1
|
Helou V, Smith JD, Harris M, Earland N, Contrera KJ, Chaudhuri AA, Zevallos JP. Emerging Proximal Liquid Biopsy Approaches for Detecting Residual Disease and Predicting Recurrence in Head and Neck Cancer: A Review and Proposal of Novel Liquid Staging. Head Neck 2025; 47:1779-1787. [PMID: 40114519 PMCID: PMC12068541 DOI: 10.1002/hed.28138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma remains challenging due to high recurrence rates and poor survival outcomes. Developing precise technologies for disease burden assessment, treatment response, and minimal residual disease (MRD) surveillance is crucial for improving prognosis. METHODS This review explores the potential of liquid biopsy for MRD and recurrence detection. A novel liquid TNM (LiTNM) staging system is introduced, integrating biomarkers from saliva, surgical drain lymphatic fluid (SLF), and peripheral blood. RESULTS Proximal liquid biopsies, particularly saliva and SLF, offer advantages due to their proximity to the tumor microenvironment. Saliva demonstrates high sensitivity in HPV-associated oropharyngeal cancers, while SLF holds potential in identifying early postoperative recurrence. Despite these advancements, standardization and validation remain challenges. CONCLUSIONS Liquid biopsy approaches show promise for postoperative disease monitoring, yet their clinical implementation remains in the early stages. The proposed LiTNM staging system could complement TNM staging by providing a molecular framework for risk stratification. However, rigorous prospective studies are necessary to validate its clinical utility and facilitate adoption.
Collapse
Affiliation(s)
- Vanessa Helou
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joshua D. Smith
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Micah Harris
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Noah Earland
- Division of Cancer Biology, Department of Radiation OncologyWashington University School of MedicineSt. LouisMissouriUSA
- Division of Biology and Biomedical SciencesWashington University School of MedicineSt. LouisMissouriUSA
| | - Kevin J. Contrera
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Aadel A. Chaudhuri
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
- Mayo Clinic Comprehensive Cancer CenterRochesterMinnesotaUSA
| | - Jose P. Zevallos
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Ghiyasimoghaddam N, Shayan N, Mirkatuli HA, Baghbani M, Ameli N, Ashari Z, Mohtasham N. Does circulating tumor DNA apply as a reliable biomarker for the diagnosis and prognosis of head and neck squamous cell carcinoma? Discov Oncol 2024; 15:427. [PMID: 39259454 PMCID: PMC11390992 DOI: 10.1007/s12672-024-01308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Oral cavity cancer is the most common type of head and neck cancer. There is no definitive standard diagnosis, prognosis, or treatment response biomarker panel based on simple, specific, non-invasive, and reliable methods for head and neck squamous cell carcinoma (HNSCC) patients. On the other hand, the frequent post-treatment biopsies make it challenging to discriminate residual disease or recurrent tumors following postoperative reparative and post-radiation changes. Saliva, blood plasma, and serum samples were commonly used to monitor HNSCC through liquid biopsies. Based on the evidence, the most prominent molecular-based fluid biomarker, such as circulating tumor DNA (ctDNA), has potential applications for early cancer diagnosis, screening, patient management, and surveillance. ctDNA showed genomic and epigenomic changes and the status of human papillomavirus (HPV) with the real-time monitoring of tumor status through cancer therapy. Due to the intra and inter-tumor heterogeneity of tumor cells like cancer stem cells (CSCs) and tumor microenvironment (TME) in HNSCC, the tiny tissue biopsy cannot reflect all genomic and transcriptomic abnormality. Most liquid biopsies are applied to detect circulating molecular biomarkers consisting of cell-free DNA (cfDNA), ctDNA, microRNA, mRNA, and exosome for monitoring tumor progression. Based on the results of previous studies, liquid biopsy can be applied for comprehensive multi-omic discovery by assessing the predictive value of ctDNA in both early and advanced cancers. Liquid biopsy can be used to evaluate molecular signature profiles in HNSCC patients, with great potential to help in early diagnosis, prognosis, surveillance, and treatment monitoring of tumors. These happen by designing longitudinal extensive cohort studies and the utility of organoid technology that promotes the context of personalized and precision cancer medicine.
Collapse
Affiliation(s)
- Negin Ghiyasimoghaddam
- Department of Emergency Medicine, Bohlool Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Navidreza Shayan
- Department of Medical Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Nima Ameli
- Sinus and Surgical Endoscopic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Ashari
- Department of Cellular and Molecular (Genetic), Faculty of Biology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, P.O. Box: 9177948959, Mashhad, Iran.
| |
Collapse
|
3
|
Nassar SI, Suk A, Nguyen SA, Adilbay D, Pang J, Nathan CAO. The Role of ctDNA and Liquid Biopsy in the Diagnosis and Monitoring of Head and Neck Cancer: Towards Precision Medicine. Cancers (Basel) 2024; 16:3129. [PMID: 39335101 PMCID: PMC11430155 DOI: 10.3390/cancers16183129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Recent data have shown a continued rise in the worldwide annual incidence and mortality rates of head and neck cancers. The present standard for diagnosis and monitoring for disease recurrence or progression involves clinical examination, imaging, and invasive biopsy techniques of lesions suspected of being malignant. In addition to limitations relating to cost, time, and patient discomfort, these methodologies have inherent inaccuracies for detecting recurrence. In view of these limitations, the analysis of patient bodily fluid samples via liquid biopsy proposes a cost-effective and convenient alternative, which provides insight on the biogenetic and biomolecular underpinnings of oncologic disease processes. The monitoring of biomarkers for head and neck cancer via liquid biopsy, including circulating tumor DNA, circulating tumor cells, and circulating cell-free RNA, has shown clinical utility in the screening, diagnosis, prognostication, and monitoring of patients with various forms of head and neck cancer. The present review will provide an update on the current literature examining the use of liquid biopsy in head and neck cancer care and the clinical applicability of potential biomarkers, with a focus on viral and non-viral circulating tumor DNA. Possible future avenues for research to address specific shortcomings of liquid biopsy will be discussed.
Collapse
Affiliation(s)
- Sami I. Nassar
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Amber Suk
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Shaun A. Nguyen
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Dauren Adilbay
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - John Pang
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| |
Collapse
|
4
|
Turabi K, Klute K, Radhakrishnan P. Decoding the Dynamics of Circulating Tumor DNA in Liquid Biopsies. Cancers (Basel) 2024; 16:2432. [PMID: 39001494 PMCID: PMC11240538 DOI: 10.3390/cancers16132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA), a fragment of tumor DNA found in the bloodstream, has emerged as a revolutionary tool in cancer management. This review delves into the biology of ctDNA, examining release mechanisms, including necrosis, apoptosis, and active secretion, all of which offer information about the state and nature of the tumor. Comprehensive DNA profiling has been enabled by methods such as whole genome sequencing and methylation analysis. The low abundance of the ctDNA fraction makes alternative techniques, such as digital PCR and targeted next-generation exome sequencing, more valuable and accurate for mutation profiling and detection. There are numerous clinical applications for ctDNA analysis, including non-invasive liquid biopsies for minimal residual disease monitoring to detect cancer recurrence, personalized medicine by mutation profiling for targeted therapy identification, early cancer detection, and real-time evaluation of therapeutic response. Integrating ctDNA analysis into routine clinical practice creates promising avenues for successful and personalized cancer care, from diagnosis to treatment and follow-up.
Collapse
Affiliation(s)
- Khadija Turabi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelsey Klute
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Igder S, Zamani M, Fakher S, Siri M, Ashktorab H, Azarpira N, Mokarram P. Circulating Nucleic Acids in Colorectal Cancer: Diagnostic and Prognostic Value. DISEASE MARKERS 2024; 2024:9943412. [PMID: 38380073 PMCID: PMC10878755 DOI: 10.1155/2024/9943412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in the world and the fourth leading cause of cancer-related mortality. DNA (cfDNA/ctDNA) and RNA (cfRNA/ctRNA) in the blood are promising noninvasive biomarkers for molecular profiling, screening, diagnosis, treatment management, and prognosis of CRC. Technological advancements that enable precise detection of both genetic and epigenetic abnormalities, even in minute quantities in circulation, can overcome some of these challenges. This review focuses on testing for circulating nucleic acids in the circulation as a noninvasive method for CRC detection, monitoring, detection of minimal residual disease, and patient management. In addition, the benefits and drawbacks of various diagnostic techniques and associated bioinformatics tools have been detailed.
Collapse
Affiliation(s)
- Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Fakher
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division and Cancer Center, Howard University College of Medicine, Washington, DC, USA
| | - Negar Azarpira
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Rapado-González Ó, Rodríguez-Ces AM, López-López R, Suárez-Cunqueiro MM. Liquid biopsies based on cell-free DNA as a potential biomarker in head and neck cancer. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:289-302. [PMID: 37680614 PMCID: PMC10480573 DOI: 10.1016/j.jdsr.2023.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
In the era of 'precision medicine', liquid biopsies based on cell-free DNA (cfDNA) have emerged as a promising tool in the oncology field. cfDNA from cancer patients is a mixture of tumoral (ctDNA) and non-tumoral DNA originated from healthy, cancer and tumor microenvironmental cells. Apoptosis, necrosis, and active secretion from extracellular vesicles represent the main mechanisms of cfDNA release into the physiological body fluids. Focused on HNC, two main types of cfDNA can be identified: the circulating cfDNA (ccfDNA) and the salivary cfDNA (scfDNA). Numerous studies have reported on the potential of cfDNA analysis as potential diagnostic, prognostic, and monitoring biomarker for HNC. Thus, ctDNA has emerged as an attractive strategy to detect cancer specific genetic and epigenetic alterations including DNA somatic mutations and DNA methylation patterns. This review aims to provide an overview of the up-to-date studies evaluating the value of the analysis of total cfDNA, cfDNA fragment length, and ctDNA analysis at DNA mutation and methylation level in HNC patients.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana María Rodríguez-Ces
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Rafael López-López
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Koukourakis MI, Xanthopoulou E, Koukourakis IM, Fortis SP, Kesesidis N, Kakouratos C, Karakasiliotis I, Baxevanis CN. Next-Generation Sequencing Analysis of Mutations in Circulating Tumor DNA from the Plasma of Patients with Head-Neck Cancer Undergoing Chemo-Radiotherapy Using a Pan-Cancer Cell-Free Assay. Curr Oncol 2023; 30:8902-8915. [PMID: 37887543 PMCID: PMC10604986 DOI: 10.3390/curroncol30100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Using next-generation sequencing (NGS), we investigated DNA mutations in the plasma tumor cell-free circulating DNA (ctDNA) of 38 patients with inoperable squamous cell head neck cancer (SCHNC) before and after the completion of chemoradiotherapy (CRT). Baseline mutations of the TP53 were recorded in 10/38 (26.3%) and persisted in 4/10 patients after CRT. ΤP53 mutations were further detected post CRT in 7/38 additional patients with undetectable mutations at baseline (overall rate 44.7%). Furthermore, 4/38 patients exhibited baseline mutations of the EGFR, AR, FGFR3, and FBXW3, and four new gene mutations were detected after CRT (MTOR, EGFR3, ALK, and SF3B1). Τ4 stage was related with a significantly higher rate of mutations (TP53 and overall). Mutations were observed in 8/30 (26.6%) responders (complete/partial response) vs. in 6/8 (75%) of the rest of the patients (p = 0.03). Significant poorer LRFS was noted for patients with mutations detected before and after CRT (p = 0.02). Patients who had detectable mutations either before or after CRT had significantly worse DMFS (p = 0.04 overall, and p = 0.02 for TP53 mutations). It was concluded that assessment of mutations before and after the end of CRT is essential to characterize patients with a high risk of locoregional recurrence or metastatic progression.
Collapse
Affiliation(s)
- Michael I. Koukourakis
- Department of Radiotherapy—Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (C.K.)
| | - Erasmia Xanthopoulou
- Department of Radiotherapy—Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (C.K.)
| | - Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, 11528 Athens, Greece;
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (S.P.F.); (C.N.B.)
| | - Nikolaos Kesesidis
- Laboratory of Biology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (I.K.)
| | - Christos Kakouratos
- Department of Radiotherapy—Oncology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (C.K.)
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.K.); (I.K.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (S.P.F.); (C.N.B.)
| |
Collapse
|
8
|
Huang X, Duijf PHG, Sriram S, Perera G, Vasani S, Kenny L, Leo P, Punyadeera C. Circulating tumour DNA alterations: emerging biomarker in head and neck squamous cell carcinoma. J Biomed Sci 2023; 30:65. [PMID: 37559138 PMCID: PMC10413618 DOI: 10.1186/s12929-023-00953-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023] Open
Abstract
Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin (HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the mainstream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limitations. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technological advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby significantly improving outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Xiaomin Huang
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- University Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Ganganath Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Lizbeth Kenny
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Paul Leo
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Translational Genomics Centre, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia.
- Menzies Health Institute Queensland (MIHQ), Griffith University, Gold coast, QLD, Australia.
| |
Collapse
|
9
|
Britze TE, Jakobsen KK, Grønhøj C, von Buchwald C. A systematic review on the role of biomarkers in liquid biopsies and saliva samples in the monitoring of salivary gland cancer. Acta Otolaryngol 2023; 143:709-713. [PMID: 37534452 DOI: 10.1080/00016489.2023.2238757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Salivary gland cancer is a rare disease, and approximately 20% of tumors in the salivary glands are malignant. Reliable biomarkers may have a role in monitoring salivary gland cancer. AIM To review the current literature on the role of biomarkers in liquid biopsies and saliva samples in the monitoring of salivary gland cancer. MATERIALS AND METHOD This study systematically reviewed the literature on studies detecting salivary gland cancer by biomarkers in liquid biopsies and saliva samples by systematically searching PubMed and Embase between 1 January 2013 and 7 March 2023. RESULTS Five studies covering 64 malignant cases of salivary gland cancer were included, which considered inflammatory biomarkers or markers of genetic material in either blood or saliva. In saliva, there were demonstrated elevations of CA-19-9 in malignant cases, and elevations of miRNA in malignant and benign cases. In blood, there were demonstrated elevations of IL-33 in malignant and benign cases, elevations of ctDNA in malignant cases, and elevations of CTC in malignant cases. CONCLUSION AND SIGNIFICANCE The studies indicate that there is potential in the detection method. The studies detecting genetic material by liquid biopsies showed the most promising results. At present, there is still progression to be made before the method can be implemented for diagnostic use.
Collapse
Affiliation(s)
- Theresa Emilia Britze
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kathrine Kronberg Jakobsen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
10
|
Earland N, Chen K, Semenkovich NP, Chauhan PS, Zevallos JP, Chaudhuri AA. Emerging Roles of Circulating Tumor DNA for Increased Precision and Personalization in Radiation Oncology. Semin Radiat Oncol 2023; 33:262-278. [PMID: 37331781 DOI: 10.1016/j.semradonc.2023.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Recent breakthroughs in circulating tumor DNA (ctDNA) technologies present a compelling opportunity to combine this emerging liquid biopsy approach with the field of radiogenomics, the study of how tumor genomics correlate with radiotherapy response and radiotoxicity. Canonically, ctDNA levels reflect metastatic tumor burden, although newer ultrasensitive technologies can be used after curative-intent radiotherapy of localized disease to assess ctDNA for minimal residual disease (MRD) detection or for post-treatment surveillance. Furthermore, several studies have demonstrated the potential utility of ctDNA analysis across various cancer types managed with radiotherapy or chemoradiotherapy, including sarcoma and cancers of the head and neck, lung, colon, rectum, bladder, and prostate . Additionally, because peripheral blood mononuclear cells are routinely collected alongside ctDNA to filter out mutations associated with clonal hematopoiesis, these cells are also available for single nucleotide polymorphism analysis and could potentially be used to detect patients at high risk for radiotoxicity. Lastly, future ctDNA assays will be utilized to better assess locoregional MRD in order to more precisely guide adjuvant radiotherapy after surgery in cases of localized disease, and guide ablative radiotherapy in cases of oligometastatic disease.
Collapse
Affiliation(s)
- Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Kevin Chen
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Pradeep S Chauhan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Jose P Zevallos
- Department of Otolaryngology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Aadel A Chaudhuri
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO; Department of Genetics, Washington University School of Medicine, St. Louis, MO; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO; Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
11
|
Lin LH, Chang KW, Cheng HW, Liu CJ. Identification of Somatic Mutations in Plasma Cell-Free DNA from Patients with Metastatic Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:10408. [PMID: 37373553 DOI: 10.3390/ijms241210408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The accurate diagnosis and treatment of oral squamous cell carcinoma (OSCC) requires an understanding of its genomic alterations. Liquid biopsies, especially cell-free DNA (cfDNA) analysis, are a minimally invasive technique used for genomic profiling. We conducted comprehensive whole-exome sequencing (WES) of 50 paired OSCC cell-free plasma with whole blood samples using multiple mutation calling pipelines and filtering criteria. Integrative Genomics Viewer (IGV) was used to validate somatic mutations. Mutation burden and mutant genes were correlated to clinico-pathological parameters. The plasma mutation burden of cfDNA was significantly associated with clinical staging and distant metastasis status. The genes TTN, PLEC, SYNE1, and USH2A were most frequently mutated in OSCC, and known driver genes, including KMT2D, LRP1B, TRRAP, and FLNA, were also significantly and frequently mutated. Additionally, the novel mutated genes CCDC168, HMCN2, STARD9, and CRAMP1 were significantly and frequently present in patients with OSCC. The mutated genes most frequently found in patients with metastatic OSCC were RORC, SLC49A3, and NUMBL. Further analysis revealed that branched-chain amino acid (BCAA) catabolism, extracellular matrix-receptor interaction, and the hypoxia-related pathway were associated with OSCC prognosis. Choline metabolism in cancer, O-glycan biosynthesis, and protein processing in the endoplasmic reticulum pathway were associated with distant metastatic status. About 20% of tumors carried at least one aberrant event in BCAA catabolism signaling that could possibly be targeted by an approved therapeutic agent. We identified molecular-level OSCC that were correlated with etiology and prognosis while defining the landscape of major altered events of the OSCC plasma genome. These findings will be useful in the design of clinical trials for targeted therapies and the stratification of patients with OSCC according to therapeutic efficacy.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11121, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
| | - Chung-Ji Liu
- Department of Medical Research, MacKay Memorial Hospital No. 92, Sec. 2, Chung San N. Rd., Taipei 10449, Taiwan
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei 10449, Taiwan
| |
Collapse
|
12
|
Economopoulou P, Spathis A, Kotsantis I, Maratou E, Anastasiou M, Moutafi MK, Kirkasiadou M, Pantazopoulos A, Giannakakou M, Edelstein DL, Sloane H, Fredebohm J, Jones FS, Kyriazoglou A, Gavrielatou N, Foukas P, Panayiotides I, Psyrri A. Next-generation sequencing (NGS) profiling of matched tumor and circulating tumor DNA (ctDNA) in head and neck squamous cell carcinoma (HNSCC). Oral Oncol 2023; 139:106358. [PMID: 36871349 DOI: 10.1016/j.oraloncology.2023.106358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES The aim of this pilot study was to evaluate the presence of somatic mutations in matched tumor and circulating DNA (ctDNA) samples from patients with primary head and neck squamous cell carcinoma (HNSCC) and assess the association of changes in ctDNA levels with survival. MATERIALS AND METHODS Our study included 62 patients with stage I-IVB HNSCC treated with surgery or radical chemoradiotherapy with curative intent. Plasma samples were obtained at baseline, at the end of treatment (EOT), and at disease progression. Tumor DNA was extracted from plasma (ctDNA) and tumor tissue (tDNA). The Safe Sequencing System was used assess the presence of pathogenic variants in four genes (TP53, CDKN2A, HRAS and PI3KCA) in both ctDNA and tDNA. RESULTS Forty-five patients had available tissue and plasma samples. Concordance of genotyping results between tDNA and ctDNA at baseline was 53.3%. TP53 mutations were most commonly identified at baseline in both ctDNA (32.6%) and tDNA (40%). The presence of mutations in this restricted set of 4 genes in tissue samples at baseline was associated with decreased overall survival (OS) [median 58.3 months for patients with mutations vs. 89 months for patients without mutations, p < 0.013]. Similarly, patients presenting with mutations in ctDNA had shorter OS [median 53.8 vs. 78.6 months, p < 0.037]. CtDNA clearance at EOT did not show any association with PFS or OS. CONCLUSIONS Liquid biopsy enables real-time molecular characterization of HNSCC and might predict survival. Larger studies are needed to validate the utility of ctDNA as a biomarker in HNSCC.
Collapse
Affiliation(s)
- Panagiota Economopoulou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Aris Spathis
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Ioannis Kotsantis
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Eirini Maratou
- Second Department of Internal Medicine and Research Institute, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Maria Anastasiou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Myrto K Moutafi
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Maria Kirkasiadou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Anastasios Pantazopoulos
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Maria Giannakakou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Daniel L Edelstein
- Medical Affairs, Sysmex Inostics Inc., 1812 Ashland Ave #500, Baltimore, MD 21205, USA
| | - Hillary Sloane
- Medical Affairs, Sysmex Inostics Inc., 1812 Ashland Ave #500, Baltimore, MD 21205, USA
| | - Johannes Fredebohm
- Research and Innovation, Sysmex Inostics GmbH, Alkenried 88, 20251 Hamburg, Germany.
| | - Frederick S Jones
- Research and Innovation, Sysmex Inostics GmbH, Alkenried 88, 20251 Hamburg, Germany.
| | - Anastasios Kyriazoglou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Niki Gavrielatou
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece.
| | - Periklis Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Ioannis Panayiotides
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, Second Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece.
| |
Collapse
|
13
|
Yang X, Zhou T, Ji T, Jia H, Liu W. Comment on circulatory miRNAs as therapeutic molecules for oral potentially malignant disorder and oral squamous cell carcinoma. Oral Oncol 2022; 130:105901. [DOI: 10.1016/j.oraloncology.2022.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
|
14
|
Aulakh SS, Silverman DA, Young K, Dennis SK, Birkeland AC. The Promise of Circulating Tumor DNA in Head and Neck Cancer. Cancers (Basel) 2022; 14:2968. [PMID: 35740633 PMCID: PMC9221491 DOI: 10.3390/cancers14122968] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
As the seventh most common cancer globally, head and neck cancers (HNC) exert considerable disease burden, with an estimated 277,597 deaths worldwide in 2020 alone. Traditional risk factors for HNC include tobacco, alcohol, and betel nut; more recently, human papillomavirus has emerged as a distinct driver of disease. Currently, limitations of cancer screening and surveillance methods often lead to identifying HNC in more advanced stages, with associated poor outcomes. Liquid biopsies, in particular circulating tumor DNA (ctDNA), offer the potential for enhancing screening, early diagnosis, and surveillance in HNC patients, with potential improvements in HNC patient outcomes. In this review, we examine current methodologies for detecting ctDNA and highlight current research illustrating viral and non-viral ctDNA biomarker utilities in HNC screening, diagnosis, treatment response, and prognosis. We also summarize current challenges and future directions for ctDNA testing in HNC patients.
Collapse
Affiliation(s)
| | - Dustin A. Silverman
- Department of Otolaryngology—Head and Neck Surgery, University of California, Davis, CA 95817, USA; (D.A.S.); (S.K.D.)
| | - Kurtis Young
- John A. Burns School of Medicine, Honolulu, HI 96813, USA;
| | - Steven K. Dennis
- Department of Otolaryngology—Head and Neck Surgery, University of California, Davis, CA 95817, USA; (D.A.S.); (S.K.D.)
| | - Andrew C. Birkeland
- Department of Otolaryngology—Head and Neck Surgery, University of California, Davis, CA 95817, USA; (D.A.S.); (S.K.D.)
| |
Collapse
|
15
|
Liquid Biopsy in Head and Neck Cancer: Current Evidence and Future Perspective on Squamous Cell, Salivary Gland, Paranasal Sinus and Nasopharyngeal Cancers. Cancers (Basel) 2022; 14:cancers14122858. [PMID: 35740523 PMCID: PMC9221064 DOI: 10.3390/cancers14122858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Head and neck cancer is the sixth most common type of solid tumor and harbors a poor prognosis since most patients are diagnosed at an advanced stage. The study of different tumor components in the blood, saliva or other body fluids is called liquid biopsy. The introduction of novel diagnostic tools such as liquid biopsy could aid in achieving earlier diagnoses and more accurate disease monitoring during treatment. In this manuscript, the reader will find an in-depth review of the current evidence and a future perspective on the role of liquid biopsy in head and neck cancer. Abstract Head and neck cancer (HNC) is currently the sixth most common solid malignancy, accounting for a 50% five-year mortality rate. In the past decade, substantial improvements in understanding its molecular biology have allowed for a growing development of new biomarkers. Among these, the field of liquid biopsy has seen a sustained growth in HNC, demonstrating the feasibility to detect different liquid biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTC), extracellular vesicles and microRNAs. Liquid biopsy has been studied in HPV-negative squamous cell carcinoma of the head and neck (SCCHN) but also in other subentities such as HPV-related SCCHN, EBV-positive nasopharyngeal cancer and oncogene-driven salivary gland cancers. However, future studies should be internally and externally validated, and ideally, clinical trials should incorporate the use of liquid biomarkers as endpoints in order to prospectively demonstrate their role in HNC. A thorough review of the current evidence on liquid biopsy in HNC as well as its prospects will be conducted.
Collapse
|
16
|
Chikuie N, Urabe Y, Ueda T, Hamamoto T, Taruya T, Kono T, Yumii K, Takeno S. Utility of plasma circulating tumor DNA and tumor DNA profiles in head and neck squamous cell carcinoma. Sci Rep 2022; 12:9316. [PMID: 35661138 PMCID: PMC9167274 DOI: 10.1038/s41598-022-13417-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
Early recurrence detection of head and neck squamous cell carcinoma (HNSCC) is important for improving prognosis. Recently, circulating tumor DNA (ctDNA) has been reported to be useful in early detection or treatment response determination in various carcinomas. This study aimed to identify the utility of ctDNA for predicting recurrent metastasis in patients with HNSCC. We collected pre-treatment tissues (malignant and normal tissues) and multiple plasma samples before and after treatment for 20 cases of HNSCC treated with radical therapy. ctDNA was detected in pre-treatment plasma in 10 cases; however, there were no significant associations with tumor recurrence and staging. During follow-up, ctDNA was detected in 5 of the 7 plasma samples of recurrent cases but not in the 13 recurrence-free cases. Moreover, there was a significant difference in post-treatment relapse-free survival time between the groups with and without detected ctDNA (20.6 ± 7.7 vs. 9.6 ± 9.1 months, respectively; log-rank test, p < 0.01). Moreover, for two of the five cases with ctDNA detected after treatment, ctDNA detection was a more sensitive predictor of recurrence than imaging studies. ctDNA detection during treatment follow-up was useful in patients with HNSCC for predicting the response to treatment and recurrent metastasis.
Collapse
Affiliation(s)
- Nobuyuki Chikuie
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuji Urabe
- Division of Regeneration and Medicine Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Tsutomu Ueda
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takao Hamamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takayuki Taruya
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takashi Kono
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kohei Yumii
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Sachio Takeno
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
17
|
Yang X, Xu X, Zhang C, Ji T, Wan T, Liu W. The diagnostic value and prospects of gene mutations in circulating tumor DNA for head and neck cancer monitoring. Oral Oncol 2022; 128:105846. [DOI: 10.1016/j.oraloncology.2022.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
18
|
Hudečková M, Koucký V, Rottenberg J, Gál B. Gene Mutations in Circulating Tumour DNA as a Diagnostic and Prognostic Marker in Head and Neck Cancer-A Systematic Review. Biomedicines 2021; 9:1548. [PMID: 34829777 PMCID: PMC8615469 DOI: 10.3390/biomedicines9111548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/21/2023] Open
Abstract
(1) Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is one of the most common malignancies globally. An early diagnosis of this disease is crucial, and the detection of gene mutations in circulating tumour DNA (ctDNA) through a liquid biopsy is a promising non-invasive diagnostic method. This review aims to provide an overview of ctDNA mutations in HNSCC patients and discuss the potential use of this tool in diagnosis and prognosis. (2) Methods: A systematic search for articles published in the English language between January 2000 and April 2021 in the Medline and Scopus databases was conducted. (3) Results: A total of 10 studies published in nine publications were selected and analysed. Altogether, 390 samples were obtained from HNSCC patients, and 79 control samples were evaluated. The most often explored gene mutation in ctDNA was TP53. (4) Conclusions: The examination of a larger group of gene mutations and the use of a combination of multiple detection methods contribute to a higher detection rate of mutated ctDNA. More studies are necessary to verify these conclusions and to translate them into clinical practice.
Collapse
Affiliation(s)
- Markéta Hudečková
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, 65691 Brno, Czech Republic; (M.H.); (J.R.)
| | - Vladimír Koucký
- Department of Otorhinolaryngology and Head and Neck Surgery, First Medical Faculty, Motol University Hospital, 15000 Prague, Czech Republic;
| | - Jan Rottenberg
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, 65691 Brno, Czech Republic; (M.H.); (J.R.)
| | - Břetislav Gál
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, Masaryk University and St. Anne’s University Hospital, 65691 Brno, Czech Republic; (M.H.); (J.R.)
| |
Collapse
|