1
|
Paul EN, Carpenter TJ, Pavliscak LA, Bennett AZ, Ochoa-Bernal MA, Fazleabas AT, Teixeira JM. HMGA2 overexpression induces plasticity in myometrial cells and a transcriptomic profile more similar to that of uterine fibroids. F&S SCIENCE 2024; 5:369-378. [PMID: 39025326 PMCID: PMC11588543 DOI: 10.1016/j.xfss.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To study the possible role for HMGA2 overexpression in differentiated myometrial cells and its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. DESIGN Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted, and ribonucleic acid from HMGA2hi and control cells as well as fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for ribonucleic acid sequencing. SETTING University research laboratory. PATIENT(S) Women who underwent hysterectomy for symptomatic uterine fibroids or other gynecological conditions. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) In vitro stem cell-like properties from myometrial cell lines. Ribonucleic acid sequencing and collagen production of HMGA2-overexpressing primary leiomyoma tissue and cell lines. RESULT(S) HMGA2hi cells had enhanced self-renewal capacity, decreased proliferation, and a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibited a stem cell-like signature and shared transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways were observed in both HMGA2hi cells and HMGA2F. CONCLUSION(S) Our findings show that HMGA2 overexpression may drive myometrial cells to dedifferentiate into a more plastic phenotype and provide evidence for an alternative mechanism for fibroid etiology, suggesting that fibroids arise not only from a mutated stem cell but also from a mutated differentiated myometrial cell.
Collapse
Affiliation(s)
- Emmanuel N Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Tyler J Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Laura A Pavliscak
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Abigail Z Bennett
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Maria Ariadna Ochoa-Bernal
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.
| |
Collapse
|
2
|
Bariani MV, Grimm SL, Coarfa C, Velez Edwards DR, Yang Q, Walker CL, Ali M, Al-Hendy A. Altered extracellular matrix-related pathways accelerate the transition from normal to prefibroid myometrium in Black women. Am J Obstet Gynecol 2024; 231:324.e1-324.e12. [PMID: 38825029 PMCID: PMC11344675 DOI: 10.1016/j.ajog.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Black women experience a disproportionate impact of uterine fibroids compared to White women, including earlier diagnosis, higher frequency, and more severe symptoms. The etiology underlying this racial disparity remains elusive. OBJECTIVE The aim of this study was to evaluate the molecular differences in normal myometrium (fibroid-free uteri) and at-risk myometrium (fibroid-containing uteri) tissues in Black and White women. STUDY DESIGN We conducted whole-genome RNA-seq on normal and at-risk myometrium tissues obtained from both self-identified Black and White women (not Hispanic or Latino) to determine global gene expression profiles and to conduct enriched pathway analyses (n=3 per group). We initially assessed the differences within the same type of tissue (normal or at-risk myometrium) between races. Subsequently, we analyzed the transcriptome of normal myometrium compared to at-risk myometrium in each race and determined the differences between them. We validated our findings through real-time PCR (sample size range=5-12), western blot (sample size range=5-6), and immunohistochemistry techniques (sample size range=9-16). RESULTS The transcriptomic analysis revealed distinct profiles between Black and White women in normal and at-risk myometrium tissues. Interestingly, genes and pathways related to extracellular matrix and mechanosensing were more enriched in normal myometrium from Black than White women. Transcription factor enrichment analysis detected greater activity of the serum response transcription factor positional motif in normal myometrium from Black compared to White women. Furthermore, we observed increased expression levels of myocardin-related transcription factor-serum response factor and the serum response factor in the same comparison. In addition, we noted increased expression of both mRNA and protein levels of vinculin, a target gene of the serum response factor, in normal myometrium tissues from Black women as compared to White women. Importantly, the transcriptomic profile of normal to at-risk myometrium conversion differs between Black and White women. Specifically, we observed that extracellular matrix-related pathways are involved in the transition from normal to at-risk myometrium and that these processes are exacerbated in Black women. We found increased levels of Tenascin C, type I collagen alpha 1 chain, fibronectin, and phospho-p38 MAPK (Thr180/Tyr182, active) protein levels in at-risk over normal myometrium tissues from Black women, whereas such differences were not observed in samples from White women. CONCLUSION These findings indicate that the racial disparities in uterine fibroids may be attributed to heightened production of extracellular matrix in the myometrium in Black women, even before the tumors appear. Future research is needed to understand early life determinants of the observed racial differences.
Collapse
Affiliation(s)
| | - Sandra L Grimm
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX; Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Cheryl L Walker
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL.
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL.
| |
Collapse
|
3
|
George JW, Cancino RA, Griffin Miller JL, Qiu F, Lin Q, Rowley MJ, Chennathukuzhi VM, Davis JS. Characterization of m6A Modifiers and RNA Modifications in Uterine Fibroids. Endocrinology 2024; 165:bqae074. [PMID: 38946397 PMCID: PMC11222979 DOI: 10.1210/endocr/bqae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Uterine leiomyoma or fibroids are prevalent noncancerous tumors of the uterine muscle layer, yet their origin and development remain poorly understood. We analyzed RNA expression profiles of 15 epigenetic mediators in uterine fibroids compared to myometrium using publicly available RNA sequencing (RNA-seq) data. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key N6-methyladenosine (m6A) modifiers in fibroids and their matched myometrium, showing no significant differences in concordance with our RNA expression profiles. To determine RNA modification abundance, mRNA and small RNA from fibroids and matched myometrium were analyzed by ultra-high performance liquid chromatography-mass spectrometry identifying prevalent m6A and 11 other known modifiers. However, no aberrant expression in fibroids was detected. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic subtype. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression, and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and diverse patient cohort.
Collapse
Affiliation(s)
- Jitu W George
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Rosa A Cancino
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer L Griffin Miller
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, Department of Chemistry, University at Albany, Albany, NY 12222, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Varghese M Chennathukuzhi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
4
|
Dye CK, Wu H, VanNoy B, Calluori S, Marfori CQ, Baccarelli AA, Zota AR. Psychosocial Stress and MicroRNA Expression Profiles in Myometrial Tissue of Women Undergoing Surgical Treatment for Uterine Fibroids. Reprod Sci 2024; 31:1651-1661. [PMID: 38379067 PMCID: PMC11426992 DOI: 10.1007/s43032-024-01482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Uterine leiomyomas (fibroids) are the most common non-cancerous tumors affecting women. Psychosocial stress is associated with fibroid risk and severity. The relationship between psychosocial stress and fibroid pathogenesis may involve alterations in microRNAs (miRNAs) although this has yet to be examined. We investigated associations between two psychosocial stress measures, a composite measure of recent stressful life events and perceived social status, with expression levels of 401 miRNAs in myometrium (n = 20) and fibroids (n = 44; 20 with paired fibroid and myometrium samples) among pre-menopausal women who underwent surgery for fibroid treatment. We used linear regressions to identify psychosocial stressors associated with miRNAs, adjusting for covariates (age, body mass index, race/ethnicity, and oral contraceptive use). The association between psychosocial stressors and miRNAs was considered statistically significant at an FDR p < 0.10 and showed a monotonic response (nominal p-trend < 0.05). In the myometrium, 21 miRNAs were significantly associated with a composite measure of recent stressful events, and two miRNAs were associated with perceived social status. No fibroid miRNAs were associated with either stress measure. Pathway analyses revealed miRNA-mRNA targets were significantly enriched (FDR p < 0.05) in pathways relevant to cancer/tumor development. Of the 74 differentially expressed miRNAs between myometrium and fibroids, miR-27a-5p and miR-301b were also associated with stress exposure. Our pilot analysis suggests that psychosocial stress is associated with myometrial miRNA expression and, thus, may have a role in the pathogenesis of fibroids from healthy myometrium.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA.
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA
| | - Brianna VanNoy
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Stephanie Calluori
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA
| | - Cherie Q Marfori
- Minimally Invasive Gynecologic Surgery, Inova Health Systems, Arlington, VA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA
| | - Ami R Zota
- Department of Environmental Health Sciences, Columbia University, 722, West 168Th St. 16Th Floor, New York, NY, 10032, USA
| |
Collapse
|
5
|
Paul EN, Carpenter TJ, Pavliscak LA, Bennett AZ, Ochoa-Bernal MA, Fazleabas AT, Teixeira JM. Unraveling the Molecular Landscape of Uterine Fibroids, Insights into HMGA2 and Stem Cell Involvement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591351. [PMID: 38712187 PMCID: PMC11071509 DOI: 10.1101/2024.04.26.591351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Uterine fibroids are prevalent benign tumors in women that exhibit considerable heterogeneity in clinical presentation and molecular characteristics, necessitating a deeper understanding of their etiology and pathogenesis. HMGA2 overexpression has been associated with fibroid development, yet its precise role remains elusive. Mutations in fibroids are mutually exclusive and largely clonal, suggesting that tumors originate from a single mutant cell. We explored a possible role for HMGA2 overexpression in differentiated myometrial cells, hypothesizing its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted and RNA from HMGA2hi and control cells and fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for RNA-sequencing. HMGA2hi cells have enhanced self-renewal capacity, decreased proliferation, and have a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibit a stem cell-like signature and share transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways are observed in both HMGA2hi cells and HMGA2F. Our findings suggest that HMGA2 overexpression drives myometrial cells to dedifferentiate into a more plastic phenotype and underscore a pivotal role for HMGA2 in fibroid pathogenesis.
Collapse
|
6
|
Buyukcelebi K, Duval AJ, Abdula F, Elkafas H, Seker-Polat F, Adli M. Integrating leiomyoma genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types. Nat Commun 2024; 15:1169. [PMID: 38326302 PMCID: PMC10850163 DOI: 10.1038/s41467-024-45382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Uterine fibroids (UF), that can disrupt normal uterine function and cause significant physical and psychological health problems, are observed in nearly 70% of women of reproductive age. Although heritable genetics is a significant risk factor, specific genetic variations and gene targets causally associated with UF are poorly understood. Here, we performed a meta-analysis on existing fibroid genome-wide association studies (GWAS) and integrated the identified risk loci and potentially causal single nucleotide polymorphisms (SNPs) with epigenomics, transcriptomics, 3D chromatin organization from diverse cell types as well as primary UF patient's samples. This integrative analysis identifies 24 UF-associated risk loci that potentially target 394 genes, of which 168 are differentially expressed in UF tumors. Critically, integrating this data with single-cell gene expression data from UF patients reveales the causal cell types with aberrant expression of these target genes. Lastly, CRISPR-based epigenetic repression (dCas9-KRAB) or activation (dCas9-p300) in a UF disease-relevant cell type further refines and narrows down the potential gene targets. Our findings and the methodological approach indicate the effectiveness of integrating multi-omics data with locus-specific epigenetic editing approaches for identifying gene- and celt type-targets of disease-relevant risk loci.
Collapse
Affiliation(s)
- Kadir Buyukcelebi
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Alexander J Duval
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fatih Abdula
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Hoda Elkafas
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fidan Seker-Polat
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Yang Q, Vafaei S, Falahati A, Khosh A, Bariani MV, Omran MM, Bai T, Siblini H, Ali M, He C, Boyer TG, Al-Hendy A. Bromodomain-Containing Protein 9 Regulates Signaling Pathways and Reprograms the Epigenome in Immortalized Human Uterine Fibroid Cells. Int J Mol Sci 2024; 25:905. [PMID: 38255982 PMCID: PMC10815284 DOI: 10.3390/ijms25020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bromodomain-containing proteins (BRDs) are involved in many biological processes, most notably epigenetic regulation of transcription, and BRD dysfunction has been linked to many diseases, including tumorigenesis. However, the role of BRDs in the pathogenesis of uterine fibroids (UFs) is entirely unknown. The present study aimed to determine the expression pattern of BRD9 in UFs and matched myometrium and further assess the impact of a BRD9 inhibitor on UF phenotype and epigenetic/epitranscriptomic changes. Our studies demonstrated that the levels of BRD9 were significantly upregulated in UFs compared to matched myometrium, suggesting that the aberrant BRD expression may contribute to the pathogenesis of UFs. We then evaluated the potential roles of BRD9 using its specific inhibitor, I-BRD9. Targeted inhibition of BRD9 suppressed UF tumorigenesis with increased apoptosis and cell cycle arrest, decreased cell proliferation, and extracellular matrix deposition in UF cells. The latter is the key hallmark of UFs. Unbiased transcriptomic profiling coupled with downstream bioinformatics analysis further and extensively demonstrated that targeted inhibition of BRD9 impacted the cell cycle- and ECM-related biological pathways and reprogrammed the UF cell epigenome and epitranscriptome in UFs. Taken together, our studies support the critical role of BRD9 in UF cells and the strong interconnection between BRD9 and other pathways controlling the UF progression. Targeted inhibition of BRDs might provide a non-hormonal treatment option for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai 505262, United Arab Emirates;
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Maria Victoria Bariani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mervat M. Omran
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Tao Bai
- Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| |
Collapse
|
8
|
George JW, Cancino RA, Miller JLG, Qiu F, Lin Q, Rowley MJ, Chennathukuzhi VM, Davis JS. Characterization of m 6A modifiers and RNA modifications in uterine fibroids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552278. [PMID: 37609293 PMCID: PMC10441280 DOI: 10.1101/2023.08.07.552278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Uterine leiomyoma or fibroids are the most common prevalent noncancerous tumors of the uterine muscle layer. Common symptoms associated with fibroids include pelvic pain, heavy menstrual bleeding, anemia, and pelvic pressure. These tumors are a leading cause of gynecological care but lack long-term therapy as the origin and development of fibroids are not well understood. Several next-generation sequencing technologies have been performed to identify the underlying genetic and epigenetic basis of fibroids. However, there remains a systemic gap in our understanding of molecular and biological process that define uterine fibroids. Recent epitranscriptomics studies have unraveled RNA modifications that are associated with all forms of RNA and are thought to influence both normal physiological functions and the progression of diseases. We quantified RNA expression profiles by analyzing publicly available RNA-seq data for 15 known epigenetic mediators to identify their expression profile in uterine fibroids compared to myometrium. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key m6A modifiers in fibroids and their matched myometrium. In concordance with our RNA expression profiles, no significant differences were observed in these proteins in uterine fibroids compared to myometrium. To determine abundance of RNA modifications, mRNA and small RNA from fibroids and matched myometrium were analyzed by UHPLC MS/MS. In addition to the prevalent N6-methyladenosine (m6A), we identified 11 other known modifiers but did not identify any aberrant expression in fibroids. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic sub-type. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and varied patient cohort.
Collapse
Affiliation(s)
- Jitu W. George
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - Rosa A. Cancino
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer L. Griffin Miller
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, Department of Chemistry, University at Albany, Albany, NY, United States
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Varghese M. Chennathukuzhi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John S. Davis
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| |
Collapse
|
9
|
Paul EN, Carpenter TJ, Fitch S, Sheridan R, Lau KH, Arora R, Teixeira JM. Cysteine-rich intestinal protein 1 is a novel surface marker for human myometrial stem/progenitor cells. Commun Biol 2023; 6:686. [PMID: 37400623 DOI: 10.1038/s42003-023-05061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better markers. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers. CRIP1 expression was found highly upregulated by both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.
Collapse
Affiliation(s)
- Emmanuel N Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Tyler J Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, 48824, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, 48824, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
10
|
Paul EN, Carpenter TJ, Fitch S, Sheridan R, Lau KH, Arora R, Teixeira JM. Cysteine-Rich Intestinal Protein 1 is a Novel Surface Marker for Myometrial Stem/Progenitor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529273. [PMID: 36993447 PMCID: PMC10054937 DOI: 10.1101/2023.02.20.529273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, which are benign tumors that develop in the myometrium of most reproductive age women, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better discerning markers for more rigorous downstream analyses. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers capable of further enriching for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers, including SUSD2. CRIP1 expression was found highly upregulated in both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.
Collapse
Affiliation(s)
- Emmanuel N. Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Tyler J. Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Jose M. Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| |
Collapse
|
11
|
Chuang TD, Gao J, Quintanilla D, McSwiggin H, Boos D, Yan W, Khorram O. Differential Expression of MED12-Associated Coding RNA Transcripts in Uterine Leiomyomas. Int J Mol Sci 2023; 24:ijms24043742. [PMID: 36835153 PMCID: PMC9960582 DOI: 10.3390/ijms24043742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
Recent studies have demonstrated that somatic MED12 mutations in exon 2 occur at a frequency of up to 80% and have a functional role in leiomyoma pathogenesis. The objective of this study was to elucidate the expression profile of coding RNA transcripts in leiomyomas, with and without these mutations, and their paired myometrium. Next-generation RNA sequencing (NGS) was used to systematically profile the differentially expressed RNA transcripts from paired leiomyomas (n = 19). The differential analysis indicated there are 394 genes differentially and aberrantly expressed only in the mutated tumors. These genes were predominantly involved in the regulation of extracellular constituents. Of the differentially expressed genes that overlapped in the two comparison groups, the magnitude of change in gene expression was greater for many genes in tumors bearing MED12 mutations. Although the myometrium did not express MED12 mutations, there were marked differences in the transcriptome landscape of the myometrium from mutated and non-mutated specimens, with genes regulating the response to oxygen-containing compounds being most altered. In conclusion, MED12 mutations have profound effects on the expression of genes pivotal to leiomyoma pathogenesis in the tumor and the myometrium which could alter tumor characteristics and growth potential.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90502, USA
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90502, USA
- Correspondence: ; Tel.: +1-(310)-222-3867
| |
Collapse
|
12
|
Paul EN, Grey JA, Carpenter TJ, Madaj ZB, Lau KH, Givan SA, Burns GW, Chandler RL, Wegienka GR, Shen H, Teixeira JM. Transcriptome and DNA methylome analyses reveal underlying mechanisms for the racial disparity in uterine fibroids. JCI Insight 2022; 7:160274. [PMID: 36066972 PMCID: PMC9714787 DOI: 10.1172/jci.insight.160274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Uterine fibroids (leiomyomas) affect Black women disproportionately compared with women of other races and ethnicities in terms of prevalence, incidence, and severity of symptoms. The causes of this racial disparity are essentially unknown. We hypothesized that myometria of Black women are more susceptible to developing fibroids, and we examined the transcriptomic and DNA methylation profiles of myometria and fibroids from Black and White women for comparison. Myometrial samples cluster by race in both their transcriptome and DNA methylation profiles, whereas fibroid samples only cluster by race in the latter. More differentially expressed genes (DEGs) were detected in the Black and White myometrial sample comparison than in the fibroid comparison. Leiomyoma gene set expression analysis identified 4 clusters of DEGs, including a cluster of 24 genes with higher expression in myometrial samples from Black women. One of the DEGs in this group, von Willibrands factor (VWF), was significantly hypomethylated in both myometrial samples from Black women and in all fibroids at 2 CpG probes that are near a putative enhancer site and that are correlated with VWF expression levels. These results suggest that the molecular basis for the disparity in fibroid disease between Black and White women could be found in the myometria before fibroid development and not in the fibroids themselves.
Collapse
Affiliation(s)
- Emmanuel N. Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Joshua A. Grey
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Tyler J. Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Zachary B. Madaj
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Kin H. Lau
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Scott A. Givan
- Bioinformatics and Biostatistics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Gregory W. Burns
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Ronald L. Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Ganesa R. Wegienka
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jose M. Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
13
|
Kulinczak M, Sromek M, Panek G, Zakrzewska K, Lotocka R, Szafron LM, Chechlinska M, Siwicki JK. Endometrial Cancer-Adjacent Tissues Express Higher Levels of Cancer-Promoting Genes than the Matched Tumors. Genes (Basel) 2022; 13:genes13091611. [PMID: 36140779 PMCID: PMC9527013 DOI: 10.3390/genes13091611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular alterations in tumor-adjacent tissues have recently been recognized in some types of cancer. This phenomenon has not been studied in endometrial cancer. We aimed to analyze the expression of genes associated with cancer progression and metabolism in primary endometrial cancer samples and the matched tumor-adjacent tissues and in the samples of endometria from cancer-free patients with uterine leiomyomas. Paired samples of tumor-adjacent tissues and primary tumors from 49 patients with endometrial cancer (EC), samples of endometrium from 25 patients with leiomyomas of the uterus, and 4 endometrial cancer cell lines were examined by the RT-qPCR, for MYC, NR5A2, CXCR2, HMGA2, LIN28A, OCT4A, OCT4B, OCT4B1, TWIST1, STK11, SNAI1, and miR-205-5p expression. The expression levels of MYC, NR5A2, SNAI1, TWIST1, and STK11 were significantly higher in tumor-adjacent tissues than in the matched EC samples, and this difference was not influenced by the content of cancer cells in cancer-adjacent tissues. The expression of MYC, NR5A2, and SNAI1 was also higher in EC-adjacent tissues than in samples from cancer-free patients. In addition, the expression of MYC and CXCR2 in the tumor related to non-endometrioid adenocarcinoma and reduced the risk of recurrence, respectively, and higher NR5A2 expression in tumor-adjacent tissue increased the risk of death. In conclusion, tissues proximal to EC present higher levels of some cancer-promoting genes than the matched tumors. Malignant tumor-adjacent tissues carry a diagnostic potential and emerge as new promising target of anticancer therapy.
Collapse
Affiliation(s)
- Mariusz Kulinczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maria Sromek
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Grzegorz Panek
- Department of Gynecologic Oncology and Obstetrics, Centre of Postgraduate Medical Education, 00-416 Warsaw, Poland
| | - Klara Zakrzewska
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Renata Lotocka
- Cancer Molecular and Genetic Diagnostics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Lukasz Michal Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jan Konrad Siwicki
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-546-2787
| |
Collapse
|
14
|
Yang Q, Ciebiera M, Bariani MV, Ali M, Elkafas H, Boyer TG, Al-Hendy A. Comprehensive Review of Uterine Fibroids: Developmental Origin, Pathogenesis, and Treatment. Endocr Rev 2022; 43:678-719. [PMID: 34741454 PMCID: PMC9277653 DOI: 10.1210/endrev/bnab039] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/24/2022]
Abstract
Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common tumors in women worldwide. To date, no long-term or noninvasive treatment option exists for hormone-dependent uterine fibroids, due to the limited knowledge about the molecular mechanisms underlying the initiation and development of uterine fibroids. This paper comprehensively summarizes the recent research advances on uterine fibroids, focusing on risk factors, development origin, pathogenetic mechanisms, and treatment options. Additionally, we describe the current treatment interventions for uterine fibroids. Finally, future perspectives on uterine fibroids studies are summarized. Deeper mechanistic insights into tumor etiology and the complexity of uterine fibroids can contribute to the progress of newer targeted therapies.
Collapse
Affiliation(s)
- Qiwei Yang
- Qiwei Yang, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, M167, Billings, Chicago, IL 60637, USA.
| | - Michal Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, ul. Cegłowska 80, 01-809, Warsaw, Poland
| | | | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Hoda Elkafas
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacology and Toxicology, Egyptian Drug Authority, formerly National Organization for Drug Control and Research, Cairo 35521, Egypt
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Ayman Al-Hendy
- Correspondence: Ayman Al-Hendy, MD, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, N112, Peck Pavilion, Chicago, IL 60637. USA.
| |
Collapse
|
15
|
Krsteski J, Gorenjak M, But I, Pakiž M, Potočnik U. Dysregulation of Synaptic Signaling Genes Is Involved in Biology of Uterine Leiomyoma. Genes (Basel) 2021; 12:1179. [PMID: 34440356 PMCID: PMC8394462 DOI: 10.3390/genes12081179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Uterine leiomyomas are tumors, which are hormone driven and originate from the smooth muscle layer of the uterine wall. In addition to known genes in leiomyoma pathogenesis, recent approaches also highlight epigenetic malfunctions as an important mechanism of gene dysregulation. RNA sequencing raw data from pair-matched normal myometrium and fibroid tumors from two independent studies were used as discovery and validation sets and reanalyzed. RNA extracted from normal myometrium and fibroid tumors from 58 Slovenian patients was used as independent confirmation of most significant differentially expressed genes. Subsequently, GWA data from leiomyoma patients were used in order to identify genetic variants at epigenetic marks. Gene Ontology analysis of the overlap of two independent RNA-seq analyses showed that NPTX1, NPTX2, CHRM2, DRD2 and CACNA1A were listed as significant for several enriched GO terms. All five genes were subsequently confirmed in the independent Slovenian cohort. Additional integration and functional analysis showed that genetic variants in these five gene regions are listed at a chromatin structure and state, predicting promoters, enhancers, DNase hypersensitivity and altered transcription factor binding sites. We identified a unique subgroup of dysregulated synaptic signaling genes involved in the biology and pathogenesis of leiomyomas, adding to the complexity of tumor biology.
Collapse
Affiliation(s)
- Jovan Krsteski
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.K.); (M.G.)
| | - Mario Gorenjak
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.K.); (M.G.)
| | - Igor But
- Department of General Gynecology and Gynecological Urology, University Clinical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (I.B.); (M.P.)
| | - Maja Pakiž
- Department of General Gynecology and Gynecological Urology, University Clinical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia; (I.B.); (M.P.)
| | - Uroš Potočnik
- Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (J.K.); (M.G.)
- Laboratory of Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| |
Collapse
|