1
|
Kipper D, Orsi RH, de Souza Zanetti N, De Carli S, Mascitti AK, Fonseca ASK, Ikuta N, Wiedmann M, Lunge VR. Comparative genomic analysis reveals the emergence and dissemination of different Salmonella enterica serovar Gallinarum biovar Gallinarum lineages in Brazil. Avian Pathol 2025:1-13. [PMID: 39850984 DOI: 10.1080/03079457.2025.2458601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
RESEARCH HIGHLIGHTS Fowl typhoid (FT) is a concerning poultry disease caused by S. Gallinarum.Five S. Gallinarum lineages (I to V) were demonstrated in South American farms.S. Gallinarum lineages have specific antimicrobial resistance / virulence genomic profiles.Main FT outbreaks in Brazil have been caused by the specific lineage II.
Collapse
Affiliation(s)
- Diéssy Kipper
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | | | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha, Brazil
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
- Simbios Biotecnologia, Cachoeirinha, Brazil
| |
Collapse
|
2
|
Chao X, Fan Z, Wu J, Ye C, Wang X, Li R, Chen S, Zhang X, Fang C, Luo Q. Application of mRNA-Seq and Metagenomic Sequencing to Study Salmonella pullorum Infections in Chickens. Int J Mol Sci 2025; 26:1448. [PMID: 40003915 PMCID: PMC11855712 DOI: 10.3390/ijms26041448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The disease caused by Salmonella pullorum has been demonstrated to exert a deleterious effect on the performance of poultry, giving rise to elevated mortality and considerable economic losses within the breeding industry. However, there is a paucity of research investigating the relationship between cecal gene expression and different isomer and Salmonella pullorum infection, and research on the relationship between intestinal microbiota and Salmonella pullorum infection is also limited. In this study, mRNA-Seq and metagenomic sequencing were performed on the cecal tissues and fresh feces of individuals who tested positive (n = 4) and negative (n = 4) for Salmonella pullorum, with the aim of exploring the chickens infected with Salmonella pullorum from two perspectives: the gene transcription level and the microbial level. The mRNA sequencing results revealed 1560 differentially expressed genes (DEGs), of which 380 genes were found to be up-regulated and 1180 genes were down-regulated. A number of genes were reported to be associated with immunity, including AQP8, SLC26A3, CBS, IFI6, DDX60, IL8L1 and IL8L2. Furthermore, a total of 1047 differentially expressed alternative splicings (DEASs) were identified through alternative splicing analysis, including CBS, SLC6A9, ILDR2, OCRL, etc. The joint analysis of DEGs and DEASs revealed 70 genes that exhibited both differentially expressed alternative splicings and differential expression, including CTNND1, TPM1, SPPL2A, etc. The results of metagenomic sequencing demonstrated that the abundances of Bacteroides, Firmicutes, and Verrucobacteria underwent a significant alteration subsequent to the infection of Salmonella pullorum. In summary, the present study conducted a preliminary exploration of the genetic basis of chickens infected with Salmonella pullorum. TPM1 and SPPL2A were found to be differentially expressed by mRNA-Seq, and differences in alternative splicing events. Furthermore, metagenomic sequencing revealed significant changes in the microbial communities of Bacteroidetes, Firmicutes, and Verrucobacteria during infection with Salmonella pullorum.
Collapse
Affiliation(s)
- Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
| | - Zhexia Fan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiongwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chutian Ye
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaomeng Wang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ruina Li
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuya Chen
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Fang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingbin Luo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Jia C, Huang L, Zhou H, Cao Q, Wang Z, He F, Li Y, Yue M. A global genome dataset for Salmonella Gallinarum recovered between 1920 and 2024. Sci Data 2024; 11:1094. [PMID: 39375387 PMCID: PMC11458892 DOI: 10.1038/s41597-024-03908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Salmonella enterica serovar Gallinarum (S. Gallinarum) is an avian-specific pathogen responsible for fowl typhoid, a severe systemic disease with high mortality in chickens. This disease poses a substantial burden to the poultry industry, particularly in developing countries like China. However, comprehensive genome datasets on S. Gallinarum are lacking. Here, we present the most extensive S. Gallinarum genome dataset, comprising 574 well-collated samples. This dataset consists of 366 genomes sequenced in our laboratory and 208 publicly available genomes, collected from various continents over the past century. Using in silico prediction, we categorized S. Gallinarum into three distinct biovars. Regarding antimicrobial resistance, 238 strains (41.5%) carried antimicrobial resistance genes (ARGs) with a total of 635 records, while 232 strains (40.4%) exhibited multi-drug resistance. Mobile genomic elements (MGEs) serve as critical drivers for ARGs. Our dataset includes 5,636 MGEs records, with most MGEs belonging to prophages and plasmids. This dataset expands our understanding of the genomic characteristics of S. Gallinarum, providing valuable resources for future genomic studies to improve disease management.
Collapse
Affiliation(s)
- Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Linlin Huang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Haiyang Zhou
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Qianzhe Cao
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Zining Wang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Fang He
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi- Tech Park, Zhejiang, China
| | - Yan Li
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Sanya, 572000, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
4
|
Campos IC, Vilela FP, Saraiva MDMS, Junior AB, Falcão JP. Insights into the global genomic features of Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum. J Appl Microbiol 2024; 135:lxae217. [PMID: 39165105 DOI: 10.1093/jambio/lxae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
AIMS Characterize global genomic features of 86 genomes of Salmonella Gallinarum (SG) and Pullorum (SP), which are important pathogens causing systemic infections in poultry. METHODS AND RESULTS All genomes harbored efflux pump encoding gene mdsA and gold tolerance genes golS and golT. Aminoglycoside (aac(6')-Ib, aadA5, aph(6)-Id, aph(3'')-Ib, ant(2'')-Ia), beta-lactam (blaTEM-1, blaTEM-135), efflux pump (mdsB), fosfomycin (fosA3), sulfonamide (sul1, sul2), tetracycline [tet(A)], trimethoprim (dfrA17), acid (asr), and disinfectant (qacEdelta1) resistance genes, gyrA, gyrB, and parC quinolone resistance point mutations, and mercury tolerance genes (mer) were found in different frequencies. Additionally, 310 virulence genes, pathogenicity islands (including SPI-1, 2, 3, 4, 5, 6, 9, 10, 12, 13, and 14), plasmids [IncFII(S), ColpVC, IncX1, IncN, IncX2, and IncC], and prophages (Fels-2, ST104, 500465-1, pro483, Gifsy-2, 103 203_sal5, Fels-1, RE-2010, vB_SenS-Ent2, and L-413C) were detected. MLST showed biovar-specific sequence types, and core genome MLST showed country-specific and global-related clusters. CONCLUSION SG and SP global strains carry many virulence factors and important antimicrobial resistance genes. The diverse plasmids and prophages suggest genetic variability. MLST and cgMLST differentiated biovars and showed profiles occurring locally or worldwide.
Collapse
Affiliation(s)
- Isabela C Campos
- Department of Pathology, Reproduction and One Health, School of Agriculture and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Felipe Pinheiro Vilela
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Prof. Dr. Zeferino Vaz, s/n, Campus da USP, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - Mauro de M S Saraiva
- Department of Pathology, Reproduction and One Health, School of Agriculture and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction and One Health, School of Agriculture and Veterinarian Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Juliana Pfrimer Falcão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Prof. Dr. Zeferino Vaz, s/n, Campus da USP, CEP 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Kipper D, De Carli S, de Souza Zanetti N, Mascitti AK, Kazantzi Fonseca AS, Ikuta N, Lunge VR. Evolution and genomic profile of Salmonella enterica serovar Gallinarum biovar Pullorum isolates from Brazil. Avian Dis 2024; 68:2-9. [PMID: 38687101 DOI: 10.1637/aviandiseases-d-23-00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/24/2023] [Indexed: 05/02/2024]
Abstract
Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S. Pullorum) is a pathogenic bacterium that causes Pullorum disease (PD). PD is an acute systemic disease that affects young chickens, causing white diarrhea and high mortality. Although many sanitary programs have been carried out to eradicate S. Pullorum, PD outbreaks have been reported in different types of birds (layers, broilers, breeders) worldwide. This study aimed to evaluate the evolution and genetic characteristics of S. Pullorum isolated from PD in Brazil. Phylogenetic analysis of S. Pullorum genomes sequenced in this study and available genomic databases demonstrated that all isolates from Brazil are from sequence type 92 (ST92) and cluster into two lineages (III and IV). ColpVC, IncFIC(FII), and IncFII(S) were plasmid replicons frequently found in the Brazilian lineages. Two resistance genes (aac(6')-Iaa, conferring resistance to aminoglycoside, disinfecting agents, and antiseptics (mdf(A)) and tetracycline (mdf(A)) were detected frequently. Altogether, these results are important to understand the circulation of S. Pullorum and, consequently, to develop strategies to reduce losses due to PD.
Collapse
Affiliation(s)
- Diéssy Kipper
- Simbios Biotecnologia, Cachoeirinha, 94940-030, Rio Grande do Sul, Brazil
| | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, 92425-350, Rio Grande do Sul, Brazil
| | - Nathalie de Souza Zanetti
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, 92425-350, Rio Grande do Sul, Brazil
| | - Andrea Karoline Mascitti
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, 95070-560, Rio Grande do Sul, Brazil
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha, 94940-030, Rio Grande do Sul, Brazil
| | - Vagner Ricardo Lunge
- Simbios Biotecnologia, Cachoeirinha, 94940-030, Rio Grande do Sul, Brazil,
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, 92425-350, Rio Grande do Sul, Brazil
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, 95070-560, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Molenaar RJ, Dijkman R, Ter Veen C, Heuvelink A, van Kaam F, Augustijn M, Feberwee A. A Salmonella Pullorum outbreak with neurological signs in adult layers and outbreak investigation using whole genome sequencing. Avian Pathol 2024; 53:44-55. [PMID: 37800359 DOI: 10.1080/03079457.2023.2268027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
RESEARCH HIGHLIGHTS Cerebral granulomas are associated with nervous signs in Salmonella Pullorum outbreak.Bone marrow is also a recommended tissue for isolation of Salmonella Pullorum.Rapid plate agglutination test detects Pullorum antibodies in a vaccinated flock.Phylogenetic analysis showed clonality of isolates within the outbreak.
Collapse
|
7
|
Farhat M, Khayi S, Berrada J, Mouahid M, Ameur N, El-Adawy H, Fellahi S. Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era. Antibiotics (Basel) 2023; 13:23. [PMID: 38247582 PMCID: PMC10812584 DOI: 10.3390/antibiotics13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. The virulence mechanisms of biovars Gallinarum and Pullorum are multifactorial, involving a variety of genes and pathways that contribute to their pathogenicity. In addition, these serovars have developed resistance to various antimicrobial agents, leading to the emergence of multidrug-resistant strains. Due to their economic and public health significance, rapid and accurate diagnosis is crucial for effective control and prevention of these diseases. Conventional methods, such as bacterial culture and serological tests, have been used for screening and diagnosis. However, molecular-based methods are becoming increasingly important due to their rapidity, high sensitivity, and specificity, opening new horizons for the development of innovative approaches to control FT and PD. The aim of this review is to highlight the current state of knowledge on biovars Gallinarum and Pullorum, emphasizing the importance of continued research into their pathogenesis, drug resistance and diagnosis to better understand and control these pathogens in poultry farms.
Collapse
Affiliation(s)
- Mouad Farhat
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | - Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Avenue Ennasr, Rabat Principale, BP 415, Rabat 10090, Morocco;
| | - Jaouad Berrada
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | | | - Najia Ameur
- Department of Food Microbiology and Hygiene, National Institute of Hygiene. Av. Ibn Batouta, 27, BP 769, Rabat 10000, Morocco;
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| |
Collapse
|
8
|
Lu Z, Huang J, Li P, Song M, Liu B, Tang W, Sun S. The Genomic Characteristics of an Arthritis-Causing Salmonella pullorum. Microorganisms 2023; 11:2986. [PMID: 38138130 PMCID: PMC10745331 DOI: 10.3390/microorganisms11122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum biovar pullorum (Salmonella pullorum) is an avian-specific pathogen that has caused considerable economic losses to the poultry industry. High endemicity, poor implementation of hygiene measures, and lack of effective vaccines hinder the prevention and control of this disease in intensively maintained poultry flocks. In recent years, the incidence of arthritis in chicks caused by Salmonella pullorum infection has increased. In this study, four Salmonella pullorum strains were identified from the livers, spleens, and joint fluids of Qingjiaoma chicken breeders with arthritis clinical signs, and an arthritis model of chicks was successfully established using SP206-2. Whole genome sequencing of the SP206-2 strain showed that the genome was 4,730,579 bp, 52.16% GC content, and contained 5007 genes, including 4729 protein-coding regions. The genomic analysis of four arthritis-causing isolates and three diarrhea-causing isolates showed that the genome of arthritis-causing isolates was subject to nonsynonymous mutations, shift mutations, and gene copy deletions. An SNP phylogenetic tree analysis showed that arthritis-causing isolates are located in a different evolutionary branch from diarrhea-causing isolates. Further differential genes analysis showed that the genome of arthritis-causing isolates had missense mutations in genes related to substance metabolism and substance transport, as a result of adaptive evolution.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (P.L.); (M.S.); (B.L.)
| | - Jiaqi Huang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (P.L.); (M.S.); (B.L.)
| | - Peiyong Li
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (P.L.); (M.S.); (B.L.)
| | - Mengze Song
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (P.L.); (M.S.); (B.L.)
| | - Ben Liu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (P.L.); (M.S.); (B.L.)
| | - Wenli Tang
- Shandong Center for Quality Control of Feed and Veterinary Drug, Shandong Provincial Key Laboratory of Quality Safty Monitoring and Risk Assessment for Animal Products, Jinan 250100, China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (Z.L.); (J.H.); (P.L.); (M.S.); (B.L.)
| |
Collapse
|
9
|
Wales A, Lawes J. JMM Profile: Salmonella enterica serovar Gallinarum, biovars Pullorum and Gallinarum. J Med Microbiol 2023; 72. [PMID: 36753431 DOI: 10.1099/jmm.0.001653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Salmonella
serovar Gallinarum has two distinct biovars, Pullorum and Gallinarum. They are host-adapted avian pathogens that infect a number of wild and domesticated species but they pose a particular threat to farmed and backyard chickens and turkeys. Both biovars cause invasive and septicaemic disease, often resulting in high mortality. Pullorum is transmitted in eggs and typically affects birds soon after hatch. Gallinarum may cause disease in any age of bird, which often progresses through mature flocks. The establishment of clean breeding stock has resulted in freedom from the pathogens in many countries although even in these territories sporadic incursions still occur.
Collapse
Affiliation(s)
- Andrew Wales
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| | - Joanna Lawes
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
10
|
Shikov AE, Belousova ME, Belousov MV, Nizhnikov AA, Antonets KS. Salmonella-Based Biorodenticides: Past Applications and Current Contradictions. Int J Mol Sci 2022; 23:ijms232314595. [PMID: 36498920 PMCID: PMC9736839 DOI: 10.3390/ijms232314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the strains of Salmonella are able to infect a wide spectrum of hosts belonging to vertebrates, but some of them show host restriction. Several strains of these bacteria have been used as biorodenticides due to the host restriction until they were banned in many countries in the second part of the 20th century. The main reason for the ban was their potential pathogenicity for some domestic animals and poultry and the outbreaks of gastroenteritis in humans. Since that time, a lot of data regarding the host specificity and host restriction of different strains of Salmonella have been accumulated, and the complexity of the molecular mechanisms affecting it has been uncovered. In this review, we summarize the data regarding the history of studying and application of Salmonella-based rodenticides, discuss molecular systems controlling the specificity of Salmonella interactions within its multicellular hosts at different stages of infection, and attempt to reconstruct the network of genes and their allelic variants which might affect the host-restriction mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
11
|
Kang X, Zhou X, Tang Y, Jiang Z, Chen J, Mohsin M, Yue M. Characterization of Two-Component System CitB Family in Salmonella Pullorum. Int J Mol Sci 2022; 23:ijms231710201. [PMID: 36077599 PMCID: PMC9456408 DOI: 10.3390/ijms231710201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica, serovar Gallinarum, biovar Pullorum, is an avian-specific pathogen which has caused considerable economic losses to the poultry industry worldwide. Two-component systems (TCSs) play an essential role in obtaining nutrients, detecting the presence of neighboring bacteria and regulating the expression of virulence factors. The genome analysis of S. Pullorum strain S06004 suggesting the carriage of 22 pairs of TCSs, which belong to five families named CitB, OmpR, NarL, Chemotaxis and LuxR. In the CitB family, three pairs of TCSs, namely CitA-CitB, DcuS-DcuR and DpiB-DpiA, remain unaddressed in S. Pullorum. To systematically investigate the function of the CitB family in S. Pullorum, four mutants, ΔcitAB (abbreviated as Δcit), ΔdcuSR (Δdcu), ΔdpiBA (Δdpi) and ΔcitABΔdcuSRΔdpiBA (Δ3), were made using the CRISPR/Cas9 system. The results demonstrated that the CitB family did not affect the growth of bacteria, the results of biochemical tests, invasion and proliferation in chicken macrophage HD-11 cells and the expression of fimbrial protein. But the mutants showed thicker biofilm formation, higher resistance to antimicrobial agents, enhanced tolerance to inhibition by egg albumen and increased virulence in chicken embryos. Moreover, the deletion of Dpi TCS was detrimental to survival after exposure to hyperosmotic and oxidative environments, as well as the long-term colonization of the small intestine of chickens. Collectively, we provided new knowledge regarding the possible role of the CitB family involved in the pathogenic processes of S. Pullorum.
Collapse
Affiliation(s)
- Xiamei Kang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xiao Zhou
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yanting Tang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Zhijie Jiang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Jiaqi Chen
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Muhammad Mohsin
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Zhejiang Provincial Key Laboratory, Preventive Veterinary Medicine, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-571-88982832
| |
Collapse
|
12
|
Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK, Ikuta N, Lunge VR. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet Sci 2022; 9:405. [PMID: 36006320 PMCID: PMC9415136 DOI: 10.3390/vetsci9080405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella infects poultry, and it is also a human foodborne pathogen. This bacterial genus is classified into several serovars/lineages, some of them showing high antimicrobial resistance (AMR). The ease of Salmonella transmission in farms, slaughterhouses, and eggs industries has made controlling it a real challenge in the poultry-production chains. This review describes the emergence, dissemination, and AMR of the main Salmonella serovars and lineages detected in Brazilian poultry. It is reported that few serovars emerged and have been more widely disseminated in breeders, broilers, and layers in the last 70 years. Salmonella Gallinarum was the first to spread on the farms, remaining as a concerning poultry pathogen. Salmonella Typhimurium and Enteritidis were also largely detected in poultry and foods (eggs, chicken, turkey), being associated with several human foodborne outbreaks. Salmonella Heidelberg and Minnesota have been more widely spread in recent years, resulting in frequent chicken/turkey meat contamination. A few more serovars (Infantis, Newport, Hadar, Senftenberg, Schwarzengrund, and Mbandaka, among others) were also detected, but less frequently and usually in specific poultry-production regions. AMR has been identified in most isolates, highlighting multi-drug resistance in specific poultry lineages from the serovars Typhimurium, Heidelberg, and Minnesota. Epidemiological studies are necessary to trace and control this pathogen in Brazilian commercial poultry production chains.
Collapse
Affiliation(s)
- Diéssy Kipper
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Andréa Karoline Mascitti
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
| | - Andressa Matos Carneiro
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - André Felipe Streck
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| |
Collapse
|
13
|
Sun RY, Guo WY, Zhang JX, Wang MG, Wang LL, Lian XL, Ke BX, Sun J, Ke CW, Liu YH, Liao XP, Fang LX. Phylogenomic analysis of Salmonella Indiana ST17, an emerging MDR clonal group in China. J Antimicrob Chemother 2022; 77:2937-2945. [PMID: 35880764 DOI: 10.1093/jac/dkac243] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To reconstruct the genomic epidemiology and evolution of MDR Salmonella Indiana in China. METHODS A total of 108 Salmonella Indiana strains were collected from humans and livestock in China. All isolates were subjected to WGS and antimicrobial susceptibility testing. Phylogenetic relationships and evolutionary analyses were conducted using WGS data from this study and the NCBI database. RESULTS Almost all 108 Salmonella Indiana strains displayed the MDR phenotype. Importantly, 84 isolates possessed concurrent resistance to ciprofloxacin and cefotaxime. WGS analysis revealed that class 1 integrons on the chromosome and IncHI2 plasmids were the key vectors responsible for multiple antibiotic resistance gene (ARG) [including ESBL and plasmid-mediated quinolone resistance (PMQR) genes] transmission among Salmonella Indiana. The 108 Salmonella Indiana dataset displayed a relatively large core genome and ST17 was the predominant ST. Moreover, the global ST17 Salmonella Indiana strains could be divided into five distinct lineages, each of which was significantly associated with a geographical distribution. Genomic analysis revealed multiple antimicrobial resistance determinants and QRDR mutations in Chinese lineages, which almost did not occur in other global lineages. Using molecular clock analysis, we hypothesized that ST17 isolates have existed since 1956 and underwent a major population expansion from the 1980s to the 2000s and the genetic diversity started to decrease around 2011, probably due to geographical barriers, antimicrobial selective pressure and MDR, favouring the establishment of this prevalent multiple antibiotic-resistant lineage and local epidemics. CONCLUSIONS This study revealed that adaptation to antimicrobial pressure was possibly pivotal in the recent evolutionary trajectory for the clonal spread of ST17 Salmonella Indiana in China.
Collapse
Affiliation(s)
- Ruan Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Wen Ying Guo
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Ji Xing Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Min Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Lin Lin Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Xin Lei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Bi Xia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P. R. China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Chang Wen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, P. R. China
| | - Ya Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Xiao Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Liang Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
14
|
Identification of Two Sel1-like Proteins in SPI-19 of Salmonella enterica Serovar Pullorum That Can Mediate Bacterial Infection Through T3SS. Microbiol Res 2022; 262:127085. [DOI: 10.1016/j.micres.2022.127085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023]
|
15
|
Guard J. Through the Looking Glass: Genome, Phenome, and Interactome of Salmonella enterica. Pathogens 2022; 11:pathogens11050581. [PMID: 35631102 PMCID: PMC9144603 DOI: 10.3390/pathogens11050581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review revisits previous concepts on biological phenomenon contributing to the success of the Salmonella enterica subspecies I as a pathogen and expands upon them to include progress in epidemiology based on whole genome sequencing (WGS). Discussion goes beyond epidemiological uses of WGS to consider how phenotype, which is the biological character of an organism, can be correlated with its genotype to develop a knowledge of the interactome. Deciphering genome interactions with proteins, the impact of metabolic flux, epigenetic modifications, and other complex biochemical processes will lead to new therapeutics, control measures, environmental remediations, and improved design of vaccines.
Collapse
Affiliation(s)
- Jean Guard
- U. S. Department of Agriculture, Agricultural Research Service, U. S. National Poultry Research Center, 950 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
16
|
Ge H, Lin C, Xu Y, Hu M, Xu Z, Geng S, Jiao X, Chen X. A phage for the controlling of Salmonella in poultry and reducing biofilms. Vet Microbiol 2022; 269:109432. [DOI: 10.1016/j.vetmic.2022.109432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/05/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022]
|
17
|
Foster N, Tang Y, Berchieri A, Geng S, Jiao X, Barrow P. Revisiting Persistent Salmonella Infection and the Carrier State: What Do We Know? Pathogens 2021; 10:1299. [PMID: 34684248 PMCID: PMC8537056 DOI: 10.3390/pathogens10101299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
One characteristic of the few Salmonella enterica serovars that produce typhoid-like infections is that disease-free persistent infection can occur for months or years in a small number of individuals post-convalescence. The bacteria continue to be shed intermittently which is a key component of the epidemiology of these infections. Persistent chronic infection occurs despite high levels of circulating specific IgG. We have reviewed the information on the basis for persistence in S. Typhi, S. Dublin, S. Gallinarum, S. Pullorum, S. Abortusovis and also S. Typhimurium in mice as a model of persistence. Persistence appears to occur in macrophages in the spleen and liver with shedding either from the gall bladder and gut or the reproductive tract. The involvement of host genetic background in defining persistence is clear from studies with the mouse but less so with human and poultry infections. There is increasing evidence that the organisms (i) modulate the host response away from the typical Th1-type response normally associated with immune clearance of an acute infection to Th2-type or an anti-inflammatory response, and that (ii) the bacteria modulate transformation of macrophage from M1 to M2 type. The bacterial factors involved in this are not yet fully understood. There are early indications that it might be possible to remodulate the response back towards a Th1 response by using cytokine therapy.
Collapse
Affiliation(s)
- Neil Foster
- SRUC Aberdeen Campus, Craibstone Estate, Ferguson Building, Aberdeen AB21 9YA, UK
| | - Ying Tang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518055, China;
| | - Angelo Berchieri
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Via de Acesso Paulo Donato Castellane, s/n, 14884-900 Jaboticabal, SP, Brazil;
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, UK;
| |
Collapse
|
18
|
Gomez-Garcia J, Chavez-Carbajal A, Segundo-Arizmendi N, Baron-Pichardo MG, Mendoza-Elvira SE, Hernandez-Baltazar E, Hynes AP, Torres-Angeles O. Efficacy of Salmonella Bacteriophage S1 Delivered and Released by Alginate Beads in a Chicken Model of Infection. Viruses 2021; 13:v13101932. [PMID: 34696362 PMCID: PMC8539449 DOI: 10.3390/v13101932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023] Open
Abstract
Modern bacteriophage encapsulation methods based on polymers such as alginate have been developed recently for their use in phage therapy for veterinary purposes. In birds, it has been proven that using this delivery system allows the release of the bacteriophage in the small intestine, the site of infection by Salmonella spp. This work designed an approach for phage therapy using encapsulation by ionotropic gelation of the lytic bacteriophage S1 for Salmonella enterica in 2% w/v alginate beads using 2% w/v calcium chloride as crosslinking agent. This formulation resulted in beads with an average size of 3.73 ± 0.04 mm and an encapsulation efficiency of 70%. In vitro, the beads protected the bacteriophages from pH 3 and released them at higher pH. To confirm that this would protect the bacteriophages from gastrointestinal pH changes, we tested the phage infectivity in vivo assay. Using a model chicken (Gallus gallus domesticus) infected with Salmonella Enteritidis, we confirmed that after 3 h of the beads delivery, infective phages were present in the chicken’s duodenal and caecal sections. This study demonstrates that our phage formulation is an effective system for release and delivery of bacteriophage S1 against Salmonella Enteritidis with potential use in the poultry sector.
Collapse
Affiliation(s)
- Janeth Gomez-Garcia
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
| | | | - Nallelyt Segundo-Arizmendi
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
| | - Miriam G. Baron-Pichardo
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
| | - Susana E. Mendoza-Elvira
- Laboratory of Virology Postgraduate Field 1, Cuautitlán School of Higher Studies, National Autonomous University of Mexico, 1st May Avenue, Sta María Guadalupe las Torres, Cuautitlán Izcalli 54740, Mexico;
| | - Efren Hernandez-Baltazar
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
| | - Alexander P. Hynes
- Departament of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
- Correspondence: (A.P.H.); (O.T.-A.); Tel.: +1-905-525-9140 (ext. 28155) (A.P.H.); +52-777-3-29-70-00 (ext. 3373) (O.T.-A.)
| | - Oscar Torres-Angeles
- Laboratory of Microbiology and Parasitology, School of Pharmacy, Autonomous University of the State of Morelos, 1001 University Avenue, Chamilpa, Cuernavaca 62209, Mexico; (J.G.-G.); (N.S.-A.); (M.G.B.-P.); (E.H.-B.)
- Correspondence: (A.P.H.); (O.T.-A.); Tel.: +1-905-525-9140 (ext. 28155) (A.P.H.); +52-777-3-29-70-00 (ext. 3373) (O.T.-A.)
| |
Collapse
|
19
|
Vaid RK, Thakur Z, Anand T, Kumar S, Tripathi BN. Comparative genome analysis of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum decodes strain specific genes. PLoS One 2021; 16:e0255612. [PMID: 34411120 PMCID: PMC8375982 DOI: 10.1371/journal.pone.0255612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG) are the etiological agents of pullorum disease (PD) and fowl typhoid (FT) respectively, which cause huge economic losses to poultry industry especially in developing countries including India. Vaccination and biosecurity measures are currently being employed to control and reduce the S. Gallinarum infections. High endemicity, poor implementation of hygiene and lack of effective vaccines pose challenges in prevention and control of disease in intensively maintained poultry flocks. Comparative genome analysis unravels similarities and dissimilarities thus facilitating identification of genomic features that aids in pathogenesis, niche adaptation and in tracing of evolutionary history. The present investigation was carried out to assess the genotypic differences amongst S.enterica serovar Gallinarum strains including Indian strain S. Gallinarum Sal40 VTCCBAA614. The comparative genome analysis revealed an open pan-genome consisting of 5091 coding sequence (CDS) with 3270 CDS belonging to core-genome, 1254 CDS to dispensable genome and strain specific genes i.e. singletons ranging from 3 to 102 amongst the analyzed strains. Moreover, the investigated strains exhibited diversity in genomic features such as virulence factors, genomic islands, prophage regions, toxin-antitoxin cassettes, and acquired antimicrobial resistance genes. Core genome identified in the study can give important leads in the direction of design of rapid and reliable diagnostics, and vaccine design for effective infection control as well as eradication. Additionally, the identified genetic differences among the S. enterica serovar Gallinarum strains could be used for bacterial typing, structure based inhibitor development by future experimental investigations on the data generated.
Collapse
Affiliation(s)
- Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Sanjay Kumar
- Bacteriology Laboratory, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | | |
Collapse
|
20
|
Tracking Salmonella enterica by whole genome sequencing of isolates recovered from broiler chickens in a poultry production system. Int J Food Microbiol 2021; 350:109246. [PMID: 34034079 DOI: 10.1016/j.ijfoodmicro.2021.109246] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 01/12/2023]
Abstract
Salmonella enterica is a major cause of foodborne diseases, and is also an important pathogenic bacterium in poultry industry. Whole genome sequencing (WGS) has become a crucial molecular typing technology used for the surveillance of the pathogenic bacteria. In the present study, we adopted WGS for tracking transmission of S. enterica in the production chain of broiler chickens. A total of 74 S. enterica strains were isolated from the different steps of breeding and slaughtering in a large production enterprise in Sichuan Province, China. The isolation rate of Salmonella was the highest in procedure of defeathering (50.0%) and evisceration (36.7%). Serotype identification showed that 74 Salmonella isolates included 7 serotypes, among which Mbandaka accounted for the highest proportions (35.1%). WGS revealed that 74 strains belonged to 7 different sequence types (STs), as well as 7 different ribosomal STs and 35 core genome STs. cgMLST-based Minimum Spanning Trees and phylogenetic tree based on the SNPs indicated that three serotypes, Mbandaka, Indiana and Kentucky, could be clonally transmitted between broiler farm and slaughterhouse. Heterogeneous resistant phenotypes and genotypes were found in two serotypes, Indiana and Kentucky. Our study indicated WGS in an accurate tool for molecular typing of S. enterica. Routine surveillance of S. enterica in the production chain of broiler chickens is needed.
Collapse
|
21
|
Cui L, Liu Q, Jiang Z, Song Y, Yi S, Qiu J, Hao G, Sun S. Characteristics of Salmonella From Chinese Native Chicken Breeds Fed on Conventional or Antibiotic-Free Diets. Front Vet Sci 2021; 8:607491. [PMID: 33834046 PMCID: PMC8021795 DOI: 10.3389/fvets.2021.607491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella is a common food-borne Gram-negative pathogen with multiple serotypes. Pullorum disease, caused by Salmonella Pullorum, seriously threatens the poultry industry. Many previous studies were focused on the epidemiological characteristics of Salmonella infections in conventional antibiotic use poultry. However, little is known about Salmonella infections in chicken flocks fed on antibiotic-free diets. Herein, we investigated and compared Salmonella infections in three Chinese native breeders fed on antibiotic-free diets, including the Luhua, Langya, and Qingjiaoma chickens, and one conventional breeder, the Bairi chicken, via analyzing 360 dead embryos in 2019. The results showed that the main Salmonella serotypes detected in a total of 155 isolates were S. Pullorum (82.6%) and S. Enteritidis (17.4%). Coinfection with two serotypes of Salmonella was specifically found in Bairi chicken. The sequence type (ST) in S. Pullorum was ST92 (n = 96) and ST2151 (n = 32), whereas only ST11 (n = 27) was found in S. Enteritidis. The Salmonella isolates from three breeder flocks fed on antibiotic-free diets exhibited phenotypic heterogeneity with a great variety of drug resistance spectrum. Most of the isolates among three chicken breeds Luhua (64.9%, 50/77), Langya (60%, 12/20) and Qingjiaoma (58.3%, 7/12) fed on antibiotic-free diets were resistant to only one antibiotic (erythromycin), whereas the rate of resistance to one antibiotic in conventional Bairi chicken isolates was only 4.3% (2/46). The multidrug-resistance rate in Salmonella isolates from layer flocks fed on antibiotic-free diets (20.2%, 22/109) was significantly (P < 0.0001) lower than that from chickens fed on conventional diets (93.5%, 43/46). However, high rate of resistance to erythromycin (97.4%~100%) and streptomycin (26%~41.7%) were also found among three breeder flocks fed on antibiotic-free diets, indicating resistance to these antibiotics likely spread before antibiotic-free feeding in poultry farms. The findings of this study supplement the epidemiological data of salmonellosis and provide an example of the characteristics of Salmonella in the chicken flocks without direct antibiotic selective pressure.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Qingxiao Liu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Zhiyu Jiang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yan Song
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Shoujing Yi
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Jianhua Qiu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
22
|
Abstract
A balanced gut microbiota contributes to health, but the mechanisms maintaining homeostasis remain elusive. Microbiota assembly during infancy is governed by competition between species and by environmental factors, termed habitat filters, that determine the range of successful traits within the microbial community. These habitat filters include the diet, host-derived resources, and microbiota-derived metabolites, such as short-chain fatty acids. Once the microbiota has matured, competition and habitat filtering prevent engraftment of new microbes, thereby providing protection against opportunistic infections. Competition with endogenous Enterobacterales, habitat filtering by short-chain fatty acids, and a host-derived habitat filter, epithelial hypoxia, also contribute to colonization resistance against Salmonella serovars. However, at a high challenge dose, these frank pathogens can overcome colonization resistance by using their virulence factors to trigger intestinal inflammation. In turn, inflammation increases the luminal availability of host-derived resources, such as oxygen, nitrate, tetrathionate, and lactate, thereby creating a state of abnormal habitat filtering that enables the pathogen to overcome growth inhibition by short-chain fatty acids. Thus, studying the process of ecosystem invasion by Salmonella serovars clarifies that colonization resistance can become weakened by disrupting host-mediated habitat filtering. This insight is relevant for understanding how inflammation triggers dysbiosis linked to noncommunicable diseases, conditions in which endogenous Enterobacterales expand in the fecal microbiota using some of the same growth-limiting resources required by Salmonella serovars for ecosystem invasion. In essence, ecosystem invasion by Salmonella serovars suggests that homeostasis and dysbiosis simply represent states where competition and habitat filtering are normal or abnormal, respectively.
Collapse
|
23
|
Wen J, Gou H, Liu J, Zhou H, Lin Q, Qu X, Chen K, Wang S, Shen H, Liao M, Zhang J. A one-step closed-tube enzyme-activated blocked probe assay based on SNP for rapid detection of Salmonella Pullorum. Poult Sci 2020; 100:1059-1067. [PMID: 33518064 PMCID: PMC7858149 DOI: 10.1016/j.psj.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/02/2022] Open
Abstract
Salmonella enterica serovar Gallinarum biovars Pullorum (S. Pullorum) is an infectious bacterial pathogen in the poultry industry that causes systemic pullorum disease. This disease causes great losses in terms of the clinical production and quality of chicken products in breeding farms. However, an acknowledged usable rapid detection method for its specific identification has not been reported, and it is generally difficult to distinguish from fowl typhoid caused by Salmonella enterica serovar Gallinarum biovars Gallinarum. The development of a specific and rapid detection method for this pathogen is therefore needed. In the present study, we targeted the single-nucleotide mutation position 237 of the S. Pullorum rfbS gene to develop an enzyme-activated blocked probe for its clinical rapid detection. The method displayed robust specificity and reproducibility, and it achieved minimal detection limits of 21 copies/μL of copy number and 4.53 pg/μL of genomic DNA. Compared with traditional identification and PCR methods, this method performed better for the detection of 100 clinical actual samples and without false negative results. The entire process can be accomplished in a 1-step closed-tube operation, overcomes the difficulties currently associated with S. Pullorum detection, and provides a specific and rapid method with broad application potential for SNP detection.
Collapse
Affiliation(s)
- Junping Wen
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Liu
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hualiang Zhou
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen 518054, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaojun Wang
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory For Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Shen H, Wen J, Liao X, Lin Q, Zhang J, Chen K, Wang S, Zhang J. A Sensitive, Highly Specific Novel Isothermal Amplification Method Based on Single-Nucleotide Polymorphism for the Rapid Detection of Salmonella Pullorum. Front Microbiol 2020; 11:560791. [PMID: 33117307 PMCID: PMC7575712 DOI: 10.3389/fmicb.2020.560791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
S. Pullorum (Salmonella enterica serovar Gallinarum biovars Pullorum) is an infectious pathogen that causes the acute systemic disease called Pullorum disease in poultry. This disease causes huge losses to the poultry industry and seriously affects the yield and quality of the chicken product. It is not easily distinguishable with fowl typhoid caused by S. Gallinarum (Salmonella enterica serovar Gallinarum biovars Gallinarum), hence the development of a specific and rapid detection method for this pathogen is highly desired. In this study, we propose a novel single-nucleotide polymorphism (SNP) detection strategy termed loop primer probe-introduced loop-mediated isothermal amplification (LP-LAMP) for S. Pullorum detection. Based on the original primer sets, we targeted the nucleotide position 237 of the rfbS gene sequence to design a new modified loop-primer probe with a ribonucleotide insertion, where activity of the enzyme ribonuclease H2 (RNase H2) is only activated when the probe is perfectly complementary, leading to the hydrolytic release of a quencher moiety and thus an amplified signal. The method exhibits robust specificity and a low detection limit as the copy number and genomic DNA is 21 copies/μL and 4.92 pg/μL, respectively. This method showed great performance in real sample testing of 130 samples of embryos, livers, and anal swabs from chickens in poultry farms. The experimental results are mainly consistent with traditional identification methods and a PCR method reported in the past. However, the other two methods still contain some false negative results, while our method is without miss detection. The entire closed-tube reaction process can be accomplished within 40 min at a constant temperature (61°C) without the need for expensive instruments or a complicated operation. The LP-LAMP strategy established in this study not only overcomes the existing difficulties of S. Pullorum rapid detection, it also provides a novel, sensitive, and highly specific detection platform for SNPs that is suitable for clinical use.
Collapse
Affiliation(s)
- Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China; Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Junping Wen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinmeng Liao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China; Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Guangdong, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shaojun Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture; Guangdong Laboratory for Lingnan Modern Agriculture; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
The SPI-19 encoded T6SS is required for Salmonella Pullorum survival within avian macrophages and initial colonization in chicken dependent on inhibition of host immune response. Vet Microbiol 2020; 250:108867. [PMID: 33010573 DOI: 10.1016/j.vetmic.2020.108867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
SalmonellaPathogenicity Island 19 (SPI-19) encoded type VI secretion system (T6SS) is a virulence factor present in few serotypes of S. enterica, including S. Dublin, S. Gallinarum and S. Pullorum. Comparative genomic sequence analysis revealed that the gene clusters of SPI-19 showed high homology to T6SS2 locus from avian pathogenic Escherichia coli, implying the similar T6SS locus is potentially related to the host adaption of both pathogens. Deletion of SPI-19 in S. Pullorum caused the dramatically decreased invasion into chicken LMH epithelial cells and HD-11 macrophages, and affected survival of Salmonella within both cells. In addition, deletion of SPI-19 caused the decreased colonization of S. Pullorum in chicken liver, spleen, ileum, and cecum at the initial infection stage, and induced rapid bacterial clearance. However, the SPI-19/T6SS had no effect on bacterial killing activity and induction of cytotoxicity to HD-11 macrophages. Further analysis demonstrated SPI-19/T6SS was involved in mediating the inhibition of host Th1 and Th2 immune responses, resulting in persistent colonization of S. Pullorum in hosts.
Collapse
|
26
|
AvrA Exerts Inhibition of NF-κB Pathway in Its Naïve Salmonella Serotype through Suppression of p-JNK and Beclin-1 Molecules. Int J Mol Sci 2020; 21:ijms21176063. [PMID: 32842467 PMCID: PMC7504150 DOI: 10.3390/ijms21176063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/02/2023] Open
Abstract
Avian salmonellosis caused by Salmonella enterica serovar Enteritidis (S. Enteritidis) and Pullorum (S. Pullorum) remains a big threat to the poultry industry and public hygiene. AvrA is an effector involved in inhibiting inflammation. Compared to AvrA from S. Enteritidis (SE-AvrA), the AvrA from S. Pullorum (SP-AvrA) lacks ten amino acids at the C-terminal. In this study, we compared the anti-inflammatory response induced by SP-AvrA to that of SE-AvrA. Transient expression of SP-AvrA in epithelial cells resulted in significantly weaker inhibition of NF-κB pathway activation when treated with TNF-α compared to the inhibition by SE-AvrA. SP-AvrA expression in the S. Enteritidis resulted in weaker suppression of NF-κB pathway in infected HeLa cells compared to SE-AvrA expression in the cells, while SP-AvrA expressed in S. Pullorum C79-13 suppressed NF-κB activation in infected HeLa and Caco 2 BBE cells to a greater extent than did SE-AvrA because of the higher expression of SP-AvrA than SE-AvrA in S. Pullorum. Further analysis demonstrated that the inhibition of NF-κB pathway in Salmonella-infected cells corresponded to the downregulation of the p-JNK and Beclin-1 protein molecules. Our study reveals that AvrA modifies the anti-inflammatory response in a manner dependent on the Salmonella serotype through inhibition of NF-κB pathway.
Collapse
|
27
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Malorny B, Ribeiro Duarte AS, Torpdahl M, da Silva Felício MT, Guerra B, Rossi M, Herman L. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J 2019; 17:e05898. [PMID: 32626197 PMCID: PMC7008917 DOI: 10.2903/j.efsa.2019.5898] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This Opinion considers the application of whole genome sequencing (WGS) and metagenomics for outbreak investigation, source attribution and risk assessment of food‐borne pathogens. WGS offers the highest level of bacterial strain discrimination for food‐borne outbreak investigation and source‐attribution as well as potential for more precise hazard identification, thereby facilitating more targeted risk assessment and risk management. WGS improves linking of sporadic cases associated with different food products and geographical regions to a point source outbreak and can facilitate epidemiological investigations, allowing also the use of previously sequenced genomes. Source attribution may be favoured by improved identification of transmission pathways, through the integration of spatial‐temporal factors and the detection of multidirectional transmission and pathogen–host interactions. Metagenomics has potential, especially in relation to the detection and characterisation of non‐culturable, difficult‐to‐culture or slow‐growing microorganisms, for tracking of hazard‐related genetic determinants and the dynamic evaluation of the composition and functionality of complex microbial communities. A SWOT analysis is provided on the use of WGS and metagenomics for Salmonella and Shigatoxin‐producing Escherichia coli (STEC) serotyping and the identification of antimicrobial resistance determinants in bacteria. Close agreement between phenotypic and WGS‐based genotyping data has been observed. WGS provides additional information on the nature and localisation of antimicrobial resistance determinants and on their dissemination potential by horizontal gene transfer, as well as on genes relating to virulence and biological fitness. Interoperable data will play a major role in the future use of WGS and metagenomic data. Capacity building based on harmonised, quality controlled operational systems within European laboratories and worldwide is essential for the investigation of cross‐border outbreaks and for the development of international standardised risk assessments of food‐borne microorganisms.
Collapse
|