1
|
Yadav P, Vats R, Bano A, Namdev R, Bhardwaj R. Ameliorative potential of stem cells from human exfoliated deciduous teeth (SHED) in preclinical studies: A meta-analysis. Regen Ther 2023; 24:117-134. [PMID: 37441223 PMCID: PMC10333108 DOI: 10.1016/j.reth.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
The preclinical and clinical role of mesenchymal stem cells from various adult sources is extensively investigated and established in regenerative medicine. However, the comprehensive exploration of the therapeutic potential of Stem cells from human exfoliated deciduous teeth (SHED) is inadequate. Therefore, we performed a systematic meta-analysis of preclinical animal model studies in several diseases to provide insight into SHED's efficacy and therapeutic potential. Two blinded and independent investigators searched the available online databases and scrutinized the included studies. Meta-analysis was performed to evaluate the pooled effect estimate of intervention of SHED by Review Manager 5.4.1. To investigate the therapeutic efficacy of SHED intervention, we also analyzed the test of heterogeneity (I2), overall effect (Z), sensitivity, and publication bias. Among the 2156 scrutinized studies, 40 were included and evaluated as per inclusion and exclusion criteria. The intervention of SHED and its derivatives in several diseases depicted statistically significant therapeutic effects in periodontitis, pulpitis, spinal cord injury, parkinson's disease, alzheimer's disease, focal cerebral ischemia, peripheral nerve injury, and retinal pigmentosa. SHED also improved levels of alanine aminotransferase, aspartate aminotransferase, and bilirubin in liver fibrosis . In autoimmune diseases also, values were significant. SHED also showed a statistically significant reduction of wound healing area and new bone formation in bone defects. The pooled effect estimates of included preclinical studies demonstrated a statistically significant therapeutic effect of SHED in numerous diseases. Based on our data, it is suggested that the potential of SHED may be implemented in clinical trials after conducting a few more preclinical studies.
Collapse
Affiliation(s)
- Pooja Yadav
- Stem Cell Biology Laboratory, Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, 124001, India
| | - Ravina Vats
- Stem Cell Biology Laboratory, Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, 124001, India
| | - Afsareen Bano
- Stem Cell Biology Laboratory, Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, 124001, India
| | - Ritu Namdev
- Dept. of Pediatric Dentistry, Post Graduate Institute of Dental Sciences, Rohtak, 124001, India
| | - Rashmi Bhardwaj
- Stem Cell Biology Laboratory, Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, 124001, India
| |
Collapse
|
2
|
Sonoda S, Yamaza T. Extracellular vesicles rejuvenate the microenvironmental modulating function of recipient tissue-specific mesenchymal stem cells in osteopenia treatment. Front Endocrinol (Lausanne) 2023; 14:1151429. [PMID: 37033255 PMCID: PMC10073676 DOI: 10.3389/fendo.2023.1151429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Systemic transplantation of mesenchymal stem cells (MSCs), such as bone marrow MSCs (BMMSCs) and stem cells from human exfoliated deciduous teeth (SHED), is considered a prominent treatment for osteopenia. However, the mechanism of action of the transplanted MSCs has been poorly elucidated. In the recipient target tissue, including bone and bone marrow, only a few donor MSCs can be detected, suggesting that the direct contribution of donor MSCs may not be expected for osteopenia treatment. Meanwhile, secretomes, especially contents within extracellular vesicles (EVs) released from donor MSCs (MSC-EVs), play key roles in the treatment of several diseases. In this context, administrated donor MSC-EVs may affect bone-forming function of recipient cells. In this review, we discuss how MSC-EVs contribute to bone recovery recipient tissue in osteopenia. We also summarize a novel mechanism of action of systemic administration of SHED-derived EVs (SHED-EVs) in osteopenia. We found that reduced telomerase activity in recipient BMMSCs caused the deficiency of microenvironmental modulating function, including bone and bone marrow-like niche formation and immunomodulation in estrogen-deficient osteopenia model mice. Systemic administration of SHED-EVs could exert therapeutic effects on bone reduction via recovering the telomerase activity, leading to the rejuvenation of the microenvironmental modulating function in recipient BMMSCs, as seen in systemic transplantation of SHED. RNase-preconditioned donor SHED-EVs diminished the therapeutic benefits of administrated SHED-EVs in the recipient osteopenia model mice. These facts suggest that MSC-EV therapy targets the recipient BMMSCs to rejuvenate the microenvironmental modulating function via telomerase activity, recovering bone density. We then introduce future challenges to develop the reproducible MSC-EV therapy in osteopenia.
Collapse
|
3
|
Sonoda S, Murata S, Yamaza H, Yuniartha R, Fujiyoshi J, Yoshimaru K, Matsuura T, Oda Y, Ohga S, Tajiri T, Taguchi T, Yamaza T. Targeting hepatic oxidative stress rescues bone loss in liver fibrosis. Mol Metab 2022; 66:101599. [PMID: 36113772 PMCID: PMC9515604 DOI: 10.1016/j.molmet.2022.101599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Chronic liver diseases often involve metabolic damage to the skeletal system. The underlying mechanism of bone loss in chronic liver diseases remains unclear, and appropriate therapeutic options, except for orthotopic liver transplantation, have proved insufficient for these patients. This study aimed to investigate the efficacy and mechanism of transplantation of immature hepatocyte-like cells converted from stem cells from human exfoliated deciduous teeth (SHED-Heps) in bone loss of chronic liver fibrosis. METHODS Mice that were chronically treated with CCl4 received SHED-Heps, and trabecular bone density, reactive oxygen species (ROS), and osteoclast activity were subsequently analyzed in vivo and in vitro. The effects of stanniocalcin 1 (STC1) knockdown in SHED-Heps were also evaluated in chronically CCl4 treated mice. RESULTS SHED-Hep transplantation (SHED-HepTx) improved trabecular bone loss and liver fibrosis in chronic CCl4-treated mice. SHED-HepTx reduced hepatic ROS production and interleukin 17 (Il-17) expression under chronic CCl4 damage. SHED-HepTx reduced the expression of both Il-17 and tumor necrosis factor receptor superfamily 11A (Tnfrsf11a) and ameliorated the imbalance of osteoclast and osteoblast activities in the bone marrow of CCl4-treated mice. Functional knockdown of STC1 in SHED-Heps attenuated the benefit of SHED-HepTx including anti-bone loss effect by suppressing osteoclast differentiation through TNFSF11-TNFRSF11A signaling and enhancing osteoblast differentiation in the bone marrow, as well as anti-fibrotic and anti-ROS effects in the CCl4-injured livers. CONCLUSIONS These findings suggest that targeting hepatic ROS provides a novel approach to treat bone loss resulting from chronic liver diseases.
Collapse
Affiliation(s)
- Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Sara Murata
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Ratih Yuniartha
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Junko Fujiyoshi
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tasturo Tajiri
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan,Fukuoka College of Health Sciences, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka, Japan,Corresponding author. Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. Fax: +81 92 642 6304.
| |
Collapse
|
4
|
Liu P, Mao Y, Xie Y, Wei J, Yao J. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential. Stem Cell Res Ther 2022; 13:356. [PMID: 35883127 PMCID: PMC9327386 DOI: 10.1186/s13287-022-03041-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cost-effective treatment strategies for liver fibrosis or cirrhosis are limited. Many clinical trials of stem cells for liver disease shown that stem cells might be a potential therapeutic approach. This review will summarize the published clinical trials of stem cells for the treatment of liver fibrosis/cirrhosis and provide the latest overview of various cell sources, cell doses, and delivery methods. We also describe the limitations and strengths of various stem cells in clinical applications. Furthermore, to clarify how stem cells play a therapeutic role in liver fibrosis, we discuss the molecular mechanisms of stem cells for treatment of liver fibrosis, including liver regeneration, immunoregulation, resistance to injury, myofibroblast repression, and extracellular matrix degradation. We provide a perspective for the prospects of future clinical implementation of stem cells.
Collapse
Affiliation(s)
- Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ye Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
5
|
Sonoda S, Yamaza H, Yoshimaru K, Taguchi T, Yamaza T. Protocol to generate xenogeneic-free/serum-free human dental pulp stem cells. STAR Protoc 2022; 3:101386. [PMID: 35592060 PMCID: PMC9112100 DOI: 10.1016/j.xpro.2022.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Human dental pulp stem cell (hDPSCs)-based therapy is a feasible option for regenerative medicine, such as dental pulp regeneration. Here, we show the steps needed to colony-forming unit-fibroblasts (CFU-F)-based isolation, expansion, and cryopreservation of hDPSCs for manufacturing clinical-grade products under a xenogeneic-free/serum-free condition. We also demonstrate the characterization of hDPSCs by CFU-F, flow cytometric, and in vitro multipotent assays. For complete details on the use and execution of this protocol, please refer to Iwanaka et al. (2020).
Collapse
Affiliation(s)
- Soichiro Sonoda
- Department of Molecular Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.,Fukuoka College of Health Sciences, Fukuoka 814-0193, Japan
| | - Takayoshi Yamaza
- Department of Molecular Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Sonoda S, Yamaza T. A New Target of Dental Pulp-Derived Stem Cell-Based Therapy on Recipient Bone Marrow Niche in Systemic Lupus Erythematosus. Int J Mol Sci 2022; 23:ijms23073479. [PMID: 35408840 PMCID: PMC8998830 DOI: 10.3390/ijms23073479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in mesenchymal stem/stromal cell (MSC) research have led us to consider the feasibility of MSC-based therapy for various diseases. Human dental pulp-derived MSCs (hDPSCs) have been identified in the dental pulp tissue of deciduous and permanent teeth, and they exhibit properties with self-renewal and in vitro multipotency. Interestingly, hDPSCs exhibit superior immunosuppressive functions toward immune cells, especially T lymphocytes, both in vitro and in vivo. Recently, hDPSCs have been shown to have potent immunomodulatory functions in treating systemic lupus erythematosus (SLE) in the SLE MRL/lpr mouse model. However, the mechanisms underlying the immunosuppressive efficacy of hDPSCs remain unknown. This review aims to introduce a new target of hDPSC-based therapy on the recipient niche function in SLE.
Collapse
|
7
|
Guo R, Yu J. Multipotency and Immunomodulatory Benefits of Stem Cells From Human Exfoliated Deciduous Teeth. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.805875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cells derived from human exfoliated deciduous teeth (SHEDs) are considered a promising cell population for cell-based or cell-free therapy and tissue engineering because of their proliferative, multipotency and immunomodulator. Based on recent studies, we find that SHEDs show the superior ability of nerve regeneration in addition to the potential of osteogenesis, odontogenesis owing to their derivation from the neural crest. Besides, much evidence suggests that SHEDs have a paracrine effect and can function as immunomodulatory regents attributing to their capability of secreting cytokines and extracellular vesicles. Here, we review the characteristic of SHEDs, their multipotency to regenerate damaged tissues, specifically concentrating on bones or nerves, following the paracrine activity or immunomodulatory benefits of their potential for clinical application in regenerative medicine.
Collapse
|
8
|
Sonoda S, Yoshimaru K, Yamaza H, Yuniartha R, Matsuura T, Yamauchi-Tomoda E, Murata S, Nishida K, Oda Y, Ohga S, Tajiri T, Taguchi T, Yamaza T. Biliary atresia-specific deciduous pulp stem cells feature biliary deficiency. Stem Cell Res Ther 2021; 12:582. [PMID: 34809720 PMCID: PMC8607730 DOI: 10.1186/s13287-021-02652-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Biliary atresia (BA) is a severe hepatobiliary disease in infants that ultimately results in hepatic failure; however, its pathological mechanism is poorly elucidated. Current surgical options, including Kasai hepatoportoenterostomy and orthotopic liver organ transplantations, are palliative; thus, innovation in BA therapy is urgent. METHODS To examine whether BA-specific post-natal stem cells are feasible for autologous cell source for BA treatment, we isolated from human exfoliated deciduous teeth, namely BA-SHED, using a standard colony-forming unit fibroblast (CFU-F) method and compared characteristics as mesenchymal stem cells (MSCs) to healthy donor-derived control SHED, Cont-SHED. BA-SHED and Cont-SHED were intrasplenically transplanted into chronic carbon tetrachloride (CCl4)-induced liver fibrosis model mice, followed by the analysis of bile drainage function and donor integration in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile ducts in the recipient's liver using anti-human specific keratin 19 (KRT19) antibody. RESULTS BA-SHED formed CFU-F, expressed MSC surface markers, and exhibited in vitro mesenchymal multipotency similar to Cont-SHED. BA-SHED showed less in vitro hepatogenic potency than Cont-SHED. Cont-SHED represented in vivo bile drainage function and KRT19-positive biliary regeneration in chronic carbon tetrachloride-induced liver fibrosis model mice. BA-SHED failed to show in vivo biliary potency and bile drainage function compared to Cont-SHED. CONCLUSION These findings indicate that BA-SHED are not feasible source for BA treatment, because BA-SHED may epigenetically modify the underlying prenatal and perinatal BA environments. In conclusion, these findings suggest that BA-SHED-based studies may provide a platform for understanding the underlying molecular mechanisms of BA development and innovative novel modalities in BA research and treatment.
Collapse
Affiliation(s)
- Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Ratih Yuniartha
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jogjakarta, Indonesia
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Erika Yamauchi-Tomoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Oral and Maxillofacial Radiology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Sara Murata
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kento Nishida
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tasturo Tajiri
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Fukuoka College of Health Sciences, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Yamaza H. Bilirubin induces discoloration and hypodontia on tooth. PEDIATRIC DENTAL JOURNAL 2021. [DOI: 10.1016/j.pdj.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|