1
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
2
|
Sadredinamin M, Yazdansetad S, Alebouyeh M, Yazdi MMK, Ghalavand Z. Shigella Flexneri Serotypes: O-antigen Structure, Serotype Conversion, and Serotyping Methods. Oman Med J 2023; 38:e522. [PMID: 37724320 PMCID: PMC10505279 DOI: 10.5001/omj.2023.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/04/2022] [Indexed: 09/20/2023] Open
Abstract
Shigella flexneri is the most common cause of shigellosis in developing countries. Up to now, 23 serotypes of S. flexneri have been reported. Different serotypes result from the addition of acetyl, glucosyl, or phosphatidylethanolamine groups on the O-antigen backbone and horizontal transfer of mentioned groups can lead to serotype conversion among S. flexneri strains. Serotype conversion causes either a circulation of pre-existing serotypes or is responsible for the emergence of new serotypes. Serotype conversion plays a pivotal role in the protection and evasion of S. flexneri from the host immune response. Furthermore, spreading any new serotype can provide evolutionary advantages. Hence, information about S. flexneri O-antigen structure, serotype conversion, and serotyping methods can be helpful to understand the disease that attributes distinct serotypes in order to apply control or prevention methods in accordance with predominant serotypes over the course of time. Thus, the scope of this review is to give an overview of the serotype structures, factors involved in O-antigen modification, molecular analysis, and epidemiological evidence for the benefits of serotype conversion for S. flexneri serotypes. We are also providing a review of the typing methods.
Collapse
Affiliation(s)
- Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Yazdansetad
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Hisyam Bin Ismail CMK, Raihan Mohammad Shabani N, Chuah C, Hassan Z, Bakar Abdul Majeed A, Herng Leow C, Kaur Banga Singh K, Yee Leow C. Shigella iron-binding proteins: An insight into molecular physiology, pathogenesis, and potential target vaccine development. Vaccine 2022; 40:3991-3998. [PMID: 35660036 DOI: 10.1016/j.vaccine.2022.05.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/21/2021] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
Shigella is a well-known etiological agent responsible for intestinal infection among children, the elderly, and immunocompromised people ranging from mild to severe cases. Shigellosis remains endemic in Malaysia and yet there is no commercial vaccine available to eradicate the disease. Iron is an essential element for the survival of Shigella within the host. Hence, it is required for regulating metabolic mechanisms and virulence determinants. Alteration of iron status in the extracellular environment directly triggers the signal in enteropathogenic bacterial, providing information that they are in a hostile environment. To survive in an iron-limited environment, molecular regulation of iron-binding proteins plays a vital role in facilitating the transportation and utilization of sufficient iron sources. Given the importance of iron molecules for bacterial survival and pathogenicity, this review summarizes the physiological role of iron-binding proteins in bacterial survival and their potential use in vaccine and therapeutic developments.
Collapse
Affiliation(s)
| | - Nor Raihan Mohammad Shabani
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Candy Chuah
- Department of Medical and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Abu Bakar Abdul Majeed
- Faculty of Pharmacy, Universiti Teknologi MARA, Kampus Puncak Alam, 42300 Kuala Selangor, Selangor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Kirnpal Kaur Banga Singh
- Department of Medical and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
4
|
Śliwka P, Ochocka M, Skaradzińska A. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol 2021; 48:222-239. [PMID: 34428105 DOI: 10.1080/1040841x.2021.1960481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure. Bacteriophages have, over the decades, been proved to play an important role in combating bacterial infections (phage therapy), making them an important alternative to classical antibiotic strategies today. Phages have been found to be effective at killing various species of extracellular bacteria, but little is still known about how phages control intracellular infections. With advances in phage genomics and mechanisms of delivery and cell uptake, the development of phage-based antibacterial strategies to address the treatment of intracellular bacteria has general potential. In this review, we present the current state of knowledge regarding the application of bacteriophages against intracellular bacteria. We cover phage deployment against the most common intracellular pathogens with special attention to therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Newly Emerged Serotype 1c of Shigella flexneri: Multiple Origins and Changing Drug Resistance Landscape. Genes (Basel) 2020; 11:genes11091042. [PMID: 32899396 PMCID: PMC7565858 DOI: 10.3390/genes11091042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Bacillary dysentery caused by Shigella flexneri is a major cause of under-five mortality in developing countries, where a novel S. flexneri serotype 1c has become very common since the 1980s. However, the origin and diversification of serotype 1c remain poorly understood. To understand the evolution of serotype 1c and their antimicrobial resistance, we sequenced and analyzed the whole-genome of 85 clinical isolates from the United Kingdom, Egypt, Bangladesh, Vietnam, and Japan belonging to serotype 1c and related serotypes of 1a, 1b and Y/Yv. We identified up to three distinct O-antigen modifying genes in S. flexneri 1c strains, which were acquired from three different bacteriophages. Our analysis shows that S. flexneri 1c strains have originated from serotype 1a and serotype 1b strains after the acquisition of bacteriophage-encoding gtrIc operon. The maximum-likelihood phylogenetic analysis using core genes suggests two distinct S. flexneri 1c lineages, one specific to Bangladesh, which originated from ancestral serotype 1a strains and the other from the United Kingdom, Egypt, and Vietnam originated from ancestral serotype 1b strains. We also identified 63 isolates containing multiple drug-resistant genes in them conferring resistance against streptomycin, sulfonamide, quinolone, trimethoprim, tetracycline, chloramphenicol, and beta-lactamase. Furthermore, antibiotic susceptibility assays showed 83 (97.6%) isolates as either complete or intermediate resistance to the WHO-recommended first- and second-line drugs. This changing drug resistance pattern demonstrates the urgent need for drug resistance surveillance and renewed treatment guidelines.
Collapse
|
6
|
Sen T, Verma NK. Functional Annotation and Curation of Hypothetical Proteins Present in A Newly Emerged Serotype 1c of Shigella flexneri: Emphasis on Selecting Targets for Virulence and Vaccine Design Studies. Genes (Basel) 2020; 11:genes11030340. [PMID: 32210046 PMCID: PMC7141135 DOI: 10.3390/genes11030340] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/28/2023] Open
Abstract
Shigella flexneri is the principal cause of bacillary dysentery, contributing significantly to the global burden of diarrheal disease. The appearance and increase in the multi-drug resistance among Shigella strains, necessitates further genetic studies and development of improved/new drugs against the pathogen. The presence of an abundance of hypothetical proteins in the genome and how little is known about them, make them interesting genetic targets. The present study aims to carry out characterization of the hypothetical proteins present in the genome of a newly emerged serotype of S. flexneri (strain Y394), toward their novel regulatory functions using various bioinformatics databases/tools. Analysis of the genome sequence rendered 4170 proteins, out of which 721 proteins were annotated as hypothetical proteins (HPs) with no known function. The amino acid sequences of these HPs were evaluated using a combination of latest bioinformatics tools based on homology search against functionally identified proteins. Functional domains were considered as the basis to infer the biological functions of HPs in this case and the annotation helped in assigning various classes to the proteins such as signal transducers, lipoproteins, enzymes, membrane proteins, transporters, virulence, and binding proteins. This study contributes to a better understanding of growth, survival, and disease mechanism at molecular level and provides potential new targets for designing drugs against Shigella infection.
Collapse
|
7
|
Parajuli P, Rajput MI, Verma NK. Plasmids of Shigella flexneri serotype 1c strain Y394 provide advantages to bacteria in the host. BMC Microbiol 2019; 19:86. [PMID: 31035948 PMCID: PMC6489325 DOI: 10.1186/s12866-019-1455-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
Abstract
Background Shigella flexneri has an extremely complex genome with a significant number of virulence traits acquired by mobile genetic elements including bacteriophages and plasmids. S. flexneri serotype 1c is an emerging etiological agent of bacillary dysentery in developing countries. In this study, the complete nucleotide sequence of two plasmids of S. flexneri serotype 1c strain Y394 was determined and analysed. Results The plasmid pINV-Y394 is an invasive or virulence plasmid of size 221,293 bp composed of a large number of insertion sequences (IS), virulence genes, regulatory and maintenance genes. Three hundred and twenty-eight open reading frames (ORFs) were identified in pINV-Y394, of which about a half (159 ORFs) were identified as IS elements. Ninety-seven ORFs were related to characterized genes (majority of which are associated with virulence and their regulons), and 72 ORFs were uncharacterized or hypothetical genes. The second plasmid pNV-Y394 is of size 10,866 bp and encodes genes conferring resistance against multiple antibiotics of clinical importance. The multidrug resistance gene cassette consists of tetracycline resistance gene tetA, streptomycin resistance gene strA-strB and sulfonamide-resistant dihydropteroate synthase gene sul2. Conclusions These two plasmids together play a key role in the fitness of Y394 in the host environment. The findings from this study indicate that the pathogenic S. flexneri is a highly niche adaptive pathogen which is able to co-evolve with its host and respond to the selection pressure in its environment. Electronic supplementary material The online version of this article (10.1186/s12866-019-1455-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pawan Parajuli
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Munazza I Rajput
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Naresh K Verma
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
8
|
Parajuli P, Deimel LP, Verma NK. Genome Analysis of Shigella flexneri Serotype 3b Strain SFL1520 Reveals Significant Horizontal Gene Acquisitions Including a Multidrug Resistance Cassette. Genome Biol Evol 2019; 11:776-785. [PMID: 30715343 PMCID: PMC6424224 DOI: 10.1093/gbe/evz026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 11/23/2022] Open
Abstract
Shigella flexneri is a major etiological agent of shigellosis in developing countries, primarily occurring in children under 5 years of age. We have sequenced, for the first time, the complete genome of S. flexneri serotype 3b (strain SFL1520). We used a hybrid sequencing method--both long-read MinION Flow (Oxford Nanopore Technologies) and short-read MiSeq (Illumina) sequencing to generate a high-quality reference genome. The SFL1520 chromosome was found to be ∼4.58 Mb long, with 4,729 coding sequences. Despite sharing a substantial number of genes with other publicly available S. flexneri genomes (2,803), the SFL1520 strain contains 1,926 accessory genes. The phage-related genes accounted for 8% of the SFL1520 genome, including remnants of the Sf6 bacteriophage with an intact O-acetyltransferase gene specific to serotype 3b. The SFL1520 chromosome was also found to contain a multiple-antibiotic resistance cassette conferring resistance to ampicillin, chloramphenicol, streptomycin, and tetracycline, which was potentially acquired from a plasmid via transposases. The phylogenetic analysis based on core genes showed a high level of similarity of SFL1520 with other S. flexneri serotypes; however, there were marked differences in the accessory genes of SFL1520. In particular, a large number of unique genes were identified in SFL1520 suggesting significant horizontal gene acquisition in a relatively short time period. The major virulence traits of SFL1520 (such as serotype conversion and antimicrobial resistance) were associated with horizontal gene acquisitions highlighting the role of horizontal gene transfer in S. flexneri diversity and evolution.
Collapse
Affiliation(s)
- Pawan Parajuli
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lachlan P Deimel
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Naresh K Verma
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
9
|
Gazi MA, Mahmud S, Fahim SM, Kibria MG, Palit P, Islam MR, Rashid H, Das S, Mahfuz M, Ahmeed T. Functional Prediction of Hypothetical Proteins from Shigella flexneri and Validation of the Predicted Models by Using ROC Curve Analysis. Genomics Inform 2018; 16:e26. [PMID: 30602087 PMCID: PMC6440662 DOI: 10.5808/gi.2018.16.4.e26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/16/2018] [Indexed: 01/04/2023] Open
Abstract
Shigella spp. constitutes some of the key pathogens responsible for the global burden of diarrhoeal disease. With over 164 million reported cases per annum, shigellosis accounts for 1.1 million deaths each year. Majority of these cases occur among the children of the developing nations and the emergence of multi-drug resistance Shigella strains in clinical isolates demands the development of better/new drugs against this pathogen. The genome of Shigella flexneri was extensively analyzed and found 4,362 proteins among which the functions of 674 proteins, termed as hypothetical proteins (HPs) had not been previously elucidated. Amino acid sequences of all these 674 HPs were studied and the functions of a total of 39 HPs have been assigned with high level of confidence. Here we have utilized a combination of the latest versions of databases to assign the precise function of HPs for which no experimental information is available. These HPs were found to belong to various classes of proteins such as enzymes, binding proteins, signal transducers, lipoprotein, transporters, virulence and other proteins. Evaluation of the performance of the various computational tools conducted using receiver operating characteristic curve analysis and a resoundingly high average accuracy of 93.6% were obtained. Our comprehensive analysis will help to gain greater understanding for the development of many novel potential therapeutic interventions to defeat Shigella infection.
Collapse
Affiliation(s)
- Md Amran Gazi
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Sultan Mahmud
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Shah Mohammad Fahim
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Parag Palit
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Md Rezaul Islam
- International Max Planck Research School, Grisebachstraße 5, 37077 Göttingen, Germany
| | - Humaira Rashid
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Subhasish Das
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Tahmeed Ahmeed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| |
Collapse
|
10
|
Allué-Guardia A, Koenig SSK, Quirós P, Muniesa M, Bono JL, Eppinger M. Closed Genome and Comparative Phylogenetic Analysis of the Clinical Multidrug Resistant Shigella sonnei Strain 866. Genome Biol Evol 2018; 10:2241-2247. [PMID: 30060169 PMCID: PMC6128377 DOI: 10.1093/gbe/evy168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 01/10/2023] Open
Abstract
Shigella sonnei is responsible for the majority of shigellosis infections in the US with over 500,000 cases reported annually. Here, we present the complete genome of the clinical multidrug resistant (MDR) strain 866, which is highly susceptible to bacteriophage infections. The strain has a circular chromosome of 4.85 Mb and carries a 113 kb MDR plasmid. This IncB/O/K/Z-type plasmid, termed p866, confers resistance to five different classes of antibiotics including ß-lactamase, sulfonamide, tetracycline, aminoglycoside, and trimethoprim. Comparative analysis of the plasmid architecture and gene inventory revealed that p866 shares its plasmid backbone with previously described IncB/O/K/Z-type Shigella spp. and Escherichia coli plasmids, but is differentiated by the insertion of antibiotic resistance cassettes, which we found associated with mobile genetic elements such as Tn3, Tn7, and Tn10. A whole genome-derived phylogenetic reconstruction showed the evolutionary relationships of S. sonnei strain 866 and the four established Shigella species, highlighting the clonal nature of S. sonnei.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| | - Sara S K Koenig
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| | - Pablo Quirós
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - James L Bono
- Agricultural Research Service, United States Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - Mark Eppinger
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| |
Collapse
|
11
|
Zhu Z, Shi Y, Zhou X, Li B, Zhang J. Molecular characterization of fluoroquinolone and/or cephalosporin resistance in Shigella sonnei isolates from yaks. BMC Vet Res 2018; 14:177. [PMID: 29879965 PMCID: PMC5992640 DOI: 10.1186/s12917-018-1500-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background Members of the genus Shigella are intestinal pathogens and a major cause of seasonal outbreaks of bacterial diarrhea worldwide. Although humans are the conventional hosts of Shigella species, expansion of the Shigella host range to certain animals was recently reported. To investigate the prevalence of Shigella sonnei (S. sonnei) in yaks and perform molecular characterization, we analyzed 1132 fresh yak diarrheal stool samples and collected a total of 44 S. sonnei isolates. Results We performed multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) with XbaI-digested DNA to study genetic relatedness among the 44 isolates, which were differentiated into 4 sequence types (STs) and 32 PFGE types (PTs). All isolates harbored virulence genes, and 87.36% tested positive for invasion plasmid antigen H (ipaH), invasion associated locus (ial) and the Shigella enterotoxin gene sen. According to the results of antimicrobial susceptibility tests, 45.45% (20/44) were resistant to fluoroquinolones and/or cephalosporin. By sequencing the quinolone resistance determining region (QRDR) genes, we identified double mutations in gyrA (Ser83-Leu and Asp87-Asn) and a single mutation in parC (Ser80-Ile). All 12 fluoroquinolone-resistant S. sonnei isolates tested positive for the aac(6′)-Ib-cr gene but negative for qepA. Three isolates harbored qnr genes, including two with qnrS and one with qnrB. In addition, three types of β-lactamase genes, blaTEM-1, blaOXA-1 and blaCTX-M-14/79, were detected in cephalosporin-resistant isolates. Conclusions The findings of this study have enriched our knowledge of fluoroquinolone- and/or cephalosporin-resistant S. sonnei isolates from yaks, which has important public health significance. Electronic supplementary material The online version of this article (10.1186/s12917-018-1500-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, China
| | - Yuxiang Shi
- College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, China
| | - Xuzheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Jiangouyan, Qilihe District, Lanzhou, 730050, China.
| |
Collapse
|