1
|
Schlegel M, Treindl AD, Panziera J, Zengerer V, Zani D, Brännhage J, Gross A. A case study on the application of spore sampling for the monitoring of macrofungi. Mol Ecol Resour 2024; 24:e13941. [PMID: 38409666 DOI: 10.1111/1755-0998.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Fungi play a vital role in ecosystem functioning, yet significant knowledge gaps persist in understanding their diversity and distribution leading to uncertainties about their threat status and extinction risk. This is partly owed to the difficulty of monitoring fungi using traditional fruiting body surveys. The present study evaluates airborne environmental DNA (eDNA) sampling as a monitoring tool with a focus on grassland macrofungi. We applied active and passive air sampling methods, complemented by extensive field surveys of waxcap and clavarioid fungi-species groups of high relevance for conservation. Twenty-nine species were recorded during the field surveys, 19 of which were also detectable by ITS2 metabarcoding of the collected samples. An additional 12 species from the studied genera were identified exclusively in air eDNA. We found that the patterns of species detection and read abundance in air samples reflected the abundance and occurrence of fruiting bodies on the field. Dispersal kernels fitted for the three dominant species predicted rapidly decreasing spore concentrations with increasing distance from fruitbodies. Airborne assemblages were dominated by a high diversity of common species, while rare and threatened red-listed species were under-represented, which underscores the difficulty in detecting rare species, not only in conventional surveys. Considering the benefits and drawbacks of air sampling and fruitbody surveys, we conclude that air sampling serves as a cost- and time-efficient tool to characterize local macrofungal communities, providing the potential to facilitate and improve future fungal monitoring efforts.
Collapse
Affiliation(s)
- Markus Schlegel
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Jenny Panziera
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Deborah Zani
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Jonas Brännhage
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Andrin Gross
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
2
|
Hurdeal VG, Longcore JE, Gareth Jones EB, Rabern Simmons D, Hyde KD, Gentekaki E. Integrative approach to species delimitation in Rhizophydiales: Novel species of Angulomyces, Gorgonomyces, and Terramyces from northern Thailand. Mol Phylogenet Evol 2023; 180:107706. [PMID: 36657624 DOI: 10.1016/j.ympev.2023.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
The Chytridiomycota is a phylum of zoosporic eufungi that inhabit terrestrial, freshwater, and oceanic habitats. Within the phylum, the Rhizophydiales contains several monotypic families theorized to hold a diverse assemblage of fungi yet to be discovered and properly described. Based on morphology alone, many species in this order are difficult or impossible to identify. In this study, we isolated three chytrids from northern Thailand. Phylogenetic analyses placed the isolates in three monotypic genera within Rhizophydiales. Intrageneric genetic distances in the internal transcribed spacer (ITS) ranged between 1.5 and 8.5%. Angulomyces solicola sp. nov. is characterized by larger sporangia, spores, and fewer discharge papilla than A.argentinensis; Gorgonomyces thailandicus sp. nov. has larger zoospores and fewer discharge papillae in culture compared to G. haynaldii; Terramyces chiangraiensis sp. nov. produces larger sporangia than T. subangulosum. We delimited species of Angulomyces, Gorgonomyces and Terramyces using a tripartite approach that employed phylogeny, ITS genetic distances and Poisson tree processes (PTP). Results of these approaches suggest more than one species in each genus. This study contributes to the knowledge of chytrids, an understudied group in Thailand and worldwide.
Collapse
Affiliation(s)
- Vedprakash G Hurdeal
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, ME 04469-5722, USA
| | - E B Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - D Rabern Simmons
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Eleni Gentekaki
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| |
Collapse
|
3
|
Tanunchai B, Schroeter SA, Ji L, Wahdan SFM, Hossen S, Lehnert AS, Grünberg H, Gleixner G, Buscot F, Schulze ED, Noll M, Purahong W. More than you can see: Unraveling the ecology and biodiversity of lichenized fungi associated with leaves and needles of 12 temperate tree species using high-throughput sequencing. Front Microbiol 2022; 13:907531. [PMID: 36187953 PMCID: PMC9523249 DOI: 10.3389/fmicb.2022.907531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Currently, lichen surveys are generally based on the examination of fruiting bodies. Lichens in the mycelial stage, in spores, or awaiting conditions for fruiting body formation are usually overlooked, even though they are important for maintaining biodiversity and ecosystem functions. This study aimed to explore the lichenized fungal community composition and richness associated with leaves and needles of 12 temperate tree species using Illumina MiSeq-based amplicon sequencing of the internal transcribed spacer (ITS) 2 region. Picea abies harbored the highest richness and number of lichenized fungal species. We found that the lichenized fungus Physcia adscendens dominated the leaves and needles of the most temperate tree species. Eleven lichenized fungal species detected in this study were recorded for the first time on leaves and needles. In addition, we identified Athallia cerinella, Fellhanera bouteillei, and Melanohalea exasperata that are on the German national red lists. Lichenized fungal richness was higher in conifer compared to broadleaf trees. Overall, tree species (within coniferous trees) and tree types (broadleaved vs. coniferous trees) harbored significantly different lichenized fungal community compositions pointing out the importance of host species. Diversity and community composition patterns of lichenized fungi were correlated mainly with tree species. Our study demonstrates that the diversity of foliicolous lichens associated with leaves and needles of 12 temperate tree species can be appropriately analyzed and functionally assigned using the ITS-based high-throughput sequencing. We highlighted the importance of conifers for maintaining the biodiversity of foliicolous lichens. Based on the discovery of many red list lichens, our methodological approach and results are important contributions to subsequent actions in the bio-conversation approaches.
Collapse
Affiliation(s)
- Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Simon Andreas Schroeter
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Li Ji
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- School of Forestry, Central South of Forestry and Technology, Changsha, China
| | - Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shakhawat Hossen
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Ann-Sophie Lehnert
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Gerd Gleixner
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Ernst-Detlef Schulze
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Matthias Noll
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
- Matthias Noll
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- *Correspondence: Witoon Purahong
| |
Collapse
|
4
|
Cazabonne J, Bartrop L, Dierickx G, Gafforov Y, Hofmann TA, Martin TE, Piepenbring M, Rivas-Ferreiro M, Haelewaters D. Molecular-Based Diversity Studies and Field Surveys Are Not Mutually Exclusive: On the Importance of Integrated Methodologies in Mycological Research. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:860777. [PMID: 37746218 PMCID: PMC10512293 DOI: 10.3389/ffunb.2022.860777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Understanding and describing the diversity of living organisms is a great challenge. Fungi have for a long time been, and unfortunately still are, underestimated when it comes to taxonomic research. The foundations were laid by the first mycologists through field observations. These important fundamental works have been and remain vital reference works. Nevertheless, a non-negligible part of the studied funga escaped their attention. Thanks to modern developments in molecular techniques, the study of fungal diversity has been revolutionized in terms of tools and knowledge. Despite a number of disadvantages inherent to these techniques, traditional field-based inventory work has been increasingly superseded and neglected. This perspective aims to demonstrate the central importance of field-based research in fungal diversity studies, and encourages researchers not to be blinded by the sole use of molecular methods.
Collapse
Affiliation(s)
- Jonathan Cazabonne
- Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts (IRF), Université du Québec en Abitibi-Témiscamingue, Amos, QC, Canada
| | | | - Glen Dierickx
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Tina A. Hofmann
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, Panama
| | - Thomas E. Martin
- Operation Wallacea Ltd, Wallace House, Old Bolingbroke, United Kingdom
| | - Meike Piepenbring
- Mycology Working Group, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Mauro Rivas-Ferreiro
- Population Genetics and Cytogenetics Group, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, Panama
- Operation Wallacea Ltd, Wallace House, Old Bolingbroke, United Kingdom
- Faculty of Science, University of South Bohemia, Ceské Budějovice, Czechia
| |
Collapse
|
5
|
Identification of Microorganisms Dwelling on the 19th Century Lanna Mural Paintings from Northern Thailand Using Culture-Dependent and -Independent Approaches. BIOLOGY 2022; 11:biology11020228. [PMID: 35205094 PMCID: PMC8869426 DOI: 10.3390/biology11020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/04/2023]
Abstract
Simple Summary In this study, we compared microbial communities in Lanna mural paintings in temples with different numbers of visitors using culture-dependent and culture independent approaches. The results showed that microorganisms could damage the colors that are used on murals. The process of degradation involved the production of organic acids and formation of the calcium crystal. Furthermore, we found that the site with higher number of visitors is associated with microbial contamination from humans while the site with lower number of visitors had higher saprotroph population. Further research into these microorganisms, their activities and functional roles may provide crucial information to aid the preservation of mural paintings. Abstract Lanna painting is a unique type of painting in many temples in the Northern Thai region. Similar to most mural paintings, they usually decay over time partly due to the activity of microbes. This study aimed to investigate the microorganisms from two Lanna masterpiece paintings in two temples that differ in the numbers of visitors using both culture-dependent and -independent approaches. The microorganisms isolated from the murals were also tested for the biodeterioration activities including discoloration, acid production and calcium precipitation. Most microorganisms extracted from the paintings were able to discolor the paints, but only fungi were able to discolor, produce acids and precipitate calcium. The microorganism communities, diversity and functional prediction were also investigated using the culture-independent method. The diversity of microorganisms and functional prediction were different between the two temples. Gammaproteobacteria was the predominant group of bacteria in both temples. However, the fungal communities were different between the two temples as Aspergillus was the most abundant genus in the site with higher number of visitors [Buak Krok Luang temple (BK)]. Conversely, mural paintings at Tha Kham temple (TK) were dominated by the Neodevriesia genera. We noticed that a high number of visitors (Buak Krok Luang) was correlated with microbial contamination from humans while the microbial community at Tha Kham temple had a higher proportion of saprotrophs. These results could be applied to formulate a strategy to mitigate the amount of tourists as well as manage microorganism to slow down the biodeterioration process.
Collapse
|
6
|
Lepinay C, Tláskal V, Vrška T, Brabcová V, Baldrian P. Successional development of wood-inhabiting fungi associated with dominant tree species in a natural temperate floodplain forest. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest. J Fungi (Basel) 2021; 7:jof7060412. [PMID: 34070657 PMCID: PMC8228407 DOI: 10.3390/jof7060412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Deadwood represents an important carbon stock and contributes to climate change mitigation. Wood decomposition is mainly driven by fungal communities. Their composition is known to change during decomposition, but it is unclear how environmental factors such as wood chemistry affect these successional patterns through their effects on dominant fungal taxa. We analysed the deadwood of Fagus sylvatica and Abies alba across a deadwood succession series of >40 years in a natural fir-beech forest in the Czech Republic to describe the successional changes in fungal communities, fungal abundance and enzymatic activities and to link these changes to environmental variables. The fungal communities showed high levels of spatial variability and beta diversity. In young deadwood, fungal communities showed higher similarity among tree species, and fungi were generally less abundant, less diverse and less active than in older deadwood. pH and the carbon to nitrogen ratio (C/N) were the best predictors of the fungal community composition, and they affected the abundance of half of the dominant fungal taxa. The relative abundance of most of the dominant taxa tended to increase with increasing pH or C/N, possibly indicating that acidification and atmospheric N deposition may shift the community composition towards species that are currently less dominant.
Collapse
|
8
|
Dickie IA, Wakelin A, Richardson SJ. Rare species of wood-inhabiting fungi are not local. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02156. [PMID: 32358821 DOI: 10.1002/eap.2156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Wood-inhabiting fungal communities are a diverse and ecologically critical part of forest ecosystems, yet the spatial structure of fungal biodiversity in these ecosystems is largely unknown. Legislation allowed harvesting of deadwood from temperate rainforests on conservation lands in New Zealand following Cyclone Ita in 2014. Harvesting guidelines specified widely spread harvesting, on the assumption that rare fungal species may be highly spatially restricted, but were not based on quantitative assessment. We sampled fungi in and on logs of Dacrydium cupressinum (Podocarpaceae) a long-lived, common, canopy tree in lowland New Zealand forests. DNA was extracted from 81 logs varying in decay state across a 40 km long region of West Coast (South Island) forests, and sequenced using general fungal primers for metabarcoding to identify OTUs (operational taxonomic units). We examined three axes of rarity: occupancy, dominance when present, and niche breadth (as spatial extent and decay state specialization). Low-occupancy fungi were common, including a group of infrequently occurring but dominant when present fungi, the majority of which were Ascomycota. Despite this, there was an overall positive relationship between occupancy and dominance. Widespread, dominant fungi were most commonly Basidiomycota. Testing all fungal OTUs, there were no more fungi with maximum range sizes < 4 km than would be expected at random. Of the 351 low-occupancy OTUs found two to four times, only 12 had maximum range sizes < 900 m, and there was no more spatial restriction at scales < 900 m than would be expected by random chance, although there was some evidence of niche breadth restriction based on decay state similarity. The results show that fungal communities in deadwood are highly diverse, and include many rare taxa. Nonetheless, the lack of fungal OTUs with spatial restriction at scales < 900 m suggests that spatially dispersed timber harvesting will not mitigate risks of harvesting to rare fungal biodiversity.
Collapse
Affiliation(s)
- Ian A Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Angela Wakelin
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | |
Collapse
|
9
|
Purahong W, Mapook A, Wu YT, Chen CT. Characterization of the Castanopsis carlesii Deadwood Mycobiome by Pacbio Sequencing of the Full-Length Fungal Nuclear Ribosomal Internal Transcribed Spacer (ITS). Front Microbiol 2019; 10:983. [PMID: 31191462 PMCID: PMC6540943 DOI: 10.3389/fmicb.2019.00983] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/18/2019] [Indexed: 01/23/2023] Open
Abstract
Short-read next generation sequencing (NGS) platforms can easily and quickly generate thousands to hundreds of thousands of sequences per sample. However, the limited length of these sequences can cause problems during fungal taxonomic identification. Here we validate the use of Pacbio sequencing, a long-read NGS method, for characterizing the fungal community (mycobiome) of Castanopsis carlesii deadwood. We report the successful use of Pacbio sequencing to generate long-read sequences of the full-length (500-780 bp) fungal ITS regions of the C. carlesii mycobiome. Our results show that the studied deadwood mycobiome is taxonomically and functionally diverse, with an average of 85 fungal OTUs representing five functional groups (animal endosymbionts, endophytes, mycoparasites, plant pathogens, and saprotrophs). Based on relative abundance data, Basidiomycota were the most frequently detected phyla (50% of total sequences), followed by unidentified phyla, and Ascomycota. However, based on presence/absence data, the most OTU-rich phyla were Ascomycota (58% of total OTUs, 72 OTUs) followed by Basidiomycota and unidentified phyla. The majority of fungal OTUs were identified as saprotrophs (70% of successfully function-assigned OTUs) followed by plant pathogens. Finally, we used phylogenetic analysis based on the full-length ITS sequences to confirm the species identification of 14/36 OTUs with high bootstrap support (99-100%). Based on the numbers of sequence reads obtained per sample, which ranged from 3,047 to 13,463, we conclude that Pacbio sequencing can be a powerful tool for characterizing moderate- and possibly high-complexity fungal communities.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Ausana Mapook
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chaur-Tzuhn Chen
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|