1
|
Raffle J, Novo Matos J, Wallace M, Wilkie L, Piercy RJ, Elliott P, Connolly DJ, Luis Fuentes V, Psifidi A. Identification of novel genetic variants associated with feline cardiomyopathy using targeted next-generation sequencing. Sci Rep 2025; 15:3871. [PMID: 39890868 PMCID: PMC11785968 DOI: 10.1038/s41598-025-87852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
Cardiomyopathies are the most common heritable heart diseases in cats and humans. This study aimed to identify novel genetic variants in cats with hypertrophic cardiomyopathy (HCM) and restrictive cardiomyopathy (RCM) using a targeted panel of genes associated with human cardiomyopathy. Cats were phenotyped for HCM/RCM by echocardiography ± necropsy. DNA was extracted from residual blood, and targeted next-generation sequencing was performed on two separate feline cohorts: an across-breed cohort (23 healthy cats and 21 HCM-affected pedigree or Domestic Shorthair cats), and a within-breed cohort of Birman pedigree cats (14 healthy, 8 HCM-affected, and 6 RCM-affected). Genome Analysis Toolkit was used for variant discovery. Genomic association analyses, including the covariates breed, age, and sex, were conducted to identify genetic variants of interest. We identified genetic variants associated with both HCM and RCM susceptibility in the sarcomeric genes ACTC1, ACTN2, MYH7, TNNT2 and the non-sarcomeric gene CSRP3 in the Birman pedigree cats. These findings suggest that, as proposed in humans, there is at least partial overlap in the genetic background between the HCM and RCM phenotypes in cats. These findings offer potential insights for comparative cardiac research and translational medicine.
Collapse
Affiliation(s)
- Jade Raffle
- Clinical Science and Services, Royal Veterinary College, London, UK.
| | - Jose Novo Matos
- Clinical Science and Services, Royal Veterinary College, London, UK
| | - Marsha Wallace
- Clinical Science and Services, Royal Veterinary College, London, UK
| | - Lois Wilkie
- Clinical Science and Services, Royal Veterinary College, London, UK
| | - Richard J Piercy
- Clinical Science and Services, Royal Veterinary College, London, UK
| | - Perry Elliott
- Institute of Cardiovascular Science, University College London, London, UK
| | - David J Connolly
- Clinical Science and Services, Royal Veterinary College, London, UK
| | | | - Androniki Psifidi
- Clinical Science and Services, Royal Veterinary College, London, UK.
| |
Collapse
|
2
|
Song Q, Zhang C, Wang W, Wang C, Yi C. Exploring the genetic landscape of the brain-heart axis: A comprehensive analysis of pleiotropic effects between heart disease and psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111172. [PMID: 39423935 DOI: 10.1016/j.pnpbp.2024.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The genetic links between heart disease and psychiatric disorders are complex and not well understood. This study uses genome-wide association studies (GWAS) and advanced multilevel analyses to explore these connections. METHODS We analyzed GWAS data from seven psychiatric disorders and five types of heart disease. Genetic correlations and overlaps were examined using linkage disequilibrium score regression (LDSC), high-definition likelihood (HDL), and Genetic analysis incorporating Pleiotropy and Annotation (GPA). Pleiotropic single-nucleotide variations (SNVs) were identified with pleiotropic analysis under the composite null hypothesis (PLACO) and annotated via Functional mapping and annotation of genetic associations (FUMA). Potential pleiotropic genes were identified using Multi-marker Analysis of GenoMic Annotation (MAGMA) and Summary data-based Mendelian Randomization (SMR). RESULTS Among 35 trait pairs, 32 showed significant genetic correlations or overlaps. PLACO identified 15,077 SNVs, with 287 recognized as pleiotropic loci and 20 colocalization sites. MAGMA and SMR revealed 75 potential pleiotropic genes involved in diverse pathways, including cancer, neurodevelopment, and cellular organization. Mouse Genome Informatics (MGI) queries provided evidence linking multiple genes to heart or psychiatric disorders. CONCLUSIONS This analysis reveals loci and genes with pleiotropic effects between heart disease and psychiatric disorders, highlighting shared biological pathways. These findings illuminate the genetic mechanisms underlying the brain-heart axis and suggest shared biological foundations for these conditions, offering potential targets for future prevention and treatment strategies.
Collapse
Affiliation(s)
- Qifeng Song
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Cheng Zhang
- Nanjing Vocational Health College, Nanjing, Jiangsu 210000, China
| | - Wei Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Cihan Wang
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Chenlong Yi
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, China; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Carabetta N, Siracusa C, Leo I, Panuccio G, Strangio A, Sabatino J, Torella D, De Rosa S. Cardiomyopathies: The Role of Non-Coding RNAs. Noncoding RNA 2024; 10:53. [PMID: 39449507 PMCID: PMC11503404 DOI: 10.3390/ncrna10060053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiomyopathies are the structural and functional disorders of the myocardium. Etiopathogenesis is complex and involves an interplay of genetic, environmental, and lifestyle factors eventually leading to myocardial abnormalities. It is known that non-coding (Nc) RNAs, including micro (mi)-RNAs and long non-coding (lnc) RNAs, play a crucial role in regulating gene expression. Several studies have explored the role of miRNAs in the development of various pathologies, including heart diseases. In this review, we analyzed various patterns of ncRNAs expressed in the most common cardiomyopathies: dilated cardiomyopathy, hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy. Understanding the role of different ncRNAs implicated in cardiomyopathic processes may contribute to the identification of potential therapeutic targets and novel risk stratification models based on gene expression. The analysis of ncRNAs may also be helpful to unveil the molecular mechanisms subtended to these diseases.
Collapse
Affiliation(s)
- Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Giuseppe Panuccio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200 Berlin, Germany
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| |
Collapse
|
4
|
Gill R, Siddiqui A, Yee B, DiCaro MV, Houshmand N, Tak T. Advancements in the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: A Comprehensive Review. J Cardiovasc Dev Dis 2024; 11:290. [PMID: 39330348 PMCID: PMC11431942 DOI: 10.3390/jcdd11090290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by excessive growth of myocardial tissue, most commonly due to genetic mutations in sarcomere proteins. This can lead to complications such as heart failure, mitral regurgitation, syncope, arrhythmias, sudden cardiac death, and myocardial ischemia. While we have come a long way in our understanding of the pathophysiology, genetics, and epidemiology of HCM, the past 10 years have seen significant advancements in diagnosis and treatment. As the body of evidence on hypertrophic cardiomyopathy continues to grow, a comprehensive review of the current literature is an invaluable resource in organizing this knowledge. By doing so, the vast progress that has been made thus far will be widely available to all experts in the field. This review provides a comprehensive analysis of the scientific literature, exploring both well-established and cutting-edge diagnostic and therapeutic options. It also presents a unique perspective by incorporating topics such as exercise testing, genetic testing, radiofrequency ablation, risk stratification, and symptomatic management in non-obstructive HCM. Lastly, this review highlights areas where current and future research is at the forefront of innovation in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Randeep Gill
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV 89102, USA
| | - Arsalan Siddiqui
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV 89102, USA
| | - Brianna Yee
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV 89102, USA
| | - Michael V DiCaro
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV 89102, USA
| | - Nazanin Houshmand
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV 89102, USA
| | - Tahir Tak
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV 89102, USA
- VA Southern Nevada Healthcare System, 6900 N. Pecos Road, North Las Vegas, NV 89086, USA
| |
Collapse
|
5
|
Micaglio E, Tondi L, Benedetti S, Schiavo MA, Camporeale A, Disabato G, Attanasio A, Guida G, Carrafiello G, Piepoli M, Spagnolo P, Pappone C, Lombardi M. When Paying Attention Pays Back: Missense Mutation c.1006G>A p. (Val336Ile) in PRKAG2 Gene Causing Left Ventricular Hypertrophy and Conduction Abnormalities in a Caucasian Patient: Case Report and Literature Review. Int J Mol Sci 2024; 25:9171. [PMID: 39273120 PMCID: PMC11395525 DOI: 10.3390/ijms25179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
PRKAG2 cardiomyopathy is a rare genetic disorder that manifests early in life with an autosomal dominant inheritance pattern. It harbors left ventricular hypertrophy (LVH), ventricular pre-excitation and progressively worsening conduction system defects. Its estimated prevalence among patients with LVH ranges from 0.23 to about 1%, but it is likely an underdiagnosed condition. We report the association of the PRKAG2 missense variant c.1006G>A p. (Val336Ile) with LVH, conduction abnormalities (short PR interval and incomplete right bundle branch bock) and early-onset arterial hypertension (AH) in a 44-year-old Caucasian patient. While cardiac magnetic resonance (CMR) showed a mild hypertrophic phenotype with maximal wall thickness of 17 mm in absence of tissue alterations, the electric phenotype was relevant including brady-tachy syndrome and recurrent syncope. The same variant has been detected in the patient's sister and daughter, with LVH + early-onset AH and electrocardiographic (ECG) alterations + lipothymic episodes, respectively. Paying close attention to the coexistence of LVH and ECG alterations in the proband has been helpful in directing genetic tests to exclude primary cardiomyopathy. Hence, identifying the genetic basis in the patient allowed for familial screening as well as a proper follow-up and therapeutic management of the affected members. A review of the PRKAG2 cardiomyopathy literature is provided alongside the case report.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Lara Tondi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sara Benedetti
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Maria Alessandra Schiavo
- Cardiology Unit IRCCS Azienda, Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna, 40138 Bologna, Italy
| | - Antonia Camporeale
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giandomenico Disabato
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Andrea Attanasio
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Gianluigi Guida
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Massimo Piepoli
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Pietro Spagnolo
- Unit of Radiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Department of Cardiology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
| |
Collapse
|
6
|
Chen MH, Deng ES, Yamada JM, Choudhury S, Scotellaro J, Kelley L, Isselbacher E, Lindsay ME, Walsh CA, Doan RN. Contributions of Germline and Somatic Mosaic Genetics to Thoracic Aortic Aneurysms in Nonsyndromic Individuals. J Am Heart Assoc 2024; 13:e033232. [PMID: 38958128 PMCID: PMC11292778 DOI: 10.1161/jaha.123.033232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is associated with significant morbidity and mortality. Although individuals with family histories of TAA often undergo clinical molecular genetic testing, adults with nonsyndromic TAA are not typically evaluated for genetic causes. We sought to understand the genetic contribution of both germline and somatic mosaic variants in a cohort of adult individuals with nonsyndromic TAA at a single center. METHODS AND RESULTS One hundred eighty-one consecutive patients <60 years who presented with nonsyndromic TAA at the Massachusetts General Hospital underwent deep (>500×) targeted sequencing across 114 candidate genes associated with TAA and its related functional pathways. Samples from 354 age- and sex-matched individuals without TAA were also sequenced, with a 2:1 matching. We found significant enrichments for germline (odds ratio [OR], 2.44, P=4.6×10-6 [95% CI, 1.67-3.58]) and also somatic mosaic variants (OR, 4.71, P=0.026 [95% CI, 1.20-18.43]) between individuals with and without TAA. Likely genetic causes were present in 24% with nonsyndromic TAA, of which 21% arose from germline variants and 3% from somatic mosaic alleles. The 3 most frequently mutated genes in our cohort were FLNA (encoding Filamin A), NOTCH3 (encoding Notch receptor 3), and FBN1 (encoding Fibrillin-1). There was increased frequency of both missense and loss of function variants in TAA individuals. CONCLUSIONS Likely contributory dominant acting genetic variants were found in almost one quarter of nonsyndromic adults with TAA. Our findings suggest a more extensive genetic architecture to TAA than expected and that genetic testing may improve the care and clinical management of adults with nonsyndromic TAA.
Collapse
Affiliation(s)
- Ming Hui Chen
- Department of CardiologyBoston Children’s HospitalBostonMAUSA
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Ellen S. Deng
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Jessica M. Yamada
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Sangita Choudhury
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Lily Kelley
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
| | - Eric Isselbacher
- Division of Cardiology, Massachusetts General Hospital Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Mark E. Lindsay
- Division of Cardiology, Massachusetts General Hospital Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
- Department of NeurologyHarvard Medical SchoolBostonMAUSA
- Department of PediatricsHoward Hughes Medical Institute, Boston Children’s HospitalBostonMAUSA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMAUSA
- Department of PediatricsHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
7
|
Hayesmoore JB, Bhuiyan ZA, Coviello DA, du Sart D, Edwards M, Iascone M, Morris-Rosendahl DJ, Sheils K, van Slegtenhorst M, Thomson KL. EMQN: Recommendations for genetic testing in inherited cardiomyopathies and arrhythmias. Eur J Hum Genet 2023; 31:1003-1009. [PMID: 37443332 PMCID: PMC10474043 DOI: 10.1038/s41431-023-01421-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Inherited cardiomyopathies and arrhythmias (ICAs) are a prevalent and clinically heterogeneous group of genetic disorders that are associated with increased risk of sudden cardiac death and heart failure. Making a genetic diagnosis can inform the management of patients and their at-risk relatives and, as such, molecular genetic testing is now considered an integral component of the clinical care pathway. However, ICAs are characterised by high genetic and allelic heterogeneity, incomplete / age-related penetrance, and variable expressivity. Therefore, despite our improved understanding of the genetic basis of these conditions, and significant technological advances over the past two decades, identifying and recognising the causative genotype remains challenging. As clinical genetic testing for ICAs becomes more widely available, it is increasingly important for clinical laboratories to consolidate existing knowledge and experience to inform and improve future practice. These recommendations have been compiled to help clinical laboratories navigate the challenges of ICAs and thereby facilitate best practice and consistency in genetic test provision for this group of disorders. General recommendations on internal and external quality control, referral, analysis, result interpretation, and reporting are described. Also included are appendices that provide specific information pertinent to genetic testing for hypertrophic, dilated, and arrhythmogenic right ventricular cardiomyopathies, long QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia.
Collapse
Affiliation(s)
- Jesse B Hayesmoore
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Zahurul A Bhuiyan
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Desirée du Sart
- Biological Sciences and Genomics, Monash University, Melbourne, VIC, Australia
| | - Matthew Edwards
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | | | - Kate L Thomson
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
8
|
Chumakova OS, Baulina NM. Advanced searching for hypertrophic cardiomyopathy heritability in real practice tomorrow. Front Cardiovasc Med 2023; 10:1236539. [PMID: 37583586 PMCID: PMC10425241 DOI: 10.3389/fcvm.2023.1236539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease associated with morbidity and mortality at any age. As studies in recent decades have shown, the genetic architecture of HCM is quite complex both in the entire population and in each patient. In the rapidly advancing era of gene therapy, we have to provide a detailed molecular diagnosis to our patients to give them the chance for better and more personalized treatment. In addition to emphasizing the importance of genetic testing in routine practice, this review aims to discuss the possibility to go a step further and create an expanded genetic panel that contains not only variants in core genes but also new candidate genes, including those located in deep intron regions, as well as structural variations. It also highlights the benefits of calculating polygenic risk scores based on a combination of rare and common genetic variants for each patient and of using non-genetic HCM markers, such as microRNAs that can enhance stratification of risk for HCM in unselected populations alongside rare genetic variants and clinical factors. While this review is focusing on HCM, the discussed issues are relevant to other cardiomyopathies.
Collapse
Affiliation(s)
- Olga S. Chumakova
- Laboratory of Functional Genomics of Cardiovascular Diseases, National Medical Research Centre of Cardiology Named After E.I. Chazov, Moscow, Russia
| | | |
Collapse
|
9
|
Zhang L, Shen M, Shu X, Zhou J, Ding J, Zhong C, Pan B, Wang B, Zhang C, Guo W. Intronic position +9 and -9 are potentially splicing sites boundary from intronic variants analysis of whole exome sequencing data. BMC Med Genomics 2023; 16:146. [PMID: 37365551 DOI: 10.1186/s12920-023-01542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Whole exome sequencing (WES) can also detect some intronic variants, which may affect splicing and gene expression, but how to use these intronic variants, and the characteristics about them has not been reported. This study aims to reveal the characteristics of intronic variant in WES data, to further improve the clinical diagnostic value of WES. A total of 269 WES data was analyzed, 688,778 raw variants were called, among these 367,469 intronic variants were in intronic regions flanking exons which was upstream/downstream region of the exon (default is 200 bps). Contrary to expectation, the number of intronic variants with quality control (QC) passed was the lowest at the +2 and -2 positions but not at the +1 and -1 positions. The plausible explanation was that the former had the worst effect on trans-splicing, whereas the latter did not completely abolish splicing. And surprisingly, the number of intronic variants that passed QC was the highest at the +9 and -9 positions, indicating a potential splicing site boundary. The proportion of variants which could not pass QC filtering (false variants) in the intronic regions flanking exons generally accord with "S"-shaped curve. At +5 and -5 positions, the number of variants predicted damaging by software was most. This was also the position at which many pathogenic variants had been reported in recent years. Our study revealed the characteristics of intronic variant in WES data for the first time, we found the +9 and -9 positions might be a potentially splicing sites boundary and +5 and -5 positions were potentially important sites affecting splicing or gene expression, the +2 and -2 positions seem more important splicing site than +1 and -1 positions, and we found variants in intronic regions flanking exons over ± 50 bps may be unreliable. This result can help researchers find more useful variants and demonstrate that WES data is valuable for intronic variants analysis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minna Shen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, State Key Laboratory, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Htet M, Lei S, Bajpayi S, Zoitou A, Chamakioti M, Tampakakis E. The role of noncoding genetic variants in cardiomyopathy. Front Cardiovasc Med 2023; 10:1116925. [PMID: 37283586 PMCID: PMC10239966 DOI: 10.3389/fcvm.2023.1116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Cardiomyopathies remain one of the leading causes of morbidity and mortality worldwide. Environmental risk factors and genetic predisposition account for most cardiomyopathy cases. As with all complex diseases, there are significant challenges in the interpretation of the molecular mechanisms underlying cardiomyopathy-associated genetic variants. Given the technical improvements and reduced costs of DNA sequence technologies, an increasing number of patients are now undergoing genetic testing, resulting in a continuously expanding list of novel mutations. However, many patients carry noncoding genetic variants, and although emerging evidence supports their contribution to cardiac disease, their role in cardiomyopathies remains largely understudied. In this review, we summarize published studies reporting on the association of different types of noncoding variants with various types of cardiomyopathies. We focus on variants within transcriptional enhancers, promoters, intronic sites, and untranslated regions that are likely associated with cardiac disease. Given the broad nature of this topic, we provide an overview of studies that are relatively recent and have sufficient evidence to support a significant degree of causality. We believe that more research with additional validation of noncoding genetic variants will provide further mechanistic insights on the development of cardiac disease, and noncoding variants will be increasingly incorporated in future genetic screening tests.
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | | | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Salakhov RR, Golubenko MV, Valiakhmetov NR, Pavlyukova EN, Zarubin AA, Babushkina NP, Kucher AN, Sleptcov AA, Nazarenko MS. Application of Long-Read Nanopore Sequencing to the Search for Mutations in Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:15845. [PMID: 36555486 PMCID: PMC9779642 DOI: 10.3390/ijms232415845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence suggests that both coding and non-coding regions of sarcomeric protein genes can contribute to hypertrophic cardiomyopathy (HCM). Here, we introduce an experimental workflow (tested on four patients) for complete sequencing of the most common HCM genes (MYBPC3, MYH7, TPM1, TNNT2, and TNNI3) via long-range PCR, Oxford Nanopore Technology (ONT) sequencing, and bioinformatic analysis. We applied Illumina and Sanger sequencing to validate the results, FastQC, Qualimap, and MultiQC for quality evaluations, MiniMap2 to align data, Clair3 to call and phase variants, and Annovar's tools and CADD to assess pathogenicity of variants. We could not amplify the region encompassing exons 6-12 of MYBPC3. A higher sequencing error rate was observed with ONT (6.86-6.92%) than with Illumina technology (1.14-1.35%), mostly for small indels. Pathogenic variant p.Gln1233Ter and benign polymorphism p.Arg326Gln in MYBPC3 in a heterozygous state were found in one patient. We demonstrated the ability of ONT to phase single-nucleotide variants, enabling direct haplotype determination for genes TNNT2 and TPM1. These findings highlight the importance of long-range PCR efficiency, as well as lower accuracy of variant calling by ONT than by Illumina technology; these differences should be clarified prior to clinical application of the ONT method.
Collapse
Affiliation(s)
- Ramil R. Salakhov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Maria V. Golubenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Nail R. Valiakhmetov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Elena N. Pavlyukova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Aleksei A. Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Nadezhda P. Babushkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Aksana N. Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Aleksei A. Sleptcov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| | - Maria S. Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, 634050 Tomsk, Russia
| |
Collapse
|
14
|
Selvaraj MS, Li X, Li Z, Pampana A, Zhang DY, Park J, Aslibekyan S, Bis JC, Brody JA, Cade BE, Chuang LM, Chung RH, Curran JE, de las Fuentes L, de Vries PS, Duggirala R, Freedman BI, Graff M, Guo X, Heard-Costa N, Hidalgo B, Hwu CM, Irvin MR, Kelly TN, Kral BG, Lange L, Li X, Lisa M, Lubitz SA, Manichaikul AW, Michael P, Montasser ME, Morrison AC, Naseri T, O'Connell JR, Palmer ND, Peyser PA, Reupena MS, Smith JA, Sun X, Taylor KD, Tracy RP, Tsai MY, Wang Z, Wang Y, Bao W, Wilkins JT, Yanek LR, Zhao W, Arnett DK, Blangero J, Boerwinkle E, Bowden DW, Chen YDI, Correa A, Cupples LA, Dutcher SK, Ellinor PT, Fornage M, Gabriel S, Germer S, Gibbs R, He J, Kaplan RC, Kardia SLR, Kim R, Kooperberg C, Loos RJF, Viaud-Martinez KA, Mathias RA, McGarvey ST, Mitchell BD, Nickerson D, North KE, Psaty BM, Redline S, Reiner AP, Vasan RS, Rich SS, Willer C, Rotter JI, Rader DJ, Lin X, Peloso GM, Natarajan P. Whole genome sequence analysis of blood lipid levels in >66,000 individuals. Nat Commun 2022; 13:5995. [PMID: 36220816 PMCID: PMC9553944 DOI: 10.1038/s41467-022-33510-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/21/2022] [Indexed: 01/05/2023] Open
Abstract
Blood lipids are heritable modifiable causal factors for coronary artery disease. Despite well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-associated alleles using whole genome sequencing (WGS), partly due to limited sample sizes, ancestral diversity, and interpretation of clinical significance. Among 66,329 ancestrally diverse (56% non-European) participants, we associate 428M variants from deep-coverage WGS with lipid levels; ~400M variants were not assessed in prior lipids genetic analyses. We find multiple lipid-related genes strongly associated with blood lipids through analysis of common and rare coding variants. We discover several associated rare non-coding variants, largely at Mendelian lipid genes. Notably, we observe rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for blood lipids expanding the alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids.
Collapse
Affiliation(s)
- Margaret Sunitha Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Xihao Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Zilin Li
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Akhil Pampana
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - David Y Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ren-Hua Chung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, 350, Taiwan
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, 78520, USA
| | - Lisa de las Fuentes
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, 78520, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mariaelisa Graff
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nancy Heard-Costa
- Department of Neurology, Boston university School of Medicine, Boston, MA, USA
| | - Bertha Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- Tulane University Translational Science Institute, New Orleans, LA, 70112, USA
| | - Brian G Kral
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Martin Lisa
- Department of Medicine, George Washington University, Washingron, DC, USA
| | - Steven A Lubitz
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
| | - Ani W Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Preuss Michael
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - May E Montasser
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Samoa, USA
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minneosta, Minneapolis, MN, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Wei Bao
- Institute of Public Health, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - John T Wilkins
- Department of Medicine (Cardiology) and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, 78520, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yii-Der Ida Chen
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Adolfo Correa
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Susan K Dutcher
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 7722, USA
| | | | - Soren Germer
- New York Genome Center, New York, NY, 10013, USA
| | - Richard Gibbs
- Baylor College of Medicine Human Genome Sequencing Center, Houston, TX, 77030, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- Tulane University Translational Science Institute, New Orleans, LA, 70112, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan Kim
- Psomagen, Inc. (formerly Macrogen USA), Rockville, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- NNF Center for Basic Metabolic Research, University of Copenhagen, Cophenhagen, Denmark
| | | | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Stephen T McGarvey
- Department of Epidemiology, International Health Institute, Brown University, Providence, RI, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Deborah Nickerson
- University of Washington, Department of Genome Sciences, Seattle, WA, 98195, USA
| | - Kari E North
- Department of Epidemiology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Ramachandran S Vasan
- Sections of Preventive medicine and Epidemiology, Cardiovascular medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Cristen Willer
- University of Michigan, Internal Medicine, Ann Arbor, MI, 48109, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xihong Lin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Statistics, Harvard University, Cambridge, MA, 02138, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Song L, Chen J, Lo CYZ, Guo Q, Feng J, Zhao XM. Impaired type I interferon signaling activity implicated in the peripheral blood transcriptome of preclinical Alzheimer's disease. EBioMedicine 2022; 82:104175. [PMID: 35863293 PMCID: PMC9304603 DOI: 10.1016/j.ebiom.2022.104175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Subjective or objective subtle cognitive decline (SCD) is considered the preclinical manifestation of Alzheimer's disease (AD), which is a potentially crucial window for preventing or delaying the progression of the disease. Methods To explore the potential mechanism of disease progression and identify relevant biomarkers, we comprehensively assessed the peripheral blood transcriptomic alterations in SCD, covering lncRNA, mRNA, and miRNA. Findings Dysregulated protein-coding mRNA at both gene and isoform levels implicated impairment in the type I interferon signaling pathway in SCD. Specifically, this pathway was regulated by the transcription factor STAT1 and ncRNAs NRIR and has-miR-146a-5p. The miRNA-mRNA-lncRNA co-expression network revealed hub genes for the interferon module. Individuals with lower interferon signaling activity and lower expression of a hub gene STAT1 exhibited a higher conversion rate to mild cognitive impairment (MCI). Interpretation Our findings illustrated the down-regulation of interferon signaling activity would potentially increase the risk of disease progression and thus serve as a pre-disease biomarker. Funding This work was partly supported by National Key R&D Program of China (2020YFA0712403), National Natural Science Foundation of China (61932008), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), the 111 Project (No. B18015) of China, Greater Bay Area Institute of Precision Medicine (Guangzhou) (Grand No. IPM21C008), Natural Science Foundation of Shanghai (21ZR1403200), and Shanghai Center for Brain Science and Brain-Inspired Technology.
Collapse
|
16
|
Christian S, Cirino A, Hansen B, Harris S, Murad AM, Natoli JL, Malinowski J, Kelly MA. Diagnostic validity and clinical utility of genetic testing for hypertrophic cardiomyopathy: a systematic review and meta-analysis. Open Heart 2022; 9:openhrt-2021-001815. [PMID: 35387861 PMCID: PMC8987756 DOI: 10.1136/openhrt-2021-001815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study summarises the diagnostic validity and clinical utility of genetic testing for patients with hypertrophic cardiomyopathy (HCM) and their at-risk relatives. Methods A systematic search was performed in PubMed (MEDLINE), Embase, CINAHL and Cochrane Central Library databases from inception through 2 March 2020. Subgroup and sensitivity analyses were prespecified for individual sarcomere genes, presence/absence of pathogenic variants, paediatric and adult cohorts, family history, inclusion of probands, and variant classification method. Study quality was assessed using the Newcastle-Ottawa tool. Results A total of 132 articles met inclusion criteria. The detection rate based on pathogenic and likely pathogenic variants was significantly higher in paediatric cohorts compared with adults (56% vs 42%; p=0.01) and in adults with a family history compared with sporadic cases (59% vs 33%; p=0.005). When studies applied current, improved, variant interpretation standards, the adult detection rate significantly decreased from 42% to 33% (p=0.0001) because less variants met criteria to be considered pathogenic. The mean difference in age-of-onset in adults was significantly earlier for genotype-positive versus genotype-negative cohorts (8.3 years; p<0.0001), MYH7 versus MYBPC3 cohorts (8.2 years; p<0.0001) and individuals with multiple versus single variants (7.0 years; p<0.0002). Overall, disease penetrance in adult cohorts was 62%, but differed significantly depending on if probands were included or excluded (73% vs 55%; p=0.003). Conclusions This systematic review and meta-analysis is the first, to our knowledge, to collectively quantify historical understandings of detection rate, genotype-phenotype associations and disease penetrance for HCM, while providing the answers to important routine clinical questions and highlighting key areas for future study.
Collapse
Affiliation(s)
- Susan Christian
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Allison Cirino
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,MGH Institute of Health Professions, Boston, Massachusetts, USA
| | - Brittany Hansen
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stephanie Harris
- Cardiology Division, Cardiovascular Genetics Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea M Murad
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Hospitals and Health Centers, Ann Arbor, Michigan, USA
| | - Jaime L Natoli
- Kaiser Permanente, Southern California Permanente Medical Group, Pasadena, California, USA
| | | | - Melissa A Kelly
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| |
Collapse
|
17
|
Albader N, Zou M, BinEssa HA, Abdi S, Al-Enezi AF, Meyer BF, Alzahrani AS, Shi Y. Insights of Noncanonical Splice-site Variants on RNA Splicing in Patients With Congenital Hypothyroidism. J Clin Endocrinol Metab 2022; 107:e1263-e1276. [PMID: 34632506 DOI: 10.1210/clinem/dgab737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Congenital hypothyroidism (CH) is caused by mutations in the genes for thyroid hormone synthesis. In our previous investigation of CH patients, approximately 53% of patients had mutations in either coding exons or canonical splice sites of causative genes. Noncanonical splice-site variants in the intron were detected but their pathogenic significance was not known. OBJECTIVE This work aims to evaluate noncanonical splice-site variants on pre-messenger RNA (pre-mRNA) splicing of CH-causing genes. METHODS Next-generation sequencing data of 55 CH cases in 47 families were analyzed to identify rare intron variants. The effects of variants on pre-mRNA splicing were investigated by minigene RNA-splicing assay. RESULTS Four intron variants were found in 3 patients: solute carrier family 26 member 4 (SLC26A4) c.1544+9C>T and c.1707+94C>T in one patient, and solute carrier family 5 member 5 (SLC5A5) c.970-48G>C and c.1652-97A>C in 2 other patients. The c.1707+94C>T and c.970-48G>C caused exons 15 and 16 skipping, and exon 8 skipping, respectively. The remaining variants had no effect on RNA splicing. Furthermore, we analyzed 28 previously reported noncanonical splice-site variants (4 in TG and 24 in SLC26A4). Among them, 15 variants (~ 54%) resulted in aberrant splicing and 13 variants had no effect on RNA splicing. These data were compared with 3 variant-prediction programs (FATHMM-XF, FATHMM-MKL, and CADD). Among 32 variants, FATHMM-XF, FATHMM-MKL, and CADD correctly predicted 20 (63%), 17 (53%), and 26 (81%) variants, respectively. CONCLUSION Two novel deep intron mutations have been identified in SLC26A4 and SLC5A5, bringing the total number of solved families with disease-causing mutations to approximately 45% in our cohort. Approximately 46% (13/28) of reported noncanonical splice-site mutations do not disrupt pre-mRNA splicing. CADD provides highest prediction accuracy of noncanonical splice-site variants.
Collapse
Affiliation(s)
- Najla Albader
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Minjing Zou
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Huda A BinEssa
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Anwar F Al-Enezi
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Brian F Meyer
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yufei Shi
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
18
|
Post-mortem genetic investigation in sudden cardiac death victims: complete exon sequencing of forty genes using next-generation sequencing. Int J Legal Med 2022; 136:483-491. [PMID: 34984526 DOI: 10.1007/s00414-021-02765-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
Sudden cardiac death (SCD) in young people is predominantly caused by genetic causes as cardiomyopathies. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disease and is responsible for the major proportion of SCD in the young. The purpose of this study was to identify the genetic variants present in young SCD victims with HCM characteristics. From the Portuguese records of autopsies performed at the National Institute of Legal Medicine and Forensic Sciences, North Delegation, 16 young (16-50 years) SCD victims whose death was suspected to be a manifestation of HCM were selected. Using next-generation sequencing, the coding regions of 40 genes associated with HCM, candidates, or strongly related to HCM-phenocopies were investigated. The victims included in this study were all males, with a mean age of 33.4 ± 11.7 years, left ventricle mean thickness of 21.5 ± 6.28 mm, and the majority of deaths occurred during sleep (36%). A pathogenic or likely pathogenic variant was identified in six out of 16 (37.5%) victims, in the most common HCM genes (MYBPC3 and MYH7). Our results indicate that molecular autopsy of SCD victims contributes to a more precise identification of a cause of death, and this can be used in the prevention of SCD cases through family screening of first relatives who may carry the same pathogenic variant.
Collapse
|
19
|
Mori AA, Castro LRD, Bortolin RH, Bastos GM, Oliveira VFD, Ferreira GM, Hirata TDC, Fajardo CM, Sampaio MF, Moreira DAR, Pachón-Mateos JC, Correia EDB, Sousa AGDMR, Brión M, Carracedo A, Hirata RDC, Hirata MH. Association of variants in MYH7, MYBPC3 and TNNT2 with sudden cardiac death-related risk factors in Brazilian patients with hypertrophic cardiomyopathy. Forensic Sci Int Genet 2021; 52:102478. [PMID: 33588347 DOI: 10.1016/j.fsigen.2021.102478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) and is one of the major causes of sudden cardiac death (SCD). An exon-targeted gene sequencing strategy was used to investigate the association of functional variants in sarcomeric genes (MYBPC3, MYH7 and TNNT2) with severe LVH and other SCD-related risk factors in Brazilian HCM patients. Clinical data of 55 HCM patients attending a Cardiology Hospital (Sao Paulo city, Brazil) were recorded. Severe LVH, aborted SCD, family history of SCD, syncope, non-sustained ventricular tachycardia and abnormal blood pressure in response to exercise were evaluated as SCD risk factors. Blood samples were obtained for genomic DNA extraction and the exons and untranslated regions of the MYH7, MYBPC3 and TNNT2 were sequenced using Nextera® and MiSEq® reagents. Variants were identified and annotated using in silico tools, and further classified as pathogenic or benign according to the American College of Medical Genetics and Genomics guidelines. Variants with functional effects were identified in MYBPC3 (n = 9), MYH7 (n = 6) and TNNT2 (n = 4). The benign variants MYBPC3 p.Val158Met and TNNT2 p.Lys263Arg were associated with severe LVH (p < 0.05), and the MYH7 p.Val320Met (pathogenic) was associated with family history of SCD (p = 0.037). Increased risk for severe LVH was found in carriers of MYBPC3 Met158 (c.472 A allele, OR = 13.5, 95% CI = 1.80-101.12, p = 0.011) or combined variants (MYBPC3, MYH7 and TNNT2: OR = 12.39, 95% CI = 2.14-60.39, p = 0.004). Carriers of TNNT2 p.Lys263Arg and combined variants had higher values of septum thickness than non-carriers (p < 0.05). Molecular modeling analysis showed that MYBPC3 158Met reduces the interaction of cardiac myosin-binding protein C (cMyBP-C) RASK domain (amino acids Arg215-Ala216-Ser217-Lys218) with tropomyosin. In conclusion, the variants MYBPC3 p.Val158Met, TNNT2 p.Lys263Arg and MYH7 p.Val320Met individually or combined contribute to the risk of sudden cardiac death and other outcomes of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Augusto Akira Mori
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Gisele Medeiros Bastos
- Institute Dante Pazzanese of Cardiology, Sao Paulo, Brazil; Real e Benemerita Associação Portuguesa de Beneficiencia, Sao Paulo, Brazil
| | | | - Glaucio Monteiro Ferreira
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Institute Dante Pazzanese of Cardiology, Sao Paulo, Brazil
| | | | | | - Marcelo Ferraz Sampaio
- Institute Dante Pazzanese of Cardiology, Sao Paulo, Brazil; Real e Benemerita Associação Portuguesa de Beneficiencia, Sao Paulo, Brazil
| | | | | | | | | | - Maria Brión
- Genetica Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Grupo de Medicina Genômica, Universidad de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Genômica, Universidad de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Centro Nacional de Genotipado-CeGen-USC-PRB3-ISCIII, Santiago de Compostela, Spain
| | | | | |
Collapse
|
20
|
Li Y, Salo-Mullen E, Varghese A, Trottier M, Stadler ZK, Zhang L. Insertion of an Alu-like element in MLH1 intron 7 as a novel cause of Lynch syndrome. Mol Genet Genomic Med 2020; 8:e1523. [PMID: 33058565 PMCID: PMC7767547 DOI: 10.1002/mgg3.1523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Lynch Syndrome (LS) is caused by germline mutations in the DNA mismatch repair (MMR) genes with mutations in MLH1 accounting for ~40% of LS‐related alterations. Methods MSK‐IMPACT analysis was performed on peripheral blood from a patient with early‐ onset colorectal cancer. Subsequently PCR and sequencing was performed to characterize the insertion. Immunohistochemistry for MMR genes and MLH1 promoter methylation were analyzed on patient's tumor. Results MSK‐IMPACT germline testing revealed an insertion into c.588+8_588+9 of MLH1 intron 7. The insertion was further characterized as an AluSx‐like element with ~115 bp in length. Functional studies demonstrated that the AluSx‐like element led to complete disruption of mRNA splicing and probably resulted in transcriptional termination at the poly (A) region of the AluSx‐like insertion. Conclusions The insertion of a truncated AluSx like element into MLH1 intron 7 results in aberrant splicing and transcription, thereby causing Lynch syndrome. This study confirms that retrotransposon insertions may be an important mechanism for cancer predisposition.
Collapse
Affiliation(s)
- Yirong Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Magan Trottier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
21
|
Oldt RF, Bussey KJ, Settles ML, Fass JN, Roberts JA, Reader JR, Komandoor S, Abrich VA, Kanthaswamy S. MYBPC3 Haplotype Linked to Hypertrophic Cardiomyopathy in Rhesus Macaques ( Macaca mulatta). Comp Med 2020; 70:358-367. [PMID: 32753092 PMCID: PMC7574221 DOI: 10.30802/aalas-cm-19-000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 11/05/2022]
Abstract
In humans, abnormal thickening of the left ventricle of the heart clinically defines hypertrophic cardiomyopathy (HCM), a common inherited cardiovascular disorder that can precede a sudden cardiac death event. The wide range of clinical presentations in HCM obscures genetic variants that may influence an individual's susceptibility to sudden cardiac death. Although exon sequencing of major sarcomere genes can be used to detect high-impact causal mutations, this strategy is successful in only half of patient cases. The incidence of left ventricular hypertrophy (LVH) in a managed research colony of rhesus macaques provides an excellent comparative model in which to explore the genomic etiology of severe HCM and sudden cardiac death. Because no rhesus HCM-associated mutations have been reported, we used a next-generation genotyping assay that targets 7 sarcomeric rhesus genes within 63 genomic sites that are orthologous to human genomic regions known to harbor HCM disease variants. Amplicon sequencing was performed on 52 macaques with confirmed LVH and 42 unrelated, unaffected animals representing both the Indian and Chinese rhesus macaque subspecies. Bias-reduced logistic regression uncovered a risk haplotype in the rhesus MYBPC3 gene, which is frequently disrupted in both human and feline HCM; this haplotype implicates an intronic variant strongly associated with disease in either homozygous or carrier form. Our results highlight that leveraging evolutionary genomic data provides a unique, practical strategy for minimizing population bias in complex disease studies.
Collapse
Affiliation(s)
- Robert F Oldt
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona;,
| | - Kimberly J Bussey
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; BEYOND Center for Fundamental Concepts in Science, Arizona State University at the West Campus, Glendale, Arizona
| | - Matthew L Settles
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Joseph N Fass
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Jeffrey A Roberts
- California National Primate Research Center, University of California, Davis, California
| | - J Rachel Reader
- California National Primate Research Center, University of California, Davis, California
| | | | - Victor A Abrich
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona
| | - Sreetharan Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona; California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
22
|
Vishnubotla DS, Shek AP, Madireddi S. Pooled genetic analysis identifies variants that confer enhanced susceptibility to PCOS in Indian ethnicity. Gene 2020; 752:144760. [DOI: 10.1016/j.gene.2020.144760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
|
23
|
Hawley MH, Almontashiri N, Biesecker LG, Berger N, Chung WK, Garcia J, Grebe TA, Kelly MA, Lebo MS, Macaya D, Mei H, Platt J, Richard G, Ryan A, Thomson KL, Vatta M, Walsh R, Ware JS, Wheeler M, Zouk H, Mason-Suares H, Funke B. An assessment of the role of vinculin loss of function variants in inherited cardiomyopathy. Hum Mutat 2020; 41:1577-1587. [PMID: 32516855 DOI: 10.1002/humu.24061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 11/05/2022]
Abstract
The ACMG/AMP variant classification framework was intended for highly penetrant Mendelian conditions. While it is appreciated that clinically relevant variants exhibit a wide spectrum of penetrance, accurately assessing and expressing the pathogenicity of variants with lower penetrance can be challenging. The vinculin (VCL) gene illustrates these challenges. Model organism data provide evidence that loss of function of VCL may play a role in cardiomyopathy and aggregate case-control studies suggest low penetrance. VCL loss of function variants, however, are rarely identified in affected probands and therefore there is a paucity of family studies clarifying the clinical significance of individual variants. This study, which aggregated data from >18,000 individuals who underwent gene panel or exome testing for inherited cardiomyopathies, identified 32 probands with VCL loss-of-function variants and confirmed enrichment in probands with dilated cardiomyopathy (odds ratio [OR] = 9.01; confidence interval [CI] = 4.93-16.45). Our data revealed that the majority of these individuals (89.5%) had pediatric onset of disease. Family studies demonstrated that heterozygous loss of function of VCL alone is insufficient to cause cardiomyopathy but that these variants do contribute to disease risk. In conclusion, VCL loss-of-function variants should be reported in a diagnostic setting but need to be clearly distinguished as having lower penetrance.
Collapse
Affiliation(s)
- Megan H Hawley
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Naif Almontashiri
- Faculty of Applied Medical Sciences, Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalie Berger
- Department of Maternal Fetal Medicine, SSM Health St Mary's Hospital, Madison, Wisconsin
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, New York
| | - John Garcia
- Invitae Corporation, San Francisco, California
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona
| | - Melissa A Kelly
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | - Matthew S Lebo
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | | | - Hui Mei
- GeneDx, Inc, Gaithersburg, Maryland
| | - Julia Platt
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Ashley Ryan
- Division of Genetics and Metabolism, Department of Child Health, Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherland
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, London, UK.,Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals NHS Foundation Trust, Harefield, UK
| | - Matthew Wheeler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Hana Zouk
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Heather Mason-Suares
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| | - Birgit Funke
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, Cambridge, Massachusetts
| |
Collapse
|
24
|
Toste A, Perrot A, Özcelik C, Cardim N. Identification of a novel titin-cap/telethonin mutation in a Portuguese family with hypertrophic cardiomyopathy. Rev Port Cardiol 2020; 39:317-327. [PMID: 32565061 DOI: 10.1016/j.repc.2019.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Hypertrophic cardiomyopathy (HCM) is a genetically and phenotypically heterogeneous disease; there is still a large proportion of patients with no identified disease-causing mutation. Although the majority of mutations are found in the MYH7 and MYBPC3 genes, mutations in Z-disk-associated proteins have also been linked to HCM. METHODS We assessed a small family with HCM based on family history, physical examination, 12-lead ECG, echocardiogram and magnetic resonance imaging. After exclusion of mutations in eleven HCM disease genes, we performed direct sequencing of the TCAP gene encoding the Z-disk protein titin-cap (also known as telethonin). RESULTS We present a novel TCAP mutation in a small family affected by HCM. The identified p.C57W mutation showed a very low population frequency, as well as high conservation across species. All of the bioinformatic prediction tools used considered this mutation to be damaging/deleterious. Family members were screened for this new mutation and a co-segregation pattern was detected. Both affected members of this family presented with late-onset HCM, moderate asymmetric left ventricular hypertrophy, atrial fibrillation and heart failure with preserved ejection fraction and low risk of sudden cardiac death. CONCLUSIONS We present evidence supporting the classification of the TCAP p.C57W mutation, encoding the Z-disk protein titin-cap/telethonin as a new likely pathogenic variant of hypertrophic cardiomyopathy, with a specific phenotype in the family under analysis.
Collapse
Affiliation(s)
- Alexandra Toste
- Hospital da Luz - Inherited Cardiovascular Diseases & Hypertrophic Cardiomyopathy Center, Nova Medical School, Lisbon, Portugal.
| | - Andreas Perrot
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Cemil Özcelik
- Helios Klinikum Emil von Behring GmbH, Department of Internal Medicine - Cardiology, Berlin, Germany
| | - Nuno Cardim
- Hospital da Luz - Inherited Cardiovascular Diseases & Hypertrophic Cardiomyopathy Center, Nova Medical School, Lisbon, Portugal
| |
Collapse
|
25
|
Toste A, Perrot A, Özcelik C, Cardim N. Identification of a novel titin-cap/telethonin mutation in a Portuguese family with hypertrophic cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2019.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Whole-genome DNA sequencing: The key to detecting a sarcomeric mutation in a 'false genotype-negative' family with hypertrophic cardiomyopathy. Rev Port Cardiol 2020; 39:227.e1-227.e9. [PMID: 32451163 DOI: 10.1016/j.repc.2019.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/10/2019] [Indexed: 11/23/2022] Open
Abstract
The authors report the clinical and genetic investigation of a family with hypertrophic cardiomyopathy (HCM). The individuals described are three affected first-degree relatives (father, daughter and son), one affected niece and unaffected nephew and niece. Those affected all share a very similar phenotype consisting of asymmetric HCM, with hypertrophy particularly affecting the septum and the anterior wall, and similar electrocardiographic features, including a short PR interval. Case 1 (proband) presented with obstructive HCM and had undergone myectomy and mitral valve replacement. Case 2 (oldest offspring of Case 1) had non-obstructive HCM with exertional angina and NYHA II heart failure (HF) symptoms; she developed non-sustained ventricular tachycardia during follow-up and received a single-chamber ICD for primary prevention of sudden cardiac death. Case 3 (son of case 1) presented with asymptomatic non-obstructive HCM and developed NYHA II HF symptoms during follow-up. Case 4 had non-obstructive HCM, mainly with NYHA II HF symptoms. Testing of the proband for sarcomeric mutations and phenocopies was initially negative. After eight years of clinical follow-up, the suspicion of an undiscovered pathogenic gene mutation shared among the members of this family led us to enroll the proband in a whole-genome sequencing research project, which revealed a heterozygous pathogenic intronic MYBPC3 variant (c.1227-13G>A [rs397515893]), cosegregating with the phenotype.
Collapse
|
27
|
Gomes AC, Barbosa PS, Coutinho A, Cruz I, Carmo-Fonseca M, Lopes LR. Whole-genome DNA sequencing: The key to detecting a sarcomeric mutation in a ‘false genotype-negative’ family with hypertrophic cardiomyopathy. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2019.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
Manolio TA, Rowley R, Williams MS, Roden D, Ginsburg GS, Bult C, Chisholm RL, Deverka PA, McLeod HL, Mensah GA, Relling MV, Rodriguez LL, Tamburro C, Green ED. Opportunities, resources, and techniques for implementing genomics in clinical care. Lancet 2019; 394:511-520. [PMID: 31395439 PMCID: PMC6699751 DOI: 10.1016/s0140-6736(19)31140-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/09/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022]
Abstract
Advances in technologies for assessing genomic variation and an increasing understanding of the effects of genomic variants on health and disease are driving the transition of genomics from the research laboratory into clinical care. Genomic medicine, or the use of an individual's genomic information as part of their clinical care, is increasingly gaining acceptance in routine practice, including in assessing disease risk in individuals and their families, diagnosing rare and undiagnosed diseases, and improving drug safety and efficacy. We describe the major types and measurement tools of genomic variation that are currently of clinical importance, review approaches to interpreting genomic sequence variants, identify publicly available tools and resources for genomic test interpretation, and discuss several key barriers in using genomic information in routine clinical practice.
Collapse
Affiliation(s)
- Teri A Manolio
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Robb Rowley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Dan Roden
- Department of Medicine, Department of Pharmacology, and Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Geoffrey S Ginsburg
- Duke Center for Applied Genomic and Precision Medicine, Duke University, Durham, NC, USA
| | - Carol Bult
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Rex L Chisholm
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL, USA
| | - George A Mensah
- Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary V Relling
- Pharmaceutical Sciences Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura Lyman Rodriguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cecelia Tamburro
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric D Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Favia M, Fitak R, Guerra L, Pierri CL, Faye B, Oulmouden A, Burger PA, Ciani E. Beyond the Big Five: Investigating Myostatin Structure, Polymorphism and Expression in Camelus dromedarius. Front Genet 2019; 10:502. [PMID: 31231423 PMCID: PMC6566074 DOI: 10.3389/fgene.2019.00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Myostatin, a negative regulator of skeletal muscle mass in animals, has been shown to play a role in determining muscular hypertrophy in several livestock species, and a high degree of polymorphism has been previously reported for this gene in humans and cattle. In this study, we provide a characterization of the myostatin gene in the dromedary (Camelus dromedarius) at the genomic, transcript and protein level. The gene was found to share high structural and sequence similarity with other mammals, notably Old World camelids. 3D modeling highlighted several non-conservative SNP variants compared to the bovine, as well as putative functional variants involved in the stability of the myostatin dimer. NGS data for nine dromedaries from various countries revealed 66 novel SNPs, all of them falling either upstream or downstream the coding region. The analysis also confirmed the presence of three previously described SNPs in intron 1, predicted here to alter both splicing and transcription factor binding sites (TFBS), thus possibly impacting myostatin processing and/or regulation. Several putative TFBS were identified in the myostatin upstream region, some of them belonging to the myogenic regulatory factor family. Patterns of SNP distribution across countries, as suggested by Bayesian clustering of the nine dromedaries using the 69 SNPs, pointed to weak geographic differentiation, in line with known recurrent gene flow at ancient trading centers along caravan routes. Myostatin expression was investigated in a set of 8 skeletal muscles, both at transcript and protein level, via Digital Droplet PCR and Western Blotting, respectively. No significant differences were observed at the transcript level, while, at the protein level, the only significant differences concerned the promyostatin dimer (75 kDa), in four pair-wise comparisons, all involving the tensor fasciae latae muscle. Beside the mentioned band at 75 kDa, additional bands were observed at around 40 and 25 kDa, corresponding to the promyostatin monomer and the active C-terminal myostatin dimer, respectively. Their weaker intensity suggests that the unprocessed myostatin dimers could act as important reservoirs of slowly available myostatin forms. Under this assumption, the sequential cleavage steps may contribute additional layers of control within an already complex regulatory framework.
Collapse
Affiliation(s)
- Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Robert Fitak
- Research Institute of Wildlife Ecology, Vetmeduni, Vienna, Austria.,Department of Biology, Duke University, Durham, NC, United States
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | | | - Ahmad Oulmouden
- Département Sciences du Vivant, Université de Limoges, Limoges, France
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
30
|
Abstract
Genetic testing has an increasingly important role in the diagnosis and management of cardiac disorders, where it confirms the diagnosis, aids prognostication and risk stratification and guides treatment. A genetic diagnosis in the proband also enables clarification of the risk for family members by cascade testing. Genetics in cardiac disorders is complex where epigenetic and environmental factors might come into interplay. Incomplete penetrance and variable expressivity is also common. Genetic results in cardiac conditions are mostly probabilistic and should be interpreted with all available clinical information. With this complexity in cardiac genetics, testing is only indicated in patients with a strong suspicion of an inheritable cardiac disorder after a full clinical evaluation. In this review we discuss the genetics underlying the major cardiomyopathies and channelopathies, and the practical aspects of diagnosing these conditions in the laboratory.
Collapse
|
31
|
Mak TSH, Lee YK, Tang CS, Hai JSH, Ran X, Sham PC, Tse HF. Coverage and diagnostic yield of Whole Exome Sequencing for the Evaluation of Cases with Dilated and Hypertrophic Cardiomyopathy. Sci Rep 2018; 8:10846. [PMID: 30022097 PMCID: PMC6052112 DOI: 10.1038/s41598-018-29263-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Targeted next generation sequencing of gene panels has become a popular tool for the genetic diagnosis of hypertrophic (HCM) and dilated cardiomyopathy (DCM). However, it is uncertain whether the use of Whole Exome Sequencing (WES) represents a more effective approach for diagnosis of cases with HCM and DCM. In this study, we performed indirect comparisons of the coverage and diagnostic yield of WES on genes and variants related to HCM and DCM versus 4 different commercial gene panels using 40 HCM and DCM patients, assuming perfect coverage in those panels. We identified 6 pathogenic or likely pathogenic among 14 HCM patients (diagnostic yield 43%). 3 pathogenic or likely pathogenic were found among the 26 DCM patients (diagnostic yield 12%). The coverage was similar to that of four existing commercial gene panels due to the clustering of mutation within MYH7, MYBPC3, TPM1, TNT2, and TTN. Moreover, the coverage of WES appeared inadequate for TNNI3 and PLN. We conclude that most of the pathogenic variants for HCM and DCM can be found within a small number of genes which were covered by all the commercial gene panels, and the application of WES did not increase diagnostic yield.
Collapse
Affiliation(s)
- Timothy Shin Heng Mak
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yee-Ki Lee
- Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - Clara S Tang
- Department of Surgery, the University of Hong Kong, Hong Kong, China
- The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, Hong Kong, China
| | - JoJo S H Hai
- Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - Xinru Ran
- Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - Pak-Chung Sham
- Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Psychiatry, the University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Hung-Fat Tse
- Department of Medicine, the University of Hong Kong, Hong Kong, China.
- Department of Medicine, Shenzhen Hong Kong University Hospital, Shenzhen, China.
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, the University of Hong Kong, Hong Kong, China.
- Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
32
|
Genome Sequencing in Hypertrophic Cardiomyopathy. J Am Coll Cardiol 2018; 72:430-433. [DOI: 10.1016/j.jacc.2018.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022]
|