1
|
Alsalhi A. Applications of selected polysaccharides and proteins in dentistry: A review. Int J Biol Macromol 2024; 260:129215. [PMID: 38185301 DOI: 10.1016/j.ijbiomac.2024.129215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
In the last ten years, remarkable characteristics and a variety of functionalities have been created in biopolymeric materials for clinical dental applications. This review gives an overview of current knowledge of natural biopolymers (biological macromolecules) in terms of structural, functional, and property interactions. Natural biopolymers such as polysaccharides (chitosan, bacterial cellulose, hyaluronic acid, and alginate) and polypeptides (collagen and silk fibroin) have been discussed for dental uses. These biopolymers exhibit excellent properties alone and when employed with other composite molecules making them ideal for treatment of periodontitis, endodontics, dental pulp regeneration and oral wound healing. These biopolymers together with the composite materials exhibit better biocompatibility, inertness, elasticity and flexibility which makes them a leading candidate to be used for other dental applications like caries management, oral appliances, dentures, dental implants and oral surgeries.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia.
| |
Collapse
|
2
|
Atia GAN, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Attia HAN, Barai P, Nady N, Kodous AS, Barai HR. New Challenges and Prospective Applications of Three-Dimensional Bioactive Polymeric Hydrogels in Oral and Craniofacial Tissue Engineering: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:702. [PMID: 37242485 PMCID: PMC10224377 DOI: 10.3390/ph16050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Paritosh Barai
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh
| | - Norhan Nady
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab, Alexandria P.O. Box 21934, Egypt
| | - Ahmad S. Kodous
- Department of Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo P.O. Box 13759, Egypt
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Mavinga M, Palmier M, Rémy M, Jeannière C, Lenoir S, Rey S, Saint-Marc M, Alonso F, Génot E, Thébaud N, Chevret E, Mournetas V, Rousseau B, Boiziau C, Boeuf H. The Journey of SCAPs (Stem Cells from Apical Papilla), from Their Native Tissue to Grafting: Impact of Oxygen Concentration. Cells 2022; 11:cells11244098. [PMID: 36552862 PMCID: PMC9776846 DOI: 10.3390/cells11244098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Tissue engineering strategies aim at characterizing and at optimizing the cellular component that is combined with biomaterials, for improved tissue regeneration. Here, we present the immunoMap of apical papilla, the native tissue from which SCAPs are derived. We characterized stem cell niches that correspond to a minority population of cells expressing Mesenchymal stromal/Stem Cell (CD90, CD105, CD146) and stemness (SSEA4 and CD49f) markers as well as endothelial cell markers (VWF, CD31). Based on the colocalization of TKS5 and cortactin markers, we detected migration-associated organelles, podosomes-like structures, in specific regions and, for the first time, in association with stem cell niches in normal tissue. From six healthy teenager volunteers, each with two teeth, we derived twelve cell banks, isolated and amplified under 21 or 3% O2. We confirmed a proliferative advantage of all banks when cultured under 3% versus 21% O2. Interestingly, telomerase activity was similar to that of the highly proliferative hiPSC cell line, but unrelated to O2 concentration. Finally, SCAPs embedded in a thixotropic hydrogel and implanted subcutaneously in immunodeficient mice were protected from cell death with a slightly greater advantage for cells preconditioned at 3% O2.
Collapse
Affiliation(s)
- Marine Mavinga
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | | | - Murielle Rémy
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | | | - Solène Lenoir
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Sylvie Rey
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | | | - Florian Alonso
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Elisabeth Génot
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Noélie Thébaud
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
| | - Edith Chevret
- Univ. Bordeaux, INSERM, BRIC, U1312, F-33000 Bordeaux, France
| | | | - Benoit Rousseau
- Univ. Bordeaux, Animal Facility A2, Service Commun des Animaleries, F-33000 Bordeaux, France
| | | | - Helene Boeuf
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
4
|
Leite ML, de Oliveira Ribeiro RA, Soares DG, Hebling J, de Souza Costa CA. Poly(Caprolactone)-Aligned Nanofibers Associated with Fibronectin-loaded Collagen Hydrogel as a Potent Bioactive Scaffold for Cell-Free Regenerative Endodontics. Int Endod J 2022; 55:1359-1371. [PMID: 36036876 DOI: 10.1111/iej.13823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
AIM Guided tissue regeneration has been considered a promising strategy to replace conventional endodontic therapy of teeth with incomplete root formation. Therefore, the objective of this study was to develop a tubular scaffold (TB-SC) with poly (caprolactone)-aligned nanofibers associated with a fibronectin-loaded collagen hydrogel and assess the pulp regeneration potential mediated by human apical papilla cells (hAPCs) using an in vitro model of teeth with incomplete root formation. METHODOLOGY Aligned nanofiber strips based on 10% poly(caprolactone) (PCL) were synthesized with the electrospinning technique to produce the TB-SCs. These were submitted to different treatments, according to the following groups: TB-SC (negative control): TB-SC without treatment; TB-SC+FN (positive control): TB-SC coated with 10 μg/mL of fibronectin; TB-SC+H: TB-SC associated with collagen hydrogel; TB-SC+HFN: TB-SC associated with fibronectin-loaded collagen hydrogel. Then, the biomaterials were inserted into cylindrical devices to mimic the regenerative therapy of teeth with incomplete root formation. The hAPCs were seeded on the upper surface of the TB-SCs associated or not with any treatment, and cell migration/proliferation and the gene expression of markers related to pulp regeneration (ITGA5, ITGAV, COL1A1, and COL1A3) were evaluated. The data were submitted to ANOVA/Tukey's tests (α=5 %). RESULTS Higher values of cell migration/proliferation and gene expression of all markers tested were observed in groups TB-SC+FN, TB-SC+H, and TB-SC+HFN compared with the TB-SC group (p<0.05). The hAPCs in the TB-SC+HFN group showed the highest values of cell proliferation and gene expression of COL1A1 and COL3A1 (p<0.05), as well as superior cell migration results to groups TB-SC and TB-SC+H (p<0.05). CONCLUSION Aligned nanofiber scaffolds associated with the fibronectin-loaded collagen hydrogel enhanced the migration and proliferation of hAPCs, and gene expression of pulp regeneration markers. Therefore, the use of these biomaterials may be considered an interesting strategy for regenerative pulp therapy of teeth with incomplete root formation.
Collapse
Affiliation(s)
- Maria Luísa Leite
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia. 2199 Wesbrook Mall, Vancouver, BC, Canada
| | - Rafael Antônio de Oliveira Ribeiro
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, Univ. Estadual Paulista - UNESP. 1680 Humaitá Street, Araraquara, SP, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo. 9-75 Alameda Dr. Octávio Pinheiro Brisolla Street, Bauru, SP, Brazil
| | - Josimeri Hebling
- Departament of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, São Paulo State University (Unesp). 1680 Humaitá Street, Araraquara, SP, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, São Paulo State University (Unesp). Humaitá Street, 1680, Araraquara, SP, Brazil
| |
Collapse
|
5
|
Lin GSS, Cher CY, Goh YH, Chan DZK, Karobari MI, Lai JCH, Noorani TY. An Insight into the Role of Marine Biopolymer Alginate in Endodontics: A Review. Mar Drugs 2022; 20:md20080539. [PMID: 36005542 PMCID: PMC9409890 DOI: 10.3390/md20080539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023] Open
Abstract
Alginate is a natural marine biopolymer that has been widely used in biomedical applications, but research on its use as an endodontic material is still sparse in the literature. This pioneer review aims to summarize the emerging roles of alginate and to outline its prospective applications as a core biomaterial in endodontics. Ten electronic databases and five textbooks were used to perform a search of English-language literature on the use of alginate in endodontics published between January 1980 and June 2022. The risk of bias (RoB) of each included study was assessed using the Office of Health Assessment and Translation (OHAT) tool. Subsequently, studies were categorized into three tiers to represent the overall risk. Qualitative analysis was performed, and the articles were sorted into different thematic categories. An initial search yielded a total of 1491 articles, but only 13 articles were chosen. For most domains, all the studies were rated with ‘probably low’ or ‘definitely low’ RoB, except for domains 2 and 6. All included studies fall in the Tier 1 category and were either in vitro, in vivo, or ex vivo. Four thematic categories were identified: endodontic regeneration, intracanal medicament, filing material, and chelating agent. Based on the available evidence, alginate has emerged as a cell carrier and scaffold in regenerative endodontics, a microcapsule delivery system for intracanal medicaments, a chelating agent reinforcing material, and a root canal sealer. More well-designed experiments and clinical trials are needed to warrant the promising advent of this hydrogel-based biomaterial.
Collapse
Affiliation(s)
- Galvin Sim Siang Lin
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
- Conservative Dentistry Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (G.S.S.L.); (T.Y.N.); Tel.: +604-429-8529 (G.S.S.L.)
| | - Chia Yee Cher
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
| | - Yong Hong Goh
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
| | - Daryl Zhun Kit Chan
- Department of Dental Materials, Faculty of Dentistry, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong 08100, Kedah, Malaysia
| | - Mohmed Isaqali Karobari
- Centre for Multidisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Restorative Dentistry & Endodontics, Faculty of Dentistry, University of Puthisastra, Phnom Penh 12211, Cambodia
| | - Josephine Chang Hui Lai
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Tahir Yusuf Noorani
- Conservative Dentistry Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (G.S.S.L.); (T.Y.N.); Tel.: +604-429-8529 (G.S.S.L.)
| |
Collapse
|
6
|
Terranova L, Louvrier A, Hébraud A, Meyer C, Rolin G, Schlatter G, Meyer F. Highly Structured 3D Electrospun Conical Scaffold: A Tool for Dental Pulp Regeneration. ACS Biomater Sci Eng 2021; 7:5775-5787. [PMID: 34846849 DOI: 10.1021/acsbiomaterials.1c00900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New procedures envisioned for dental pulp regeneration after pulpectomy include cell homing strategy. It involves host endogenous stem cell recruitment and activation. To meet this cell-free approach, we need to design a relevant scaffold to support cell migration from tissues surrounding the dental root canal. A composite membrane made of electrospun poly(lactic acid) nanofibers and electrosprayed polycaprolactone with tannic acid (TA) microparticles which mimics the architecture of the extracellular matrix was first fabricated. After rolling the membrane in the form of a 3D conical scaffold and subsequently coating it with gelatin, it can be directly inserted into the root canal. The porous morphology of the construct was characterized by SEM at different length scales. It was shown that TA was released from the 3D conical scaffold after 2 days in PBS at 37 °C. Biocompatibility studies were first assessed by seeding human dental pulp stem cells (DPSCs) on planar membranes coated or not coated with gelatin to compare the surfaces. After 24 h, the results highlighted that the gelatin-coating increased the membrane biocompatibility and cell viability. Similar DPSC morphology and proliferation on both membrane surfaces were observed. The culture of DPSCs on conical scaffolds showed cell colonization in the whole cone volume, proving that the architecture of the conical scaffold was suitable for cell migration.
Collapse
Affiliation(s)
- Lisa Terranova
- Biomaterials and Bioengineering, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, Strasbourg 67000, France.,Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Aurélien Louvrier
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon F-25000, France.,Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon F-25000, France
| | - Anne Hébraud
- Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Christophe Meyer
- Service de chirurgie maxillo-faciale, stomatologie et odontologie hospitalière, CHU Besançon, Besançon F-25000, France
| | - Gwenaël Rolin
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon F-25000, France.,Inserm CIC-1431, CHU Besançon, Besançon F-25000, France
| | - Guy Schlatter
- Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé ICPEES UMR 7515, CNRS, Strasbourg 67000, France
| | - Florent Meyer
- Biomaterials and Bioengineering, Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Unité mixte de recherche 1121, Strasbourg 67000, France.,Pôle de médecine et chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
7
|
Patil VA, Masters KS. Engineered Collagen Matrices. Bioengineering (Basel) 2020; 7:E163. [PMID: 33339157 PMCID: PMC7765577 DOI: 10.3390/bioengineering7040163] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Collagen is the most abundant protein in mammals, accounting for approximately one-third of the total protein in the human body. Thus, it is a logical choice for the creation of biomimetic environments, and there is a long history of using collagen matrices for various tissue engineering applications. However, from a biomaterial perspective, the use of collagen-only scaffolds is associated with many challenges. Namely, the mechanical properties of collagen matrices can be difficult to tune across a wide range of values, and collagen itself is not highly amenable to direct chemical modification without affecting its architecture or bioactivity. Thus, many approaches have been pursued to design scaffold environments that display critical features of collagen but enable improved tunability of physical and biological characteristics. This paper provides a brief overview of approaches that have been employed to create such engineered collagen matrices. Specifically, these approaches include blending of collagen with other natural or synthetic polymers, chemical modifications of denatured collagen, de novo creation of collagen-mimetic chains, and reductionist methods to incorporate collagen moieties into other materials. These advancements in the creation of tunable, engineered collagen matrices will continue to enable the interrogation of novel and increasingly complex biological questions.
Collapse
Affiliation(s)
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
8
|
Geanaliu-Nicolae RE, Andronescu E. Blended Natural Support Materials-Collagen Based Hydrogels Used in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5641. [PMID: 33321865 PMCID: PMC7764196 DOI: 10.3390/ma13245641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/17/2023]
Abstract
Due to their unique properties-the are biocompatible, easily accessible, and inexpensive with programmable properties-biopolymers are used in pharmaceutical and biomedical research, as well as in cosmetics and food. Collagen is one of the most-used biomaterials in biomedicine, being the most abundant protein in animals with a triple helices structure, biocompatible, biomimetic, biodegradable, and hemostatic. Its disadvantages are its poor mechanical and thermal properties and enzymatic degradation. In order to solve this problem and to use its benefits, collagen can be used blended with other biomaterials such as alginate, chitosan, and cellulose. The purpose of this review article is to offer a brief paper with updated information on blended collagen-based formulations and their potential application in biomedicine.
Collapse
Affiliation(s)
- Ruxandra-Elena Geanaliu-Nicolae
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | | |
Collapse
|
9
|
Li Y, Bian M, Zhou Z, Wu X, Ge X, Xiao T, Yu J. Circular RNA SIPA1L1 regulates osteoblastic differentiation of stem cells from apical papilla via miR-204-5p/ALPL pathway. Stem Cell Res Ther 2020; 11:461. [PMID: 33138854 PMCID: PMC7607702 DOI: 10.1186/s13287-020-01970-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteogenesis is a complex biological process which requires the coordination of multiple molecular mechanisms. This research aimed to explore the biological role and underlying regulatory mechanism of circSIPA1L1 during the osteogenic differentiation of stem cells from apical papilla (SCAPs). METHODS EdU retention assay, flow cytometry assay, and CCK-8 assay were used to evaluate the proliferation capacity of SCAPs. Western blot assay, alkaline phosphatase (ALP), and alizarin red staining (ARS) were conducted to investigate the biological roles of circSIPA1L1 and miR-204-5p. Fluorescence in situ hybridization was applied for circSIPA1L1 localization. Dual-luciferase reporter assay was performed to prove the interaction of circSIPA1L1 and miR-204-5p. RESULTS CircSIPA1L1 had no significant effect on the proliferative capacity of SCAPs. CircSIPA1L1 promotes osteogenic differentiation of SCAPs by serving as a miRNA sponge for miR-204-5p. Either knockdown of circSIPA1L1 or overexpression of miR-204-5p significantly suppresses osteogenic differentiation of SCAPs. CONCLUSIONS CircSIPA1L1 upregulates ALPL through targeting miR-204-5p and promotes the osteogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- Yuzhi Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minxia Bian
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhou Zhou
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingyun Ge
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Tong Xiao
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Haugen HJ, Basu P, Sukul M, Mano JF, Reseland JE. Injectable Biomaterials for Dental Tissue Regeneration. Int J Mol Sci 2020; 21:E3442. [PMID: 32414077 PMCID: PMC7279163 DOI: 10.3390/ijms21103442] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Injectable biomaterials scaffolds play a pivotal role for dental tissue regeneration, as such materials are highly applicable in the dental field, particularly when compared to pre-formed scaffolds. The defects in the maxilla-oral area are normally small, confined and sometimes hard to access. This narrative review describes different types of biomaterials for dental tissue regeneration, and also discusses the potential use of nanofibers for dental tissues. Various studies suggest that tissue engineering approaches involving the use of injectable biomaterials have the potential of restoring not only dental tissue function but also their biological purposes.
Collapse
Affiliation(s)
- Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Poulami Basu
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Mousumi Sukul
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| |
Collapse
|
11
|
Isolation and Culture of Human Stem Cells from Apical Papilla under Low Oxygen Concentration Highlight Original Properties. Cells 2019; 8:cells8121485. [PMID: 31766521 PMCID: PMC6952825 DOI: 10.3390/cells8121485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells isolated from the apical papilla of wisdom teeth (SCAPs) are an attractive model for tissue repair due to their availability, high proliferation rate and potential to differentiate in vitro towards mesodermal and neurogenic lineages. Adult stem cells, such as SCAPs, develop in stem cell niches in which the oxygen concentration [O2] is low (3–8% compared with 21% of ambient air). In this work, we evaluate the impact of low [O2] on the physiology of SCAPs isolated and processed in parallel at 21% or 3% O2 without any hyperoxic shock in ambient air during the experiment performed at 3% O2. We demonstrate that SCAPs display a higher proliferation capacity at 3% O2 than in ambient air with elevated expression levels of two cell surface antigens: the alpha-6 integrin subunit (CD49f) and the embryonic stem cell marker (SSEA4). We show that the mesodermal differentiation potential of SCAPs is conserved at early passage in both [O2], but is partly lost at late passage and low [O2], conditions in which SCAPs proliferate efficiently without any sign of apoptosis. Unexpectedly, we show that autophagic flux is active in SCAPs irrespective of [O2] and that this process remains high in cells even after prolonged exposure to 3% O2.
Collapse
|
12
|
Kérourédan O, Hakobyan D, Rémy M, Ziane S, Dusserre N, Fricain JC, Delmond S, Thébaud NB, Devillard R. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication 2019; 11:045002. [PMID: 31151125 DOI: 10.1088/1758-5090/ab2620] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascularization plays a crucial role in bone formation and regeneration process. Development of a functional vasculature to improve survival and integration of tissue-engineered bone substitutes remains a major challenge. Biofabrication technologies, such as bioprinting, have been introduced as promising alternatives to overcome issues related to lack of prevascularization and poor organization of vascular networks within the bone substitutes. In this context, this study aimed at organizing endothelial cells in situ, in a mouse calvaria bone defect, to generate a prevascularization with a defined architecture, and promote in vivo bone regeneration. Laser-assisted bioprinting (LAB) was used to pattern Red Fluorescent Protein-labeled endothelial cells into a mouse calvaria bone defect of critical size, filled with collagen containing mesenchymal stem cells and vascular endothelial growth factor. LAB technology allowed safe and controlled in vivo printing of different cell patterns. In situ printing of endothelial cells gave rise to organized microvascular networks into bone defects. At two months, vascularization rate (vr) and bone regeneration rate (br) showed statistically significant differences between the 'random seeding' condition and both 'disc' pattern (vr = +203.6%; br = +294.1%) and 'crossed circle' pattern (vr = +355%; br = +602.1%). These results indicate that in vivo LAB is a valuable tool to introduce in situ prevascularization with a defined configuration and promote bone regeneration.
Collapse
Affiliation(s)
- Olivia Kérourédan
- INSERM, Bioingénierie Tissulaire, U1026, F-33076 Bordeaux, France. Université de Bordeaux, Bioingénierie Tissulaire, U1026, F-33076 Bordeaux, France. CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, F-33076 Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kérourédan O, Bourget JM, Rémy M, Crauste-Manciet S, Kalisky J, Catros S, Thébaud NB, Devillard R. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:28. [PMID: 30747358 DOI: 10.1007/s10856-019-6230-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Development of a microvasculature into tissue-engineered bone substitutes represents a current challenge. Seeding of endothelial cells in an appropriate environment can give rise to a capillary-like network to enhance prevascularization of bone substitutes. Advances in biofabrication techniques, such as bioprinting, could allow to precisely define a pattern of endothelial cells onto a biomaterial suitable for in vivo applications. The aim of this study was to produce a microvascular network following a defined pattern and preserve it while preparing the surface to print another layer of endothelial cells. We first optimise the bioink cell concentration and laser printing parameters and then develop a method to allow endothelial cells to survive between two collagen layers. Laser-assisted bioprinting (LAB) was used to pattern lines of tdTomato-labeled endothelial cells cocultured with mesenchymal stem cells seeded onto a collagen hydrogel. Formation of capillary-like structures was dependent on a sufficient local density of endothelial cells. Overlay of the pattern with collagen I hydrogel containing vascular endothelial growth factor (VEGF) allowed capillary-like structures formation and preservation of the printed pattern over time. Results indicate that laser-assisted bioprinting is a valuable technique to pre-organize endothelial cells into high cell density pattern in order to create a vascular network with defined architecture in tissue-engineered constructs based on collagen hydrogel.
Collapse
Affiliation(s)
- Olivia Kérourédan
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France.
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France.
- CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, Place Amélie Raba Léon, F-33076, Bordeaux, France.
| | - Jean-Michel Bourget
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Energie, matériaux et télécommunication, Institut National de Recherche Scientifique, Varenne, QC, Canada
| | - Murielle Rémy
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
| | - Sylvie Crauste-Manciet
- Université de Bordeaux, ARNA Laboratory, team ChemBioPharm, U1212 INSERM - UMR 5320 CNRS, 146 rue Léo Saignat, F-33076, Bordeaux, France
- CHU de Bordeaux, Pharmacie du Groupe Hospitalier Sud, Avenue de Magellan, F-33604, Pessac, France
| | - Jérôme Kalisky
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
| | - Sylvain Catros
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, Place Amélie Raba Léon, F-33076, Bordeaux, France
| | - Noëlie B Thébaud
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, Place Amélie Raba Léon, F-33076, Bordeaux, France
| | - Raphaël Devillard
- INSERM, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- Université de Bordeaux, Bioingénierie Tissulaire, U1026, 146 rue Léo Saignat, F-33076, Bordeaux, France
- CHU de Bordeaux, Services d'Odontologie et de Santé Buccale, Place Amélie Raba Léon, F-33076, Bordeaux, France
| |
Collapse
|
14
|
Bouissil S, Pierre G, Alaoui-Talibi ZE, Michaud P, El Modafar C, Delattre C. Applications of Algal Polysaccharides and Derivatives in Therapeutic and Agricultural Fields. Curr Pharm Des 2019; 25:1187-1199. [PMID: 31465279 DOI: 10.2174/1381612825666190425162729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Recently, researchers have given more and more consideration to natural polysaccharides thanks to their huge properties such as stability, biodegradability and biocompatibility for food and therapeutics applications. METHODS a number of enzymatic and chemical processes were performed to generate bioactive molecules, such as low molecular weight fractions and oligosaccharides derivatives from algal polysaccharides. RESULTS These considerable characteristics allow algal polysaccharides and their derivatives such as low molecular weight polymers and oligosaccharides structures to have great potential to be used in lots of domains, such as pharmaceutics and agriculture etc. Conclusion: The present review describes the mains polysaccharides structures from Algae and focuses on the currents agricultural (fertilizer, bio-elicitor, stimulators, signaling molecules and activators) and pharmaceutical (wound dressing, tissues engineering and drugs delivery) applications by using polysaccharides and/or their oligosaccharides derivatives obtained by chemical, physical and enzymatic processes.
Collapse
Affiliation(s)
- Soukaina Bouissil
- Universite Cadi Ayyad, Laboratoire de Biotechnologie et Bioingenierie Moleculaire, Faculte des Sciences et Techniques, Marrakech, Morocco
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Zainab El Alaoui-Talibi
- Universite Cadi Ayyad, Laboratoire de Biotechnologie et Bioingenierie Moleculaire, Faculte des Sciences et Techniques, Marrakech, Morocco
| | - Philippe Michaud
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - C El Modafar
- Universite Cadi Ayyad, Laboratoire de Biotechnologie et Bioingenierie Moleculaire, Faculte des Sciences et Techniques, Marrakech, Morocco
| | - Cedric Delattre
- Universite Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
15
|
Adnan S, Ullah R. Top-cited Articles in Regenerative Endodontics: A Bibliometric Analysis. J Endod 2018; 44:1650-1664. [PMID: 30243658 DOI: 10.1016/j.joen.2018.07.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Bibliometric analysis is a method for quantifying the research productivity, author performance, and manuscript impact. The citation count received by a scientific article is one of the indicators of its impact within a field. The purpose of this study was to identify the 100 top-cited articles published in regenerative endodontics and to analyze their main characteristics. METHODS Thomson Reuters Web of Science was searched to retrieve the 100 most-cited articles in "regenerative endodontics" published from January 1991 to February 2018 in the category of "Dentistry, Oral Surgery and Medicine." Among the included top-cited articles, the following parameters were recorded and analyzed: journal name, authors, institution, country, publication title and year, number of citations and average citations, type of study, collaborations, and key words. The data were analyzed using SPSS version 19.0 (IBM Corp, Armonk, NY) and VOS viewer software (version 1.6.7; Leiden University Center for Science and Technology Studies, Leiden, Netherlands). RESULTS Among the 100 top cited articles, the highest number of citations that an article received was 309. The top cited articles appeared in 14 different journals, and the Journal of Endodontics published the greatest number of these articles (66%). The majority of articles were published in the year 2014 (n = 17). The majority of articles originated from the United States (n = 51) with the most contribution from The University of Texas Health Science Center, San Antonio, TX. The most frequent first authors were Torabinejad (n = 4), Nosrat (n = 3), and Thibodeau (n = 3). In vitro studies were the most common study design (n = 29) followed by reviews (n = 21). "Regenerative endodontics" was the most frequently used key word. CONCLUSIONS This bibliometric analysis reveals the progress and trend of research in the field of regenerative endodontics. The in vitro articles published in the field of regenerative endodontics had the highest number of citations and average citation rates.
Collapse
Affiliation(s)
- Samira Adnan
- Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan.
| | - Rizwan Ullah
- Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| |
Collapse
|