1
|
Kowalski K, Marciniak P, Nekaris KAI, Rychlik L. Proteins from shrews' venom glands play a role in gland functioning and venom production. ZOOLOGICAL LETTERS 2024; 10:12. [PMID: 39010181 PMCID: PMC11251227 DOI: 10.1186/s40851-024-00236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
Venom production has evolved independently many times in the animal kingdom, although it is rare among mammals. Venomous shrews produce venom in their submandibular salivary glands and use it for food acquisition. Only a few toxins have been identified in shrew venoms thus far, and their modes of action require investigation. The biological and molecular processes relating to venom production and gland functioning also remain unknown. To address this gap, we investigated protein content in extracts from venom glands of two shrew species, Neomys fodiens and Sorex araneus, and interpreted their biological functions. Applying a proteomic approach coupled with Gene Ontology enrichment analysis, we identified 313 and 187 putative proteins in venom glands of N. fodiens and S. araneus, respectively. A search of the UniProt database revealed that most of the proteins found in both shrew species were involved in metabolic processes and stress response, while GO enrichment analysis revealed more stress-related proteins in the glands of S. araneus. Molecules that regulate molecule synthesis, cell cycles, and cell divisions are necessary to enable venom regeneration and ensure its effectiveness in predation and food hoarding. The presence of proteins involved in stress response may be the result of shrews' high metabolic rate and the costs of venom replenishment. Some proteins are likely to promote toxin spreading during envenomation and, due to their proteolytic action, reinforce venom toxicity. Finally, finding numerous proteins involved in immune response suggests a potential role of shrew venom gland secretions in protection against pathogens. These findings open up new perspectives for studying biological functions of molecules from shrew venom glands and extend our knowledge on the functioning of eulipotyphlan venom systems. Because the majority of existing and putative venomous mammals use oral venom systems to inject venom into target species, the methods presented here provide a promising avenue for confirming or discovering new taxa of venomous mammals.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Vertebrate Zoology and Ecology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland.
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - K Anne-Isola Nekaris
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| |
Collapse
|
2
|
Mahamad Apandi NI, Chan SW, Toh YF. Differential Expression of Mucin in Salivary Gland Tumours. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:920. [PMID: 38929537 PMCID: PMC11205441 DOI: 10.3390/medicina60060920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Mucin has been implicated via various mechanisms in the development and growth of tumour cells. However, mucin expression studies in salivary gland tumours are limited, especially with samples from minor salivary glands. This study aims to investigate and compare mucin expression in benign and malignant salivary gland tumours of minor and major salivary gland origins. Materials and Methods: Special stains were used to stain neutral mucin (Periodic acid Schiff), sialomucin (Alcian Blue) and sulfomucin (Aldehyde Fuschin) within tissues from six normal salivary glands and 73 salivary gland tumours including 31 pleomorphic adenomas, 27 mucoepidermoid carcinomas, and 15 adenoid cystic carcinomas. A semi-quantitative approach was used to evaluate mucin expression within ductal lumens. Sialomucin was the most expressed mucin in all salivary gland tumours, regardless of origin. Results: A significant difference was observed in the mucin expression between benign and malignant salivary gland tumours, as pleomorphic adenoma showed three times significantly higher expression of sialomucin compared to mucoepidermoid carcinoma and adenoid cystic carcinoma (p = 0.028). Pleomorphic adenomas of major glands showed 42 times significantly higher expression of sialomucin compared to those of minor glands (p = 0.000). Conclusions: Sialomucin content in pleomorphic adenomas of major glands was vastly increased compared to that in minor glands. Differential sialomucin expression in benign and malignant salivary gland tumours suggests a role in diagnosing of borderline salivary gland tumours.
Collapse
Affiliation(s)
| | - Siew Wui Chan
- Fakulti Pergigian, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yen Fa Toh
- Jabatan Patologi, Pusat Perubatan Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
3
|
Morales EA, Wang S. Salivary gland developmental mechanics. Curr Top Dev Biol 2024; 160:1-30. [PMID: 38937029 DOI: 10.1016/bs.ctdb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.
Collapse
Affiliation(s)
- E Angelo Morales
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States.
| |
Collapse
|
4
|
Gao X, Mukaibo T, Wei X, Faustoferri RC, Oei MS, Hwang SK, Yan AJ, Melvin JE, Ovitt CE. Nkx2.3 transcription factor is a key regulator of mucous cell identity in salivary glands. Dev Biol 2024; 509:1-10. [PMID: 38311164 PMCID: PMC10939741 DOI: 10.1016/j.ydbio.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Saliva is vital to oral health, fulfilling multiple functions in the oral cavity. Three pairs of major salivary glands and hundreds of minor salivary glands contribute to saliva production. The secretory acinar cells within these glands include two distinct populations. Serous acinar cells secrete a watery saliva containing enzymes, while mucous acinar cells secrete a more viscous fluid containing highly glycosylated mucins. Despite their shared developmental origins, the parotid gland (PG) is comprised of only serous acinar cells, while the sublingual gland (SLG) contains predominantly mucous acinar cells. The instructive signals that govern the identity of serous versus mucous acinar cell phenotypes are not yet known. The homeobox transcription factor Nkx2.3 is uniquely expressed in the SLG. Disruption of the Nkx2.3 gene was reported to delay the maturation of SLG mucous acinar cells. To examine whether Nkx2.3 plays a role in directing the mucous cell phenotype, we analyzed SLG from Nkx2.3-/- mice using RNAseq, immunostaining and proteomic analysis of saliva. Our results indicate that Nkx2.3, most likely in concert with other transcription factors uniquely expressed in the SLG, is a key regulator of the molecular program that specifies the identity of mucous acinar cells.
Collapse
Affiliation(s)
- Xin Gao
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Taro Mukaibo
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaolu Wei
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Maria S Oei
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seo-Kyoung Hwang
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Adela Jingyi Yan
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - James E Melvin
- Secretory Mechanisms and Dysfunctions Section, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
5
|
Nakagawa T, Santos J, Nasamran CA, Sen P, Sadat S, Monther A, Bendik J, Ebisumoto K, Hu J, Preissl S, Guo T, Vavinskaya V, Fisch KM, Califano JA. Defining the relationship of salivary gland malignancies to novel cell subpopulations in human salivary glands using single nucleus RNA-sequencing. Int J Cancer 2024; 154:1492-1503. [PMID: 37971144 DOI: 10.1002/ijc.34790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Salivary glands have essential roles in maintaining oral health, mastication, taste and speech, by secreting saliva. Salivary glands are composed of several types of cells, and each cell type is predicted to be involved in the carcinogenesis of different types of cancers including adenoid cystic carcinoma (ACC), acinic cell carcinoma (AciCC), salivary duct carcinoma (SDC), myoepithelial carcinoma (MECA) and other histology. In our study, we performed single nucleus RNA-seq on three human salivary gland samples to clarify the gene expression profile of each complex cellular component of the salivary glands and related these expression patterns to expression found in salivary gland cancers (SGC) to infer cell of origin. By single nucleus RNA-seq, salivary gland cells were stratified into four clusters: acinar cells, ductal cells 1, ductal cells 2 and myoepithelial cells/stromal cells. The localization of each cell group was verified by IHC of each cluster marker gene, and one group of ductal cells was found to represent intercalated ductal cells labeled with HES1. Furthermore, in comparison with SGC RNA-seq data, acinar cell markers were upregulated in AciCC, but downregulated in ACC and ductal cell markers were upregulated in SDC but downregulated in MECA, suggesting that markers of origin are highly expressed in some SGC. Cell type expressions in specific SGC histology are similar to those found in normal salivary gland populations, indicating a potential etiologic relationship.
Collapse
Affiliation(s)
- Takuya Nakagawa
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jessica Santos
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Chanond A Nasamran
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, USA
| | - Prakriti Sen
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Sayed Sadat
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Abdula Monther
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Joseph Bendik
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Koji Ebisumoto
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jingjing Hu
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Theresa Guo
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, USA
| | - Vera Vavinskaya
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, USA
| | - Joseph A Califano
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Cho YD, Cho ES, Song JS, Kim YY, Hwang I, Kim SY. Standard operating procedures for the collection, processing, and storage of oral biospecimens at the Korea Oral Biobank Network. J Periodontal Implant Sci 2023; 53:336-346. [PMID: 36919006 PMCID: PMC10627733 DOI: 10.5051/jpis.2203680184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 02/10/2023] Open
Abstract
PURPOSE The Korea Oral Biobank Network (KOBN) was established in 2021 as a branch of the Korea Biobank Network under the Korea Centers for Disease Control and Prevention to provide infrastructure for the collection, management, storage, and utilization of human bioresources from the oral cavity and associated clinical data for basic research and clinical studies. METHODS To address the need for the unification of the biobanking process, the KOBN organized the concept review for all the processes. RESULTS The KOBN established standard operating procedures for the collection, processing, and storage of oral samples. CONCLUSIONS The importance of collecting high-quality bioresources to generate accurate and reproducible research results has always been emphasized. A standardized procedure is a basic prerequisite for implementing comprehensive quality management of biological resources and accurate data production.
Collapse
Affiliation(s)
- Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea
| | - Eunae Sandra Cho
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Je Seon Song
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - Young-Youn Kim
- Department of Oral and Maxillofacial Surgery, Apple Tree Institute of Biomedical Science, Apple Tree Dental Hospital, Seoul, Korea
| | | | - Sun-Young Kim
- Department of Conservative Dentistry, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul, Korea.
| |
Collapse
|
7
|
Wang T, Huang Q, Rao Z, Liu F, Su X, Zhai X, Ma J, Liang Y, Quan D, Liao G, Bai Y, Zhang S. Injectable decellularized extracellular matrix hydrogel promotes salivary gland regeneration via endogenous stem cell recruitment and suppression of fibrogenesis. Acta Biomater 2023; 169:256-272. [PMID: 37557943 DOI: 10.1016/j.actbio.2023.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Saliva is key to the maintenance of oral homeostasis. However, several forms of salivary gland (SG) disorders, followed by hyposalivation, often result in dental caries, oral infection, and decreased taste, which dramatically affect the quality of patient's life. Functional biomaterials hold great potential for tissue regeneration in damaged or dysfunctional SGs and maintaining the good health of oral cavity. Herein, we prepared an injectable hydrogel derived from decellularized porcine submandibular glands (pDSG-gel), the material and biological properties of the hydrogel were systematically investigated. First, good biocompatibility and bioactivities of the pDSG-gel were validated in 2D and 3D cultures of primary submandibular gland mesenchymal stem cells (SGMSCs). Especially, the pDSG-gel effectively facilitated SGMSCs migration and recruitment through the activation of PI3K/AKT signaling pathway, suggested by transcriptomic analysis and immunoblotting. Furthermore, proteomic analysis of the pDSG revealed that many extracellular matrix components and secreted factors were preserved, which may contribute to stem cell homing. The recruitment of endogenous SG cells was confirmed in vivo, upon in situ injection of the pDSG-gel into the defective SGs in rats. Acinar and ductal-like structures were evident in the injury sites after pDSG-gel treatment, suggesting the reconstruction of functional SG units. Meanwhile, histological characterizations showed that the administration of the pDSG-gel also significantly suppressed fibrogenesis within the injured SG tissues. Taken together, this tissue-specific hydrogel provides a pro-regenerative microenvironment for endogenous SG regeneration and holds great promise as a powerful and bioactive material for future treatments of SG diseases. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrix (dECM) has been acknowledged as one of the most promising biomaterials that recapitalizes the microenvironment in native tissues. Hydrogel derived from the dECM allows in situ administration for tissue repair. Herein, a tissue-specific dECM hydrogel derived from porcine salivary glands (pDSG-gel) was successfully prepared and developed for functional reconstruction of defective salivary gland (SG) tissues. The pDSG-gel effectively accelerated endogenous SG stem cells migration and their recruitment for acinar- and ductal-like regeneration, which was attributed to the activation of PI3K/AKT signaling pathway. Additionally, the introduction of the pDSG-gel resulted in highly suppressed fibrogenesis in the defective tissues. These outcomes indicated that the pDSG-gel holds great potential in clinical translation toward SG regeneration through cell-free treatments.
Collapse
Affiliation(s)
- Tao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Qiting Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fan Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xinyun Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Xuefan Zhai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Jingxin Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Sien Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China.
| |
Collapse
|
8
|
Chatzeli L, Bordeu I, Han S, Bisetto S, Waheed Z, Koo BK, Alcolea MP, Simons BD. A cellular hierarchy of Notch and Kras signaling controls cell fate specification in the developing mouse salivary gland. Dev Cell 2023; 58:94-109.e6. [PMID: 36693323 PMCID: PMC7614884 DOI: 10.1016/j.devcel.2022.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
The development of the mouse salivary gland involves a tip-driven process of branching morphogenesis that takes place in concert with differentiation into acinar, myoepithelial, and ductal (basal and luminal) sub-lineages. By combining clonal lineage tracing with a three-dimensional (3D) reconstruction of the branched epithelial network and single-cell RNA-seq analysis, we show that in tips, a heterogeneous population of renewing progenitors transition from a Krt14+ multipotent state to unipotent states via two transcriptionally distinct bipotent states, one restricted to the Krt14+ basal and myoepithelial lineage and the other to the Krt8+ acinar and luminal lineage. Using genetic perturbations, we show how the differential expression of Notch signaling correlates with spatial segregation, exits from multipotency, and promotes the Krt8+ lineage, whereas Kras activation promotes proacinar fate. These findings provide a mechanistic basis for how positional cues within growing tips regulate the process of lineage segregation and ductal patterning.
Collapse
Affiliation(s)
- Lemonia Chatzeli
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Ignacio Bordeu
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 837.0415 Santiago, Chile
| | - Seungmin Han
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sara Bisetto
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Zahra Waheed
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon 34126, Republic of Korea
| | - Maria P Alcolea
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Oncology, The Hutchison Building, Box 197 Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Benjamin D Simons
- Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK.
| |
Collapse
|
9
|
A novel approach to describing the pancreas and submandibular gland: Can they be classified as primary and secondary tissue organs? Acta Histochem 2022; 124:151934. [DOI: 10.1016/j.acthis.2022.151934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022]
|
10
|
Yoon YJ, Kim D, Tak KY, Hwang S, Kim J, Sim NS, Cho JM, Choi D, Ji Y, Hur JK, Kim H, Park JE, Lim JY. Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands. Nat Commun 2022; 13:3291. [PMID: 35672412 PMCID: PMC9174290 DOI: 10.1038/s41467-022-30934-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Salivary glands that produce and secrete saliva, which is essential for lubrication, digestion, immunity, and oral homeostasis, consist of diverse cells. The long-term maintenance of diverse salivary gland cells in organoids remains problematic. Here, we establish long-term murine and human salivary gland organoid cultures. Murine and human salivary gland organoids express gland-specific genes and proteins of acinar, myoepithelial, and duct cells, and exhibit gland functions when stimulated with neurotransmitters. Furthermore, human salivary gland organoids are established from isolated basal or luminal cells, retaining their characteristics. Single-cell RNA sequencing also indicates that human salivary gland organoids contain heterogeneous cell types and replicate glandular diversity. Our protocol also enables the generation of tumoroid cultures from benign and malignant salivary gland tumor types, in which tumor-specific gene signatures are well-conserved. In this study, we provide an experimental platform for the exploration of precision medicine in the era of tissue regeneration and anticancer treatment.
Collapse
Affiliation(s)
- Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghyun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwon Yong Tak
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jisun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dojin Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Youngmi Ji
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Junho K Hur
- Department of Genetics, College of Medicine, Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, South Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korean Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
11
|
Viswanathan V, Cao H, Saiki J, Jiang D, Mattingly A, Nambiar D, Bloomstein J, Li Y, Jiang S, Chamoli M, Sirjani D, Kaplan M, Holsinger FC, Liang R, Von Eyben R, Jiang H, Guan L, Lagory E, Feng Z, Nolan G, Ye J, Denko N, Knox S, Rosen DM, Le QT. Aldehyde dehydrogenase 3A1 deficiency leads to mitochondrial dysfunction and impacts salivary gland stem cell phenotype. PNAS NEXUS 2022; 1:pgac056. [PMID: 35707206 PMCID: PMC9186046 DOI: 10.1093/pnasnexus/pgac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/10/2022] [Indexed: 01/29/2023]
Abstract
Adult salivary stem/progenitor cells (SSPC) have an intrinsic property to self-renew in order to maintain tissue architecture and homeostasis. Adult salivary glands have been documented to harbor SSPC, which have been shown to play a vital role in the regeneration of the glandular structures postradiation damage. We have previously demonstrated that activation of aldehyde dehydrogenase 3A1 (ALDH3A1) after radiation reduced aldehyde accumulation in SSPC, leading to less apoptosis and improved salivary function. We subsequently found that sustained pharmacological ALDH3A1 activation is critical to enhance regeneration of murine submandibular gland after radiation damage. Further investigation shows that ALDH3A1 function is crucial for SSPC self-renewal and survival even in the absence of radiation stress. Salivary glands from Aldh3a1 -/- mice have fewer acinar structures than wildtype mice. ALDH3A1 deletion or pharmacological inhibition in SSPC leads to a decrease in mitochondrial DNA copy number, lower expression of mitochondrial specific genes and proteins, structural abnormalities, lower membrane potential, and reduced cellular respiration. Loss or inhibition of ALDH3A1 also elevates ROS levels, depletes glutathione pool, and accumulates ALDH3A1 substrate 4-hydroxynonenal (4-HNE, a lipid peroxidation product), leading to decreased survival of murine SSPC that can be rescued by treatment with 4-HNE specific carbonyl scavengers. Our data indicate that ALDH3A1 activity protects mitochondrial function and is important for the regeneration activity of SSPC. This knowledge will help to guide our translational strategy of applying ALDH3A1 activators in the clinic to prevent radiation-related hyposalivation in head and neck cancer patients.
Collapse
Affiliation(s)
- Vignesh Viswanathan
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Hongbin Cao
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Julie Saiki
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aaron Mattingly
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dhanya Nambiar
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Joshua Bloomstein
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Yang Li
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Sizun Jiang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manish Chamoli
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Davud Sirjani
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Kaplan
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - F Christopher Holsinger
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel Liang
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Rie Von Eyben
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Li Guan
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Edward Lagory
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Denko
- The Ohio State University Wexner Medical Center and OSU Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daria-Mochly Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Hayashi T, Eto K, Kadoya Y. Downregulation of ten-eleven translocation-2 triggers epithelial differentiation during organogenesis. Differentiation 2022; 125:45-53. [DOI: 10.1016/j.diff.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
13
|
Salivary Glands after Prolonged Aluminum Exposure: Proteomic Approach Underlying Biochemical and Morphological Impairments in Rats. Int J Mol Sci 2022; 23:ijms23042251. [PMID: 35216367 PMCID: PMC8877476 DOI: 10.3390/ijms23042251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/25/2022] Open
Abstract
Aluminum (Al) is one of the most abundant elements on Earth, and its high extraction rate and industrial use make human exposure very common. As Al may be a human toxicant, it is important to investigate the effects of Al exposure, mainly at low doses and for prolonged periods, by simulating human exposure. This work aimed to study the effects of low-dose exposure to chloride aluminum (AlCl3) on the oxidative biochemistry, proteomic profile, and morphology of the major salivary glands. Wistar male rats were exposed to 8.3 mg/kg/day of AlCl3 via intragastric gavage for 60 days. Then, the parotid and submandibular glands were subjected to biochemical assays, proteomic evaluation, and histological analysis. Al caused oxidative imbalance in both salivary glands. Dysregulation of protein expression, mainly of those related to cytoarchitecture, energy metabolism and glandular function, was detected in both salivary glands. Al also promoted histological alterations, such as acinar atrophy and an increase in parenchymal tissue. Prolonged exposure to Al, even at low doses, was able to modulate molecular alterations associated with morphological impairments in the salivary glands of rats. From this perspective, prolonged Al exposure may be a risk to exposed populations and their oral health.
Collapse
|
14
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Coppola F, Sagona S, Betti L, Palego L, Casini L, Giannaccini G, Felicioli A. Preliminary investigation on enzymatic activity in saliva of Hystrix cristata L., 1758. J Anim Physiol Anim Nutr (Berl) 2021; 106:387-394. [PMID: 34288168 DOI: 10.1111/jpn.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Mammal's saliva contains a variety of electrolytes and proteins. They carry out an important role in the digestion process, in the antibacterial and antiviral activity, in lubrication and maintenance of oral general health status. It may also contain several enzymes according to dietary habits and general wellness. Sialochemistry is a valid alternative to the haematochemical analysis for the evaluation of animal health and nutritional status. At present, very little knowledge is available on health status and pathology of crested porcupine (Hystrix cristata) and no data are yet available on salivary enzymes. Between 2018 and 2020, a preliminary investigation of enzymatic activity on saliva samples was carried out from captured porcupines. In crested porcupine saliva, enzymatic activity of trypsin, chymotrypsin, N-Aminopeptidase, amylase, lignin peroxidise, cellulase and chitinase were recorded. Superoxide dismutase, catalase, glutathione S-transferase and alkaline phosphatase activity was also detected. The superoxide dismutase activity resulted higher (3.13 SD 3.58 U/mg proteins) than those of catalase (130.80 SD 110.65 mU/mg proteins) and glutathione S-transferase (20.21 SD 16.62 mM/mg proteins). Alkaline phosphatase activity resulted lower (5.91 SD 6.12 mU/mg proteins) than acidic phosphatase (19.00 SD 16.16 U/mg proteins) with the highest values of saliva alkaline phosphatases recorded in young individuals. These preliminary data bring new knowledge on crested porcupine saliva enzymes and may provide a useful tool for further investigation on the adaptive response of crested porcupine to different environmental condition and diet. Additional investigation concerning a possible alternative use of saliva enzymes as indicator of health and nutritional status of this rodent are desirable.
Collapse
Affiliation(s)
| | - Simona Sagona
- Department of Veterinary Sciences, Pisa University, Pisa, Italy.,Department of Pharmacy, Pisa University, Pisa, Italy
| | - Laura Betti
- Department of Pharmacy, Pisa University, Pisa, Italy
| | - Lionella Palego
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Lucia Casini
- Department of Veterinary Sciences, Pisa University, Pisa, Italy
| | | | | |
Collapse
|
16
|
Heynickx N, Herrmann K, Vermeulen K, Baatout S, Aerts A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl Med Biol 2021; 98-99:30-39. [PMID: 34020337 DOI: 10.1016/j.nucmedbio.2021.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
At present, prostate cancer remains the second most occurring cancer in men, in Europe. Treatment efficacy for therapy of advanced metastatic disease, and metastatic castration-resistant prostate cancer in particular is limited. Prostate-specific membrane antigen (PSMA) is a promising therapeutic target in prostate cancer, seeing the high amount of overexpression on prostate cancer cells. Clinical investigation of PSMA-targeted radionuclide therapy has shown good clinical efficacy. However, adverse effects are observed of which salivary gland hypofunction and xerostomia are among the most prominent. Salivary gland toxicity is currently the dose-limiting side effect for PSMA-targeted radionuclide therapy, and more specifically for PSMA-targeted alpha therapy. To date, mechanisms underlying the salivary gland uptake of PSMA-targeting compounds and the subsequent damage to the salivary glands remain largely unknown. Furthermore, preventive strategies for salivary gland uptake or strategies for treatment of salivary gland toxicity are needed. This review focuses on the current knowledge on uptake mechanisms of PSMA-targeting compounds in the salivary glands and the research performed to investigate different strategies to prevent or treat salivary gland toxicity.
Collapse
Affiliation(s)
- Nathalie Heynickx
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America; Department of Nuclear Medicine, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Koen Vermeulen
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.
| | - An Aerts
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
17
|
Uhl B, Braun C, Dominik J, Luft J, Canis M, Reichel CA. A Novel Experimental Approach for In Vivo Analyses of the Salivary Gland Microvasculature. Front Immunol 2021; 11:604470. [PMID: 33679695 PMCID: PMC7925411 DOI: 10.3389/fimmu.2020.604470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
Microvascular dysfunction plays a fundamental role in the pathogenesis of salivary gland disorders. Restoring and preserving microvascular integrity might therefore represent a promising strategy for the treatment of these pathologies. The mechanisms underlying microvascular dysfunction in salivary glands, however, are still obscure, partly due to the unavailability of adequate in vivo models. Here, we present a novel experimental approach that allows comprehensive in vivo analyses of the salivary gland microvasculature in mice. For this purpose, we employed different microscopy techniques including multi-photon in vivo microscopy to quantitatively analyze interactions of distinct immune cell subsets in the submandibular gland microvasculature required for their infiltration into the surrounding parenchyma and their effects on microvascular function. Confocal microscopy and multi-channel flow cytometry in tissue sections/homogenates complemented these real-time analyses by determining the molecular phenotype of the participating cells. To this end, we identified key adhesion and signaling molecules that regulate the subset- and tissue-specific trafficking of leukocytes into inflamed glands and control the associated microvascular leakage. Hence, we established an experimental approach that allows in vivo analyses of microvascular processes in healthy and diseased salivary glands. This enables us to delineate distinct pathogenetic factors as novel therapeutic targets in salivary gland diseases.
Collapse
Affiliation(s)
- Bernd Uhl
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Constanze Braun
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julian Dominik
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joshua Luft
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph A. Reichel
- Department of Otorhinolaryngology—Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
18
|
Iroanya OO, Obi JC, Ogunyinka OO, Bosede OT, Egwuatu TF, Adewole RA. Messenger RNA (mRNA)-based age determination using skin-specific markers of saliva epithelial cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Age determination is a vital factor in biological identification in forensics. This study was carried out to determine the expression levels of three target genes (Keratin 9 (KRT9), Loricrin (LOR) and Corneodesmosin (CDSN)) in salivary epithelial cells and how they can be used in age determination using reference gene, β-actin. Thirty young adults participated in the study and were divided into three groups according to their ages (16–20, 21–25, and 26–30). Ribonucleic acid (RNA) extraction, complementary deoxyribonucleic acid (cDNA) synthesis and quantitative polymerase chain reaction (qPCR) were performed. Data analysis was done using IBM SPSS Version 26 and the comparative Ct method (2−∆∆Ct method).
Results
CDSN was detected in all the sampled age groups. Though the age group 16–20 had the highest (0.4237) expression of CDSN among the three age groups, there was no significant difference (p > 0.05) in the expression of the gene among the three age groups. The LOR gene was lowly expressed across all age groups used in the study. The expression of the gene did not significantly differ (p > 0.05) between the control and 26–30 years age group, but they were however significantly higher (F = 36.47, p ≤ 0.05) than the expression of the gene in both 16–20 and 21–25 years age groups. The KRT9 gene was expressed only in age groups 16–20 and 26–30 and the expression of the gene did not significantly (p > 0.05) differ between these age groups. Though the expression of all the target genes was low, it was observed that the LOR gene expression varied among 21–25 and 26–30 age groups; therefore, more data and further analyses are still required since this experimental approach for age determination using gene expression is still at an emerging stage.
Conclusion
Although RNA concentration was low and the expression values of the genes were low and could not be used in comparing the expression levels among the three age groups, it can be concluded that the three messenger ribonucleic acid (mRNA) markers CDSN, LOR and KRT9, as well as the ACTB reference mRNA marker analysed via the described qPCR assays, are suitable for identifying epithelial cells in saliva.
Collapse
|
19
|
Rocchi C, Emmerson E. Mouth-Watering Results: Clinical Need, Current Approaches, and Future Directions for Salivary Gland Regeneration. Trends Mol Med 2020; 26:649-669. [PMID: 32371171 DOI: 10.1016/j.molmed.2020.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Permanent damage to the salivary glands and resulting hyposalivation and xerostomia have a substantial impact on patient health, quality of life, and healthcare costs. Currently, patients rely on lifelong treatments that alleviate the symptoms, but no long-term restorative solutions exist. Recent advances in adult stem cell enrichment and transplantation, bioengineering, and gene transfer have proved successful in rescuing salivary gland function in a number of animal models that reflect human diseases and that result in hyposalivation and xerostomia. By overcoming the limitations of stem cell transplants and better understanding the mechanisms of cellular plasticity in the adult salivary gland, such studies provide encouraging evidence that a regenerative strategy for patients will be available in the near future.
Collapse
Affiliation(s)
- Cecilia Rocchi
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
20
|
Edafe O, Hughes B, Tsirevelou P, Goswamy J, Kumar R. Understanding primary parotid squamous cell carcinoma - A systematic review. Surgeon 2019; 18:44-48. [PMID: 31040083 DOI: 10.1016/j.surge.2019.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/24/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The true incidence of primary parotid squamous cell carcinoma (SCC) is unknown and likely overestimated in the literature. The aim of this systematic review is to examine the diagnosis, aetiology and incidence of parotid SCC by analysing studies evaluating primary parotid SCC. METHODS A systematic search of Medline, EMBASE and Cochrane library was performed. A narrative synthesis was done. RESULTS A total of 14 observational retrospective studies on primary parotid SCC were included. There are currently no standard criteria for ascertainment of primary parotid SCC. Primary parotid SCC is thought to be due to squamous metaplasia within the ductal epithelium and subsequent invasive squamous carcinoma. Histological features that favour primary disease includes SCC confined to parotid parenchyma with no direct communication to the skin and the absence of mucin. Incidence of primary parotid SCC varied from 1.54 to 2.8 cases per million person-years. Around 30%-86% of patients recorded to have primary parotid SCC on clinical records, when scrutinised, were in fact secondary to parotid lymph node involvement following regional advancement from skin or upper aerodigestive tract SCC. CONCLUSION Primary parotid SCC is rare and it is currently a diagnosis of exclusion. Thorough clinical assessment including endoscopy, preoperative imaging and the scrutiny of histopathological findings allow for differentiation between primary and secondary SCC within the parotid. This thus affects both initial treatment and subsequent follow-up.
Collapse
Affiliation(s)
- O Edafe
- Department of ENT, Sheffield Teaching Hospitals Foundation Trust, UK.
| | - B Hughes
- Warrington and Halton Hospitals NHS Trust, UK
| | - P Tsirevelou
- Department of ENT, Sherwood Forest Hospitals NHS Foundation Trust, UK
| | - J Goswamy
- Department of ENT, Manchester University NHS Foundation Trust, UK
| | - R Kumar
- Department of ENT, Manchester University NHS Foundation Trust, UK
| |
Collapse
|
21
|
Hardiman R, Kujan O, Kochaji N. Normal Variation in the Anatomy, Biology, and Histology of the Maxillofacial Region. CONTEMPORARY ORAL MEDICINE 2019:1-66. [DOI: 10.1007/978-3-319-72303-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
|
22
|
Emmerson E, Knox SM. Salivary gland stem cells: A review of development, regeneration and cancer. Genesis 2018; 56:e23211. [PMID: 29663717 PMCID: PMC5980780 DOI: 10.1002/dvg.23211] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/13/2022]
Abstract
Salivary glands are responsible for maintaining the health of the oral cavity and are routinely damaged by therapeutic radiation for head and neck cancer as well as by autoimmune diseases such as Sjögren's syndrome. Regenerative approaches based on the reactivation of endogenous stem cells or the transplant of exogenous stem cells hold substantial promise in restoring the structure and function of these organs to improve patient quality of life. However, these approaches have been hampered by a lack of knowledge on the identity of salivary stem cell populations and their regulators. In this review we discuss our current knowledge on salivary stem cells and their regulators during organ development, homeostasis and regeneration. As increasing evidence in other systems suggests that progenitor cells may be a source of cancer, we also review whether these same salivary stem cells may also be cancer initiating cells.
Collapse
Affiliation(s)
- Elaine Emmerson
- The MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sarah M. Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
23
|
Hardiman R, Kujan O, Kochaji N. Normal Variation in the Anatomy, Biology, and Histology of the Maxillofacial Region. CONTEMPORARY ORAL MEDICINE 2018:1-66. [DOI: 10.1007/978-3-319-28100-1_2-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 07/14/2023]
|
24
|
Togarrati PP, Sasaki RT, Abdel-Mohsen M, Dinglasan N, Deng X, Desai S, Emmerson E, Yee E, Ryan WR, da Silva MCP, Knox SM, Pillai SK, Muench MO. Identification and characterization of a rich population of CD34 + mesenchymal stem/stromal cells in human parotid, sublingual and submandibular glands. Sci Rep 2017; 7:3484. [PMID: 28615711 PMCID: PMC5471181 DOI: 10.1038/s41598-017-03681-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) play crucial roles in maintaining tissue homeostasis during physiological turnovers and injuries. Very little is known about the phenotype, distribution and molecular nature of MSCs in freshly isolated human salivary glands (SGs) as most reports have focused on the analysis of cultured MSCs. Our results demonstrate that the cell adhesion molecule CD34 was widely expressed by the MSCs of human major SGs, namely parotid (PAG), sublingual (SLG) and submandibular (SMG) glands. Further, gene expression analysis of CD34+ cells derived from fetal SMGs showed significant upregulation of genes involved in cellular adhesion, proliferation, branching, extracellular matrix remodeling and organ development. Moreover, CD34+ SMG cells exhibited elevated expression of genes encoding extracellular matrix, basement membrane proteins, and members of ERK, FGF and PDGF signaling pathways, which play key roles in glandular development, branching and homeostasis. In vitro CD34+ cell derived SG-MSCs revealed multilineage differentiation potential. Intraglandular transplantation of cultured MSCs in immunodeficient mice led to their engraftment in the injected and uninjected contralateral and ipsilateral glands. Engrafted cells could be localized to the stroma surrounding acini and ducts. In summary, our data show that CD34+ derived SG-MSCs could be a promising cell source for adoptive cell-based SG therapies, and bioengineering of artificial SGs.
Collapse
Affiliation(s)
| | - Robson T Sasaki
- Department of Morphology and Genetics - Discipline of Descriptive and Topographic Anatomy, Federal University of São Paulo, Brazil, CEP, USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Medicine, University of California San Francisco, San Francisco, California, USA.,The Wistar Institute, Philadelphia, PA, USA
| | | | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Shivani Desai
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Elaine Emmerson
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Elizabeth Yee
- Blood Systems Research Institute, San Francisco, CA, USA
| | - William R Ryan
- Division of Head and Neck Oncologic/Endocrine/Salivary Surgery, Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
| | - Marcelo C P da Silva
- Department of Morphology and Genetics - Discipline of Descriptive and Topographic Anatomy, Federal University of São Paulo, Brazil, CEP, USA
| | - Sarah M Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, San Francisco, CA, USA. .,Department of Laboratory Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
25
|
Concepcion AR, Feske S. Regulation of epithelial ion transport in exocrine glands by store-operated Ca 2+ entry. Cell Calcium 2016; 63:53-59. [PMID: 28027799 DOI: 10.1016/j.ceca.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is a conserved mechanism of Ca2+ influx that regulates Ca2+ signaling in many cell types. SOCE is activated by depletion of endoplasmic reticulum (ER) Ca2+ stores in response to physiological agonist stimulation. After it was first postulated by J.W. Putney Jr. in 1986, SOCE has been described in a large number of non-excitable cell types including secretory cells of different exocrine glands. Here we discuss the mechanisms by which SOCE controls salt and fluid secretion in exocrine glands, with a special focus on eccrine sweat glands. In sweat glands, SOCE plays an important, non-redundant role in regulating the function of Ca2+-activated Cl- channels (CaCC), Cl- secretion and sweat production. In the absence of key regulators of SOCE such as the CRAC channel pore subunit ORAI1 and its activator STIM1, the Ca2+-activated chloride channel TMEM16A is inactive and fails to secrete Cl-, resulting in anhidrosis in mice and human patients.
Collapse
Affiliation(s)
- Axel R Concepcion
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
26
|
Isola M, Lilliu MA. Melatonin localization in human salivary glands. J Oral Pathol Med 2015; 45:510-5. [PMID: 26694219 DOI: 10.1111/jop.12409] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Circulating melatonin is believed to reach body fluids by crossing passively the cell membranes, but alternative ways for melatonin transport also are hypothesized. This investigation was carried out to furnish ultrastructural evidences for melatonin transport by salivary gland cells in order to indicate plausible routes by which circulating melatonin can reach saliva. METHODS Bioptic samples of parotid, submandibular and labial glands were processed for the electron microscopy and treated to demonstrate melatonin reactivity by the immunogold staining method. RESULTS AND CONCLUSIONS The preferential sites of melatonin reactivity were the granules and vesicles of serous cells. Our results suggested that the acinar cells are able to store melatonin and that the hormone can be released into saliva through granule and vesicle exocytosis. The quantitative evaluation of labelling showed that the parotid gland is the most involved in the release of melatonin in saliva.
Collapse
Affiliation(s)
- Michela Isola
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | |
Collapse
|
27
|
|
28
|
Tatar A, Parlak SN, Yayla M, Ugan RA, Polat E, Halici Z. Effects of allergic rhinitis and desloratadine on the submandibular gland in a rat allergy model. Int Forum Allergy Rhinol 2015; 5:1164-1169. [PMID: 26201305 DOI: 10.1002/alr.21589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/17/2015] [Accepted: 06/03/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) and antihistamine usage can cause xerostomia. The study aims to examine if AR, antihistamines, and the use of antihistamines in AR have histopathological effects on the submandibular gland. The study also investigates the effect of oxidant and antioxidant plasma parameters. METHODS Thirty-two adult Sprague-Dawley rats were used in the study. The rats were divided into the 4 following groups: the control group (C group); the AR group; an antihistamine-treated group (AH group); and an AR plus antihistamine-treated group (AR+AH group). The AR and AR+AH groups were sensitized using ovalbumin. The AR+AH and AH groups received desloratadine. The histopathological effects of AR and desloratadine treatment on the submandibular glands (SMGs) and the values of the oxidative and antioxidative serum parameters were evaluated. RESULTS Histopathological examination of sections of the SMGs from the AR and AH groups revealed that vacuolization was present in the mucous acinar and ductal cells and that the number of connective-tissue cells was greater than that of the control group. The appearances of the AR+AH-group sections were similar to those of the control group. The superoxide dismutase activity level and the glutathione level were relatively decreased in these groups compared with those of the control group. The malondialdehyde level in the AR group was increased compared with that of the control group. CONCLUSION The AR-induced pathological changes were diminished by desloratadine treatment. Thus, the new-generation antihistamine desloratadine may be used to treatment of AR patients who have xerostomia.
Collapse
Affiliation(s)
- Arzu Tatar
- Department of Otolaryngology, Head and Neck Surgery, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Secil Nazife Parlak
- Department of Embryology and Histology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Muhammet Yayla
- Department of Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Rustem Anil Ugan
- Department of Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Elif Polat
- Department of Embryology and Histology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
29
|
Abstract
Salivary glands develop as highly branched structures designed to produce and secrete saliva. Advances in mouse genetics, stem cell biology, and regenerative medicine are having a tremendous impact on our understanding of salivary gland organogenesis. Understanding how submandibular gland (SMG) initiation, branching morphogenesis, and cell differentiation occur, as well as defining the progenitor/stem cells and cell and tissue interactions that drive SMG development will help guide regenerative approaches for patients suffering from loss of salivary gland function. This review focuses on recent literature from the past 5 years investigating the regulatory mechanisms driving SMG organogenesis.
Collapse
Affiliation(s)
- Belinda R Hauser
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
30
|
Fisher BA, Brown RM, Bowman SJ, Barone F. A review of salivary gland histopathology in primary Sjögren's syndrome with a focus on its potential as a clinical trials biomarker. Ann Rheum Dis 2015; 74:1645-50. [PMID: 26034044 DOI: 10.1136/annrheumdis-2015-207499] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/10/2015] [Indexed: 11/04/2022]
Abstract
Salivary gland changes, characterised by a focal lymphocytic sialadenitits, play an important role in the diagnosis of primary Sjögren's syndrome (PSS) and were first described over 40 years ago. Recent evidence suggests that minor salivary gland biopsy may also provide information useful for prognostication and stratification, yet difficulties may arise in the histopathological interpretation and scoring, and evidence exists that reporting is variable. With the increasing number of actual and proposed clinical trials in PSS, we review the evidence that might support the role of histopathology as a biomarker for stratification and response to therapy and highlight areas where further validation work is required.
Collapse
Affiliation(s)
- Benjamin A Fisher
- Rheumatology Research Group, University of Birmingham, Birmingham, UK Department of Rheumatology, University Hospitals Birmingham NHS Trust, Birmingham, UK
| | - Rachel M Brown
- Department of Pathology, University Hospitals Birmingham NHS Trust, Birmingham, UK
| | - Simon J Bowman
- Department of Rheumatology, University Hospitals Birmingham NHS Trust, Birmingham, UK
| | - Francesca Barone
- Rheumatology Research Group, University of Birmingham, Birmingham, UK Department of Rheumatology, University Hospitals Birmingham NHS Trust, Birmingham, UK
| |
Collapse
|
31
|
Krishnamurthy S, Vasudeva SB, Vijayasarathy S. Salivary gland disorders: A comprehensive review. World J Stomatol 2015; 4:56-71. [DOI: 10.5321/wjs.v4.i2.56] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/25/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Salivary glands are complex in nature. They could be either tubulo acinar, merocrine or exocrine glands secreting mainly saliva. Salivary gland is one of the main soft tissue structures in the maxillofacial area. Saliva is a clear, slightly acidic muco serous fluid that coats the teeth, mucosa and thereby helps to create and maintain a healthy environment in the oral cavity. Salivary glands may be affected by a number of diseases: local and systemic and the prevalence of salivary gland diseases depend on various etiological factors. The glands may be infected by viral, bacterial, rarely fungal or its ductal obstruction which may cause painful swelling or obstruction, affecting their functions. The salivary gland may also be affected by a various benign and malignant tumours. This review article briefly describes about the various salivary gland disorders, diagnostic techniques and their management including the recent advances and the future perspective.
Collapse
|
32
|
Simon J, DiCarlo LM, Kruger C, Johnson WD, Kappen C, Richards BK. Gene expression in salivary glands: effects of diet and mouse chromosome 17 locus regulating macronutrient intake. Physiol Rep 2015; 3:3/2/e12311. [PMID: 25713331 PMCID: PMC4393215 DOI: 10.14814/phy2.12311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dcpp2, Prrt1, and Has1 are plausible candidate genes for the Mnic1 (macronutrient intake-carbohydrate) locus on mouse chromosome 17, based on their map positions and sequence variants, documented expression in salivary glands, and the important role of saliva in oral food processing and taste. We investigated the effects of genotype and diet on gene expression in salivary glands (parotid, submandibular, sublingual) of carbohydrate-preferring, C57BL6J.CAST/EiJ-17.1 subcongenic mice compared to fat-preferring wild-type C57BL/6J. To achieve accurate normalization of real-time quantitative RT-PCR data, we evaluated multiple reference genes to identify the most stably expressed control genes in salivary gland tissues, and then used geometric averaging to produce a reliable normalization factor. Gene expression was measured in mice fed different diets: (1) rodent chow, (2) macronutrient selection diets, (3) high-fat diet, and (4) low-fat diet. In addition, we measured salivary hyaluronan concentrations. All three genes showed strain differences in expression, in at least one major salivary gland, and diet effects were observed in two glands. Dcpp2 expression was limited primarily to sublingual gland, and strongly decreased in B6.CAST-17.1 subcongenic mice compared to wild-type B6, regardless of diet. In contrast, both genotype and diet affected Prrt1 and Has1 expression, in a gland-specific manner, for example, Prrt1 expression in the parotid gland alone was strongly reduced in both mouse strains when fed macronutrient selection diet compared to chow. Notably, we discovered an association between diet composition and salivary hyaluronan content. These results demonstrate robust effects of genetic background and diet composition on candidate gene expression in mouse salivary glands.
Collapse
Affiliation(s)
- Jacob Simon
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Lisa M DiCarlo
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Claudia Kruger
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - William D Johnson
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Brenda K Richards
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
33
|
Jang SI, Ong HL, Gallo A, Liu X, Illei G, Alevizos I. Establishment of functional acinar-like cultures from human salivary glands. J Dent Res 2014; 94:304-11. [PMID: 25416669 DOI: 10.1177/0022034514559251] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients.
Collapse
Affiliation(s)
- S I Jang
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - H L Ong
- Secretory and Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - A Gallo
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - X Liu
- Secretory and Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - G Illei
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - I Alevizos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Hsu JC, Koo H, Harunaga JS, Matsumoto K, Doyle AD, Yamada KM. Region-specific epithelial cell dynamics during branching morphogenesis. Dev Dyn 2013; 242:1066-77. [PMID: 23780688 DOI: 10.1002/dvdy.24000] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Epithelial cells of developing embryonic organs, such as salivary glands, can display substantial motility during branching morphogenesis. Their dynamic movements and molecules involved in their migration are not fully characterized. RESULTS We generated transgenic mice expressing photo-convertible KikGR and tracked the movements of individual cells highlighted by red fluorescence in different regions of developing salivary glands. Motility was highest for outer bud epithelial cells adjacent to the basement membrane, lower in inner bud cells, and lowest in duct cells. The highly motile outer cells contacting the basement membrane were pleomorphic, whereas inner cells were rounded. Peripheral cell motility was disrupted by antibodies inhibiting α6+β1 integrins and the nonmuscle myosin II inhibitor blebbistatin. Inner bud cell migration was unaffected by these inhibitors, but their rate of migration was stimulated by inhibiting E-cadherin. CONCLUSIONS Cell motility in developing salivary glands was highest in cells in contact with the basement membrane. The basement membrane-associated motility of these outer bud cells depended on integrins and myosin II, but not E-cadherin. In contrast, motility of inner bud cells was restrained by E-cadherin. These findings identify the importance of integrin-dependent basement membrane association for the morphology, tissue organization, and lateral motility of morphogenetic epithelial cells.
Collapse
Affiliation(s)
- Jeff C Hsu
- Cell Biology Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
35
|
Adams A, Warner K, Nör JE. Salivary gland cancer stem cells. Oral Oncol 2013; 49:845-853. [PMID: 23810400 DOI: 10.1016/j.oraloncology.2013.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/22/2013] [Accepted: 05/31/2013] [Indexed: 12/13/2022]
Abstract
Emerging evidence suggests the existence of a tumorigenic population of cancer cells that demonstrate stem cell-like properties such as self-renewal and multipotency. These cells, termed cancer stem cells (CSC), are able to both initiate and maintain tumor formation and progression. Studies have shown that CSC are resistant to traditional chemotherapy treatments preventing complete eradication of the tumor cell population. Following treatment, CSC are able to re-initiate tumor growth leading to patient relapse. Salivary gland cancers are relatively rare but constitute a highly significant public health issue due to the lack of effective treatments. In particular, patients with mucoepidermoid carcinoma or adenoid cystic carcinoma, the two most common salivary malignancies, have low long-term survival rates due to the lack of response to current therapies. Considering the role of CSC in resistance to therapy in other tumor types, it is possible that this unique sub-population of cells is involved in resistance of salivary gland tumors to treatment. Characterization of CSC can lead to better understanding of the pathobiology of salivary gland malignancies as well as to the development of more effective therapies. Here, we make a brief overview of the state-of-the-science in salivary gland cancer, and discuss possible implications of the cancer stem cell hypothesis to the treatment of salivary gland malignancies.
Collapse
Affiliation(s)
- April Adams
- Department of Restorative Sciences, University of Michigan School of Dentistry, United States
| | - Kristy Warner
- Department of Restorative Sciences, University of Michigan School of Dentistry, United States
| | - Jacques E Nör
- Department of Restorative Sciences, University of Michigan School of Dentistry, United States; Department of Biomedical Engineering, University of Michigan College of Engineering, United States; Department of Otolaryngology, University of Michigan School of Medicine, United States.
| |
Collapse
|
36
|
Abstract
Saliva is a complex fluid, which influences oral health through specific and nonspecific physical and chemical properties. The importance of saliva in our everyday activities and the medicinal properties it possesses are often taken for granted. However, when disruptions in the quality or quantity of saliva do occur in an individual, it is likely that he or she will experience detrimental effects on oral and systemic health. Often head and neck radiotherapy has serious and detrimental side effects on the oral cavity including the loss of salivary gland function and a persistent complaint of a dry mouth (xerostomia). Thus, saliva has a myriad of beneficial functions that are essential to our well-being. Although saliva has been extensively investigated as a medium, few laboratories have studied saliva in the context of its role in maintaining oral and general health.
Collapse
Affiliation(s)
- Manjul Tiwari
- Department of Oral Pathology and Microbiology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
37
|
Lang ML, Zhu L, Kreth J. Keeping the bad bacteria in check: interactions of the host immune system with oral cavity biofilms. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1601-1546.2012.00278.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Rothova M, Thompson H, Lickert H, Tucker AS. Lineage tracing of the endoderm during oral development. Dev Dyn 2012; 241:1183-91. [DOI: 10.1002/dvdy.23804] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2012] [Indexed: 01/04/2023] Open
|
39
|
Aure MH, Larsen HS, Ruus AK, Galtung HK. Aquaporin 5 distribution pattern during development of the mouse sublingual salivary gland. J Mol Histol 2011; 42:401-8. [DOI: 10.1007/s10735-011-9343-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/23/2011] [Indexed: 12/01/2022]
|
40
|
Epithelial–stromal interactions in salivary glands of rats exposed to chronic passive smoking. Arch Oral Biol 2011; 56:580-7. [DOI: 10.1016/j.archoralbio.2010.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/21/2010] [Accepted: 11/26/2010] [Indexed: 12/22/2022]
|