1
|
Janbaz P, Behzadpour F, Ghanadan K. Evaluation of the Structural, Biological, and Bone Induction Properties of Sol-Gel-Derived Lithium-Doped 68S Bioactive Glass-An in Vitro Study on Human Dental Pulp Stem Cells. Clin Exp Dent Res 2025; 11:e70139. [PMID: 40304308 PMCID: PMC12042117 DOI: 10.1002/cre2.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
OBJECTIVES Calcium silicate-based bioactive glass shows enhanced ion release capabilities and promotes the formation of hydroxyapatite (HA). This study aimed to synthesize a sol-gel-derived 68S bioactive glass (BAG) incorporating lithium (Li) and evaluate its structural, biological, and osteoinductive properties using human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS Two types of 68S BAG were synthesized using the sol-gel method: one containing 5 mol.% lithium nitrate (BGLi5) and a lithium-free control (BG). Structural characterization and HA formation were assessed using field emission scanning electron microscopy (FESEM) and Fourier-transform infrared spectroscopy (FTIR) before and after immersion in simulated body fluid (SBF) on Days 1, 3, and 7. The dissolution rates of the specimens were evaluated using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and pH analysis. Biological activities were investigated through cell viability (MTT assay), alkaline phosphatase (ALP) enzyme activity, and alizarin red staining to assess mineralization. Additionally, the antimicrobial efficacy of the materials was tested against Streptococcus mutans (SM). RESULTS FTIR and FESEM analyses confirmed the formation of HA crystals in BGLi5 specimens by Day 3 and in BG specimens by Day 7. The MTT assay demonstrated enhanced cell viability in both BG and BGLi5 compared to the control group. ALP activity, a marker of cell differentiation, was significantly elevated in the BGLi5-DM group by Day 14. Alizarin red staining on Day 21 revealed a marked increase in mineralization in both BG and BGLi5, with the BGLi5-DM group showing the highest mineralization levels. Furthermore, both BG and BGLi5 demonstrated significant antimicrobial activity against SM. CONCLUSION The sol-gel-derived 68S BAG containing 5 mol.% Li is a biocompatible material that enhances cell proliferation, differentiation, and mineralization. The combination of BGLi5 with differentiation-specific culture medium synergistically promotes osteogenic differentiation and mineralization, making it a promising candidate for dental and bone tissue engineering applications.
Collapse
Affiliation(s)
- Pejman Janbaz
- Department of Oral and Maxillofacial Surgery, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| | - Faeze Behzadpour
- Department of pediatric, School of dentistry, Dental Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research InstituteHamadan University of Medical SciencesHamadanIran
| | - Kiana Ghanadan
- Dental Caries Prevention Research CenterQazvin University of Medical SciencesQazvinIran
- Department of Operative Dentistry, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| |
Collapse
|
2
|
Casap N, Dvir-Ginzberg M, Jensen OT, Alterman M. The bone growing concept: A call for a paradigm shift in bone reconstruction. Br J Oral Maxillofac Surg 2025; 63:276-290. [PMID: 40199672 DOI: 10.1016/j.bjoms.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/07/2024] [Accepted: 11/29/2024] [Indexed: 04/10/2025]
Abstract
Alveolar bone reconstruction has significantly evolved over the years. The transition from bone transfer techniques to bone regeneration methods aimed to reduce morbidity, increase the available reservoir of bone, and enhance volumetric outcomes. However, current bone regeneration techniques are prolonged and yield suboptimal biological results. This is primarily because the process relies heavily on bone substitutes that lack osteoinductive or osteogenic properties, with the supply of cells and growth factors entirely dependent on endogenous sources. This article calls for a new paradigm shift, proposing a biological approach for more controlled bone growth by the incorporation of exogenous cells and growth factors into a bone-growing process, thereby enhancing biological outcomes over time. Additionally, it presents a biomorphometric clinical algorithm to tailor treatment protocols for various types of bone loss.
Collapse
Affiliation(s)
- Nardy Casap
- Faculty of Dental Medicine, Hebrew University of Jerusalem, PO Box 12272, Jerusalem 9112102, Israel; Department of Oral and Maxillofacial Surgery, Hadassah Medical Center, Jerusalem, Israel.
| | - Mona Dvir-Ginzberg
- Institute for BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University- Ein Kerem Campus, Israel.
| | - Ole T Jensen
- Department Oral Maxillofacial Surgery, School of Dentistry, University of Utah, Salt Lake City, UT, USA.
| | - Michael Alterman
- Faculty of Dental Medicine, Hebrew University of Jerusalem, PO Box 12272, Jerusalem 9112102, Israel; Department of Oral and Maxillofacial Surgery, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
3
|
Rezaei F, Shakoori S, Fazlyab M, Esnaashari E, Savadkouhi ST. Effect of low-level laser on proliferation, angiogenic and dentinogenic differentiation of human dental pulp stem cells. BMC Oral Health 2025; 25:441. [PMID: 40148901 PMCID: PMC11948823 DOI: 10.1186/s12903-025-05656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/12/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The aim was to evaluate the effect of single and double doses of low-level laser irradiation on proliferation of human dental pulp stem cells (DPSC) and expression of vascular endothelial growth factor (VEGF) and dentine sialoprotein (DSP). METHODS In this experimental in vitro study, after confirming the stemness of DPSCs, the cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) for MTT assay and VEGF-ELISA and osteogenic medium for DSP-ELISA. The wells containing DPSCs were divided into three main groups and 9 subgroups (n = 7). In groups with single low-level laser, 660-nm diode laser was irradiated at 100 mW and 3 J/cm2 energy density for 15 s. In groups with double doses of low-level laser the second identical irradiation was after 48 h. The MTT-assay and ELISA for DSP/VEGF (dentinogenic/angiogenic differentiation) were performed at 1, 7 and 14 days post irradiation. Using the SPSS software 20 (SPSS, Chicago, Ill, USA) with 95% confidence interval (P = 0.05), a two-way ANOVA test with Tukey's post hoc test was used for the effect of LLLI on VEGF and DSP. The One-Way ANOVA was used for of cell proliferation. RESULTS Higher proliferation rate in both single and double low-level laser was reported. The difference was statistically significant for double doses of low-level laser (P = 0.001, P = 0.020 and P = 0.000 for 1, 7 and 14 days, respectively). Also after one, 7 and 14 days, cells in significant increase in DSP (P > 0.05) and VEGF (P > 0.05) was observed that was significantly higher for double doses of low-level laser. CONCLUSIONS Low level laser enhanced the mitochondrial activity and proliferation of DPSCs. Increased production of DSP/VEGF indicates dentinogenic/angiogenic activity. CLINICAL RELEVANCE Low level laser increases the proliferation of DPSCs, elevates the production of VEGF (which means better angiogenesis in regenerative treatments) and increases the production of DSP (which means better dentinogenesis in vital pulp treatments).
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahrzad Shakoori
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahta Fazlyab
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Ehsan Esnaashari
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sohrab Tour Savadkouhi
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Suresh S, Kalhoro FA, Rani P, Memon M. Assessing the Success of a Mineral Trioxide Aggregate and a Pre-Mixed Bioceramic in Mature Teeth With Irreversible Pulpitis With Full Pulpotomy: A Randomized Clinical Trial. Clin Exp Dent Res 2025; 11:e70090. [PMID: 39973665 PMCID: PMC11840325 DOI: 10.1002/cre2.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/19/2024] [Accepted: 02/02/2025] [Indexed: 02/21/2025] Open
Abstract
OBJECTIVES The aim of this study is to compare the clinical and radiographic success of MTA versus EBRRM in pulpotomy of permanent teeth with irreversible pulpitis without apical periodontitis. MATERIAL AND METHODS Clinical and radiographic assessments were conducted at baseline, 6 days, 6 weeks, and 6 months. After administration of anesthesia and coronal pulp removal, pulp was capped with MTA or Endo Sequence Bioceramic Root Repair, followed by restoration with a glass ionomer and resin composite. RESULTS The overall success rate for pulpotomy was 71.9%, with MTA and the bioceramic showing success rates of 32.8% and 39.1%, respectively. There was no significant relationship with the type of cavity and failure of pulpotomy. CONCLUSIONS MTA and EBBRRM are both practical choices for pulpotomy and there is no notable difference between them in the success rate and pain level. EBBRRM may be more effective in Class 1 cavities than in Class 2 cavities.
Collapse
Affiliation(s)
- Sarang Suresh
- Operative Dentistry & Endodontics, Faculty of DentistryLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Feroze A. Kalhoro
- Operative Dentistry & Endodontics, Faculty of DentistryLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Priya Rani
- Operative Dentistry & Endodontics, Faculty of DentistryLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Mahwish Memon
- Operative Dentistry & Endodontics, Faculty of DentistryLiaquat University of Medical and Health SciencesJamshoroPakistan
| |
Collapse
|
5
|
Meng Z, Zhong X, Liang D, Ma X, Chen W, He X. MiR-143-5p regulates the proangiogenic potential of human dental pulp stem cells by targeting HIF-1α/RORA under hypoxia: A laboratory investigation in pulp regeneration. Int Endod J 2024; 57:1802-1818. [PMID: 39126298 DOI: 10.1111/iej.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
AIM Angiogenesis is a key event in the successful healing of pulp injuries, and hypoxia is the main stimulator of pulpal angiogenesis. In this study, we investigated the effect of hypoxia on the proangiogenic potential of human dental pulp stem cells (hDPSCs) and the role of miR-143-5p in the process. METHODOLOGY Human dental pulp stem cells were isolated, cultured and characterized in vitro. Cobalt chloride (CoCl2) was used to induce hypoxia in hDPSCs. CCK-8 and Transwell assays were used to determine the effect of hypoxia on hDPSCs proliferation and migration. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting (WB) and ELISA were performed to assess the mRNA and protein levels of HIF-1α and angiogenic cytokines in hDPSCs. The effect of hypoxia on hDPSCs proangiogenic potential was measured in vitro using Matrigel tube formation and chick chorioallantoic membrane (CAM) assays. Recombinant lentiviral vectors were constructed to stably overexpress or inhibit miR-143-5p in hDPSCs, and the proangiogenic effects were assessed using qRT-PCR, WB, and tube formation assays. miR-143-5p target genes were identified and verified using bioinformatics prediction tools, dual-luciferase reporter assays and RNA pull-down experiments. Finally, a subcutaneous transplantation model in nude mice was used to determine the effects of hypoxia treatment and miR-143-5p overexpression/inhibition in hDPSCs in dental pulp regeneration. RESULTS Hypoxia promotes hDPSCs proliferation, migration and proangiogenic potential. The in vivo experiments showed that hypoxia treatment (50 and 100 μM CoCl2) promoted pulp angiogenesis and dentine formation. In contrast to the levels of proangiogenic factors, miR-143-5p levels decreased with increasing CoCl2 concentration. miR-143-5p inhibition significantly promoted proangiogenic potential of hDPSCs, whereas miR-143-5p overexpression inhibited angiogenesis in vitro. Dual-luciferase reporter assay identified retinoic acid receptor-related orphan receptor alpha (RORA) as an miR-143-5p target gene in hDPSCs. RNA pull-down experiments demonstrated that HIF-1α and RORA were pulled down by biotin-labelled miR-143-5p, and the levels of HIF-1α and RORA bound to miR-143-5p in the hypoxia group were lower than those in the normoxia group. Inhibition of miR-143-5p expression in hDPSCs promoted ectopic dental pulp tissue regeneration. CONCLUSIONS CoCl2-induced hypoxia promotes hDPSCs-driven paracrine angiogenesis and pulp regeneration. The inhibition of miR-143-5p upregulates the proangiogenic potential of hDPSCs under hypoxic conditions by directly targeting HIF-1α and RORA.
Collapse
Affiliation(s)
- Zijun Meng
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyi Zhong
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- General Dental Clinic I, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dan Liang
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xuemeng Ma
- Department of Oral Pathology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenxia Chen
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xuan He
- The Department of Operative Dentistry and Endodontology, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Yoneda M, Ideguchi H, Nakamura S, Arias Z, Ono M, Omori K, Yamamoto T, Takashiba S. Resolvin D2-induced reparative dentin and pulp stem cells after pulpotomy in a rat model. Heliyon 2024; 10:e34206. [PMID: 39091941 PMCID: PMC11292553 DOI: 10.1016/j.heliyon.2024.e34206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/12/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Vital pulp therapy (VPT) is performed to preserve dental pulp. However, the biocompatibility of the existing materials is of concern. Therefore, novel materials that can induce pulp healing without adverse effects need to be developed. Resolvin D2 (RvD2), one of specialized pro-resolving mediators, can resolve inflammation and promote the healing of periapical lesions. Therefore, RvD2 may be suitable for use in VPT. In the present study, we evaluated the efficacy of RvD2 against VPT using in vivo and in vitro models. Methods First molars of eight-week-old male Sprague-Dawley rats were used for pulpotomy. They were then divided into three treatment groups: RvD2, phosphate-buffered saline, and calcium hydroxide groups. Treatment results were assessed using radiological, histological, and immunohistochemical (GPR18, TNF-α, Ki67, VEGF, TGF-β, CD44, CD90, and TRPA1) analyses. Dental pulp-derived cells were treated with RvD2 in vitro and analyzed using cell-proliferation and cell-migration assays, real-time PCR (Gpr18, Tnf-α, Il-1β, Tgf-β, Vegf, Nanog, and Trpa1), ELISA (VEGF and TGF-β), immunocytochemistry (TRPA1), and flow cytometry (dental pulp stem cells: DPSCs). Results The formation of calcified tissue in the pulp was observed in the RvD2 and calcium hydroxide groups. RvD2 inhibited inflammation in dental pulp cells. RvD2 promoted cell proliferation and migration and the expression of TGF-β and VEGF in vitro and in vivo. RvD2 increased the number of DPSCs. In addition, RvD2 suppressed TRPA1 expression as a pain receptor. Conclusion RvD2 induced the formation of reparative dentin, anti-inflammatory effects, and decreased pain, along with the proliferation of DPSCs via the expression of VEGF and TGF-β, on the pulp surface in pulpotomy models.
Collapse
Affiliation(s)
- Mitsuhiro Yoneda
- Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Shin Nakamura
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, USA
| | - Zulema Arias
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Tadashi Yamamoto
- The Center for Graduate Medical Education (Dental Division), Okayama University Hospital, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| |
Collapse
|
7
|
Zhang X, Zhou X, Zhai W, Cui J, Pan Z, Du L, Wen L, Ye R, Zhang B, Huang L, Li D, Wang C, Sun H. Novel L-(CaP-ZnP)/SA Nanocomposite Hydrogel with Dual Anti-Inflammatory and Mineralization Effects for Efficient Vital Pulp Therapy. Int J Nanomedicine 2024; 19:6659-6676. [PMID: 38975320 PMCID: PMC11227880 DOI: 10.2147/ijn.s464871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
Background Vital pulp therapy (VPT) is considered a conservative treatment for preserving pulp viability in caries and trauma-induced pulpitis. However, Mineral trioxide aggregate (MTA) as the most frequently used repair material, exhibits limited efficacy under inflammatory conditions. This study introduces an innovative nanocomposite hydrogel, tailored to simultaneously target anti-inflammation and dentin mineralization, aiming to efficiently preserve vital pulp tissue. Methods The L-(CaP-ZnP)/SA nanocomposite hydrogel was designed by combining L-Arginine modified calcium phosphate/zinc phosphate nanoparticles (L-(CaP-ZnP) NPs) with sodium alginate (SA), and was characterized with TEM, SEM, FTIR, EDX, ICP-AES, and Zeta potential. In vitro, we evaluated the cytotoxicity and anti-inflammatory properties. Human dental pulp stem cells (hDPSCs) were cultured with lipopolysaccharide (LPS) to induce an inflammatory response, and the cell odontogenic differentiation was measured and possible signaling pathways were explored by alkaline phosphatase (ALP)/alizarin red S (ARS) staining, qRT-PCR, immunofluorescence staining, and Western blotting, respectively. In vivo, a pulpitis model was utilized to explore the potential of the L-(CaP-ZnP)/SA nanocomposite hydrogel in controlling pulp inflammation and enhancing dentin mineralization by Hematoxylin and eosin (HE) staining and immunohistochemistry staining. Results In vitro experiments revealed that the nanocomposite hydrogel was synthesized successfully and presented desirable biocompatibility. Under inflammatory conditions, compared to MTA, the L-(CaP-ZnP)/SA nanocomposite hydrogel demonstrated superior anti-inflammatory and pro-odontogenesis effects. Furthermore, the nanocomposite hydrogel significantly augmented p38 phosphorylation, implicating the involvement of the p38 signaling pathway in pulp repair. Significantly, in a rat pulpitis model, the L-(CaP-ZnP)/SA nanocomposite hydrogel downregulated inflammatory markers while upregulating mineralization-related markers, thereby stimulating the formation of robust reparative dentin. Conclusion The L-(CaP-ZnP)/SA nanocomposite hydrogel with good biocompatibility efficiently promoted inflammation resolution and enhanced dentin mineralization by activating p38 signal pathway, as a pulp-capping material, offering a promising and advanced solution for treatment of pulpitis.
Collapse
Affiliation(s)
- Xu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Xue Zhou
- Department of Chemistry, Northeast Normal University, Changchun, 130024, People’s Republic of China
| | - Wenhao Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jing Cui
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Ziyi Pan
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Liuyi Du
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Linlin Wen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Rongrong Ye
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Boya Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Chungang Wang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, People’s Republic of China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
8
|
Hanafy MS, Abdella Ahmed AK, Salem RG. Impact of using XP-endo finisher and nanobubble water during EDTA dentin conditioning on TGF-β1 release in regenerative endodontic procedures. BMC Oral Health 2024; 24:595. [PMID: 38778321 PMCID: PMC11112901 DOI: 10.1186/s12903-024-04355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Transforming Growth Factor-Beta 1 (TGF-β1) plays a crucial role in the success of Regenerative Endodontic Procedures (REPs) as they directly impact the proliferation and differentiation of stem cells. TGF-β1 is released by conditioning of the dentin matrix using 17% EDTA. EDTA was found to have deleterious effects on dentin especially in immature teeth with fragile dentin walls. Decreasing the irrigation time was reported to decrease these effects. Accordingly, enhancement and activation of the EDTA solution to maintain its efficiency in TGF-β1 release from dentin and thus compensating the reduction in irrigation time was employed. EDTA solution was enhanced by adding Nanobubble (NB) water which contains oxygen filled cavities less than 200 nm in diameter. Additionally, EDTA was activated with XP-endo Finisher rotary file. The aim of this study was to assess the impact of NB enhancement and/or XP-endo Finisher activation of the EDTA solution on the TGF-β1 release from dentin. METHODS Fifty standardized root segments with open apex were allocated to two main groups according to whether EDTA was enhanced with NB water or not, and within each group whether XP-endo Finisher activation was used or not in addition to a Negative Control group. The concentration of the released TGF-β1 in the root canal was measured using enzyme-linked immunosorbent assay (ELISA). The statistical analysis was done using the Shapiro- Wilk, Kolmogorov Smirnov, ANOVA and Post-hoc Tukey tests. RESULTS All groups released a considerable amount of TGF-β1 with the highest values in the EDTA/NB/XP group, followed by EDTA/NB, EDTA/DW/XP, EDTA/DW and Negative Control groups respectively. CONCLUSIONS The results of this study suggest that NBs can promote the success of REPs since it revealed a significant increase in the TGF-β1 release following its use in the enhancement of the EDTA solution. A comparable effect was obtained by XP-endo finisher activation of the EDTA solution. The combined use of NBs and XP-endo Finisher can be a promising addition in REPs. Accordingly, Enhancement and activation of the EDTA solution may compensate decreasing the EDTA irrigation time attempted to avoid the deleterious effect of EDTA on dentin.
Collapse
Affiliation(s)
- Mai Sayed Hanafy
- Endodontic Department, Faculty of Dentistry, Suez University, Suez, Egypt
| | | | - Rana Gehad Salem
- Pediatric Dentistry Department, Faculty of Oral and Dental Medicine, Badr University in Cairo, Cairo, Egypt.
| |
Collapse
|
9
|
Patra A, Gupta S, Das A, Shrivastava R. Radiographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping Using Rosuvastatin vs Mineral Trioxide Aggregate on Young Mature Permanent Molar-90 Days of Follow-up: A Split-mouth Study. Int J Clin Pediatr Dent 2024; 17:605-611. [PMID: 39355189 PMCID: PMC11440674 DOI: 10.5005/jp-journals-10005-2844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Direct pulp capping (DPC) includes covering the exposed pulp with a medication, dressing, or dental material to preserve its vitality. The idea behind this method of therapy is to induce the pulp to start a dentin bridge, "walling" the exposed site in the process. The most effective dental material to heal exposed pulp is calcium hydroxide. Mineral trioxide aggregate (MTA) causes the formation by causing cytologic and functional alterations in pulpal cells. Rosuvastatin shows pleiotropic effects like increased odontoblastic differentiation, increased mineralization, proliferation of odontoblasts, and induction of angiogenesis. Thus, the aim of the present study is to investigate pulp-dentin complex reactions following DPC with rosuvastatin vs MTA as pulp-capping materials in permanent human molars. How to cite this article Patra A, Gupta S, Das A, et al. Radiographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping Using Rosuvastatin vs Mineral Trioxide Aggregate on Young Mature Permanent Molar-90 Days of Follow-up: A Split-mouth Study. Int J Clin Pediatr Dent 2024;17(5):605-611.
Collapse
Affiliation(s)
- Abhinandan Patra
- Department of Pedodontics and Preventive Dentistry, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| | - Sonal Gupta
- Department of Pedodontics and Preventive Dentistry, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| | - Asmita Das
- Department of Pedodontics and Preventive Dentistry, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| | - Rohan Shrivastava
- Department of Pedodontics and Preventive Dentistry, Kanti Devi Dental College and Hospital, Mathura, Uttar Pradesh, India
| |
Collapse
|
10
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
11
|
Liu G, Bae KB, Yang Y, Lee BN, Hwang YC. Icariin negatively regulated lipopolysaccharide-induced inflammation and ameliorated the odontogenic activity of human dental pulp cells in vitro. Heliyon 2023; 9:e23282. [PMID: 38144358 PMCID: PMC10746513 DOI: 10.1016/j.heliyon.2023.e23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Alleviating inflammation and promoting dentine regeneration is critical for the healing of pulpitis. In this study, we investigated the anti-inflammatory, angiogenesis and odontogenesis function of icariin on Human dental pulp cells (HDPCs) under inflammatory state. Furthermore, the underlying mechanisms was also evaluated. Icariin attenuated the LPS-induced pro-inflammatory marker expression, such as interleukin-1β (IL-1β), IL-6 and IL-8. The immunoblotting and immunofluorescence staining results showed that icariin suppressed the inflammatory responses mediated by the protein kinase B (Akt) and nuclear factor kappa-B (NF-κB) signaling cascades. Additionally, icariin also upregulated the expression of odontogenic and angiogenic genes and proteins (namely dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), anti-collagen Ⅰ (COL-Ⅰ), and vascular endothelial growth factor (VEGF) and fibroblast growth factor-1 (FGF-1)), alkaline phosphatase activity, and calcium nodule deposition in LPS-exposed HDPCs. In a word, our findings indicated that icariin attenuated pulp inflammation and promoted odontogenic and angiogenic differentiation in the inflammatory state. Icariin may be a promising vital pulp therapy agent for the regenerative treatment of the inflamed dental pulp.
Collapse
Affiliation(s)
- Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Ying Yang
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, China
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
12
|
Liu Y, Liu H, Guo S, Qi J, Zhang R, Liu X, Sun L, Zong M, Cheng H, Wu X, Li B. Applications of Bacterial Cellulose-Based Composite Materials in Hard Tissue Regenerative Medicine. Tissue Eng Regen Med 2023; 20:1017-1039. [PMID: 37688748 PMCID: PMC10645761 DOI: 10.1007/s13770-023-00575-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Cartilage, bone, and teeth, as the three primary hard tissues in the human body, have a significant application value in maintaining physical and mental health. Since the development of bacterial cellulose-based composite materials with excellent biomechanical strength and good biocompatibility, bacterial cellulose-based composites have been widely studied in hard tissue regenerative medicine. This paper provides an overview of the advantages of bacterial cellulose-based for hard tissue regeneration and reviews the recent progress in the preparation and research of bacterial cellulose-based composites in maxillofacial cartilage, dentistry, and bone. METHOD A systematic review was performed by searching the PubMed and Web of Science databases using selected keywords and Medical Subject Headings search terms. RESULTS Ideal hard tissue regenerative medicine materials should be biocompatible, biodegradable, non-toxic, easy to use, and not burdensome to the human body; In addition, they should have good plasticity and processability and can be prepared into materials of different shapes; In addition, it should have good biological activity, promoting cell proliferation and regeneration. Bacterial cellulose materials have corresponding advantages and disadvantages due to their inherent properties. However, after being combined with other materials (natural/ synthetic materials) to form composite materials, they basically meet the requirements of hard tissue regenerative medicine materials. We believe that it is worth being widely promoted in clinical applications in the future. CONCLUSION Bacterial cellulose-based composites hold great promise for clinical applications in hard tissue engineering. However, there are still several challenges that need to be addressed. Further research is needed to incorporate multiple disciplines and advance biological tissue engineering techniques. By enhancing the adhesion of materials to osteoblasts, providing cell stress stimulation through materials, and introducing controlled release systems into matrix materials, the practical application of bacterial cellulose-based composites in clinical settings will become more feasible in the near future.
Collapse
Affiliation(s)
- Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Haiyan Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Susu Guo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jin Qi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
13
|
Melo M, Garcia I, Mokeem L, Weir M, Xu H, Montoya C, Orrego S. Developing Bioactive Dental Resins for Restorative Dentistry. J Dent Res 2023; 102:1180-1190. [PMID: 37555431 PMCID: PMC11066520 DOI: 10.1177/00220345231182357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Despite its reputation as the most widely used restorative dental material currently, resin-based materials have acknowledged shortcomings. As most systematic survival studies of resin composites and dental adhesives indicate, secondary caries is the foremost reason for resin-based restoration failure and life span reduction. In subjects with high caries risk, the microbial community dominated by acidogenic and acid-tolerant bacteria triggers acid-induced deterioration of the bonding interface and/or bulk material and mineral loss around the restorations. In addition, resin-based materials undergo biodegradation in the oral cavity. As a result, the past decades have seen exponential growth in developing restorative dental materials for antimicrobial applications addressing secondary caries prevention and progression. Currently, the main challenge of bioactive resin development is the identification of efficient and safe anticaries agents that are detrimental free to final material properties and show satisfactory long-term performance and favorable clinical translation. This review centers on the continuous efforts to formulate novel bioactive resins employing 1 or multiple agents to enhance the antibiofilm efficacy or achieve multiple functionalities, such as remineralization and antimicrobial activity antidegradation. We present a comprehensive synthesis of the constraints and challenges encountered in the formulation process, the clinical performance-related prerequisites, the materials' intended applicability, and the current advancements in clinical implementation. Moreover, we identify crucial vulnerabilities that arise during the development of dental materials, including particle aggregation, alterations in color, susceptibility to hydrolysis, and loss of physicomechanical core properties of the targeted materials.
Collapse
Affiliation(s)
- M.A.S. Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
- Dental Biomedical Sciences PhD Program, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - I.M. Garcia
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - L. Mokeem
- Dental Biomedical Sciences PhD Program, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - M.D. Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - H.H.K. Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - C. Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - S. Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Montoya C, Roldan L, Yu M, Valliani S, Ta C, Yang M, Orrego S. Smart dental materials for antimicrobial applications. Bioact Mater 2023; 24:1-19. [PMID: 36582351 PMCID: PMC9763696 DOI: 10.1016/j.bioactmat.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Smart biomaterials can sense and react to physiological or external environmental stimuli (e.g., mechanical, chemical, electrical, or magnetic signals). The last decades have seen exponential growth in the use and development of smart dental biomaterials for antimicrobial applications in dentistry. These biomaterial systems offer improved efficacy and controllable bio-functionalities to prevent infections and extend the longevity of dental devices. This review article presents the current state-of-the-art of design, evaluation, advantages, and limitations of bioactive and stimuli-responsive and autonomous dental materials for antimicrobial applications. First, the importance and classification of smart biomaterials are discussed. Second, the categories of bioresponsive antibacterial dental materials are systematically itemized based on different stimuli, including pH, enzymes, light, magnetic field, and vibrations. For each category, their antimicrobial mechanism, applications, and examples are discussed. Finally, we examined the limitations and obstacles required to develop clinically relevant applications of these appealing technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín, Colombia
| | - Michelle Yu
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Sara Valliani
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Christina Ta
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Rathinam E, Rajasekharan S, Declercq H, Vanhove C, De Coster P, Martens L. Effect of Intracoronal Sealing Biomaterials on the Histological Outcome of Endodontic Revitalisation in Immature Sheep Teeth-A Pilot Study. J Funct Biomater 2023; 14:jfb14040214. [PMID: 37103304 PMCID: PMC10144940 DOI: 10.3390/jfb14040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 04/08/2023] [Indexed: 04/28/2023] Open
Abstract
The influence of intracoronal sealing biomaterials on the newly formed regenerative tissue after endodontic revitalisation therapy remains unexplored. The objective of this study was to compare the gene expression profiles of two different tricalcium silicate-based biomaterials alongside the histological outcomes of endodontic revitalisation therapy in immature sheep teeth. The messenger RNA expression of TGF-β, BMP2, BGLAP, VEGFA, WNT5A, MMP1, TNF-α and SMAD6 was evaluated after 1 day with qRT-PCR. For evaluation of histological outcomes, revitalisation therapy was performed using Biodentine (n = 4) or ProRoot white mineral trioxide aggregate (WMTA) (n = 4) in immature sheep according to the European Society of Endodontology position statement. After 6 months' follow-up, one tooth in the Biodentine group was lost to avulsion. Histologically, extent of inflammation, presence or absence of tissue with cellularity and vascularity inside the pulp space, area of tissue with cellularity and vascularity, length of odontoblast lining attached to the dentinal wall, number and area of blood vessels and area of empty root canal space were measured by two independent investigators. All continuous data were subjected to statistical analysis using Wilcoxon matched-pairs signed rank test at a significance level of p < 0.05. Biodentine and ProRoot WMTA upregulated the genes responsible for odontoblast differentiation, mineralisation and angiogenesis. Biodentine induced the formation of a significantly larger area of neoformed tissue with cellularity, vascularity and increased length of odontoblast lining attached to the dentinal walls compared to ProRoot WMTA (p < 0.05), but future studies with larger sample size and adequate power as estimated by the results of this pilot study would confirm the effect of intracoronal sealing biomaterials on the histological outcome of endodontic revitalisation.
Collapse
Affiliation(s)
- Elanagai Rathinam
- ELOHA (Equal Lifelong Oral Health for All) Research Group, Paediatric Dentistry, Oral Health Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sivaprakash Rajasekharan
- ELOHA (Equal Lifelong Oral Health for All) Research Group, Paediatric Dentistry, Oral Health Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- Tissue Engineering Laboratory, Department of Development and Regeneration, KU Leuven, 8500 Kortrijk, Belgium
| | - Christian Vanhove
- Medical Imaging & Signal Processing, Infinity Laboratory, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
| | - Peter De Coster
- Department of Reconstructive Dentistry and Oral Biology, Dental School, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
| | - Luc Martens
- ELOHA (Equal Lifelong Oral Health for All) Research Group, Paediatric Dentistry, Oral Health Sciences, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Quiñonez-Ruvalcaba F, Bermúdez-Jiménez C, Aguilera-Galavíz LA, Villanueva-Sánchez FG, García-Cruz S, Gaitán-Fonseca C. Histopathological Biocompatibility Evaluation of TheraCal PT, NeoMTA, and MTA Angelus in a Murine Model. J Funct Biomater 2023; 14:jfb14040202. [PMID: 37103291 PMCID: PMC10144196 DOI: 10.3390/jfb14040202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
The aim of this study was to evaluate the biocompatibility of the regeneration of the dentin-pulp complex in a murine model with different treatments with MTA Angelus, NeoMTA, and TheraCal PT. An in vivo controlled experimental study of 15 male Wistar rats forming three study groups, the upper and lower central incisors were selected where pulpotomies were conducted, leaving a central incisor as control at 15, 30, and 45 days. For data analysis, these were expressed as mean ± standard deviation and were examined by Kruskal-Wallis test. Three factors were analyzed as follows: "inflammatory infiltrate; disorganization of pulp tissue, and the formation of reparative dentin". No statistical significance was found between the different groups (p > 0.05). Treatment with these three biomaterials (MTA, TheraCal PT, and Neo MTA) presented an inflammatory infiltrate and slight disorganization of the odontoblast layer in the pulp tissue of a murine model, with normal coronary pulp tissue and the formation of reparative dentin in the three experimental groups. Thus, we are able to conclude that all three are biocompatible materials.
Collapse
Affiliation(s)
- Francelia Quiñonez-Ruvalcaba
- Programa de "Especialidad en Odontopediatría, Unidad Académica de Odontología, Universidad Autónoma de Zacatecas", Zacatecas 98000, Mexico
| | - Carlos Bermúdez-Jiménez
- Unidad Académica de Odontología, Universidad Autónoma de Zacatecas "Francisco García Salinas", Zacatecas 98000, Mexico
| | - Luis Alejandro Aguilera-Galavíz
- Programa de "Especialidad en Odontopediatría, Unidad Académica de Odontología, Universidad Autónoma de Zacatecas", Zacatecas 98000, Mexico
| | - Francisco G Villanueva-Sánchez
- Interdisciplinary Research Laboratory, Oral and Maxillofacial Pathology Area, Universidad Nacional Autónoma de México, Escuela Nacional de Estudios Superiores Unidad León, León 37684, Mexico
| | - Salvador García-Cruz
- Facultad de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | - César Gaitán-Fonseca
- Programa de "Especialidad en Odontopediatría, Unidad Académica de Odontología, Universidad Autónoma de Zacatecas", Zacatecas 98000, Mexico
| |
Collapse
|
17
|
Swaikat M, Faus-Matoses I, Zubizarreta-Macho Á, Ashkar I, Faus-Matoses V, Bellot-Arcís C, Iranzo-Cortés JE, Montiel-Company JM. Is Revascularization the Treatment of Choice for Traumatized Necrotic Immature Teeth? A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:2656. [PMID: 37048739 PMCID: PMC10095182 DOI: 10.3390/jcm12072656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Regenerative endodontic treatment (RET) has been considered a reliable procedure to treat immature necrotic teeth; however, the effect of dental trauma on the prognosis of RET is questionable. This systematic review aimed to evaluate the current level of evidence for revascularization techniques (the RET) in the management of traumatized necrotic immature permanent teeth with or without periapical radiolucent areas. Four electronic databases-PubMed, Web of Science, Scopus, and Embase-were searched until November 2022. Only randomized clinical trials, cohort studies, and case-control studies with a minimum of 10 cases and 12 months of follow-ups were included. The search identified 363 preliminary results. After discarding the duplicates and screening the titles, abstracts, and full texts, 13 articles were considered eligible. The results showed that RET techniques seemed to have high survival and success rates, 93.8% and 88.3%, respectively, in the treatment of traumatized necrotic immature permanent teeth. Root maturation with RET techniques seemed to be lower in traumatized teeth. Future studies are needed to evaluate root maturation in traumatized teeth using 3-dimensional radiographic evaluations. In addition, the lack of literature on the studies comparing RET and apexification (calcium hydroxide or an MTA) in the treatment of traumatized necrotic immature teeth highlights the necessity for high-level clinical studies comparing these treatment modalities.
Collapse
Affiliation(s)
- Mohamad Swaikat
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain (J.M.M.-C.)
| | - Ignacio Faus-Matoses
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain (J.M.M.-C.)
| | - Álvaro Zubizarreta-Macho
- Department of Surgery, Faculty of Medicine and Dentistry, University of Salamanca, 37008 Salamanca, Spain
| | - Israa Ashkar
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain (J.M.M.-C.)
| | - Vicente Faus-Matoses
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain (J.M.M.-C.)
| | - Carlos Bellot-Arcís
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain (J.M.M.-C.)
| | - José Enrique Iranzo-Cortés
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain (J.M.M.-C.)
| | - José María Montiel-Company
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain (J.M.M.-C.)
| |
Collapse
|
18
|
Zhou W, Chen H, Weir MD, Oates TW, Zhou X, Wang S, Cheng L, Xu HH. Novel bioactive dental restorations to inhibit secondary caries in enamel and dentin under oral biofilms. J Dent 2023; 133:104497. [PMID: 37011782 DOI: 10.1016/j.jdent.2023.104497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE To provide the first review on cutting-edge research on the development of new bioactive restorations to inhibit secondary caries in enamel and dentin under biofilms. State-of-the-art bioactive and therapeutic materials design, structure-property relationships, performance and efficacies in oral biofilm models. DATA, SOURCES AND STUDY SELECTION Researches on development and assessment new secondary caries inhibition restorations via in vitro and in vivo biofilm-based secondary caries models were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS Based on the found articles, novel bioactive materials are divided into different categories according to their remineralization and antibacterial biofunctions. In vitro and in vivo biofilm-based secondary caries models are effective way of evaluating the materials efficacies. However, new intelligent and pH-responsive materials were still urgent need. And the materials evaluation should be performed via more clinical relevant biofilm-based secondary caries models. CLINICAL SIGNIFICANCE Secondary caries is a primary reason for dental restoration failures. Biofilms produce acids, causing demineralization and secondary caries. To inhibit dental caries and improve the health and quality of life for millions of people, it is necessary to summarize the present state of technologies and new advances in dental biomaterials for preventing secondary caries and protecting tooth structures against oral biofilm attacks. In addition, suggestions for future studies are provided.
Collapse
|
19
|
Dal-Fabbro R, Swanson WB, Capalbo LC, Sasaki H, Bottino MC. Next-generation biomaterials for dental pulp tissue immunomodulation. Dent Mater 2023; 39:333-349. [PMID: 36894414 PMCID: PMC11034777 DOI: 10.1016/j.dental.2023.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES The current standard for treating irreversibly damaged dental pulp is root canal therapy, which involves complete removal and debridement of the pulp space and filling with an inert biomaterial. A regenerative approach to treating diseased dental pulp may allow for complete healing of the native tooth structure and enhance the long-term outcome of once-necrotic teeth. The aim of this paper is, therefore, to highlight the current state of dental pulp tissue engineering and immunomodulatory biomaterials properties, identifying exciting opportunities for their synergy in developing next-generation biomaterials-driven technologies. METHODS An overview of the inflammatory process focusing on immune responses of the dental pulp, followed by periapical and periodontal tissue inflammation are elaborated. Then, the most recent advances in treating infection-induced inflammatory oral diseases, focusing on biocompatible materials with immunomodulatory properties are discussed. Of note, we highlight some of the most used modifications in biomaterials' surface, or content/drug incorporation focused on immunomodulation based on an extensive literature search over the last decade. RESULTS We provide the readers with a critical summary of recent advances in immunomodulation related to pulpal, periapical, and periodontal diseases while bringing light to tissue engineering strategies focusing on healing and regenerating multiple tissue types. SIGNIFICANCE Significant advances have been made in developing biomaterials that take advantage of the host's immune system to guide a specific regenerative outcome. Biomaterials that efficiently and predictably modulate cells in the dental pulp complex hold significant clinical promise for improving standards of care compared to endodontic root canal therapy.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - W Benton Swanson
- Department of Biologic and Materials Science, Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Leticia C Capalbo
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Azaryan E, Emadian Razavi F, Hanafi-Bojd MY, Alemzadeh E, Naseri M. Dentin regeneration based on tooth tissue engineering: A review. Biotechnol Prog 2023; 39:e3319. [PMID: 36522133 DOI: 10.1002/btpr.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Missing or damaged teeth due to caries, genetic disorders, oral cancer, or infection may contribute to physical and mental impairment that reduces the quality of life. Despite major progress in dental tissue repair and those replacing missing teeth with prostheses, clinical treatments are not yet entirely satisfactory, as they do not regenerate tissues with natural teeth features. Therefore, much of the focus has centered on tissue engineering (TE) based on dental stem/progenitor cells to create bioengineered dental tissues. Many in vitro and in vivo studies have shown the use of cells in regenerating sections of a tooth or a whole tooth. Tooth tissue engineering (TTE), as a promising method for dental tissue regeneration, can form durable biological substitutes for soft and mineralized dental tissues. The cell-based TE approach, which directly seeds cells and bioactive components onto the biodegradable scaffolds, is currently the most potential method. Three essential components of this strategy are cells, scaffolds, and growth factors (GFs). This study investigates dentin regeneration after an injury such as caries using TE and stem/progenitor cell-based strategies. We begin by discussing about the biological structure of a dentin and dentinogenesis. The engineering of teeth requires knowledge of the processes that underlie the growth of an organ or tissue. Then, the three fundamental requirements for dentin regeneration, namely cell sources, GFs, and scaffolds are covered in the current study, which may ultimately lead to new insights in this field.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical sciences, Birjand, Iran
- Department of Pharmaceutics and Pharmaceutical nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Esmat Alemzadeh
- Department of Medical Biotechnology, Faculty of medicine, Birjand University of Medical Sciences, Birjand, Iran
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
21
|
Garcia-Contreras R, Chavez-Granados PA, Jurado CA, Aranda-Herrera B, Afrashtehfar KI, Nurrohman H. Natural Bioactive Epigallocatechin-Gallate Promote Bond Strength and Differentiation of Odontoblast-like Cells. Biomimetics (Basel) 2023; 8:biomimetics8010075. [PMID: 36810406 PMCID: PMC9944806 DOI: 10.3390/biomimetics8010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The (-)-Epigallocatechin-gallate (EGCG) metabolite is a natural polyphenol derived from green tea and is associated with antioxidant, biocompatible, and anti-inflammatory effects. OBJECTIVE To evaluate the effects of EGCG to promote the odontoblast-like cells differentiated from human dental pulp stem cells (hDPSCs); the antimicrobial effects on Escherichia coli, Streptococcus mutans, and Staphylococcus aureus; and improve the adhesion on enamel and dentin by shear bond strength (SBS) and the adhesive remnant index (ARI). MATERIAL AND METHODS hDSPCs were isolated from pulp tissue and immunologically characterized. EEGC dose-response viability was calculated by MTT assay. Odontoblast-like cells were differentiated from hDPSCs and tested for mineral deposition activity by alizarin red, Von Kossa, and collagen/vimentin staining. Antimicrobial assays were performed in the microdilution test. Demineralization of enamel and dentin in teeth was performed, and the adhesion was conducted by incorporating EGCG in an adhesive system and testing with SBS-ARI. The data were analyzed with normalized Shapiro-Wilks test and ANOVA post hoc Tukey test. RESULTS The hDPSCs were positive to CD105, CD90, and vimentin and negative to CD34. EGCG (3.12 µg/mL) accelerated the differentiation of odontoblast-like cells. Streptococcus mutans exhibited the highest susceptibility < Staphylococcus aureus < Escherichia coli. EGCG increased (p < 0.05) the dentin adhesion, and cohesive failure was the most frequent. CONCLUSION (-)-Epigallocatechin-gallate is nontoxic, promotes differentiation into odontoblast-like cells, possesses an antibacterial effect, and increases dentin adhesion.
Collapse
Affiliation(s)
- Rene Garcia-Contreras
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Patricia Alejandra Chavez-Granados
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Carlos Alberto Jurado
- Department of Prosthodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA
- Correspondence: (C.A.J.); (H.N.)
| | - Benjamin Aranda-Herrera
- Interdisciplinary Research Laboratory, Nanostructures, and Biomaterials Area, National School of Higher Studies (ENES) Leon, National Autonomous University of Mexico (UNAM), Leon 37684, Guanajuato, Mexico
| | - Kelvin I. Afrashtehfar
- Clinical Sciences Department, College of Dentistry, Ajman University, Ajman City P.O. Box 346, United Arab Emirates
- Department of Reconstructive Dentistry & Gerodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| | - Hamid Nurrohman
- Missouri School of Dentistry & Oral Health, A. T. Still University, Kirksville, MO 63501, USA
- Correspondence: (C.A.J.); (H.N.)
| |
Collapse
|
22
|
Azaryan E, Hanafi-Bojd MY, Alemzadeh E, Emadian Razavi F, Naseri M. Effect of PCL/nHAEA nanocomposite to osteo/odontogenic differentiation of dental pulp stem cells. BMC Oral Health 2022; 22:505. [PMID: 36384581 PMCID: PMC9670388 DOI: 10.1186/s12903-022-02527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The green synthesis of nanoparticles has recently opened up a new route in material production. The aim of this study was to evaluate the effect of nanohydroxyapatite (nHA) synthesized from Elaeagnus angustifolia (EA) extract in polycaprolactone (PCL) nanofibers (PCL/nHAEA) to odontogenic differentiation of dental pulp stem cells (DPSCs) and their potential applications for dentin tissue engineering. METHODS Green synthesis of nHA via EA extract (nHAEA) was done by the sol-gel technique. Then electrospun nanocomposites containing of PCL blended with nHA (P/nHA) and nHAEA (P/nHAEA) were fabricated, and the characterization was evaluated via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and the contact angle. The morphology of nanofibers and the cell adhesion capacity of DPSCs on nanofibers were evaluated using SEM. Cytocompatibility was assessed by MTT. Osteo/odontogenic differentiation ability of the nanocomposites were assessed using alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and quantitative real-time polymerase chain reaction (qPCR) technique. RESULTS Viability and adhesion capacity of DPSCs were higher on P/nHAEA nanofibers than PCL and P/nHA nanofibers. ARS assay, ALP activity, and qPCR analysis findings confirmed that the nHAEA blended nanofibrous scaffolds substantially increased osteo/odontogenic differentiation of DPSCs. CONCLUSION PCL/nHAEA nanocomposites had a noticeable effect on the odontogenic differentiation of DPSCs and may help to improve cell-based dentin regeneration therapies in the future.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Siences, Birjand, Iran
| | - Esmat Alemzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Science, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
23
|
Sheela S, AlGhalban FM, Khalil KA, Laoui T, Gopinath VK. Synthesis and Biocompatibility Evaluation of PCL Electrospun Membranes Coated with MTA/HA for Potential Application in Dental Pulp Capping. Polymers (Basel) 2022; 14:polym14224862. [PMID: 36432990 PMCID: PMC9695879 DOI: 10.3390/polym14224862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop polycaprolactone (PCL) electrospun membranes coated with mineral trioxide aggregate/hydroxyapatite (MTA/HA) as a potential material for dental pulp capping. Initially, the PCL membrane was prepared by an electrospinning process, which was further surface coated with MTA (labeled as PCLMTA) and HA (labeled as PCLHA). The physico-chemical characterization of the fabricated membranes was carried out using field emission scanning electron microscopy (FE-SEM)/Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, and contact angle analysis. The biocompatibility of the human dental pulp stem cells (hDPSCs) on the fabricated membranes was checked by XTT assay, and the hDPSCs adhesion and spreading were assessed by FE-SEM and confocal microscopy. The wound healing ability of hDPSCs in response to different electrospun membrane extracts was examined by scratch assay. The surface morphology analysis of the membranes by FE-SEM demonstrated a uniform nanofibrous texture with an average fiber diameter of 594 ± 124 nm for PCL, 517 ± 159 nm for PCLHA, and 490 ± 162 nm for PCLMTA. The elemental analysis of the PCLHA membrane indicated the presence of calcium and phosphorous elements related to HA, whereas the PCLMTA membrane showed the presence of calcium and silicate, related to MTA. The presence of MTA and HA in the PCL membranes was also confirmed by Raman spectroscopy. The water contact analysis demonstrated the hydrophobic nature of the membranes. The results indicated that PCL, PCLHA, and PCLMTA membranes were biocompatible, while PCLMTA exhibited better cell adhesion, spreading, and migration.
Collapse
Affiliation(s)
- Soumya Sheela
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatma Mousa AlGhalban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalil Abdelrazek Khalil
- Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tahar Laoui
- Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vellore Kannan Gopinath
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: or
| |
Collapse
|
24
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
25
|
Dalir Abdolahinia E, Safari Z, Sadat Kachouei SS, Zabeti Jahromi R, Atashkar N, Karbalaeihasanesfahani A, Alipour M, Hashemzadeh N, Sharifi S, Maleki Dizaj S. Cell homing strategy as a promising approach to the vitality of pulp-dentin complexes in endodontic therapy: focus on potential biomaterials. Expert Opin Biol Ther 2022; 22:1405-1416. [PMID: 36345819 DOI: 10.1080/14712598.2022.2142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Safari
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Nastaran Atashkar
- Department of Orthodontics, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahdieh Alipour
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Molecular and biochemical approach for understanding the transition of amorphous to crystalline calcium phosphate deposits in human teeth. Dent Mater 2022; 38:2014-2029. [DOI: 10.1016/j.dental.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
|
27
|
Agrawal P, Nikhade P, Chandak M, Ikhar A, Bhonde R. Dentin Matrix Metalloproteinases: A Futuristic Approach Toward Dentin Repair and Regeneration. Cureus 2022; 14:e27946. [PMID: 36120221 PMCID: PMC9464706 DOI: 10.7759/cureus.27946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have been linked to modulating healing during the production of tertiary dentin, as well as the liberation of physiologically active molecules and the control of developmental processes. Although efforts to protect dentin have mostly centered on preventing these proteases from doing their jobs, their role is actually much more intricate and crucial for dentin healing than anticipated. The role of MMPs as bioactive dentin matrix components involved in dentin production, repair, and regeneration is examined in the current review. The mechanical characteristics of dentin, especially those of reparative and reactionary dentin, and the established functions of MMPs in dentin production are given particular attention. Because they are essential parts of the dentin matrix, MMPs should be regarded as leading applicants for dentin regeneration.
Collapse
|
28
|
6-Bromoindirubin-3′-Oxime Regulates Colony Formation, Apoptosis, and Odonto/Osteogenic Differentiation in Human Dental Pulp Stem Cells. Int J Mol Sci 2022; 23:ijms23158676. [PMID: 35955809 PMCID: PMC9368902 DOI: 10.3390/ijms23158676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
6-bromoindirubin-3′-oxime (BIO) is a candidate small molecule that effectively modulates Wnt signalling owing to its stable property. The present study investigated the influence of BIO on the odonto/osteogenic differentiation of human dental pulp stem cells (hDPSCs). hDPSCs were treated with 200, 400, or 800 nM BIO, and the effects on hDPSC responses and osteogenic differentiation were assessed. BIO-mediated Wnt activation was confirmed by β-catenin nuclear translocation detected by immunofluorescence staining. BIO attenuated colony formation and cell migration determined by in vitro wound-healing assay. BIO increased early apoptotic cell population evaluated using flow cytometry. For osteogenic induction, BIO promoted alkaline phosphatase (ALP) activity and mineralisation in a dose-dependent manner. ALP, RUNX2, OCN, OSX, ANKH, DMP1, and DSPP mRNA expression were significantly upregulated. The OPG/RANKL expression ratio was also increased. Further, BIO attenuated adipogenic differentiation as demonstrated by decreased lipid accumulation and adipogenic-related gene expression. Bioinformatic analysis of RNA sequencing data from the BIO-treated hDPSCs revealed that BIO modulated pathways related to autophagy and actin cytoskeleton regulation. These findings demonstrated that BIO treatment promoted hDPSC osteogenic differentiation. Therefore, this small molecule is a strong candidate as a bioactive molecule to enhance dentin repair.
Collapse
|
29
|
Anti-Inflammatory and Mineralization Effects of an ASP/PLGA-ASP/ACP/PLLA-PLGA Composite Membrane as a Dental Pulp Capping Agent. J Funct Biomater 2022; 13:jfb13030106. [PMID: 35997444 PMCID: PMC9397017 DOI: 10.3390/jfb13030106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Dental pulp is essential for the development and long-term preservation of teeth. Dental trauma and caries often lead to pulp inflammation. Vital pulp therapy using dental pulp-capping materials is an approach to preserving the vitality of injured dental pulp. Most pulp-capping materials used in clinics have good biocompatibility to promote mineralization, but their anti-inflammatory effect is weak. Therefore, the failure rate will increase when dental pulp inflammation is severe. The present study developed an amorphous calcium phosphate/poly (L-lactic acid)-poly (lactic-co-glycolic acid) membrane compounded with aspirin (hereafter known as ASP/PLGA-ASP/ACP/PLLA-PLGA). The composite membrane, used as a pulp-capping material, effectively achieved the rapid release of high concentrations of the anti-inflammatory drug aspirin during the early stages as well as the long-term release of low concentrations of aspirin and calcium/phosphorus ions during the later stages, which could repair inflamed dental pulp and promote mineralization. Meanwhile, the composite membrane promoted the proliferation of inflamed dental pulp stem cells, downregulated the expression of inflammatory markers, upregulated the expression of mineralization-related markers, and induced the formation of stronger reparative dentin in the rat pulpitis model. These findings indicate that this material may be suitable for use as a pulp-capping material in clinical applications.
Collapse
|
30
|
Aslantas EE, Buzoglu HD, Muftuoglu SF, Atilla P, Karapinar SP, Aksoy Y. Effects of aging and inflammation on catalase activity in human dental pulp. Arch Oral Biol 2022; 141:105482. [PMID: 35728513 DOI: 10.1016/j.archoralbio.2022.105482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES In this study, it was aimed to examine the catalase activity in clinically healthy and caries-related inflamed symptomatic human dental pulps of young and old individuals. DESIGN Sixty pulp samples from young and old healthy donors, were collected depending on pulpal status. 48 samples were used for spectrophotometric analysis and 12 samples for immunohistochemistry. Healthy pulps were maintained from non-carries, extracted third molars. Reversible and irreversible pulpitis samples were obtained by pulp extirpation during endodontic treatment. Following homogenization catalase enzyme activity was determined by spectrophotometry. Additionally, two pulp tissue samples from each group were fixed and evaluated for catalase immunoreactivity. RESULTS Catalase enzyme activity in old healthy pulp samples were significantly higher than healthy young samples (p ≤ 0.05). Reversible and irreversible pulpitis samples indicated significantly decreased activity compared to healthy samples in elderly group (p ≤ 0.05). Young reversible pulpitis samples showed significantly increased catalase activity when compared to irreversible pulpitis and the reversible pulpitis samples in elderly group (p ≤ 0.05). Immunohistochemical evaluation indicated that there was intense catalase immunoreactivity in young patients with reversible pulpitis compared with reversible pulpitis in elderly group. However, weak immunoreactivity was observed in young irreversible pulpitis and elderly reversible pulpitis samples. CONCLUSIONS The pulp tissues presented different levels of catalase activities against pulpitis and aging.
Collapse
Affiliation(s)
- Eda Ezgi Aslantas
- Department of Endodontics, Hacettepe University, Faculty of Dentistry, Ankara, Turkey
| | - Hatice Dogan Buzoglu
- Department of Endodontics, Hacettepe University, Faculty of Dentistry, Ankara, Turkey
| | - Sevda Fatma Muftuoglu
- Department of Histology and Embriology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pergin Atilla
- Department of Histology and Embriology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Yasemin Aksoy
- Department of Medical Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
31
|
Dam VV, Nguyen TH, Trinh HA, Dung DT, Hai TD. Advances in the Management of Dentin Hypersensitivity: An Updated Review. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Objective: The objective of this narrative review is to present an overview of dentin hypersensitivity and of the prevalence, etiology, mechanism, diagnosis, and clinical management.
Methods:
Available articles (research, reviews, commentary, views, or editorial) on hypersensitivity were searched and reviewed from January 1990 till March 2021 in Pubmed, Scopus, Google Scholar, and Science Direct. Relevant studies in English were included and critically analyzed in this article.
Results:
Dentin hypersensitivity causes severe pain. The most effective and least invasive remedy is using desensitizing toothpaste. In addition, based on the dentin hypersensitivity severity, management can be done professionally in-office and through self-applied at-home treatments.
Conclusion:
Although dentin hypersensitivity causes severe pain, it can be treated using a proper remedy. Correct diagnosis helps in the proper management of dentine hypersensitivity.
Management of dentinal hypersensitivity should be done with more conservative strategies first, followed by irreversible dental interventions.
Collapse
|
32
|
Vu HT, Han MR, Lee JH, Kim JS, Shin JS, Yoon JY, Park JH, Dashnyam K, Knowles JC, Lee HH, Kim JB, Lee JH. Investigating the Effects of Conditioned Media from Stem Cells of Human Exfoliated Deciduous Teeth on Dental Pulp Stem Cells. Biomedicines 2022; 10:biomedicines10040906. [PMID: 35453661 PMCID: PMC9027398 DOI: 10.3390/biomedicines10040906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Pulp regeneration has recently attracted interest in modern dentistry. However, the success ratio of pulp regeneration is low due to the compromising potential of stem cells, such as their survival, migration, and odontoblastic differentiation. Stem cells from human exfoliated deciduous teeth (SHED) have been considered a promising tool for regenerative therapy due to their ability to secrete multiple factors that are essential for tissue regeneration, which is achieved by minimally invasive procedures with fewer ethical or legal concerns than those of other procedures. The aim of this study is to investigate the potency of SHED-derived conditioned media (SHED CM) on dental pulp stem cells (DPSCs), a major type of mesenchymal stem cells for dental pulp regeneration. Our results show the promotive efficiency of SHED CM on the proliferation, survival rate, and migration of DPSCs in a dose-dependent manner. Upregulation of odontoblast/osteogenic-related marker genes, such as ALP, DSPP, DMP1, OCN, and RUNX2, and enhanced mineral deposition of impaired DPSCs are also observed in the presence of SHED CM. The analysis of SHED CM found that a variety of cytokines and growth factors have positive effects on cell proliferation, migration, anti-apoptosis, and odontoblast/osteogenic differentiation. These findings suggest that SHED CM could provide some benefits to DPSCs in pulp regeneration.
Collapse
Affiliation(s)
- Huong Thu Vu
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
| | - Mi-Ran Han
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Jun-Haeng Lee
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Jong-Soo Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
| | - Jonathan Campbell Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Centre, Cheonan 31116, Korea
- Cell & Matter Institue, Dankook University, Cheonan 31116, Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College, London WC1E 6BT, UK
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
- Correspondence: (J.-B.K.); (J.-H.L.); Tel.: +82-41-550-3081 (J.-B.K. & J.-H.L.); Fax: +82-41-559-7839 (J.-B.K. & J.-H.L.)
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Centre, Cheonan 31116, Korea
- The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College, London WC1E 6BT, UK
- Drug Research Institute, Mongolian Pharmaceutical University & Monos Group, Ulaanbaatar 14250, Mongolia
- Correspondence: (J.-B.K.); (J.-H.L.); Tel.: +82-41-550-3081 (J.-B.K. & J.-H.L.); Fax: +82-41-559-7839 (J.-B.K. & J.-H.L.)
| |
Collapse
|
33
|
Bucchi C, Ohlsson E, de Anta JM, Woelflick M, Galler K, Manzanares-Cespedes MC, Widbiller M. Human Amnion Epithelial Cells: A Potential Cell Source for Pulp Regeneration? Int J Mol Sci 2022; 23:ijms23052830. [PMID: 35269973 PMCID: PMC8911206 DOI: 10.3390/ijms23052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to analyze the suitability of pluripotent stem cells derived from the amnion (hAECs) as a potential cell source for revitalization in vitro. hAECs were isolated from human placentas, and dental pulp stem cells (hDPSCs) and dentin matrix proteins (eDMPs) were obtained from human teeth. Both hAECs and hDPSCs were cultured with 10% FBS, eDMPs and an osteogenic differentiation medium (StemPro). Viability was assessed by MTT and cell adherence to dentin was evaluated by scanning electron microscopy. Furthermore, the expression of mineralization-, odontogenic differentiation- and epithelial–mesenchymal transition-associated genes was analyzed by quantitative real-time PCR, and mineralization was evaluated through Alizarin Red staining. The viability of hAECs was significantly lower compared with hDPSCs in all groups and at all time points. Both hAECs and hDPSCs adhered to dentin and were homogeneously distributed. The regulation of odontoblast differentiation- and mineralization-associated genes showed the lack of transition of hAECs into an odontoblastic phenotype; however, genes associated with epithelial–mesenchymal transition were significantly upregulated in hAECs. hAECs showed small amounts of calcium deposition after osteogenic differentiation with StemPro. Pluripotent hAECs adhere on dentin and possess the capacity to mineralize. However, they presented an unfavorable proliferation behavior and failed to undergo odontoblastic transition.
Collapse
Affiliation(s)
- Cristina Bucchi
- Research Centre for Dental Sciences (CICO), Department of Integral Adult Dentistry, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence:
| | - Ella Ohlsson
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (E.O.); (M.W.); (M.W.)
| | - Josep Maria de Anta
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus de Bellvitge, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.M.d.A.); (M.C.M.-C.)
| | - Melanie Woelflick
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (E.O.); (M.W.); (M.W.)
| | - Kerstin Galler
- Department of Conservative Dentistry and Periodontology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - María Cristina Manzanares-Cespedes
- Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus de Bellvitge, Universitat de Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (J.M.d.A.); (M.C.M.-C.)
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany; (E.O.); (M.W.); (M.W.)
| |
Collapse
|
34
|
Towards Induction of Angiogenesis in Dental Pulp Stem Cells Using Chitosan-Based Hydrogels Releasing Basic Fibroblast Growth Factor. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5401461. [PMID: 35198635 PMCID: PMC8860569 DOI: 10.1155/2022/5401461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Introduction. Chitosan is a natural biopolymer that attracted enormous attention in biomedical fields. The main components of regenerative endodontic procedures (REPs), as well as tissue engineering, are scaffolds, stem cells, and growth factors. As one of the basic factors in the REPs is maintaining vascularization, this study was aimed at developing basic fibroblast growth factor- (bFGF-) loaded scaffolds and investigating their effects on the angiogenic induction in human dental pulp stem cells (hDPSCs). Methods. Poly (ε-caprolactone) (PCL)/chitosan- (CS-) based highly porous scaffold (PCL/CS) was prepared and evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses. The adhesion and survival potency of seeded cells were assessed by SEM and MTT assays, respectively. The amount of angiogenic markers was investigated in gene and protein levels by real-time PCR and western blotting assays, respectively. Results. Based on our findings, the SEM and FTIR tests confirmed the appropriate structure of synthesized scaffolds. Besides, the adhesion and survival rate of cells and the levels of VEGFR-2, Tie2, and Angiopoietin-1 genes were increased significantly in the PCL/CS/bFGF group. Also, the western blotting results showed the upregulation of these markers at protein levels, which were considerably higher at the PCL/CS/bFGF group (
). Conclusions. On a more general note, this study demonstrates that the bFGF-loaded PCL/CS scaffolds have the potential to promote angiogenesis of hDPSCs, which could provide vitality of dentin-pulp complex as the initial required factor for regenerative endodontic procedures.
Collapse
|
35
|
Angelopoulos I, Trigo C, Ortuzar MI, Cuenca J, Brizuela C, Khoury M. Delivery of affordable and scalable encapsulated allogenic/autologous mesenchymal stem cells in coagulated platelet poor plasma for dental pulp regeneration. Sci Rep 2022; 12:435. [PMID: 35013332 PMCID: PMC8748942 DOI: 10.1038/s41598-021-02118-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
The main goal of regenerative endodontics procedures (REPs) is to revitalize teeth by the regeneration of healthy dental pulp. In this study, we evaluated the potential of combining a natural and accessible biomaterial based on Platelet Poor Plasma (PPP) as a support for dental pulp stem cells (DPSC) and umbilical cord mesenchymal stem cells (UC-MSC). A comparison study between the two cell sources revealed compatibility with the PPP based scaffold with differences noted in the proliferation and angiogenic properties in vitro. Additionally, the release of growth factors including VEGF, HGF and DMP-1, was detected in the media of cultured PPP and was enhanced by the presence of the encapsulated MSCs. Dentin-Discs from human molars were filled with PPP alone or with MSCs and implanted subcutaneously for 4 weeks in mice. Histological analysis of the MSC-PPP implants revealed a newly formed dentin-like structure evidenced by the expression of Dentin sialophosphoprotein (DSPP). Finally, DPSC induced more vessel formation around the dental discs. This study provides evidence of a cost-effective, xenofree scaffold that is compatible with either autologous or allogenic strategy for dental pulp regeneration. This attempt if successfully implemented, could make REPs treatment widely accessible, contributing in improving global health conditions.
Collapse
Affiliation(s)
- Ioannis Angelopoulos
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Cesar Trigo
- Centro de Investigacion en Biologia y Regeneracion Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Maria-Ignacia Ortuzar
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Claudia Brizuela
- Centro de Investigacion en Biologia y Regeneracion Oral (CIBRO), Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
36
|
Markandey S, Das Adhikari H. Evaluation of blood clot, platelet-rich plasma, and platelet-rich fibrin–mediated regenerative endodontic procedures in teeth with periapical pathology: a CBCT study. Restor Dent Endod 2022; 47:e41. [DOI: 10.5395/rde.2022.47.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Swati Markandey
- Department of Conservative Dentistry and Endodontics, Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| | - Haridas Das Adhikari
- Department of Conservative Dentistry and Endodontics, Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| |
Collapse
|
37
|
Duncan WJ, Coates DE. Meeting the challenges and clinical requirements for dental regeneration; the New Zealand experience. Bone 2022; 154:116181. [PMID: 34509689 DOI: 10.1016/j.bone.2021.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/02/2022]
Abstract
Disease and trauma leading to tooth loss and destruction of supporting bone is a significant oral handicap, which may be addressed through surgical therapies that aim to regenerate the lost tissue. Whilst complete regeneration of teeth is still aspirational, regeneration of supporting structures (dental pulp, cementum, periodontal ligament, bone) is becoming commonplace, both for teeth and for titanium dental implants that are used to replace teeth. Most grafting materials are essentially passive, however the next generation of oral regenerative devices will combine non-antibiotic antimicrobials and/or osteogenic or inductive factors and/or appropriate multipotential stem cells. The review gives an overview of the approaches taken, including fabrication of novel scaffolds, incorporation of growth factors and cell-based therapies, and discusses the preclinical animal models we employ in the development pathway.
Collapse
Affiliation(s)
- Warwick J Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Dawn E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
38
|
Cai X, Bernard S, Grimal Q. Documenting the Anisotropic Stiffness of Hard Tissues with Resonant Ultrasound Spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:279-295. [DOI: 10.1007/978-3-030-91979-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Aryal YP, Yeon CY, Kim TY, Lee ES, Sung S, Pokharel E, Kim JY, Choi SY, Yamamoto H, Sohn WJ, Lee Y, An SY, An CH, Jung JK, Ha JH, Kim JY. Facilitating Reparative Dentin Formation Using Apigenin Local Delivery in the Exposed Pulp Cavity. Front Physiol 2021; 12:773878. [PMID: 34955887 PMCID: PMC8703200 DOI: 10.3389/fphys.2021.773878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Apigenin, a natural product belonging to the flavone class, affects various cell physiologies, such as cell signaling, inflammation, proliferation, migration, and protease production. In this study, apigenin was applied to mouse molar pulp after mechanically pulpal exposure to examine the detailed function of apigenin in regulating pulpal inflammation and tertiary dentin formation. In vitro cell cultivation using human dental pulp stem cells (hDPSCs) and in vivo mice model experiments were employed to examine the effect of apigenin in the pulp and dentin regeneration. In vitro cultivation of hDPSCs with apigenin treatment upregulated bone morphogenetic protein (BMP)- and osteogenesis-related signaling molecules such as BMP2, BMP4, BMP7, bone sialoprotein (BSP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) after 14 days. After apigenin local delivery in the mice pulpal cavity, histology and cellular physiology, such as the modulation of inflammation and differentiation, were examined using histology and immunostainings. Apigenin-treated specimens showed period-altered immunolocalization patterns of tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), NESTIN, and transforming growth factor (TGF)-β1 at 3 and 5 days. Moreover, the apigenin-treated group showed a facilitated dentin-bridge formation with few irregular tubules after 42 days from pulpal cavity preparation. Micro-CT images confirmed obvious dentin-bridge structures in the apigenin-treated specimens compared with the control. Apigenin facilitated the reparative dentin formation through the modulation of inflammation and the activation of signaling regulations. Therefore, apigenin would be a potential therapeutic agent for regenerating dentin in exposed pulp caused by dental caries and traumatic injury.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Chang-Yeol Yeon
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Shijin Sung
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Elina Pokharel
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Wern-Joo Sohn
- Pre-major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
40
|
Okić-Đorđević I, Obradović H, Kukolj T, Petrović A, Mojsilović S, Bugarski D, Jauković A. Dental mesenchymal stromal/stem cells in different microenvironments— implications in regenerative therapy. World J Stem Cells 2021; 13:1863-1880. [PMID: 35069987 PMCID: PMC8727232 DOI: 10.4252/wjsc.v13.i12.1863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Current research data reveal microenvironment as a significant modifier of physical functions, pathologic changes, as well as the therapeutic effects of stem cells. When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use. The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration. Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues, MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years. This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions, giving additional insight into the current clinical application of these cells.
Collapse
Affiliation(s)
- Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Anđelija Petrović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
41
|
Zhang Q, Yang T, Zhang R, Liang X, Wang G, Tian Y, Xie L, Tian W. Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration. Acta Biomater 2021; 136:441-455. [PMID: 34551330 DOI: 10.1016/j.actbio.2021.09.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Rapid angiogenesis is one of the challenges in endodontic regeneration. Recently, tailored polymeric microsphere system that loaded pro-angiogenic growth factors (GFs) is promising in facilitating vascularization in dental pulp regeneration. In addition, the synergistic effect of multiple GFs is considered more beneficial, but combination usage of them is rather complex and costly. Herein, we aimed to incorporate human platelet lysate (PL), a natural-derived pool of multiple GFs, into gelatin methacrylate (GelMA) microsphere system (GP), which was further modified by Laponite (GPL), a nanoclay with efficient drug delivery ability. These hybrid microspheres were successfully fabricated by electrostatic microdroplet technique with suitable size range (180∼380 µm). After incorporation of the PL and Laponite with GelMA, the Young's modulus of the hybrid hydrogel increased up to about 3-fold and the swelling and degradation rate decreased simultaneously. The PL-derived GFs continued to release up to 28 days from both the GP and GPL microspheres, while the latter released relatively more slowly. What's more, the released GFs could effectively induce tubule formation of human umbilical endothelial cells (HUVECs) and also promote human dental pulp stem cells (hDPSCs) migration. Additionally, the PL component in the GelMA microspheres significantly improved the proliferation, spreading, and odontogenic differentiation of the encapsulated hDPSCs. As further verified by the subcutaneous implantation results, both of the GP and GPL groups enhanced microvascular formation and pulp-like tissue regeneration. This work demonstrated that PL-incorporating GelMA microsphere system was a promising functional vehicle for promoting vascularized endodontic regeneration. STATEMENT OF SIGNIFICANCE: Polymeric microsphere system loaded with pro-angiogenic growth factors (GFs) shows great promise for regeneration of vascularized dental pulp. Herein, we prepared a functional GelMA microsphere system incorporated with human platelet lysates (PL) and nanoclay Laponite by the electrostatic microdroplet method. The results demonstrated that the GelMA/PL/Laponite microspheres significantly improved the spreading, proliferation, and odontogenic differentiation of the encapsulated hDPSCs compared with pure GelMA microspheres. Moreover, they also enhanced microvascular formation and pulp-like tissue regeneration in vivo. This hybrid microsphere system has great potential to accelerate microvessel formation in regenerated dental pulp and other tissues.
Collapse
|
42
|
Kornsuthisopon C, Photichailert S, Nowwarote N, Tompkins KA, Osathanon T. Wnt signaling in dental pulp homeostasis and dentin regeneration. Arch Oral Biol 2021; 134:105322. [PMID: 34844087 DOI: 10.1016/j.archoralbio.2021.105322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Wnt signaling is crucial in the physiological and pathological processes of dental pulp tissues. The present study described the effects of Wnt signaling in dental pulp homeostasis and regeneration. DESIGN Publications in Pubmed and Scopus database were searched, and a narrative review was performed. The roles of Wnt signaling in dental pulp tissue were reviewed and discussed. RESULT In vitro and in vivo evidence have confirmed the involvement of Wnt signaling in tooth development, dental pulp homeostasis, and physiological processes in dental pulp responses. Manipulating Wnt signaling components generates beneficial effects on pulp healing, dentin repair, and epigenetic regulation related to stemness maintenance, implying that Wnt signaling is a potential therapeutic target for future clinical dental applications. Additionally, an overview of the epigenetic control of dental pulp stem cells by Wnt signaling is provided. CONCLUSION This review provides basic knowledge on Wnt signaling and outlines its functions in dental pulp tissues, focusing on their potential as therapeutic treatments by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suphalak Photichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, INSERM UMRS 1138, Molecular Oral Pathophysiology and Universite de Paris, Dental Faculty Garanciere, Oral Biology Department, Paris F-75006, France
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
43
|
Abstract
Matrix metalloproteinases (MMPs) have been implicated not only in the regulation of developmental processes but also in the release of biologically active molecules and in the modulation of repair during tertiary dentine formation. Although efforts to preserve dentine have focused on inhibiting the activity of these proteases, their function is much more complex and necessary for dentine repair than expected. The present review explores the role of MMPs as bioactive components of the dentine matrix involved in dentine formation, repair and regeneration. Special consideration is given to the mechanical properties of dentine, including those of reactionary and reparative dentine, and the known roles of MMPs in their formation. MMPs are critical components of the dentine matrix and should be considered as important candidates in dentine regeneration.
Collapse
Affiliation(s)
- E. Guirado
- Department of Oral Biology, University of Illinois at Chicago College of Dentistry, Chicago, USA
| | - A. George
- Department of Oral Biology, University of Illinois at Chicago College of Dentistry, Chicago, USA
| |
Collapse
|
44
|
Lin B, Li R, Handley TN, Wade JD, Li W, O’Brien-Simpson NM. Cationic Antimicrobial Peptides Are Leading the Way to Combat Oropathogenic Infections. ACS Infect Dis 2021; 7:2959-2970. [PMID: 34587737 DOI: 10.1021/acsinfecdis.1c00424] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oral dental infections are one of the most common diseases affecting humans, with caries and periodontal disease having the highest incidence. Caries and periodontal disease arise from infections caused by oral bacterial pathogens. Current misuse and overuse of antibiotic treatments have led to the development of antimicrobial resistance. However, recent studies have shown that cationic antimicrobial peptides are a promising family of antibacterial agents that are active against oral pathogenic bacteria and also possess less propensity for development of antimicrobial resistance. This timely Review has a focus on two primary subjects: (i) the oral bacterial pathogens associated with dental infections and (ii) the current development of antimicrobial peptides targeting oral pathogens.
Collapse
Affiliation(s)
- Bruce Lin
- The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Rong Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Thomas N.G. Handley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
- School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Wenyi Li
- The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Neil M. O’Brien-Simpson
- The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
45
|
Ayala-Ham A, López-Gutierrez J, Bermúdez M, Aguilar-Medina M, Sarmiento-Sánchez JI, López-Camarillo C, Sanchez-Schmitz G, Ramos-Payan R. Hydrogel-Based Scaffolds in Oral Tissue Engineering. FRONTIERS IN MATERIALS 2021; 8. [DOI: 10.3389/fmats.2021.708945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Regenerative therapy in dentistry has gained interest given the complexity to restore dental and periodontal tissues with inert materials. The best approach for regeneration requires three elements for restoring functions of affected or diseased organ tissues: cells, bioactive molecules, and scaffolds. This triad is capable of modulating the processes to replace lost or damaged tissues and restore function, as it has an impact on diverse cellular processes, influencing cell behavior positively to induce the complete restoration of function and morphology of such complex tissues. Hydrogels (HG) have shown advantages as scaffolds as they are soft and elastic three-dimensional (3D) networks formed from hydrophilic homopolymers, copolymers, or macromers. Besides simple or hybrid, HG show chemical, mechanical and biological activities such as the incorporation of cells in their structures, the retention of high-water content which enhances the transportation of cell nutrients and waste, and elastic and flexible characteristics that emulate the native extracellular matrix (ECM). HG can induce changes in cellular processes such as chemotaxis, proliferation, angiogenesis, biomineralization, and expression of specific tissue biomarkers, enhancing the regeneration process. Besides some of them have anti-inflammatory and anti-bacterial effects. This review aims to show an extensive overview of the most used hydrogels in tissue engineering, emphasizing those that are studied for the regeneration of oral tissues, their biological effects, and their clinical implications. Even though most of the HG are still under investigation, some of them have been studied in vitro and in vivo with outstanding results that may lead to preclinical studies. Besides there are HG that have shown their efficacy in patients such as hyaluronan HG that enhances the healing of gingival tissue.
Collapse
|
46
|
Sevari SP, Ansari S, Moshaverinia A. A narrative overview of utilizing biomaterials to recapitulate the salient regenerative features of dental-derived mesenchymal stem cells. Int J Oral Sci 2021; 13:22. [PMID: 34193832 PMCID: PMC8245503 DOI: 10.1038/s41368-021-00126-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.
Collapse
Affiliation(s)
- Sevda Pouraghaei Sevari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Hancerliogullari D, Erdemir A, Kisa U. The effect of different irrigation solutions and activation techniques on the expression of growth factors from dentine of extracted premolar teeth. Int Endod J 2021; 54:1915-1924. [PMID: 34115394 DOI: 10.1111/iej.13589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/23/2023]
Abstract
AIM To evaluate in a laboratory study, the effect of different canal irrigant solutions and activation techniques on transforming growth factor (TGF-β1), insulin growth factor-1 (IGF-1), bone morphogenetic protein-7 (BMP-7) and vascular endothelial growth factor-A (VEGF-A) release levels from the dentine of extracted premolar teeth. METHODOLOGY Seventy premolar teeth with single root and canal were used. The lengths of the root segments were standardized to 12 mm, and the root canals were prepared up to size 100 with hand files. All surfaces of the teeth were covered with nail polish except the inner root canal surface. The root canals were irrigated with 1.5% NaOCl. Ten teeth were allocated to the control group. The remaining sixty teeth were divided into 2 main groups according to the chelating agent used (17% EDTA, 10% Citric acid; CA) and 3 subgroups (n = 10) according to irrigation activation technique (conventional syringe irrigation (CSI), passive ultrasonic irrigation (PUI) and Er:YAG laser activation). After the activation procedure, the root segments were placed into eppendorf tubes containing 1 mL of phosphate-buffered saline solution and kept at 37℃. TGF-β1, IGF-1, BMP-7 and VEGF-A release levels from dentine were measured using the enzyme-linked immunosorbent assay (ELISA) method at 24 h and at day 7. The volume of root canals was calculated using cone-beam computed tomography. The growth factor levels were calculated in ng/mL except VEGF-A (pg/ml). Normality analysis of the data was evaluated with the Kolmogorov-Smirnov test. Statistical analysis was performed using the Mann-Whitney-U and Wilcoxon tests. RESULTS Regardless of the activation type and sampling time, EDTA caused significantly more IGF release than did CA, whereas EDTA and CA were equally effective for the release of the other growth factors. For either EDTA or CA, the lowest and highest growth factor release levels were observed in the CSI and Er:YAG laser groups, respectively (p < .05). All of the growth factors were released significantly more at 24 h than on day 7 (p < .05). CONCLUSIONS Irrigation activation techniques with EDTA or CA increased the release levels of all growth factors from the dentine of canal walls in extracted premolar teeth.
Collapse
Affiliation(s)
- Dilek Hancerliogullari
- Department of Endodontics, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - Ali Erdemir
- Department of Endodontics, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - Ucler Kisa
- Department of Biochemistry, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
48
|
Das M, Das A, Barui A, Paul RR. Comparative evaluation of proliferative potential and replicative senescence associated changes in mesenchymal stem cells derived from dental pulp and umbilical cord. Cell Tissue Bank 2021; 23:157-170. [PMID: 33900487 DOI: 10.1007/s10561-021-09926-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSC) have been widely studied for tissue regeneration and cell-based therapy. MSC can be isolated from different body tissues while several biological waste sources like dental pulp, umbilical cord, cord derived blood, amniotic fluid or urine have also emerged as potential sources of MSCs. Specifically, isolation of MSCs from such non-conventional sources show promising outcomes due to the non-invasiveness of the extraction process and high proliferation capacity of the isolated MSC. However, these stem cells also exhibit the limitation of replicative senescence in long-term culture condition. Inter-cellular reactive oxygen species is an important contributor for inducing cellular senescence under long-term culture conditions. For translational application, it becomes imperative to compare the stem cells isolated from these sources for their senescence and proliferative properties. In this study, MSC were extracted from two different sources of biological waste materials-dental pulp and umbilical cord, and compared for their proliferation capacity and replicative senescence at different passage numbers (i.e. P2 and P6). Intracellular ROS production was significantly (p < 0.001) less in dental pulp stem cells culture in comparison to umbilical cord-derived stem cells at P6. The β-gal expression also showed significantly (p < 0.001) low expression in DPSC culture compared to that of UCSC at P6. The study indicates the source of stem cells influences the proliferation capacity as well as replicative senescence of MSCs. This study will thus pave the path of future research in selecting appropriate stem cell source for regenerative medicine application.
Collapse
Affiliation(s)
- Monalisa Das
- Department of Oral and Dental Sciences, JIS University, Kolkata, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India.
| | - Ranjan Rashmi Paul
- Department of Oral and Dental Sciences, JIS University, Kolkata, India. .,Department of Oral and Dental Sciences, Guru Nanak Institute of Dental Sciences and Research, JIS University, Kolkata, India.
| |
Collapse
|
49
|
d’Avanzo N, Bruno MC, Giudice A, Mancuso A, Gaetano FD, Cristiano MC, Paolino D, Fresta M. Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules 2021; 26:1643. [PMID: 33804244 PMCID: PMC7999474 DOI: 10.3390/molecules26061643] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases are multifactorial disorders, mainly due to severe infections and inflammation which affect the tissues (i.e., gum and dental bone) that support and surround the teeth. These pathologies are characterized by bleeding gums, pain, bad breath and, in more severe forms, can lead to the detachment of gum from teeth, causing their loss. To date it is estimated that severe periodontal diseases affect around 10% of the population worldwide thus making necessary the development of effective treatments able to both reduce the infections and inflammation in injured sites and improve the regeneration of damaged tissues. In this scenario, the use of 3D scaffolds can play a pivotal role by providing an effective platform for drugs, nanosystems, growth factors, stem cells, etc., improving the effectiveness of therapies and reducing their systemic side effects. The aim of this review is to describe the recent progress in periodontal regeneration, highlighting the influence of materials' properties used to realize three-dimensional (3D)-scaffolds, their bio-physical characteristics and their ability to provide a biocompatible platform able to embed nanosystems.
Collapse
Affiliation(s)
- Nicola d’Avanzo
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
- Department of Pharmacy, University of Chieti−Pescara “G. d’Annunzio”, I-66100 Chieti, Italy
| | - Maria Chiara Bruno
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Amerigo Giudice
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Antonia Mancuso
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| |
Collapse
|
50
|
Lin LM, Huang GTJ, Sigurdsson A, Kahler B. Clinical cell-based versus cell-free regenerative endodontics: clarification of concept and term. Int Endod J 2021; 54:887-901. [PMID: 33389773 DOI: 10.1111/iej.13471] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022]
Abstract
There is no consensus on the true meaning of clinical regenerative endodontics, and there is confusion over the concept and the term. Commonly used terms include revitalization and revascularization. The clinical methods for endodontic revitalization procedures and the tissue engineering concept differ depending on whether there is exogenous delivery of cells - called cell therapy, or not. Here, in this review, the difference is clarified by emphasizing the correct terminology: cell-free versus cell-based regenerative endodontic therapy (CF-RET versus CB-RET). The revitalization procedures practised clinically do not fit into the modern tissue engineering concepts of pulp regeneration but can be categorized as CF-RET. The modern tissue engineering concept in pulp regeneration is a CB-RET, which so far is at the clinical trial stage. However, histological examination of teeth following regenerative endodontic treatments reveals healing with repair derived from stem cells that originate from the periodontal, bone and other tissues. The aim of regenerative endodontics is regeneration of the pulp-dentine complex. This review discusses why CF-RET is unlikely to regenerate a pulp-dentine complex with current protocols. The American Association of Endodontists and the European Society of Endodontology have not yet recommended autologous stem cell transplantation (CB-RERT) which aspires for regeneration. Therefore, an understanding of the concept, term, difficulties and differences in current protocols is important for the clinician. However, rather than being discouraged that ideal regeneration has not been achieved to date, repair can be an acceptable outcome in clinical regenerative endodontics as it has also been accepted in medicine. Repair should also be considered in the context that resolution of the clinical signs/symptoms of pulp necrosis/apical periodontitis is generally reliably obtained in clinical regenerative endodontics.
Collapse
Affiliation(s)
- L M Lin
- College of Dentistry, New York University, New York, NY, USA
| | - G T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A Sigurdsson
- College of Dentistry, New York University, New York, NY, USA
| | - B Kahler
- School of Dentistry, University of Queensland, Brisbane, Australia
| |
Collapse
|