1
|
Golestannejad P, Monkaresi M, Zhian Zargaran F, Khosravani M, Asgari P, Mobaraki H, Gorjizad M, Hasany S, Senobari Ghezeljehmeidan A, Hemmati S, Zand S, Ghasemi P, Asadi Anar M. Role of Cancer Associated Fibroblast (CAF) derived miRNAs on head and neck malignancies microenvironment: a systematic review. BMC Cancer 2025; 25:582. [PMID: 40169971 PMCID: PMC11960023 DOI: 10.1186/s12885-025-13965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND AND AIM MicroRNAs (miRNAs) play a key role in regulating gene expression within the tumor microenvironment, influencing cancer progression and therapy response. Cancer-associated fibroblasts (CAFs) contribute to tumor development by secreting exosomal miRNAs that promote proliferation, invasion, and resistance. This systematic review evaluates the impact of CAF-derived miRNAs on head and neck malignancies. METHODS A systematic search was conducted in PubMed, Scopus, WOS, and Google Scholar following PRISMA guidelines. Studies focusing on CAF-derived miRNAs in head and neck cancers were included. Data extraction covered study characteristics, miRNA profiling methods, functional roles, and clinical significance. The Scirap tool was used for quality assessment. RESULTS Among 921 identified articles, 21 met the inclusion criteria. Findings indicate that miR-21-5p, miR-106-5p, and miR-196a drive tumor progression in oral squamous cell carcinoma (OSCC), while miR-124 and miR-34a-5p act as suppressors. In esophageal squamous cell carcinoma (ESCC), miR-21 and miR-27a/b contribute to chemotherapy resistance, whereas miR-100-5p inhibits lymphangiogenesis. In head and neck squamous cell carcinoma (HNSCC), miR-196a and miR-196b may serve as diagnostic biomarkers. Exosomal miR-106a-5p promotes nasopharyngeal carcinoma (NPC) metastasis, and miR-7 and miR-196a contribute to therapy resistance in head and neck cancer (HNC). CONCLUSION CAF-derived miRNAs significantly influence tumor progression, metastasis, and therapy resistance. These findings highlight their potential as biomarkers and therapeutic targets, warranting further clinical research for personalized treatment strategies.
Collapse
Affiliation(s)
- Parsa Golestannejad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamadparsa Monkaresi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Khosravani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pouya Asgari
- Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Hesam Mobaraki
- Faculty of Medicine, İStanbul Yeniyuzyil University, Istanbul, Turkey
| | - Mansour Gorjizad
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saina Hasany
- Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | | | - Sara Hemmati
- Gulian University of Medical Sciences, Rasht, Iran
| | - Samaneh Zand
- Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Parsa Ghasemi
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Asadi Anar
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran.
| |
Collapse
|
2
|
Broseghini E, Carosi F, Berti M, Compagno S, Ghelardini A, Fermi M, Querzoli G, Filippini DM. Salivary Gland Cancers in the Era of Molecular Analysis: The Role of Tissue and Liquid Biomarkers. Cancers (Basel) 2025; 17:660. [PMID: 40002255 PMCID: PMC11852825 DOI: 10.3390/cancers17040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Salivary gland cancers (SGCs) are a rare and heterogeneous group of malignancies, accounting for approximately 5% of head and neck cancers. Despite their rarity, advances in molecular profiling have revealed a variety of genetic and molecular pathways, many of which are potentially actionable with targeted therapies. Methods: We reviewed the current literature involving the molecular landscape of SGCs, encompassing the diagnostic and prognostic value of tissue and liquid biomarkers and the potential therapeutic targets across various histological subtypes. Results: Our review highlights key molecular diagnostic findings such as the CRTC1-MAML2 fusion in mucoepidermoid carcinoma and MYB-NFIB rearrangements in adenoid cystic carcinoma, but also targetable alterations such as HER2 and AR positivity in salivary duct carcinoma and ETV6-NTRK3 fusion in secretory carcinoma. Liquid biopsy (both blood- or salivary-based), including circulating tumor DNA, circulating tumor cells, and miRNAs, offers novel, noninvasive approaches for disease monitoring and personalized treatment. Emerging therapies such as HER2 inhibitors, androgen deprivation therapy, and TRK inhibitors underscore the shift towards precision oncology in managing these malignancies. Conclusions: Despite promising advances, challenges remain due to the rarity and phenotypic heterogeneity of SGCs, emphasizing the need for molecularly stratified clinical trials. This review presents an overview of tissue and liquid biomarkers, focusing on molecular targets and therapeutic innovations that lay the foundation for improved diagnostic and treatment strategies for SGCs.
Collapse
Affiliation(s)
| | - Francesca Carosi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero—Universitaria Sant’Orsola Malpighi, 40138 Bologna, Italy; (F.C.); (M.B.); (S.C.); (A.G.)
| | - Mirea Berti
- Division of Medical Oncology, IRCCS Azienda Ospedaliero—Universitaria Sant’Orsola Malpighi, 40138 Bologna, Italy; (F.C.); (M.B.); (S.C.); (A.G.)
| | - Samuele Compagno
- Division of Medical Oncology, IRCCS Azienda Ospedaliero—Universitaria Sant’Orsola Malpighi, 40138 Bologna, Italy; (F.C.); (M.B.); (S.C.); (A.G.)
| | - Anna Ghelardini
- Division of Medical Oncology, IRCCS Azienda Ospedaliero—Universitaria Sant’Orsola Malpighi, 40138 Bologna, Italy; (F.C.); (M.B.); (S.C.); (A.G.)
| | - Matteo Fermi
- Department of Otorhinolaryngology—Head and Neck Surgery, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy;
| | - Giulia Querzoli
- Pathology Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
| | - Daria Maria Filippini
- Division of Medical Oncology, IRCCS Azienda Ospedaliero—Universitaria Sant’Orsola Malpighi, 40138 Bologna, Italy; (F.C.); (M.B.); (S.C.); (A.G.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, Università di Bologna, 40138 Bologna, Italy
| |
Collapse
|
3
|
Liu W, Liu Y, Li P, Chen J, Liu J, Shi Z, Liu H, Ye J. Identification of candidate plasma miRNA biomarkers for the diagnosis of head and neck squamous cell carcinoma. Future Sci OA 2024; 10:FSO928. [PMID: 38827810 PMCID: PMC11140639 DOI: 10.2144/fsoa-2023-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: Current head and neck squamous cell carcinoma (HNSCC) diagnostic tools are limited, so this study aimed to identify diagnostic microRNA (miRNA) biomarkers from plasma. Materials & methods: A total of 76 HNSCC and 76 noncancerous control (NC) plasma samples underwent microarray analysis and quantitative reverse transcription PCR to screen for diagnostic plasma miRNAs. The diagnostic potential of the miRNAs was evaluated by the receiver operating characteristic curve. Results: miR-95-3p and miR-579-5p expression was shown to be significantly upregulated, and that of miR-1298-3p to be downregulated in HNSCC patients compared with controls. The final diagnostic panel included miR-95-3p, miR-579-5p and miR-1298-3p with an area under the curve of 0.83. Conclusion: This three-miRNA panel has potential for the diagnosis of HNSCC.
Collapse
Affiliation(s)
- Weixing Liu
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Liu
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei Li
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Chen
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiamin Liu
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi Shi
- Jinan University, Guangzhou, Guangdong, China
| | - Hui Liu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Ye
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
El-Mahdy HA, Mohamadin AM, Abulsoud AI, Khidr EG, El-Husseiny AA, Ismail A, Elsakka EGE, Mokhlis HA, El-Husseiny HM, Doghish AS. miRNAs as potential game-changers in head and neck cancer: Future clinical and medicinal uses. Pathol Res Pract 2023; 245:154457. [PMID: 37058745 DOI: 10.1016/j.prp.2023.154457] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Head and neck cancers (HNCs) are a group of heterogeneous tumors formed most frequently from epithelial cells of the larynx, lips, oropharynx, nasopharynx, and mouth. Numerous epigenetic components, including miRNAs, have been demonstrated to have an impact on HNCs characteristics like progression, angiogenesis, initiation, and resistance to therapeutic interventions. The miRNAs may control the production of numerous genes linked to HNCs pathogenesis. The roles that miRNAs play in angiogenesis, invasion, metastasis, cell cycle, proliferation, and apoptosis are responsible for this impact. The miRNAs also have an impact on crucial HNCs-related mechanistic networks like the WNT/β-catenin signaling, PTEN/Akt/mTOR pathway, TGFβ, and KRAS mutations. miRNAs may affect how the HNCs respond to treatments like radiation and chemotherapy in addition to pathophysiology. This review aims to demonstrate the relationship between miRNAs and HNCs with a particular emphasis on how miRNAs impact HNCs signaling networks.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed M Mohamadin
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo 11829, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hamada Ahmed Mokhlis
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Al Qalyubia 13736, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
5
|
Gobin C, Inkabi S, Lattimore CC, Gu T, Menefee JN, Rodriguez M, Kates H, Fields C, Bian T, Silver N, Xing C, Yates C, Renne R, Xie M, Fredenburg KM. Investigating miR-9 as a mediator in laryngeal cancer health disparities. Front Oncol 2023; 13:1096882. [PMID: 37081981 PMCID: PMC10112398 DOI: 10.3389/fonc.2023.1096882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Background For several decades, Black patients have carried a higher burden of laryngeal cancer among all races. Even when accounting for sociodemographics, a disparity remains. Differentially expressed microRNAs have been linked to racially disparate clinical outcomes in breast and prostate cancers, yet an association in laryngeal cancer has not been addressed. In this study, we present our computational analysis of differentially expressed miRNAs in Black compared with White laryngeal cancer and further validate microRNA-9-5p (miR-9-5p) as a potential mediator of cancer phenotype and chemoresistance. Methods Bioinformatic analysis of 111 (92 Whites, 19 Black) laryngeal squamous cell carcinoma (LSCC) specimens from the TCGA revealed miRNAs were significantly differentially expressed in Black compared with White LSCC. We focused on miR-9-5 p which had a significant 4-fold lower expression in Black compared with White LSCC (p<0.05). After transient transfection with either miR-9 mimic or inhibitor in cell lines derived from Black (UM-SCC-12) or White LSCC patients (UM-SCC-10A), cellular migration and cell proliferation was assessed. Alterations in cisplatin sensitivity was evaluated in transient transfected cells via IC50 analysis. qPCR was performed on transfected cells to evaluate miR-9 targets and chemoresistance predictors, ABCC1 and MAP1B. Results Northern blot analysis revealed mature miR-9-5p was inherently lower in cell line UM-SCC-12 compared with UM-SCC-10A. UM -SCC-12 had baseline increase in cellular migration (p < 0.01), proliferation (p < 0.0001) and chemosensitivity (p < 0.01) compared to UM-SCC-10A. Increasing miR-9 in UM-SCC-12 cells resulted in decreased cellular migration (p < 0.05), decreased proliferation (p < 0.0001) and increased sensitivity to cisplatin (p < 0.001). Reducing miR-9 in UM-SCC-10A cells resulted in increased cellular migration (p < 0.05), increased proliferation (p < 0.05) and decreased sensitivity to cisplatin (p < 0.01). A significant inverse relationship in ABCC1 and MAP1B gene expression was observed when miR-9 levels were transiently elevated or reduced in either UM-SCC-12 or UM-SCC-10A cell lines, respectively, suggesting modulation by miR-9. Conclusion Collectively, these studies introduce differential miRNA expression in LSCC cancer health disparities and propose a role for low miR-9-5p as a mediator in LSCC tumorigenesis and chemoresistance.
Collapse
Affiliation(s)
- Christina Gobin
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Samuel Inkabi
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO, United States
| | - Chayil C. Lattimore
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research Bioinformatics Core Facility, University of Florida, Gainesville, FL, United States
| | - James N. Menefee
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Mayrangela Rodriguez
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Heather Kates
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Christopher Fields
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Tengfei Bian
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Natalie Silver
- Head and Neck Institute/Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Clayton Yates
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Kristianna M. Fredenburg
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Gheytanchi E, Tajik F, Razmi M, Babashah S, Cho WCS, Tanha K, Sahlolbei M, Ghods R, Madjd Z. Circulating exosomal microRNAs as potential prognostic biomarkers in gastrointestinal cancers: a systematic review and meta-analysis. Cancer Cell Int 2023; 23:10. [PMID: 36670440 PMCID: PMC9862982 DOI: 10.1186/s12935-023-02851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent reports suggested that circulating exosomal microRNAs (exomiRs) may serve as non-invasive prediction biomarkers in gastrointestinal (GI) cancers, yet their clinicopathological and prognostic values need to be more clarified. Hence, the present meta-analysis was aimed to quantitatively assess the evidence regarding the association between circulating exomiRs and prognosis in GI cancer patients. METHODS A comprehensive search was carried out in prominent literature databases, including PubMed, ISI Web of Science, Scopus, and Embase. Odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (CIs) were gathered to evaluate the strength of the association. The quality assessment was investigated through the Newcastle-Ottawa Scale (NOS) and publication bias via Eggers' test and funnel plots. RESULTS A total of 47 studies, comprising of 4881 patients, were considered eligible for this meta-analysis. Both up-regulated and down-regulated circulating exomiRs are significantly associated with differentiation (HR = 1.353, P = 0.015; HR = 1.504, P = 0.016), TNM stage (HR = 2.058, P < 0.001; HR = 2.745, P < 0.001), lymph node metastasis (HR = 1.527, P = 0.004; HR = 2.009, P = 0.002), distant metastasis (HR = 2.006, P < 0.001; HR = 2.799, P = 0.002), worse overall survival (OS) (HR = 2.053, P < 0.001; HR = 1.789, P = 0.001) and poorer disease/relapse/progression-free survival (DFS/RFS/PFS) (HR = 2.086, P < 0.001; HR = 1.607, P = 0.001) in GI cancer patients, respectively. In addition, subgroup analyses based on seven subcategories indicated the robustness of the association. The majority of findings were lack of publication bias except for the association between up-regulated exomiRs and OS or DFS/RFS/PFS and for the down-regulated exomiRs and TNM stage. CONCLUSION This study supports that up- and down-regulated circulating exomiRs are associated with poorer survival outcomes and could be served as potential prognostic biomarkers in GI cancers. Given the limitations of the current findings, such as significant heterogeneity, more investigations are needed to fully clarify the exomiRs prognostic role.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - Kiarash Tanha
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Menini M, De Giovanni E, Bagnasco F, Delucchi F, Pera F, Baldi D, Pesce P. Salivary Micro-RNA and Oral Squamous Cell Carcinoma: A Systematic Review. J Pers Med 2021; 11:jpm11020101. [PMID: 33557138 PMCID: PMC7913841 DOI: 10.3390/jpm11020101] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a widespread malignancy with high mortality. In particular, a delay in its diagnosis dramatically decreases the survival rate. The aim of this systematic review was to investigate and summarize clinical results in the literature, regarding the potential use of salivary microRNAs (miRNAs) as diagnostic and prognostic biomarkers for OSCC patients. Twelve papers were selected, including both case-control and cohort studies, and all of them detected significantly dysregulated miRNAs in OSCC patients compared to healthy controls. Based on our results, salivary miRNAs might provide a non-invasive and cost-effective method in the diagnosis of OSCC, and also to monitor more easily its evolution and therapeutic response and therefore aid in the establishment of specific therapeutic strategies.
Collapse
Affiliation(s)
- Maria Menini
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
- Correspondence: ; Tel.: +39-010-3537421
| | - Emanuele De Giovanni
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| | - Francesco Bagnasco
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| | - Francesca Delucchi
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| | - Francesco Pera
- Department of Surgical Sciences, CIR-Dental School, University of Turin, 10126 Turin, Italy;
| | - Domenico Baldi
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| | - Paolo Pesce
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences (DISC), University of Genova, 16126 Genova, Italy; (E.D.G.); (F.B.); (F.D.); (D.B.); (P.P.)
| |
Collapse
|
8
|
Diez-Fraile A, Ceulaer JD, Derpoorter C, Spaas C, Backer TD, Lamoral P, Abeloos J, Lammens T. Circulating Non-Coding RNAs in Head and Neck Cancer: Roles in Diagnosis, Prognosis, and Therapy Monitoring. Cells 2020; 10:cells10010048. [PMID: 33396240 PMCID: PMC7823329 DOI: 10.3390/cells10010048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC), the seventh most common form of cancer worldwide, is a group of epithelial malignancies affecting sites in the upper aerodigestive tract. The 5-year overall survival for patients with HNC has stayed around 40–50% for decades, with mortality being attributable mainly to late diagnosis and recurrence. Recently, non-coding RNAs, including tRNA halves, YRNA fragments, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), have been identified in the blood and saliva of patients diagnosed with HNC. These observations have recently fueled the study of their potential use in early detection, diagnosis, and risk assessment. The present review focuses on recent insights and the potential impact that circulating non-coding RNA evaluation may have on clinical decision-making in the management of HNC.
Collapse
Affiliation(s)
- Araceli Diez-Fraile
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Joke De Ceulaer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
| | - Christophe Spaas
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tom De Backer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Philippe Lamoral
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Johan Abeloos
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-332-2480
| |
Collapse
|
9
|
Ghafouri-Fard S, Gholipour M, Taheri M, Shirvani Farsani Z. MicroRNA profile in the squamous cell carcinoma: prognostic and diagnostic roles. Heliyon 2020; 6:e05436. [PMID: 33204886 PMCID: PMC7653070 DOI: 10.1016/j.heliyon.2020.e05436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/27/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are human malignancies associated with both genetic and environmental factors. MicroRNAs (miRNAs) as a group of small non-coding RNAs have prominent roles in the development of this kind of cancer. Expressions of several miRNAs have been demonstrated to be increased in HNSCC samples vs. non-malignant tissues. In silico prediction tools and functional analyses have confirmed the function of some miRNAs in the modulation of cancer-associated targets, thus indicating these miRNAs as onco-miRs. Moreover, numerous miRNAs have been down-regulated in HNSCC samples. Their targets mostly enhance cell proliferation or inhibit apoptosis. miRNAs signature has practical implications in the diagnosis, staging, and management of HNSC. Most notably, numerous miRNAs have been shown to alter response of tumor cells to anti-cancer drugs such as cisplatin and doxorubicin. Circulating levels of these small transcripts have been suggested as promising biomarkers for diagnosis of HNSCC. In the present manuscript, we sum up the available literature regarding the miRNAs signature in HNSCC and their role as diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| |
Collapse
|
10
|
Chehade M, Bullock M, Glover A, Hutvagner G, Sidhu S. Key MicroRNA's and Their Targetome in Adrenocortical Cancer. Cancers (Basel) 2020; 12:E2198. [PMID: 32781574 PMCID: PMC7465134 DOI: 10.3390/cancers12082198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Adrenocortical Carcinoma (ACC) is a rare but aggressive malignancy with poor prognosis and limited response to available systemic therapies. Although complete surgical resection gives the best chance for long-term survival, ACC has a two-year recurrence rate of 50%, which poses a therapeutic challenge. High throughput analyses focused on characterizing the molecular signature of ACC have revealed specific micro-RNAs (miRNAs) that are associated with aggressive tumor phenotypes. MiRNAs are small non-coding RNA molecules that regulate gene expression by inhibiting mRNA translation or degrading mRNA transcripts and have been generally implicated in carcinogenesis. This review summarizes the current insights into dysregulated miRNAs in ACC tumorigenesis, their known functions, and specific targetomes. In addition, we explore the possibility of particular miRNAs to be exploited as clinical biomarkers in ACC and as potential therapeutics.
Collapse
Affiliation(s)
- Marthe Chehade
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (M.C.); (M.B.); (A.G.)
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (M.C.); (M.B.); (A.G.)
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia
| | - Anthony Glover
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (M.C.); (M.B.); (A.G.)
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia
- Endocrine Surgery Unit, Royal North Shore Hospital, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St. Leonards, Sydney, NSW 2007, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Stan Sidhu
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; (M.C.); (M.B.); (A.G.)
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, Sydney, NSW 2065, Australia
- Endocrine Surgery Unit, Royal North Shore Hospital, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, St. Leonards, Sydney, NSW 2007, Australia
| |
Collapse
|