/cancers14030755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Non-coding RNAs are a type of genetic material that doesn’t make protein, but performs diverse regulatory functions. In prostate cancer, most treatments target proteins, and resistance to such therapies is common, leading to disease progression. Targeting non-coding RNAs may provide alterative treatment options and potentially overcome drug resistance. Major types of non-coding RNAs include tiny ‘microRNAs’ and much longer ‘long non-coding RNAs’. Scientific studies have shown that these form a major part of the human genome, and play key roles in altering gene activity and determining the fate of cells. Importantly, in cancer, their activity is altered. Recent evidence suggests that microRNAs and long non-coding RNAs play important roles in controlling response to DNA damage. In this review, we explore how different types of non-coding RNA interact to control cell DNA damage responses, and how this knowledge may be used to design better prostate cancer treatments and tests. Abstract It is increasingly appreciated that transcripts derived from non-coding parts of the human genome, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are key regulators of biological processes both in normal physiology and disease. Their dysregulation during tumourigenesis has attracted significant interest in their exploitation as novel cancer therapeutics. Prostate cancer (PCa), as one of the most diagnosed malignancies and a leading cause of cancer-related death in men, continues to pose a major public health problem. In particular, survival of men with metastatic disease is very poor. Defects in DNA damage response (DDR) pathways culminate in genomic instability in PCa, which is associated with aggressive disease and poor patient outcome. Treatment options for metastatic PCa remain limited. Thus, researchers are increasingly targeting ncRNAs and DDR pathways to develop new biomarkers and therapeutics for PCa. Increasing evidence points to a widespread and biologically-relevant regulatory network of interactions between lncRNAs and miRNAs, with implications for major biological and pathological processes. This review summarises the current state of knowledge surrounding the roles of the lncRNA:miRNA interactions in PCa DDR, and their emerging potential as predictive and diagnostic biomarkers. We also discuss their therapeutic promise for the clinical management of PCa.
Collapse
|
5
|
Shadbad MA, Safaei S, Brunetti O, Derakhshani A, Lotfinejad P, Mokhtarzadeh A, Hemmat N, Racanelli V, Solimando AG, Argentiero A, Silvestris N, Baradaran B. A Systematic Review on the Therapeutic Potentiality of PD-L1-Inhibiting MicroRNAs for Triple-Negative Breast Cancer: Toward Single-Cell Sequencing-Guided Biomimetic Delivery. Genes (Basel) 2021; 12:genes12081206. [PMID: 34440380 PMCID: PMC8391239 DOI: 10.3390/genes12081206] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The programmed death-ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) is a well-established inhibitory immune checkpoint axis in triple-negative breast cancer (TNBC). Growing evidence indicates that tumoral PD-L1 can lead to TNBC development. Although conventional immune checkpoint inhibitors have improved TNBC patients’ prognosis, their effect is mainly focused on improving anti-tumoral immune responses without substantially regulating oncogenic signaling pathways in tumoral cells. Moreover, the conventional immune checkpoint inhibitors cannot impede the de novo expression of oncoproteins, like PD-L1, in tumoral cells. Accumulating evidence has indicated that the restoration of specific microRNAs (miRs) can downregulate tumoral PD-L1 and inhibit TNBC development. Since miRs can target multiple mRNAs, miR-based gene therapy can be an appealing approach to inhibit the de novo expression of oncoproteins, like PD-L1, restore anti-tumoral immune responses, and regulate various intracellular singling pathways in TNBC. Therefore, we conducted the current systematic review based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) to provide a comprehensive and unbiased synthesis of currently available evidence regarding the effect of PD-L1-inhibiting miRs restoration on TNBC development and tumor microenvironment. For this purpose, we systematically searched the Cochrane Library, Embase, Scopus, PubMed, ProQuest, Web of Science, Ovid, and IranDoc databases to obtain the relevant peer-reviewed studies published before 25 May 2021. Based on the current evidence, the restoration of miR-424-5p, miR-138-5p, miR-570-3p, miR-200c-3p, miR-383-5p, miR-34a-5p, miR-3609, miR-195-5p, and miR-497-5p can inhibit tumoral PD-L1 expression, transform immunosuppressive tumor microenvironment into the pro-inflammatory tumor microenvironment, inhibit tumor proliferation, suppress tumor migration, enhance chemosensitivity of tumoral cells, stimulate tumor apoptosis, arrest cell cycle, repress the clonogenicity of tumoral cells, and regulate various oncogenic signaling pathways in TNBC cells. Concerning the biocompatibility of biomimetic carriers and the valuable insights provided by the single-cell sequencing technologies, single-cell sequencing-guided biomimetic delivery of these PD-L1-inhibiting miRs can decrease the toxicity of traditional approaches, increase the specificity of miR-delivery, enhance the efficacy of miR delivery, and provide the affected patients with personalized cancer therapy.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (M.A.S.); (P.L.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Parisa Lotfinejad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (M.A.S.); (P.L.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonio Giovanni Solimando
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonella Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Correspondence: (N.S.); (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.)
| |
Collapse
|
6
|
Hiraide S, Takahashi M, Yoshida Y, Yamada H, Komine K, Ishioka C. Tumor suppressor miR-193a-3p enhances efficacy of BRAF/MEK inhibitors in BRAF-mutated colorectal cancer. Cancer Sci 2021; 112:3856-3870. [PMID: 34288281 PMCID: PMC8409311 DOI: 10.1111/cas.15075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/04/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Patients with BRAF‐mutated colorectal cancer (CRC) have a poor prognosis despite recent therapeutic advances such as combination therapy with BRAF, MEK, and epidermal growth factor receptor (EGFR) inhibitors. To identify microRNAs (miRNAs) that can improve the efficacy of BRAF inhibitor dabrafenib (DAB) and MEK inhibitor trametinib (TRA), we screened 240 miRNAs in BRAF‐mutated CRC cells and identified five candidate miRNAs. Overexpression of miR‐193a‐3p, one of the five screened miRNAs, in CRC cells inhibited cell proliferation by inducing apoptosis. Reverse‐phase protein array analysis revealed that proteins with altered phosphorylation induced by miR‐193a‐3p were involved in several oncogenic pathways including MAPK‐related pathways. Furthermore, overexpression of miR‐193a‐3p in BRAF‐mutated cells enhanced the efficacy of DAB and TRA through inhibiting reactivation of MAPK signaling and inducing inhibition of Mcl1. Inhibition of Mcl1 by siRNA or by Mcl1 inhibitor increased the antiproliferative effect of combination therapy with DAB, TRA, and anti‐EGFR antibody cetuximab. Collectively, our study demonstrated the possibility that miR‐193a‐3p acts as a tumor suppressor through regulating multiple proteins involved in oncogenesis and affects cellular sensitivity to MAPK‐related pathway inhibitors such as BRAF inhibitors, MEK inhibitors, and/or anti‐EGFR antibodies. Addition of miR‐193a‐3p and/or modulation of proteins involved in the miR‐193a‐3p–mediated pathway, such as Mcl1, to EGFR/BRAF/MEK inhibition may be a potential therapeutic strategy against BRAF‐mutated CRC.
Collapse
Affiliation(s)
- Sakura Hiraide
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Masanobu Takahashi
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Yuya Yoshida
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Hideharu Yamada
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Keigo Komine
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan.,Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan
| |
Collapse
|
7
|
miR-193a Directly Targets PSEN1 and Inhibits Gastric Cancer Cell Growth, the Activation of PI3K/Akt Signaling Pathway, and the Epithelial-to-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2021; 2021:2804478. [PMID: 34335753 PMCID: PMC8298175 DOI: 10.1155/2021/2804478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
Background Gastric cancer, a kind of gastrointestinal malignancy, is the second type of leading death cancer. miR-193a is a key tumor suppressor in several diseases. PSEN1 is mainly related to Alzheimer's disease and may be involved in the cleavage of the Notch receptor. Material and Methods. RT-PCR and western blot were applied to evaluate miR-193a and the expression level of PSEN1. Luciferase reporter assay was applied to verify whether PSEN1 was a target of miR-193a. The Kaplan–Meier method was employed to calculate the 5-year overall survival of gastric cancer patients. Results miR-193a was downregulated in gastric cancer tissues and cell lines, and downregulation of miR-193a predicted poor 5-year overall survival of gastric cancer. miR-193a inhibited the proliferation and the activation of the PI3K/AKT signaling pathway in gastric cancer cells. miR-193a inhibited gastric cancer tumor growth in vivo. miR-193a impaired cell invasion and epithelial-to-mesenchymal transition (EMT) in HGC-27 cells. In addition, PSEN1 was a direct target of miR-193a and PSEN1 reversed partial functions of miR-193a in cell proliferation and invasion. Conclusion miR-193a prominently decreased the proliferation, invasion, and activation of the PI3K/Akt signaling pathway and the abilities of epithelial-to-mesenchymal transition in gastric cancer cells. The newly identified miR-193a/PSEN1 axis provides novel insight into the pathogenesis of gastric cancer.
Collapse
|
8
|
Cui Y, Wang Q, Lin J, Zhang L, Zhang C, Chen H, Qian J, Luo C. miRNA-193a-3p Regulates the AKT2 Pathway to Inhibit the Growth and Promote the Apoptosis of Glioma Cells by Targeting ALKBH5. Front Oncol 2021; 11:600451. [PMID: 33968717 PMCID: PMC8103841 DOI: 10.3389/fonc.2021.600451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence indicates that microRNA (miR)-193a-3p is involved in the tumor progression of various cancers. However, the biological functions and precise molecular mechanisms of miR-193a-3p in gliomas have not been well documented. Accordingly, this study focused on the tumor suppressor role and molecular mechanisms of miR-193a-3p in glioma cells. miR-193a-3p expression was determined by qRT-PCR in glioma tissues and cell lines. U251 and U87 glioma cells were transfected with a miR-193a-3p mimic. The effects of miR-193a-3p on cell growth and apoptosis were investigated using MTT, colony-forming, and flow cytometry assays. Overexpression of miR-193a-3p in U87 cells also significantly suppressed tumorigenicity and induced apoptosis in the xenograft mouse model. Luciferase assays were conducted to determine if ALKBH5 is a direct target of miR-193a-3p in glioma cells. Immunoprecipitation was used to explore the interaction between ALKBH5 and RAC-serine/threonine-protein kinase 2 (AKT2) in glioma cells. miR-193a-3p was downregulated in glioma tissues and cell lines. miR-193a-3p treatment suppressed proliferation and promoted apoptosis in both U251 and U87 cells. Bioinformatics analysis and luciferase reporter assay identified a novel miR-193a-3p target, ALKBH5. Notably, the antitumor effect of miR-193a-3p transfection in glioma cells may be due to the miR-193a-3p–induced inhibition of AKT2 expression caused by the suppression of ALKBH5 expression. Furthermore, immunoprecipitation indicated that ALKBH5 physically interacted with AKT2 through an RNA-independent mechanism in glioma cells. miR-193a-3p directly targets ALKBH5 to inhibit the growth and promote the apoptosis of glioma cells by suppressing the AKT2 pathway both in vitro and in vivo, and the physical interaction between ALKBH5 and AKT2 is essential for suppressing cell apoptosis by upregulating miR-193a-3p in glioma cells. Our study revealed that the antitumor effects of miR-193a-3p on glioma cells is due to ALKBH5 mediation of the AKT2-induced intrinsic apoptosis signaling pathway.
Collapse
Affiliation(s)
- Yong Cui
- Department of Neurosurgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China.,Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Lin
- Department of Neurosurgery, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Lei Zhang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chi Zhang
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huairui Chen
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Qian
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Luo
- Department of Neurosurgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Tang Y, Zong S, Zeng H, Ruan X, Yao L, Han S, Hou F. MicroRNAs and angiogenesis: a new era for the management of colorectal cancer. Cancer Cell Int 2021; 21:221. [PMID: 33865381 PMCID: PMC8052662 DOI: 10.1186/s12935-021-01920-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA molecules containing only 20–22 nucleotides. MiRNAs play a role in gene silencing and translation suppression by targeting and binding to mRNA. Proper control of miRNA expression is very important for maintaining a normal physiological environment because miRNAs can affect most cellular pathways, including cell cycle checkpoint, cell proliferation, and apoptosis pathways, and have a wide range of target genes. With these properties, miRNAs can modulate multiple signalling pathways involved in cancer development, such as cell proliferation, apoptosis, and migration pathways. MiRNAs that activate or inhibit the molecular pathway related to tumour angiogenesis are common topics of research. Angiogenesis promotes tumorigenesis and metastasis by providing oxygen and diffusible nutrients and releasing proangiogenic factors and is one of the hallmarks of tumour progression. CRC is one of the most common tumours, and metastasis has always been a difficult issue in its treatment. Although comprehensive treatments, such as surgery, radiotherapy, chemotherapy, and targeted therapy, have prolonged the survival of CRC patients, the overall response is not optimistic. Therefore, there is an urgent need to find new therapeutic targets to improve CRC treatment. In a series of recent reports, miRNAs have been shown to bidirectionally regulate angiogenesis in colorectal cancer. Many miRNAs can directly act on VEGF or inhibit angiogenesis through other pathways (HIF-1a, PI3K/AKT, etc.), while some miRNAs, specifically many exosomal miRNAs, are capable of promoting CRC angiogenesis. Understanding the mechanism of action of miRNAs in angiogenesis is of great significance for finding new targets for the treatment of tumour angiogenesis. Deciphering the exact role of specific miRNAs in angiogenesis is a challenge due to the high complexity of their actions. Here, we describe the latest advances in the understanding of miRNAs and their corresponding targets that play a role in CRC angiogenesis and discuss possible miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Yufei Tang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Shaoqi Zong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.,Graduate School of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zeng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaofeng Ruan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Liting Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
10
|
Yang Y, Liu KY, Liu Q, Cao Q. Androgen Receptor-Related Non-coding RNAs in Prostate Cancer. Front Cell Dev Biol 2021; 9:660853. [PMID: 33869227 PMCID: PMC8049439 DOI: 10.3389/fcell.2021.660853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death among men in the United States. Androgen receptor (AR) signaling is the dominant oncogenic pathway in PCa and the main strategy of PCa treatment is to control the AR activity. A large number of patients acquire resistance to Androgen deprivation therapy (ADT) due to AR aberrant activation, resulting in castration-resistant prostate cancer (CRPC). Understanding the molecular mechanisms underlying AR signaling in the PCa is critical to identify new therapeutic targets for PCa patients. The recent advances in high-throughput RNA sequencing (RNA-seq) techniques identified an increasing number of non-coding RNAs (ncRNAs) that play critical roles through various mechanisms in different diseases. Some ncRNAs have shown great potentials as biomarkers and therapeutic targets. Many ncRNAs have been investigated to regulate PCa through direct association with AR. In this review, we aim to comprehensively summarize recent findings of the functional roles and molecular mechanisms of AR-related ncRNAs as AR regulators or targets in the progression of PCa.
Collapse
Affiliation(s)
- Yongyong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kilia Y Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
van den Bosch MT, Yahyanejad S, Alemdehy MF, Telford BJ, de Gunst T, den Boer HC, Vos RM, Stegink M, van Pinxteren LA, Schaapveld RQ, Janicot M. Transcriptome-wide analysis reveals insight into tumor suppressor functions of 1B3, a novel synthetic miR-193a-3p mimic. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1161-1171. [PMID: 33664995 PMCID: PMC7896128 DOI: 10.1016/j.omtn.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
Emerging data show that microRNA 193a-3p (miR-193a-3p) has a suppressive role in many cancers and is often downregulated in tumors, as compared to surrounding normal tissues. Therefore, mimics of miR-193a-3p could be used as an attractive therapeutic approach in oncology. To better understand and document the molecular mechanism of action of 1B3, a novel synthetic miRNA-193a-3p mimic, RNA sequencing was performed after transfection of 1B3 in six different human tumor cell lines. Genes differentially expressed (DE) in at least three cell lines were mapped by Ingenuity Pathway Analysis (IPA), and interestingly, these results strongly indicated upregulation of the tumor-suppressive phosphatase and tensin homolog (PTEN) pathway, as well as downregulation of many oncogenic growth factor signaling pathways. Importantly, although unsurprisingly, IPA identified miR-193a-3p as a strong upstream regulator of DE genes in an unbiased manner. Furthermore, biological function analysis pointed to an extensive link of 1B3 with cancer, via expected effects on tumor cell survival, proliferation, migration, and cell death. Our data strongly suggest that miR-193a-3p/1B3 is a potent tumor suppressor agent that targets various key oncogenic pathways across cancer types. Therefore, the introduction of 1B3 into tumor cells may represent a promising strategy for cancer treatment.
Collapse
Affiliation(s)
| | - Sanaz Yahyanejad
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | | | - Bryony J. Telford
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Thijs de Gunst
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Harm C. den Boer
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Rogier M. Vos
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | - Marieke Stegink
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| | | | | | - Michel Janicot
- InteRNA Technologies BV, Yalelaan 62, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
12
|
Telford BJ, Yahyanejad S, de Gunst T, den Boer HC, Vos RM, Stegink M, van den Bosch MTJ, Alemdehy MF, van Pinxteren LAH, Schaapveld RQJ, Janicot M. Multi-modal effects of 1B3, a novel synthetic miR-193a-3p mimic, support strong potential for therapeutic intervention in oncology. Oncotarget 2021; 12:422-439. [PMID: 33747358 PMCID: PMC7939530 DOI: 10.18632/oncotarget.27894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Compelling evidence demonstrates that miR-193a-3p is a tumor suppressor microRNA in many cancer types, and its reduced expression is linked to cancer initiation and progression, metastasis, and therapy resistance. However, its mechanism of action is not consistently described between studies, and often contradicts the pleiotropic role of a microRNA in manipulating several different mRNA targets. We therefore comprehensively investigated miRNA-193a-3p's mode of action in a panel of human cancer cell lines, with a variety of genetic backgrounds, using 1B3, a synthetic microRNA mimic. Interestingly, the exact mechanism through which 1B3 reduced cell proliferation varied between cell lines. 1B3 efficiently reduced target gene expression, leading to reduced cell proliferation/survival, cell cycle arrest, induction of apoptosis, increased cell senescence, DNA damage, and inhibition of migration. SiRNA silencing of 1B3 target mRNAs further highlighted the advantage of the pleiotropic mechanism of 1B3 action, as repression of individual targets did not achieve the same robust effect on cell proliferation in all cell lines. Importantly, a novel lipid nanoparticle-based formulation of 1B3, INT-1B3, demonstrated marked anti-tumor activity as a single agent following systemic administration in tumor-bearing mice. Together, these data strongly support the development of 1B3 as a novel therapeutic agent for treatment of human cancer.
Collapse
Affiliation(s)
| | | | | | | | - Rogier M Vos
- InteRNA Technologies BV, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Li XJ, Wen R, Wen DY, Lin P, Pan DH, Zhang LJ, He Y, Shi L, Qin YY, Lai YH, Lai JN, Yang JL, Lai QQ, Wang J, Ma J, Yang H, Pang YY. Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer. Mol Med Rep 2020; 22:2199-2218. [PMID: 32705210 PMCID: PMC7411362 DOI: 10.3892/mmr.2020.11310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 04/09/2020] [Indexed: 01/07/2023] Open
Abstract
Thyroid cancer (TC) is a frequently occurring malignant tumor with a rising steadily incidence. microRNA (miRNA/miR)‑193a‑3p is an miRNA that is associated with tumors, playing a crucial role in the genesis and progression of various cancers. However, the expression levels of miR‑193a‑3p and its molecular mechanisms in TC remain to be elucidated. The present study aimed to probe the expression of miR‑193a‑3p and its clinical significance in TC, including its underlying molecular mechanisms. Microarray and RNA sequencing data gathered from three major databases, specifically Gene Expression Omnibus (GEO), ArrayExpress and The Cancer Genome Atlas (TCGA) databases, and the relevant data from the literature were used to examine miR‑193a‑3p expression. Meta‑analysis was also conducted to evaluate the association between clinicopathological parameters and miR‑193a‑3p in 510 TC and 59 normal samples from the TCGA database. miRWalk 3.0, and the TCGA and GEO databases were used to predict the candidate target genes of miR‑193a‑3p. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and protein‑protein interaction network enrichment analyses were conducted by using the predicted candidate target genes to investigate the underlying carcinogenic mechanisms. A dual luciferase assay was performed to validate the targeting regulatory association between the most important hub gene cyclin D1 (CCND1) and miR‑193a‑3p. miR‑193a‑3p expression was considerably downregulated in TC compared with in the non‑cancer controls (P<0.001). The area under the curve of the summary receiver operating characteristic was 0.80. Downregulation of miR‑193a‑3p was also significantly associated with age, sex and metastasis (P=0.020, 0.044 and 0.048, respectively). Bioinformatics analysis indicated that a low miR‑193a‑3p expression may augment CCND1 expression to affect the biological processes of TC. In addition, CCND1, as a straightforward target, was validated through a dual luciferase assay. miR‑193a‑3p and CCND1 may serve as prognostic biomarkers of TC. Finally, miR‑193a‑3p may possess a crucial role in the genesis and progression of TC by altering the CCND1 expression.
Collapse
Affiliation(s)
- Xiao-Jiao Li
- Department of Positron Emission Tomography‑Computed Tomography (PET‑CT), First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong Wen
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Deng-Hua Pan
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu He
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin Shi
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Yong-Ying Qin
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun-Hui Lai
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Jing-Ni Lai
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun-Lin Yang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qin-Qiao Lai
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Jun Wang
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Jun Ma
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
14
|
Wang SS, Huang ZG, Wu HY, He RQ, Yang LH, Feng ZB, Dang YW, Lu HP, Fang YY, Chen G. Downregulation of miR-193a-3p is involved in the pathogenesis of hepatocellular carcinoma by targeting CCND1. PeerJ 2020; 8:e8409. [PMID: 32095323 PMCID: PMC7017797 DOI: 10.7717/peerj.8409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second-highest cause of malignancy-related death worldwide, and many physiological and pathological processes, including cancer, are regulated by microRNAs (miRNAs). miR-193a-3p is an anti-oncogene that plays an important part in health and disease biology by interacting with specific targets and signals. Methods In vitro assays were performed to explore the influences of miR-193a-3p on the propagation and apoptosis of HCC cells. The sequencing data for HCC were obtained from The Cancer Genome Atlas (TCGA), and the expression levels of miR-193a-3p in HCC and non-HCC tissues were calculated. The differential expression of miR-193a-3p in HCC was presented as standardized mean difference (SMD) with 95% confidence intervals (CIs) in Stata SE. The impact of miR-193a-3p on the prognoses of HCC patients was determined by survival analysis. The potential targets of miR-193a-3p were then predicted using miRWalk 2.0 and subjected to enrichment analyses, including Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Protein-Protein Interaction (PPI) network analysis. The interaction between miR-193a-3p and one predicted target, Cyclin D1 (CCND1), was verified by dual luciferase reporter assays and Pearson correlation analysis. Results MiR-193a-3p inhibited the propagation and facilitated the apoptosis of HCC cells in vitro. The pooled SMD indicated that miR-193a-3p had a low level of expression in HCC (SMD: −0.88, 95% CI [−2.36 −0.59]). Also, HCC patients with a higher level of miR-193a-3p expression tended to have a favorable overall survival (OS: HR = 0.7, 95% CI [0.43–1.13], P = 0.14). For the KEGG pathway analysis, the most related pathway was “proteoglycans in cancer”, while the most enriched GO term was “protein binding”. The dual luciferase reporter assays demonstrated the direct interaction between miR-193a-3p and CCND1, and the Pearson correlation analysis suggested that miR-193a-3p was negatively correlated with CCND1 in HCC tissues (R = − 0.154, P = 0.002). Conclusion miR-193a-3p could suppress proliferation and promote apoptosis by targeting CCND1 in HCC cells. Further, miR-193a-3p can be used as a promising biomarker for the diagnosis and treatment of HCC in the future.
Collapse
Affiliation(s)
- Shi-Shuo Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hua-Yu Wu
- Department of Cell Biology & Genetics, Guangxi Medical University, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Hua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ye-Ying Fang
- Department of Radiation Oncology, Radiation Oncology Clinical Medical Research Center of Guangxi, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Noorolyai S, Baghbani E, Aghebati Maleki L, Baghbanzadeh Kojabad A, Shanehbansdi D, Khaze Shahgoli V, Mokhtarzadeh A, Baradaran B. Restoration of miR-193a-5p and miR-146 a-5p Expression Induces G1 Arrest in Colorectal Cancer through Targeting of MDM2/p53. Adv Pharm Bull 2019; 10:130-134. [PMID: 32002372 PMCID: PMC6983996 DOI: 10.15171/apb.2020.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Colorectal cancer (CRC) remains a universal and lethal cancer owing to metastatic and relapsing disease. Currently, the role of microRNAs has been checked in tumorigeneses. Numerous studies have revealed that between the tumor suppressor miRNAs, the reduced expression of miR-146a-5p and -193a-5p in several cancers including CRC tissues are related with tumor progression and poor prognosis of patients. The purpose of this study is to examine the role of miR-146 a-5p and -193 a-5p in CRC cell cycle progression.
Methods: The miR-193a-5p and -146 a-5p mimics were transfected into HT-29 CRC cells via jetPEI transfection reagent and their impact was assessed on p53, cyclin B, and NF-kB gene expression. The inhibitory effect of these miRNAs on cell cycle was assessed by flow cytometry. The consequence of miR-193a-5p and miR-146 a-5p on the protein expression level of Murine double minute 2 (MDM2) was assessed by western blotting.
Results: miR193a-5p and -146a-5p regulated the expression of MDM2 protein and p53, cyclin B, and NF-kB gene expression in CRC cells. Treatment of HT-29 cells with miRNA-146a-5p and -193a-5p induced G1 cell cycle arrest.
Conclusion: The findings of our study suggest that miR146a-5p and -193a-5p may act as a potential tumor suppressor by their influence on cell cycle progression in CRC cells. Thus, miRNA-146a-5p and -193a-5p restoration may be recommended as a potential therapeutic goal in the treatment of CRC patients.
Collapse
Affiliation(s)
- Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. Introduction
| | | | | | | | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Wu HY, Wei Y, Pan SL. Down-regulation and clinical significance of miR-7-2-3p in papillary thyroid carcinoma with multiple detecting methods. IET Syst Biol 2019; 13:225-233. [PMID: 31538956 PMCID: PMC8687168 DOI: 10.1049/iet-syb.2019.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 04/05/2024] Open
Abstract
Altered miRNA expression participates in the biological progress of thyroid carcinoma and functions as a diagnostic marker or therapeutic agent. However, the role of miR-7-2-3p is currently unclear. The authors' study was the first investigation of miR-7-2-3p expression level and diagnostic ability in several public databases. Potential target genes were obtained from DIANA Tools, and function enrichment analysis was then performed. Furthermore, the authors examined expression levels of potential targets in the Human Protein Atlas (HPA) and the Cancer Genome Atlas (TCGA). Finally, the potential transcription factors (TFs) were predicted by JASPAR. TCGA, GSE62054, GSE73182, GSE40807, and GSE55780 revealed that miR-7-2-3p expression in papillary thyroid carcinoma (PTC) tissues was notably lower compared with non-tumour tissues, while its expression in E-MATB-736 showed no remarkable difference. Function enrichment analysis showed that 698 genes were enriched in pathways, including pathways in cancer, and glioma. CCND1, GSK3B, and ITGAV of pathways in cancer were inverse correlations with miR-7-2-3p in both post-transcription and protein levels. According to the TF prediction, the prospective upstream TFs of miR-7-2-3p were ISX, SPI1, PRRX1, and BARX1. MiR-7-2-3p was significantly down-regulated and may act on PTC progression by crucial pathways. However, the mechanisms of miR-7-2-3p need further investigation.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi Wei
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
17
|
Lin M, Zhang Z, Gao M, Yu H, Sheng H, Huang J. MicroRNA-193a-3p suppresses the colorectal cancer cell proliferation and progression through downregulating the PLAU expression. Cancer Manag Res 2019; 11:5353-5363. [PMID: 31354344 PMCID: PMC6578599 DOI: 10.2147/cmar.s208233] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer-related death in China. Dysregulation of microRNAs (miRNAs) is involved in cancer development and progression. Our previous study showed an inverse relationship between miR-193a-3p expression and the prognosis of CRC. However, the exact biological functions of miR-193a-3p in CRC are still poorly understood. This study aimed to explore the role and mechanism of miR-193a-3p in CRC. Methods Real-time PCR and Western blotting were used to examine the expression levels of RNA and protein, respectively. A dual luciferase assay was performed to validate predicted targets of miR-193a-3p. Loss and gain-of-function studies were carried out to reveal the effects and potential mechanism of the miR-193a-3p in the proliferation, metastasis and angiogenesis of CRC cells. Results The expression levels of miR-193a-3p in human CRC cell lines were significantly decreased compared with that in normal colonic epithelium cell line. Furthermore, plasminogen activator urokinase (PLAU) was validated as a direct target gene of miR-193a-3p. Over-expression of miR-193a-3p inhibited proliferation, migration and angiogenesis of HT-29 cell, whereas forced expression of PLAU could rescue the inhibitory effects. Conclusion miR-193a-3p might inhibit CRC cell growth, migration and angiogenesis partly through targeting PLAU. MiR-193a-3p/PLAU axis might provide a potent therapeutic opportunity for aggressive CRC.
Collapse
Affiliation(s)
- Maosong Lin
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Zan Zhang
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Mingjun Gao
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| | - Haihui Sheng
- Shanghai Engineering Center of Molecular Medicine, and National Engineering Center for Biochip, Shanghai 201203, People's Republic of China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, People's Republic of China
| |
Collapse
|
18
|
Chen D, Lu X, Yang F, Xing N. Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression. Cancer Manag Res 2019; 11:1415-1423. [PMID: 30863152 PMCID: PMC6388976 DOI: 10.2147/cmar.s190669] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND While emerging evidence indicates that circHIPK3 is critically involved in tumorigenesis and the development of several cancers, its role in prostate cancer (PCa) is not clearly understood. MATERIALS AND METHODS Human PCa samples and their matched normal adjacent tissues were obtained from 26 patients to assess the expression of circHIPK3 and its relationship with PCa prognosis. A series of in vitro and in vivo functional experiments were carried out to elucidate the role of circHIPK3 in PCa progression and its underlying molecular mechanisms. RESULTS In this study, we found that circHIPK3 was overexpressed in PCa tissues and that higher circHIPK3 expression was associated with tumor stage. Moreover, circHIPK3 knockdown markedly inhibited the proliferation, migration, and invasion of PCa cells in vitro and impaired tumor growth in vivo. Bioinformatics analysis and luciferase reporter assays demonstrated that circHIPK3 could promote MCL1 expression by interacting with miR-193a-3p in PCa. Finally, rescue assays illustrated that circHIPK3 knockdown could partially reverse the effects of MCL1 overexpression. CONCLUSION In summary, our study illustrated, for the first time, that circHIPK3-mediated miR-193a-3p-MCL1 signaling promotes PCa development and progression, providing a novel therapeutic target for PCa.
Collapse
Affiliation(s)
- Dong Chen
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinxing Lu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Feiya Yang
- Department of Urology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center, Beijing 100021, China,
| | - Nianzeng Xing
- Department of Urology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center, Beijing 100021, China,
| |
Collapse
|
19
|
Zhu Z, Du S, Yin K, Ai S, Yu M, Liu Y, Shen Y, Liu M, Jiao R, Chen X, Guan W. Knockdown long noncoding RNA nuclear paraspeckle assembly transcript 1 suppresses colorectal cancer through modulating miR-193a-3p/KRAS. Cancer Med 2019; 8:261-275. [PMID: 30575330 PMCID: PMC6346262 DOI: 10.1002/cam4.1798] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The nuclear paraspeckle assembly transcript 1 (abbreviated as NEAT1), a nuclear sufficient long noncoding RNA (abbreviated as lncRNA), has aroused a rising concern in recent years. As uncovered by reports, the increase in NEAT1 is related to the deteriorated prognosis of lung cancer, breast cancer, hepatocellular cancer, and colorectal cancer (abbreviated as CRC). Thus far, the mechanism of NEAT1 has not been elucidated by the existing researches. The impact of knockdown of both NEAT1 and its predicted downstream miR-193a-3p in CRC cells was examined here to delve into their interactions and mechanisms. Additionally, the target of miR-193a-3p, Kirsten rat sarcoma viral oncogene homolog (abbreviated as KRAS), was also predicted by bioinformatics algorithms. Small interfering RNA and antisense oligonucleotides that inhibit NEAT1, as well as overexpression or knockdown of miR-193a-3p, were adequately drawn upon to confirm that NEAT1 serves as a miR-193a-3p sponge or competing endogenous RNA, to impact miR-193a-3p's further functions, including modulating KRAS proteins, both in vitro and in vivo. Generally, lncRNA NEAT1/hsa-miR-193a-3p/KRAS axis was substantiated in CRC cells and could provide novel insight into both diagnostic and therapeutic advancement in CRC.
Collapse
Affiliation(s)
- Zhouting Zhu
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Shangce Du
- Department of General SurgeryDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
| | - Kai Yin
- Department of General SurgeryTaixing Hospital Affiliated to Yangzhou UniversityTaixingChina
| | - Shichao Ai
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yan Shen
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Minghui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Ruihua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Wenxian Guan
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
20
|
Jiang L, Yang W, Bian W, Yang H, Wu X, Li Y, Feng W, Liu X. MicroRNA-623 Targets Cyclin D1 to Inhibit Cell Proliferation and Enhance the Chemosensitivity of Cells to 5-Fluorouracil in Gastric Cancer. Oncol Res 2018; 27:19-27. [PMID: 29495973 PMCID: PMC7848397 DOI: 10.3727/096504018x15193469240508] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) plays an important function in the onset and progression of gastric cancer (GC). In addition, aberrantly expressed miRNAs affect the chemosensitivity of GC cells to chemotherapeutic drugs. Hence, miRNA-based targeted therapy might be applied to treat patients with GC exhibiting chemotherapeutic resistance. In this study, miRNA-623 (miR-623) expression was downregulated in GC tissues and cell lines. Functional analysis showed that the restored miR-623 expression could inhibit the proliferation of GC cells and enhance their chemosensitivity to 5-FU via the cell apoptosis pathway. Cyclin D1 (CCND1) was identified as a direct target gene of miR-623 in GC. The overexpressed CCND1 in GC tissues was negatively correlated with miR-623 level. The recovered CCND1 expression counteracted the effects of miR-623 on GC cell proliferation, chemosensitivity, and 5-FU-induced apoptosis. Thus, our results suggest that miR-623 might function as a tumor suppressor in GC and could be a promising therapeutic target for patients with GC, especially those with chemotherapeutic resistance.
Collapse
Affiliation(s)
- Lihua Jiang
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Wenchuan Yang
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Weishi Bian
- Department of Cardiology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Hailin Yang
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Xia Wu
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Yuhua Li
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Wen Feng
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Xuejian Liu
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| |
Collapse
|
21
|
Huang F, Zhao H, Du Z, Jiang H. miR-615 Inhibits Prostate Cancer Cell Proliferation and Invasion by Directly Targeting Cyclin D2. Oncol Res 2018; 27:293-299. [PMID: 29471894 PMCID: PMC7848464 DOI: 10.3727/096504018x15190399381143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have reported that miR-615 exerts a tumor suppressor role in some tumors, such as esophageal squamous cell carcinoma and non-small cell lung cancer. However, the role of miR-615 in prostate cancer has not been defined. Here we found that miR-615 was downregulated in prostate cancer tissues and cell lines. Overexpression of miR-615 in PC-3 cells significantly inhibited cellular proliferation, migration, and invasion. Moreover, overexpression of miR-615 delayed tumor growth in vivo. In terms of mechanism, we found that cyclin D2 (CCND2) is a target gene of miR-615 in prostate cancer. We showed that miR-615 could bind to the 3′-UTR region of CCND2 mRNA and inhibit its expression. There was a negative correlation between the expression of miR-615 and CCND2 in prostate cancer tissues. Moreover, restoration of cyclin D2 abolished the inhibitory effects of miR-615 on the proliferation, migration, and invasion of prostate cancer cells. Taken together, our study identified miR-615 as a tumor suppressor by targeting cyclin D2 in prostate cancer.
Collapse
Affiliation(s)
| | - Hongjun Zhao
- Department of Urology, Yantai Municipal Laiyang Central Hospital, Laiyang, Shandong Province, P.R. China
| | - Zhaojin Du
- Reproductive Medical Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, P.R. China
| | - Hong Jiang
- Department of Gastroenterology, Yantai Municipal Laiyang Central Hospital, Laiyang, Shandong Province, P.R. China
| |
Collapse
|