1
|
Cui X, Liu Y, Sun M, Zhao Q, Huang Y, Zhang J, Yao Q, Yin H, Zhang H, Mo F, Zhong H, Liu Y, Chen X, Zhang Y, Liu J, Qiu Y, Feng M, Chen X, Ghanizadeh H, Zhou Y, Wang A. The nature of complex structural variations in tomatoes. HORTICULTURE RESEARCH 2025; 12:uhaf107. [PMID: 40406505 PMCID: PMC12096311 DOI: 10.1093/hr/uhaf107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/06/2025] [Indexed: 05/26/2025]
Abstract
Structural variations (SVs) in repetitive sequences could only be detected within a broad region due to imprecise breakpoints, leading to classification errors and inaccurate trait analysis. Through manual inspection at 4532 variant regions identified by integrating 14 detection pipelines between two tomato genomes, we generated an SV benchmark at base-pair resolution. Evaluation of all pipelines yielded F1-scores below 53.77% with this benchmark, underscoring the urgent need for advanced detection algorithms in plant genomics. Analyzing the alignment features of the repetitive sequences in each region, we summarized four patterns of SV breakpoints and revealed that deviations in breakpoint identification were primarily due to copy misalignment. According to the similarities among copies, we identified 1635 bona fide SVs with precise breakpoints, including substitutions (223), which should be taken as a fundamental SV type, alongside insertions (780), deletions (619), and inversions (13), all showing preferences for SV occurrence within AT-repeat regions of regulatory loci. This precise resolution of complex SVs will foster genome analysis and crop improvement.
Collapse
Affiliation(s)
- Xue Cui
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yuxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Miao Sun
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiyue Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yicheng Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiulin Yao
- Wuhan Jianbing Technology Co., Ltd., Wuhan, China
| | - Hang Yin
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huixin Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fulei Mo
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hongbin Zhong
- Shenzhen CEM Biomedical Technology Ltd., Shenzhen, China
| | - Yang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jiayin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Youwen Qiu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Mingfang Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xu Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hossein Ghanizadeh
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yao Zhou
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Kim T, Alvarez JC, Rana D, Preciado J, Liu T, Begcy K. Evolution of NAC transcription factors from early land plants to domesticated crops. PLANT & CELL PHYSIOLOGY 2025; 66:566-580. [PMID: 39720999 PMCID: PMC12085091 DOI: 10.1093/pcp/pcae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024]
Abstract
NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATOR FACTOR 1/2 (ATAF1/2), and CUP-SHAPED COTYLEDON (CUC2)] transcription factors are key regulators of plant growth, development, and stress responses but were also crucial players during land plant adaptation and crop domestication. Using representative members of green algae, bryophytes, lycophytes, gymnosperms, and angiosperms, we expanded the evolutionary history of NAC transcription factors to unveil the relationships among members of this gene family. We found a massive increase in the number of NAC transcription factors from green algae to lycophytes and an even larger increase in flowering plants. Many of the NAC clades arose later during evolution since we found eudicot- and monocot-specific clades. Cis-elements analysis in NAC promoters showed the presence of abiotic and biotic stress as well as hormonal response elements, which indicate the ancestral function of NAC transcription factor genes in response to environmental stimuli and in plant development. At the transcriptional level, the expression of NAC transcription factors was low or absent in male reproduction, particularly mature pollen, across the plant kingdom. We also identified NAC genes with conserved expression patterns in response to heat stress in Marchantia polymorpha and Oryza sativa. Our study provides further evidence that transcriptional mechanisms associated with stress responses and development emerged early during plant land adaptation and are still conserved in flowering plants and domesticated crops.
Collapse
Affiliation(s)
- Taehoon Kim
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Javier C Alvarez
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- School of Applied Sciences and Engineering, EAFIT University, PO Box 98873, Medellin 050022, Colombia
| | - Divya Rana
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Jesus Preciado
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Tie Liu
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, PO Box 110690, Gainesville, FL 32611, USA
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Lidoy J, Rivero J, Ramšak Ž, Petek M, Križnik M, Flors V, Lopez-Raez JA, Martinez-Medina A, Gruden K, Pozo MJ. Ethylene signaling is essential for mycorrhiza-induced resistance against chewing herbivores in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2005-2021. [PMID: 39921876 PMCID: PMC12066123 DOI: 10.1093/jxb/eraf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/07/2025] [Indexed: 02/10/2025]
Abstract
Arbuscular mycorrhizal (AM) symbiosis can prime plant defenses, leading to mycorrhiza-induced resistance (MIR) against different attackers, including insect herbivores. Still, our knowledge of the complex molecular regulation leading to MIR is very limited. Here, we showed that the AM fungus Funneliformis mosseae protects tomato plants against two different chewing herbivores, Spodoptera exigua and Manduca sexta. We explored the underlying molecular mechanism through genome-wide transcriptional profiling, bioinformatics network analyses, and functional bioassays. Herbivore-triggered jasmonate (JA)-regulated defenses were primed in leaves of mycorrhizal plants. Likewise, ethylene (ET) biosynthesis and signaling were also higher in leaves of mycorrhizal plants both before and after herbivory. We hypothesized that fine-tuned ET signaling is required for the primed defense response leading to MIR. ET is a complex regulator of plant responses to stress and is generally considered a negative regulator of plant defenses against herbivory. However, ET-deficient or insensitive lines did not show AM-primed JA biosynthesis or defense response, and were unable to develop MIR against any of the herbivores. Thus, we demonstrate that hormone crosstalk is central to the priming of plant immunity by beneficial microbes, with ET fine-tuning being essential for the primed JA biosynthesis and boosted defenses leading to MIR in tomato.
Collapse
Affiliation(s)
- Javier Lidoy
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Javier Rivero
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
- Department of Cell Biology, Genetics and Physiology, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Málaga, Spain
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Križnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Victor Flors
- Plant Immunnity and Biochemistry Laboratory, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castelló de la Plana, Spain
| | - Juan A Lopez-Raez
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Ainhoa Martinez-Medina
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maria J Pozo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
4
|
Giles EC, González VL, Carimán P, Leiva C, Suescún AV, Lemer S, Guillemin ML, Ortiz-Barrientos D, Saenz-Agudelo P. Comparative Genomics Points to Ecological Drivers of Genomic Divergence Among Intertidal Limpets. Mol Ecol Resour 2025; 25:e14075. [PMID: 39888239 DOI: 10.1111/1755-0998.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Comparative genomic studies of closely related taxa are important for our understanding of the causes of divergence on a changing Earth. This being said, the genomic resources available for marine intertidal molluscs are limited and currently, there are few publicly available high-quality annotated genomes for intertidal species and for molluscs in general. Here we report transcriptome assemblies for six species of Patellogastropoda and genome assemblies and annotations for three of these species (Scurria scurra, Scurria viridula and Scurria zebrina). Comparative analysis using these genomic resources suggest that and recently diverging lineages (10-20 Mya) have experienced similar amounts of contractions and expansions but across different gene families. Furthermore, differences among recently diverged species are reflected in variation in the amount of coding and noncoding material in genomes, such as amount of repetitive elements and lengths of transcripts and introns and exons. Additionally, functional ontologies of species-specific and duplicated genes together with demographic inference support the finding that recent divergence among members of the genus Scurria aligns with their unique ecological characteristics. Overall, the resources presented here will be valuable for future studies of adaptation in molluscs and in intertidal habitats as a whole.
Collapse
Affiliation(s)
- Emily C Giles
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Doctorado en Ciencias Mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Cawthron Institute, Nelson, New Zealand
| | - Vanessa L González
- Informatics and Data Science Center, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Paulina Carimán
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Leiva
- University of Guam Marine Laboratory, Mangilao, Guam, USA
| | - Ana Victoria Suescún
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Valdivia, Chile
| | - Sarah Lemer
- Informatics and Data Science Center, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Museum of Nature, Leibniz Institute for The Analysis of Biodiversity Change, Hamburg, Germany
| | - Marie Laure Guillemin
- Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral e Chile, Valdivia, Chile
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| | - Daniel Ortiz-Barrientos
- The University of Queensland, School of The Environment, and ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland, Australia
| | - Pablo Saenz-Agudelo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Cawthron Institute, Nelson, New Zealand
- Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Las Cruces, Chile
| |
Collapse
|
5
|
Justamante MS, Larriba E, Zavala-González EA, Aranda-Martínez A, Pérez-Pérez JM. Transcriptional Profiling to Assess the Effects of Biological Stimulant Atlanticell Micomix on Tomato Seedlings Under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1198. [PMID: 40284086 PMCID: PMC12030531 DOI: 10.3390/plants14081198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Recent environmental changes in the Mediterranean region, attributable to anthropogenic climate change, present a substantial challenge to the adaptive evaluation of crops and the development of novel improvement strategies. In this study, we established a hydroponic tomato cultivation protocol under in vitro conditions to analyze the transcriptomic profile of seedlings exposed to salinity stress. The study also examined the impact of Atlanticell Micomix, a biological stimulant derived from a mixture of mycorrhizal microorganisms and rhizobacteria, on plant growth and development under standard conditions and in response to moderate salinity. Our transcriptomic analysis indicated a differential effect of biostimulant inoculation compared to the effect induced by salinity stress, involving genes such as GOX3 or DIR1, which are associated with the plant's defense response to adverse conditions. In addition, the presence of a cross-regulatory module between jasmonic acid and auxin, involving potential orthologs of IAA29 and JAZ, was proposed. The application of the biostimulant demonstrated a potential priming effect on the tomato seedlings, which might be useful in reversing the transcriptomic effects caused by salt stress. A comprehensive analysis of the pathways differentially affected by the treatments facilitates further investigation into the mechanisms underlying these effects.
Collapse
Affiliation(s)
- María Salud Justamante
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (E.L.)
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (E.L.)
| | | | | | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (M.S.J.); (E.L.)
| |
Collapse
|
6
|
Xin H, Strickland LW, Hamilton JP, Trusky JK, Fang C, Butler NM, Douches DS, Buell CR, Jiang J. Jan and mini-Jan, a model system for potato functional genomics. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1243-1256. [PMID: 39846980 PMCID: PMC11933877 DOI: 10.1111/pbi.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Potato (Solanum tuberosum) is the third-most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags behind that of other major food crops, largely due to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan,' which possesses all essential characteristics for facile functional genomics studies. Jan exhibits a high level of homozygosity after seven generations of self-pollination. Jan is vigorous, highly fertile and produces tubers with outstanding traits. Additionally, it demonstrates high regeneration rates and excellent transformation efficiencies. We generated a chromosome-scale genome assembly for Jan, annotated its genes and identified syntelogs relative to the potato reference genome assembly DMv6.1 to facilitate functional genomics. To miniaturize plant architecture, we developed two 'mini-Jan' lines with compact and dwarf plant stature through CRISPR/Cas9-mediated mutagenesis targeting the Dwarf and Erecta genes involved in growth. One mini-Jan mutant, mini-JanE, is fully fertile and will permit higher-throughput studies in limited growth chamber and greenhouse space. Thus, Jan and mini-Jan offer a robust model system that can be leveraged for gene editing and functional genomics research in potato.
Collapse
Affiliation(s)
- Haoyang Xin
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | | | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGAUSA
| | - Jacob K. Trusky
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Chao Fang
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
- Present address:
Yazhouwan National LaboratorySanyaChina
| | - Nathaniel M. Butler
- Department of HorticultureUniversity of Wisconsin‐MadisonMadisonWIUSA
- United States Department of Agriculture‐Agricultural Research ServiceVegetable Crops Research UnitMadisonWIUSA
| | - David S. Douches
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
- Michigan State University AgBioResearchEast LansingMIUSA
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGAUSA
- Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGAUSA
- The Plant CenterUniversity of GeorgiaAthensGAUSA
| | - Jiming Jiang
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
- Michigan State University AgBioResearchEast LansingMIUSA
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
7
|
Benoit M, Jenike KM, Satterlee JW, Ramakrishnan S, Gentile I, Hendelman A, Passalacqua MJ, Suresh H, Shohat H, Robitaille GM, Fitzgerald B, Alonge M, Wang X, Santos R, He J, Ou S, Golan H, Green Y, Swartwood K, Karavolias NG, Sierra GP, Orejuela A, Roda F, Goodwin S, McCombie WR, Kizito EB, Gagnon E, Knapp S, Särkinen TE, Frary A, Gillis J, Van Eck J, Schatz MC, Lippman ZB. Solanum pan-genetics reveals paralogues as contingencies in crop engineering. Nature 2025; 640:135-145. [PMID: 40044854 PMCID: PMC11964936 DOI: 10.1038/s41586-025-08619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/09/2025] [Indexed: 03/30/2025]
Abstract
Pan-genomics and genome-editing technologies are revolutionizing breeding of global crops1,2. A transformative opportunity lies in exchanging genotype-to-phenotype knowledge between major crops (that is, those cultivated globally) and indigenous crops (that is, those locally cultivated within a circumscribed area)3-5 to enhance our food system. However, species-specific genetic variants and their interactions with desirable natural or engineered mutations pose barriers to achieving predictable phenotypic effects, even between related crops6,7. Here, by establishing a pan-genome of the crop-rich genus Solanum8 and integrating functional genomics and pan-genetics, we show that gene duplication and subsequent paralogue diversification are major obstacles to genotype-to-phenotype predictability. Despite broad conservation of gene macrosynteny among chromosome-scale references for 22 species, including 13 indigenous crops, thousands of gene duplications, particularly within key domestication gene families, exhibited dynamic trajectories in sequence, expression and function. By augmenting our pan-genome with African eggplant cultivars9 and applying quantitative genetics and genome editing, we dissected an intricate history of paralogue evolution affecting fruit size. The loss of a redundant paralogue of the classical fruit size regulator CLAVATA3 (CLV3)10,11 was compensated by a lineage-specific tandem duplication. Subsequent pseudogenization of the derived copy, followed by a large cultivar-specific deletion, created a single fused CLV3 allele that modulates fruit organ number alongside an enzymatic gene controlling the same trait. Our findings demonstrate that paralogue diversifications over short timescales are underexplored contingencies in trait evolvability. Exposing and navigating these contingencies is crucial for translating genotype-to-phenotype relationships across species.
Collapse
Affiliation(s)
- Matthias Benoit
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Katharine M Jenike
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - James W Satterlee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Iacopo Gentile
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Anat Hendelman
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Michael J Passalacqua
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hamsini Suresh
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hagai Shohat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina M Robitaille
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Blaine Fitzgerald
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Ohalo Genetics, Aptos, CA, USA
| | - Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Ohalo Genetics, Aptos, CA, USA
| | - Ryan Santos
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Verve Therapeutics, Boston, MA, USA
| | - Jia He
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Shujun Ou
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | - Yumi Green
- Boyce Thompson Institute, Ithaca, NY, USA
| | | | - Nicholas G Karavolias
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina P Sierra
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres Orejuela
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena de Indias, Colombia
| | - Federico Roda
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Elizabeth B Kizito
- Faculty of Agricultural Sciences, Uganda Christian University, Mukono, Uganda
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Royal Botanic Garden Edinburgh, Edinburgh, UK
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | | | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| | - Michael C Schatz
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| | - Zachary B Lippman
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
8
|
Cai Y, Wang Z, Wan W, Qi J, Liu XF, Wang Y, Lyu Y, Li T, Dong S, Huang S, Zhou S. Time-course dual RNA-seq analyses and gene identification during early stages of plant-Phytophthora infestans interactions. PLANT PHYSIOLOGY 2025; 197:kiaf112. [PMID: 40112880 DOI: 10.1093/plphys/kiaf112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 03/22/2025]
Abstract
Late blight caused by Phytophthora infestans is a major threat to global potato and tomato production. Sustainable management of late blight requires the development of resistant crop cultivars. This process can be facilitated by high-throughput identification of functional genes involved in late blight pathogenesis. In this study, we generated a high-quality transcriptomic time-course dataset focusing on the initial 24 h of contact between P. infestans and 3 solanaceous plant species, tobacco (Nicotiana benthamiana), tomato (Solanum lycopersicum), and potato (Solanum tuberosum). Our results demonstrate species-specific transcriptional regulation in early stages of the infection. Transient silencing of putative RIBOSE-5-PHOSPHATE ISOMERASE and HMG-CoA REDUCTASE genes in N. benthamiana lowered plant resistance against P. infestans. Furthermore, heterologous expression of a putative tomato Golgi-localized nucleosugar transporter-encoding gene exacerbated P. infestans infection of N. benthamiana. In comparison, bioassays using transgenic tomato lines showed that the quantitative disease resistance genes were required but insufficient for late blight resistance; genetic knock-out of the susceptibility gene enhanced resistance. The same RNA-seq dataset was exploited to examine the transcriptional landscape of P. infestans and revealed host-specific gene expression patterns in the pathogen. This temporal transcriptomic diversity, in combination with genomic distribution features, identified the P. infestans IPI-B family GLYCINE-RICH PROTEINs as putative virulence factors that promoted disease severity or induced plant tissue necrosis when transiently expressed in N. benthamiana. These functional genes underline the effectiveness of functional gene-mining through a time-course dual RNA-seq approach and provide insight into the molecular interactions between solanaceous plants and P. infestans.
Collapse
Affiliation(s)
- Yanling Cai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Zhiqing Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Wan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Feng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yantao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yaqing Lyu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Tao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Suomeng Dong
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
9
|
Stevens K, Roberts MR, Jeynes‐Cupper K, Majeed L, Pastor V, Catoni M, Luna E. Developmentally regulated generation of a systemic signal for long-lasting defence priming in tomato. THE NEW PHYTOLOGIST 2025; 245:1145-1157. [PMID: 39562729 PMCID: PMC11711926 DOI: 10.1111/nph.20288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Tomato is a major global crop. However, its production is limited by Botrytis cinerea. Due to the toxicity of postharvest pesticide application, alternative control methods such as priming are being investigated. Plants were treated with β-aminobutyric acid (BABA) at two developmental stages and resistance against B. cinerea was tested in fruit tissue and in progenies. DNA methylation and RNA sequencing were conducted to characterise the (epi)genetic changes associated with long-lasting resistance. Grafting experiments were done to assess the systemic nature of this signal, which was further characterised by small RNA (sRNA) sequencing of scions. Only BABA-treated seedlings displayed induced resistance (IR). DNA methylation analysis revealed seedling-specific changes, which occurred in the context of lower basal methylation. BABA-IR was found to be transmissible from primed rootstock to grafted unprimed scions. In these scions, we identified a subset of mobile 24 nt sRNAs associated with genes showing primed expression during infection in fruit. Our results demonstrate the functional association of a systemic signal with long-lasting IR and priming. Through integrated omics approaches, we have identified markers of long-lasting priming in tomato fruit which could also serve as targets for durable resistance in other crops.
Collapse
Affiliation(s)
- Katie Stevens
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
- Present address:
Department of Plant BreedingSwedish University of Agricultural Sciences234 56AlnarpSweden
| | | | | | - Lamya Majeed
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Victoria Pastor
- Plant Immunity and Biochemistry Laboratory, Biology, Biochemistry and Natural Sciences DepartmentUniversity Jaume I12071CastellonSpain
| | - Marco Catoni
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| | - Estrella Luna
- School of BiosciencesUniversity of BirminghamBirminghamB15 2TTUK
| |
Collapse
|
10
|
Silva‐Arias GA, Gagnon E, Hembrom S, Fastner A, Khan MR, Stam R, Tellier A. Patterns of presence-absence variation of NLRs across populations of Solanum chilense are clade-dependent and mainly shaped by past demographic history. THE NEW PHYTOLOGIST 2025; 245:1718-1732. [PMID: 39582196 PMCID: PMC11754929 DOI: 10.1111/nph.20293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Understanding the evolution of pathogen resistance genes (nucleotide-binding site-leucine-rich repeats, NLRs) within a species requires a comprehensive examination of factors that affect gene loss and gain. We present a new reference genome of Solanum chilense, which leads to an increased number and more accurate annotation of NLRs. Using a target capture approach, we quantify the presence-absence variation (PAV) of NLR loci across 20 populations from different habitats. We build a rigorous pipeline to validate the identification of PAV of NLRs and then show that PAV is larger within populations than between populations, suggesting that maintenance of NLR diversity is linked to population dynamics. The amount of PAV appears not to be correlated with the NLR presence in gene clusters in the genome, but rather with the past demographic history of the species, with loss of NLRs in diverging (smaller) populations at the distribution edges. Finally, using a redundancy analysis, we find limited evidence of PAV being linked to environmental gradients. Our results suggest that random processes (genetic drift and demography) and weak positive selection for local adaptation shape the evolution of NLRs at the single nucleotide polymorphism and PAV levels in an outcrossing plant with high nucleotide diversity.
Collapse
Affiliation(s)
- Gustavo A. Silva‐Arias
- Professorship for Population Genetics, TUM School of Life SciencesTechnical University of MunichLiesel‐Beckmann Strasse 2Freising85354Germany
- Facultad de Ciencias, Instituto de Ciencias NaturalesUniversidad Nacional de Colombia ‐ Sede Bogotá, Ciudad UniversitariaBogotá111321Colombia
| | - Edeline Gagnon
- Department of Integrative Biology, College of Biological ScienceUniversity of Guelph50 Stone Road EastGuelphONN1G 2W1Canada
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichEmil‐Ramman‐St. 2Freising85354Germany
- Faculty of Agricultural and Nutritional Sciences, Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityHermann Rodewald Str 9Kiel24118Germany
| | - Surya Hembrom
- Professorship for Population Genetics, TUM School of Life SciencesTechnical University of MunichLiesel‐Beckmann Strasse 2Freising85354Germany
| | - Alexander Fastner
- Faculty of Agricultural and Nutritional Sciences, Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityHermann Rodewald Str 9Kiel24118Germany
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced BiotechnologyNational Agricultural Research CentrePark Rd, Islamabad Capital TerritoryIslamabadPakistan
- PARC Institute for Advanced Studies in AgricultureNARCPark Rd, Islamabad Capital TerritoryIslamabadPakistan
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichEmil‐Ramman‐St. 2Freising85354Germany
- Faculty of Agricultural and Nutritional Sciences, Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityHermann Rodewald Str 9Kiel24118Germany
| | - Aurélien Tellier
- Professorship for Population Genetics, TUM School of Life SciencesTechnical University of MunichLiesel‐Beckmann Strasse 2Freising85354Germany
| |
Collapse
|
11
|
Bhattarai K, Ogden AB, Pandey S, Sandoya GV, Shi A, Nankar AN, Jayakodi M, Huo H, Jiang T, Tripodi P, Dardick C. Improvement of crop production in controlled environment agriculture through breeding. FRONTIERS IN PLANT SCIENCE 2025; 15:1524601. [PMID: 39931334 PMCID: PMC11808156 DOI: 10.3389/fpls.2024.1524601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 02/13/2025]
Abstract
Controlled environment agriculture (CEA) represents one of the fastest-growing sectors of horticulture. Production in controlled environments ranges from highly controlled indoor environments with 100% artificial lighting (vertical farms or plant factories) to high-tech greenhouses with or without supplemental lighting, to simpler greenhouses and high tunnels. Although food production occurs in the soil inside high tunnels, most CEA operations use various hydroponic systems to meet crop irrigation and fertility needs. The expansion of CEA offers promise as a tool for increasing food production in and near urban systems as these systems do not rely on arable agricultural land. In addition, CEA offers resilience to climate instability by growing inside protective structures. Products harvested from CEA systems tend to be of high quality, both internal and external, and are sought after by consumers. Currently, CEA producers rely on cultivars bred for production in open-field agriculture. Because of high energy and other production costs in CEA, only a limited number of food crops have proven themselves to be profitable to produce. One factor contributing to this situation may be a lack of optimized cultivars. Indoor growing operations offer opportunities for breeding cultivars that are ideal for these systems. To facilitate breeding these specialized cultivars, a wide range of tools are available for plant breeders to help speed this process and increase its efficiency. This review aims to cover breeding opportunities and needs for a wide range of horticultural crops either already being produced in CEA systems or with potential for CEA production. It also reviews many of the tools available to breeders including genomics-informed breeding, marker-assisted selection, precision breeding, high-throughput phenotyping, and potential sources of germplasm suitable for CEA breeding. The availability of published genomes and trait-linked molecular markers should enable rapid progress in the breeding of CEA-specific food crops that will help drive the growth of this industry.
Collapse
Affiliation(s)
- Krishna Bhattarai
- Department of Horticultural Sciences, Texas A&M University, Texas A&M AgriLife Research and Extension Center, Dallas, TX, United States
| | - Andrew B. Ogden
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Sudeep Pandey
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Germán V. Sandoya
- Horticultural Sciences Department, University of Florida, Everglades Research and Education Center, University of Florida – Institute for Food and Agriculture Sciences, Belle Glade, FL, United States
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Amol N. Nankar
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Murukarthick Jayakodi
- Department of Soil and Crop Sciences, Texas A&M University, Texas A&M AgriLife Research and Extension Center, Dallas, TX, United States
| | - Heqiang Huo
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL, United States
| | - Tao Jiang
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL, United States
| | - Pasquale Tripodi
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Pontecagnano-Faiano, SA, Italy
| | - Chris Dardick
- United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Appalachian Fruit Research Station, Kearneysville, WV, United States
| |
Collapse
|
12
|
Grzech D, Smit SJ, Alam RM, Boccia M, Nakamura Y, Hong B, Barbole R, Heinicke S, Kunert M, Seibt W, Grabe V, Caputi L, Lichman BR, O'Connor SE, Aharoni A, Sonawane PD. Incorporation of nitrogen in antinutritional Solanum alkaloid biosynthesis. Nat Chem Biol 2025; 21:131-142. [PMID: 39271954 PMCID: PMC11666457 DOI: 10.1038/s41589-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.
Collapse
Affiliation(s)
- Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Ryan M Alam
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
13
|
Xin H, Strickland LW, Hamilton JP, Trusky JK, Fang C, Butler NM, Douches DS, Buell CR, Jiang J. Jan and mini-Jan, a model system for potato functional genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627817. [PMID: 39713299 PMCID: PMC11661178 DOI: 10.1101/2024.12.10.627817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Potato (Solanum tuberosum) is the third most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags relative to other major food crops due primarily to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan', which possesses all essential characteristics for facile functional genomics studies. Jan has a high level of homozygosity after seven generations of self-pollination. Jan is vigorous and highly fertile with outstanding tuber traits, high regeneration rates, and excellent transformation efficiencies. We generated a chromosome-scale genome assembly for Jan, annotated genes, and identified syntelogs relative to the potato reference genome assembly DMv6.1 to facilitate functional genomics. To miniaturize plant architecture, we developed two "mini-Jan" lines with compact and dwarf plant stature using CRISPR/Cas9-mediated mutagenesis targeting the Dwarf and Erecta genes related to growth. Mini-Jan mutants are fully fertile and will permit higher-throughput studies in limited growth chamber and greenhouse space. Thus, Jan and mini-Jan provide an outstanding model system that can be leveraged for gene editing and functional genomics research in potato.
Collapse
Affiliation(s)
- Haoyang Xin
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Luke W. Strickland
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - John P. Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, USA
| | - Jacob K. Trusky
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Chao Fang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nathaniel M. Butler
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- United States Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, Wisconsin 53706, USA
| | - David S. Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Michigan State University AgBioResearch, East Lansing, Michigan 48824, USA
| | - C. Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, USA
- The Plant Center, University of Georgia, Athens, Georgia 30602, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Michigan State University AgBioResearch, East Lansing, Michigan 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
14
|
Lezin E, Durand M, Birer Williams C, Lopez Vazquez AL, Perrot T, Gautron N, Pétrignet J, Cuello C, Jansen HJ, Magot F, Szwarc S, Le Pogam P, Beniddir MA, Koudounas K, Oudin A, St‐Pierre B, Giglioli‐Guivarc'h N, Sun C, Papon N, Jensen MK, Dirks RP, O'Connor SE, Besseau S, Courdavault V. Genome-based discovery of pachysiphine synthases in Tabernaemontana elegans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1880-1900. [PMID: 39427334 PMCID: PMC11629747 DOI: 10.1111/tpj.17085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024]
Abstract
Plant-specialized metabolism represents an inexhaustible source of active molecules, some of which have been used in human health for decades. Among these, monoterpene indole alkaloids (MIAs) include a wide range of valuable compounds with anticancer, antihypertensive, or neuroactive properties. This is particularly the case for the pachysiphine derivatives which show interesting antitumor and anti-Alzheimer activities but accumulate at very low levels in several Tabernaemontana species. Unfortunately, genome data in Tabernaemontanaceae are lacking and knowledge on the biogenesis of pachysiphine-related MIAs in planta remains scarce, limiting the prospects for the biotechnological supply of many pachysiphine-derived biopharmaceuticals. Here, we report a raw version of the toad tree (Tabernaemontana elegans) genome sequence. These new genomic resources led to the identification and characterization of a couple of genes encoding cytochrome P450 with pachysiphine synthase activity. Our phylogenomic and docking analyses highlight the different evolutionary processes that have been recruited to epoxidize the pachysiphine precursor tabersonine at a specific position and in a dedicated orientation, thus enriching our understanding of the diversification and speciation of the MIA metabolism in plants. These gene discoveries also allowed us to engineer the synthesis of MIAs in yeast through the combinatorial association of metabolic enzymes resulting in the tailor-made synthesis of non-natural MIAs. Overall, this work represents a step forward for the future supply of pachysiphine-derived drugs by microbial cell factories.
Collapse
Affiliation(s)
- Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | | | | | - Thomas Perrot
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Nicolas Gautron
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Julien Pétrignet
- Laboratoire Synthèse et Isolement de Molécules BioActives (SIMBA, EA 7502)Université de ToursTours37200France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Hans J. Jansen
- Future Genomics TechnologiesLeiden2333 BEThe Netherlands
| | - Florent Magot
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Sarah Szwarc
- Équipe Chimie des Substances Naturelles, BioCISUniversité Paris‐Saclay, CNRSOrsay91400France
| | - Pierre Le Pogam
- Équipe Chimie des Substances Naturelles, BioCISUniversité Paris‐Saclay, CNRSOrsay91400France
| | - Mehdi A. Beniddir
- Équipe Chimie des Substances Naturelles, BioCISUniversité Paris‐Saclay, CNRSOrsay91400France
| | - Konstantinos Koudounas
- Laboratory of Agricultural Chemistry, School of AgricultureAristotle University of ThessalonikiThessaloniki54124Greece
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Benoit St‐Pierre
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | | | - Chao Sun
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICATAngersF‐49000France
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs LyngbyDenmark
| | - Ron P. Dirks
- Future Genomics TechnologiesLeiden2333 BEThe Netherlands
| | - Sarah E. O'Connor
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJena07745Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106Université de ToursTours37200France
| |
Collapse
|
15
|
Wijesingha Ahchige M, Fisher J, Sokolowska E, Lyall R, Illing N, Skirycz A, Zamir D, Alseekh S, Fernie AR. The variegated canalized-1 tomato mutant is linked to photosystem assembly. Comput Struct Biotechnol J 2024; 23:3967-3988. [PMID: 39582891 PMCID: PMC11584773 DOI: 10.1016/j.csbj.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
The recently described canal-1 tomato mutant, which has a variegated leaf phenotype, has been shown to affect canalization of yield. The corresponding protein is orthologous to AtSCO2 -SNOWY COTYLEDON 2, which has suggested roles in thylakoid biogenesis. Here we characterize the canal-1 mutant through a multi-omics approach, by comparing mutant to wild-type tissues. While white canal-1 leaves are devoid of chlorophyll, green leaves of the mutant appear wild-type-like, despite an impaired protein function. Transcriptomic data suggest that green mutant leaves compensate for this impaired protein function by upregulation of transcription of photosystem assembly and photosystem component genes, thereby allowing adequate photosystem establishment, which is reflected in their wild-type-like proteome. White canal-1 leaves, however, likely fail to reach a certain threshold enabling this overcompensation, and plastids get trapped in an undeveloped state, while additionally suffering from high light stress, indicated by the overexpression of ELIP homolog genes. The metabolic profile of white and to a lesser degree also green tissues revealed upregulation of amino acid levels, that was at least partially mediated by transcriptional and proteomic upregulation. These combined changes are indicative of a stress response and suggest that white tissues behave as carbon sinks. In summary, our work demonstrates the relevance of the SCO2 protein in both photosystem assembly and as a consequence in the canalization of yield.
Collapse
Affiliation(s)
- Micha Wijesingha Ahchige
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Josef Fisher
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Ewelina Sokolowska
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Rafe Lyall
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Aleksandra Skirycz
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dani Zamir
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Saleh Alseekh
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| |
Collapse
|
16
|
Hosaka AJ, Sanetomo R, Hosaka K. Allotetraploid nature of a wild potato species, Solanum stoloniferum Schlechtd. et Bché., as revealed by whole-genome sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39585203 DOI: 10.1111/tpj.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Mexican wild diploid potato species are reproductively isolated from A-genome species, including cultivated potatoes; thus, their genomic relationships remain unknown. Solanum stoloniferum Schlechtd. et Bché. (2n = 4x = 48, AABB) is a Mexican allotetraploid species frequently used in potato breeding. We constructed a chromosome-scale assembly of the S. stoloniferum genome using PacBio long-read sequencing and Hi-C scaffolding technologies. The final assembly consisted of 1742 Mb, among which 745 Mb and 713 Mb were anchored to the 12 A-genome and 12 B-genome chromosomes, respectively. Using the RNA-seq datasets, we detected 20 994 and 19 450 genes in the A and B genomes, respectively. Among these genes, 5138 and 3594 were specific to the A and B genomes, respectively, and 15 856 were homoeologous, of which 18.6-25.4% were biasedly expressed. Structural variations such as large pericentromeric inversions were frequently found between the A- and B-genome chromosomes. A comparison of the gene sequences from 38 diverse genomes of the related Solanum species revealed that the S. stoloniferum B genome and Mexican diploid species, with the exception of S. verrucosum, were monophyletically distinct from the S. stoloniferum A genome and the other A-genome species, indicating that the Mexican diploid species share the B genome. The content and divergence of transposable elements (TEs) revealed recent bursts and transpositions of TEs after polyploidization. Thus, the S. stoloniferum genome has undergone dynamic structural differentiation and TE mobilization and reorganization to stabilize the genomic imbalance. This study provides new insights into polyploid evolution and the efficient use of allotetraploid species in potato breeding.
Collapse
Affiliation(s)
- Awie J Hosaka
- Nihon BioData Corporation, Takatsu, Kawasaki, Kanagawa, 213-0012, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| | - Rena Sanetomo
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Kazuyoshi Hosaka
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
17
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
18
|
Gao S, Foolad MR. Identification and mapping of late blight resistance QTLs in the wild tomato accession PI 224710 ( Solanum pimpinellifolium). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:63. [PMID: 39295771 PMCID: PMC11405559 DOI: 10.1007/s11032-024-01498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Late blight (LB), caused by oomycete Phytophthora infestans, is one of the most destructive diseases of the cultivated tomato, Solanum lycopersicum. Since new and aggressive clonal lineages of P. infestans, many of which overcoming formerly effective fungicides or host resistance genes, have continued to emerge, it is crucial to identify, characterize, and utilize new sources of host resistance in tomato breeding. A recent screening of tomato germplasm identified Solanum pimpinellifolium accession PI 224710 with very strong resistance to several current P. infestans clonal lineages. The present study aimed to identify and characterize QTLs associated with LB resistance in PI 224710. Disease screening of a large F2 population (n = 1721), derived from a cross between PI 224710 and LB-susceptible tomato breeding line Fla. 8059, followed by F3 progeny testing, resulted in the identification of 43 highly-resistant and 27 highly-susceptible F2 individuals. A selective genotyping approach, using 469 non-identical SNP markers, resulted in the construction of a genetic linkage map and identification of three LB-resistance QTLs on chromosomes 6, 9 and 10 of PI 224710. A comparison of the QTLs genomic locations with the tomato physical map resulted in the identification of several candidate genes, which might be underpinning the LB-resistance QTLs in PI 224710. The identified markers associated with the LB-resistance QTLs can be utilized in breeding programs to transfer resistance from PI 224710 into tomato breeding lines and hybrid cultivars via marker-assisted breeding; they also can be used to develop near-isogenic lines for fine mapping of the QTLs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01498-1.
Collapse
Affiliation(s)
- Sihui Gao
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802 USA
- Present Address: Johnny’s Selected Seeds, 955 Benton Ave., Winslow, ME 04901 USA
| | - Majid R. Foolad
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
19
|
Li L, Wonder J, Helming T, van Asselt G, Pantazopoulou CK, van de Kaa Y, Kohlen W, Pierik R, Kajala K. Evaluation of the roles of brassinosteroid, gibberellin and auxin for tomato internode elongation in response to low red:far-red light. PHYSIOLOGIA PLANTARUM 2024; 176:e14558. [PMID: 39360434 DOI: 10.1111/ppl.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
In this study, we explore the interplay between the plant hormones gibberellins (GA), brassinosteroids (BR), and Indole-3-Acetic Acid (IAA) in their collective impact on plant shade avoidance elongation under varying light conditions. We focus particularly on low Red:Far-red (R:FR) light conditions achieved by supplementing the background light with FR. We characterized the tomato internode response to low R:FR and, with RNA-seq analysis, we were able to identify some of the potential regulatory hormonal pathways. Through a series of exogenous pharmacological modulations of GA, IAA, and BR, we demonstrate that GA and BR are sufficient but also necessary for inducing stem elongation under low R:FR light conditions. Intriguingly, while IAA alone shows limited effects, its combination with GA yields significant elongation, suggesting a nuanced hormonal balance. Furthermore, we unveil the complex interplay of these hormones under light with low R:FR, where the suppression of one hormone's effect can be compensated by the others. This study provides insights into the hormonal mechanisms governing plant adaptation to light, highlighting the intricate and adaptable nature of plant growth responses. Our findings have far-reaching implications for agricultural practices, offering potential strategies for optimizing plant growth and productivity in various lighting environments.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Jesse Wonder
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ticho Helming
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Gijs van Asselt
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Chrysoula K Pantazopoulou
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Yorrit van de Kaa
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster Plant Developmental Biology, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Yu X, Huang Z, Cheng Y, Hu K, Zhou Y, Yao H, Shen J, Huang Y, Zhuang X, Cai Y. Comparative Genomics Screens Identify a Novel Small Secretory Peptide, SlSolP12, which Activates Both Local and Systemic Immune Response in Tomatoes and Exhibits Broad-Spectrum Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18507-18519. [PMID: 39113497 DOI: 10.1021/acs.jafc.4c03633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.
Collapse
Affiliation(s)
- Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Zhongchao Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yuanyuan Cheng
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Keyi Hu
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Yan Zhou
- Chengdu Lusyno Biotechnology Co., Ltd., Chengdu 610000, Sichuan, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 310000, Zhejiang, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Yaan 625000, Sichuan, China
| |
Collapse
|
21
|
Guan C, Jin Y, Zhang Z, Cao Y, Wu H, Zhou D, Shao W, Yang C, Ban G, Ma L, Wen X, Chen L, Cheng S, Deng Q, Yu H, Wang L. Fine Mapping and Candidate Gene Analysis of Two Major Quantitative Trait Loci, qFW2.1 and qFW3.1, Controlling Fruit Weight in Pepper ( Capsicum annuum). Genes (Basel) 2024; 15:1097. [PMID: 39202456 PMCID: PMC11353679 DOI: 10.3390/genes15081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Fruit weight is an important agronomic trait in pepper production and is closely related to yield. At present, many quantitative trait loci (QTL) related to fruit weight have been found in pepper; however, the genes affecting fruit weight remain unknown. We analyzed the fruit weight-related quantitative traits in an intraspecific Capsicum annuum cross between the cultivated species blocky-type pepper, cv. Qiemen, and the bird pepper accession, "129-1" (Capsicum annuum var. glatriusculum), which was the wild progenitor of C. annuum. Using the QTL-seq combined with the linkage-based QTL mapping approach, QTL detection was performed; and two major effects of QTL related to fruit weight, qFW2.1 and qFW3.1, were identified on chromosomes 2 and 3. The qFW2.1 maximum explained 12.28% of the phenotypic variance observed in two F2 generations, with the maximum LOD value of 11.02, respectively; meanwhile, the qFW3.1 maximum explained 15.50% of the observed phenotypic variance in the two F2 generations, with the maximum LOD value of 11.36, respectively. qFW2.1 was narrowed down to the 1.22 Mb region using homozygous recombinant screening from BC2S2 and BC2S3 populations, while qFW3.1 was narrowed down to the 4.61Mb region. According to the transcriptome results, a total of 47 and 86 differentially expressed genes (DEGs) in the candidate regions of qFW2.1 and qFW3.1 were identified. Further, 19 genes were selected for a qRT-PCR analysis based on sequence difference combined with the gene annotation. Finally, Capana02g002938 and Capana02g003021 are the most likely candidate genes for qFW2.1, and Capana03g000903 may be a candidate gene for qFW3.1. Taken together, our results identified and fine-mapped two major QTL for fruit weight in pepper that will facilitate marker-assistant breeding for the manipulation of yield in pepper.
Collapse
Affiliation(s)
- Congcong Guan
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.G.); (S.C.)
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Yuan Jin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Zhenghai Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Yacong Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Huamao Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Daiyuan Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Wenqi Shao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Chuangchuang Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Guoliang Ban
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Lingling Ma
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Xin Wen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Lei Chen
- Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing 408113, China;
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.G.); (S.C.)
| | - Qin Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.G.); (S.C.)
| | - Hailong Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| | - Lihao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.J.); (Z.Z.); (Y.C.); (H.W.); (D.Z.); (W.S.); (C.Y.); (G.B.); (L.M.); (X.W.); (L.W.)
| |
Collapse
|
22
|
Ouonkap SVY, Palaniappan M, Pryze K, Jong E, Ali MF, Styler B, Almasaud RA, Harkey AF, Reid RW, Loraine AE, Smith SE, Muday GK, Pease JB, Palanivelu R, Johnson MA. Enhanced pollen tube performance at high temperature contributes to thermotolerant fruit production in tomato. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606234. [PMID: 39149357 PMCID: PMC11326152 DOI: 10.1101/2024.08.01.606234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rising temperature extremes during critical reproductive periods threaten the yield of major grain and fruit crops. Flowering plant reproduction depends on development of sufficient numbers of pollen grains and on their ability to generate a cellular extension, the pollen tube, which elongates through the pistil to deliver sperm cells to female gametes for double fertilization. These critical phases of the life cycle are sensitive to temperature and limit productivity under high temperature (HT). Previous studies have investigated the effects of HT on pollen development, but little is known about how HT applied during the pollen tube growth phase affects fertility. Here, we used tomato as a model fruit crop to determine how HT affects the pollen tube growth phase, taking advantage of cultivars noted for fruit production in exceptionally hot growing seasons. We found that exposure to HT solely during the pollen tube growth phase limits fruit biomass and seed set more significantly in thermosensitive cultivars than in thermotolerant cultivars. Importantly, we found that pollen tubes from the thermotolerant Tamaulipas cultivar have enhanced growth in vivo and in vitro under HT. Analysis of the pollen tube transcriptome's response to HT allowed us to develop hypotheses for the molecular basis of cellular thermotolerance in the pollen tube and we define two response modes (enhanced induction of stress responses, and higher basal levels of growth pathways repressed by heat stress) associated with reproductive thermotolerance. Importantly, we define key components of the pollen tube stress response identifying enhanced ROS homeostasis and pollen tube callose synthesis and deposition as important components of reproductive thermotolerance in Tamaulipas. Our work identifies the pollen tube growth phase as a viable target to enhance reproductive thermotolerance and delineates key pathways that are altered in crop varieties capable of fruiting under HT conditions.
Collapse
Affiliation(s)
| | | | | | - Emma Jong
- School of Plant Sciences; University of Arizona
| | | | - Benjamin Styler
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| | | | | | - Robert W Reid
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Ann E Loraine
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Steven E Smith
- School of Natural Resources and the Environment; University of Arizona
| | | | - James B Pease
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University
| | | | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| |
Collapse
|
23
|
Satterlee JW, Alonso D, Gramazio P, Jenike KM, He J, Arrones A, Villanueva G, Plazas M, Ramakrishnan S, Benoit M, Gentile I, Hendelman A, Shohat H, Fitzgerald B, Robitaille GM, Green Y, Swartwood K, Passalacqua MJ, Gagnon E, Hilgenhof R, Huggins TD, Eizenga GC, Gur A, Rutten T, Stein N, Yao S, Poncet A, Bellot C, Frary A, Knapp S, Bendahmane M, Särkinen T, Gillis J, Van Eck J, Schatz MC, Eshed Y, Prohens J, Vilanova S, Lippman ZB. Convergent evolution of plant prickles by repeated gene co-option over deep time. Science 2024; 385:eado1663. [PMID: 39088611 PMCID: PMC11305333 DOI: 10.1126/science.ado1663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/06/2024] [Indexed: 08/03/2024]
Abstract
An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles-sharp epidermal projections-that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genus Solanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing new Solanum genetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.
Collapse
Affiliation(s)
- James W. Satterlee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - David Alonso
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Katharine M. Jenike
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jia He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Andrea Arrones
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Gloria Villanueva
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Srividya Ramakrishnan
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Matthias Benoit
- French National Institute for Agriculture, Food, and Environment, Laboratory of Plant-Microbe Interactions, Toulouse, France
| | - Iacopo Gentile
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hagai Shohat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Blaine Fitzgerald
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Gina M. Robitaille
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yumi Green
- Boyce Thompson Institute, Ithaca, New York, USA
| | | | - Michael J. Passalacqua
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Ontario, Canada
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | | | - Trevis D. Huggins
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR, USA
| | - Georgia C. Eizenga
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR, USA
| | - Amit Gur
- Cucurbits Section, Department of Vegetable Sciences, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Crop Plant Genetics, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Shengrui Yao
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
- Sustainable Agriculture Sciences Center, New Mexico State University, Alcalde, NM, USA
| | - Adrien Poncet
- Laboratoire Reproduction et Developpement des Plantes, INRAE, CNRS, Universite Lyon, Ecole Normale Superieure de Lyon, Lyon, France
| | - Clement Bellot
- Laboratoire Reproduction et Developpement des Plantes, INRAE, CNRS, Universite Lyon, Ecole Normale Superieure de Lyon, Lyon, France
| | - Amy Frary
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | | | - Mohammed Bendahmane
- Laboratoire Reproduction et Developpement des Plantes, INRAE, CNRS, Universite Lyon, Ecole Normale Superieure de Lyon, Lyon, France
| | | | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, New York, USA
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Zachary B. Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
24
|
Tominello-Ramirez CS, Muñoz Hoyos L, Oubounyt M, Stam R. Network analyses predict major regulators of resistance to early blight disease complex in tomato. BMC PLANT BIOLOGY 2024; 24:641. [PMID: 38971719 PMCID: PMC11227178 DOI: 10.1186/s12870-024-05366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Early blight and brown leaf spot are often cited as the most problematic pathogens of tomato in many agricultural regions. Their causal agents are Alternaria spp., a genus of Ascomycota containing numerous necrotrophic pathogens. Breeding programs have yielded quantitatively resistant commercial cultivars, but fungicide application remains necessary to mitigate the yield losses. A major hindrance to resistance breeding is the complexity of the genetic determinants of resistance and susceptibility. In the absence of sufficiently resistant germplasm, we sequenced the transcriptomes of Heinz 1706 tomatoes treated with strongly virulent and weakly virulent isolates of Alternaria spp. 3 h post infection. We expanded existing functional gene annotations in tomato and using network statistics, we analyzed the transcriptional modules associated with defense and susceptibility. RESULTS The induced responses are very distinct. The weakly virulent isolate induced a defense response of calcium-signaling, hormone responses, and transcription factors. These defense-associated processes were found in a single transcriptional module alongside secondary metabolite biosynthesis genes, and other defense responses. Co-expression and gene regulatory networks independently predicted several D clade ethylene response factors to be early regulators of the defense transcriptional module, as well as other transcription factors both known and novel in pathogen defense, including several JA-associated genes. In contrast, the strongly virulent isolate elicited a much weaker response, and a separate transcriptional module bereft of hormone signaling. CONCLUSIONS Our findings have predicted major defense regulators and several targets for downstream functional analyses. Combined with our improved gene functional annotation, they suggest that defense is achieved through induction of Alternaria-specific immune pathways, and susceptibility is mediated by modulating hormone responses. The implication of multiple specific clade D ethylene response factors and upregulation of JA-associated genes suggests that host defense in this pathosystem involves ethylene response factors to modulate jasmonic acid signaling.
Collapse
Affiliation(s)
- Christopher S Tominello-Ramirez
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lina Muñoz Hoyos
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany.
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| |
Collapse
|
25
|
Sun J, Matsushita Y. Predicting symptom severity in PSTVd-infected tomato plants using the PSTVd genome sequence. MOLECULAR PLANT PATHOLOGY 2024; 25:e13469. [PMID: 38956901 PMCID: PMC11219469 DOI: 10.1111/mpp.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
Abstract
Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.
Collapse
Affiliation(s)
- Jianqiang Sun
- Research Center for Agricultural Information TechnologyNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Yosuke Matsushita
- Institute of Plant ProtectionNational Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
26
|
Li XX, Lai YS. The Development and Application of Vegetable Genomics Increase the Efficiency of Exploring New Gene Resources for Vegetables. Int J Mol Sci 2024; 25:6906. [PMID: 39000015 PMCID: PMC11241489 DOI: 10.3390/ijms25136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 07/14/2024] Open
Abstract
Vegetables, as indispensable non-staple foods in people's daily diet, provide a variety of essential vitamins, minerals, and other nutrients, as well as special phytochemicals, which are recognized as functional components for human nutritional balance or medicinal purposes [...].
Collapse
Affiliation(s)
- Xi-Xiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun-Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611100, China
| |
Collapse
|
27
|
Li H, Zou T, Chen S, Zhong M. Genome-wide identification, characterization and expression analysis of the DUF668 gene family in tomato. PeerJ 2024; 12:e17537. [PMID: 38912042 PMCID: PMC11192028 DOI: 10.7717/peerj.17537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/19/2024] [Indexed: 06/25/2024] Open
Abstract
The domain of unknown function 668 (DUF668) is a gene family that may play a key role in plant growth and development as well as in responding to adversity coercion stresses. However, the DUF668 gene family has not yet been well identified and characterized in tomato. In this study, a total of nine putative SlDUF668 genes were identified in tomato, distributed on six chromosomes. Phylogenetic analyses revealed that SlDUF668 proteins were classified into two major groups. Members within the same group largely displayed analogous gene structure and conserved motif compositions. Several cis-elements were exhibited in the upstream sequences of the SlDUF668 genes, including elements implicated in plant growth and development processes, abiotic stress and hormone responses. Further, the study assessed the expression patterns of the SlDUF668 gene family in various tomato tissues, five plant hormones treatments, three abiotic stresses using qRT-PCR. The SlDUF668 genes expressed ubiquitously in various tissues, and five genes (SlDUF668-04, SlDUF668-06, SlDUF668-07, SlDUF668-08 and SlDUF668-09) showed tissue specificity. And SlDUF668 genes responded to abiotic stresses such as salt, drought and cold to varying degrees. Overall, our study provided a base for the tomato DUF668 gene family and laid a foundation for further understanding the functional characteristics of DUF668 genes in tomato plants.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agriculture University, Shenyang, China
| | - Tingrui Zou
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agriculture University, Shenyang, China
| | - Shuisen Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agriculture University, Shenyang, China
| | - Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agriculture University, Shenyang, China
| |
Collapse
|
28
|
Zagorščak M, Zrimec J, Bleker C, Nolte N, Juteršek M, Ramšak Ž, Gruden K, Petek M. Evidence-based unification of potato gene models with the UniTato collaborative genome browser. FRONTIERS IN PLANT SCIENCE 2024; 15:1352253. [PMID: 38919818 PMCID: PMC11196761 DOI: 10.3389/fpls.2024.1352253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Potato (Solanum tuberosum) is the most popular tuber crop and a model organism. A variety of gene models for potato exist, and despite frequent updates, they are not unified. This hinders the comparison of gene models across versions, limits the ability to reuse experimental data without significant re-analysis, and leads to missing or wrongly annotated genes. Here, we unify the recent potato double monoploid v4 and v6 gene models by developing an automated merging protocol, resulting in a Unified poTato genome model (UniTato). We subsequently established an Apollo genome browser (unitato.nib.si) that enables public access to UniTato and further community-based curation. We demonstrate how the UniTato resource can help resolve problems with missing or misplaced genes and can be used to update or consolidate a wider set of gene models or genome information. The automated protocol, genome annotation files, and a comprehensive translation table are provided at github.com/NIB-SI/unitato.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
29
|
Cheng S, Zhang Q, Geng X, Xie L, Chen M, Jiao S, Qi S, Yao P, Lu M, Zhang M, Zhai W, Yun Q, Feng S. Haplotype-resolved chromosome-level genome assembly of Ehretia macrophylla. Sci Data 2024; 11:589. [PMID: 38839803 PMCID: PMC11153487 DOI: 10.1038/s41597-024-03431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Ehretia macrophylla Wall, known as wild loquat, is an ecologically, economically, and medicinally significant tree species widely grown in China, Japan, Vietnam, and Nepal. In this study, we have successfully generated a haplotype-resolved chromosome-scale genome assembly of E. macrophylla by integrating PacBio HiFi long-reads, Illumina short-reads, and Hi-C data. The genome assembly consists of two haplotypes, with sizes of 1.82 Gb and 1.58 Gb respectively, and contig N50 lengths of 28.11 Mb and 21.57 Mb correspondingly. Additionally, 99.41% of the assembly was successfully anchored into 40 pseudo-chromosomes. We predicted 58,886 protein-coding genes, of which 99.60% were functionally annotated from databases. We furthermore detected 2.65 Gb repeat sequences, 659,290 rRNAs, 4,931 tRNAs and 4,688 other ncRNAs. The high-quality assembly of the genome offers a solid basis for furthering the fields of molecular breeding and functional genomics of E. macrophylla.
Collapse
Affiliation(s)
- Shiping Cheng
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China.
| | | | - Xining Geng
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Lihua Xie
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Minghui Chen
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Siqian Jiao
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Shuaizheng Qi
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Pengqiang Yao
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Mailin Lu
- Henan Forestry Vocational College, Luoyang, 471000, China
| | - Mengren Zhang
- Henan Forestry Vocational College, Luoyang, 471000, China
| | - Wenshan Zhai
- Henan Senzhuang Cukang Agriculture and Forestry Technology Co., Ltd, Luoyang, 471000, China
| | - Quanzheng Yun
- Kaitai Mingjing Genetech Corporation, Beijing, 100070, China
| | - Shangguo Feng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
30
|
Hosaka AJ, Sanetomo R, Hosaka K. A de novo genome assembly of Solanum bulbocastanum Dun., a Mexican diploid species reproductively isolated from the A-genome species, including cultivated potatoes. G3 (BETHESDA, MD.) 2024; 14:jkae080. [PMID: 38608140 DOI: 10.1093/g3journal/jkae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Potato and its wild relatives are distributed mainly in the Mexican highlands and central Andes of South America. The South American A-genome species, including cultivated potatoes, are reproductively isolated from Mexican diploid species. Whole-genome sequencing has disclosed genome structure and similarity, mostly in cultivated potatoes and their closely related species. In this study, we generated a chromosome-scale assembly of the genome of a Mexican diploid species, Solanum bulbocastanum Dun., using PacBio long-read sequencing, optical mapping, and Hi-C scaffolding technologies. The final sequence assembly consisted of 737.9 Mb, among which 647.0 Mb were anchored to the 12 chromosomes. Compared with chromosome-scale assemblies of S. lycopersicum (tomato), S. etuberosum (non-tuber-bearing species with E-genome), S. verrucosum, S. chacoense, S. multidissectum, and S. phureja (all four are A-genome species), the S. bulbocastnum genome was the shortest. It contained fewer transposable elements (56.2%) than A-genome species. A cluster analysis was performed based on pairwise ratios of syntenic regions among the seven chromosome-scale assemblies, showing that the A-genome species were first clustered as a distinct group. Then, this group was clustered with S. bulbocastanum. Sequence similarity in 1,624 single-copy orthologous gene groups among 36 Solanum species and clones separated S. bulbocastanum as a specific group, including other Mexican diploid species, from the A-genome species. Therefore, the S. bulbocastanum genome differs in genome structure and gene sequences from the A-genome species. These findings provide important insights into understanding and utilizing the genetic diversity of S. bulbocastanum and the other Mexican diploid species in potato breeding.
Collapse
Affiliation(s)
- Awie J Hosaka
- Nihon BioData Corporation, Takatsu, Kawasaki, Kanagawa 213-0012, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
| | - Rena Sanetomo
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kazuyoshi Hosaka
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
31
|
Han H, Li X, Li T, Chen Q, Zhao J, Zhai H, Deng L, Meng X, Li C. Chromosome-level genome assembly of Solanum pimpinellifolium. Sci Data 2024; 11:577. [PMID: 38834611 DOI: 10.1038/s41597-024-03442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Solanum pimpinellifolium, the closest wild relative of the domesticated tomato, has high potential for use in breeding programs aimed at developing multi-pathogen resistance and quality improvement. We generated a chromosome-level genome assembly of S. pimpinellifolium LA1589, with a size of 833 Mb and a contig N50 of 31 Mb. We anchored 98.80% of the contigs into 12 pseudo-chromosomes, and identified 74.47% of the sequences as repetitive sequences. The genome evaluation revealed BUSCO and LAI score of 98.3% and 14.49, respectively, indicating high quality of this assembly. A total of 41,449 protein-coding genes were predicted in the genome, of which 89.17% were functionally annotated. This high-quality genome assembly serves as a valuable resource for accelerating the biological discovery and molecular breeding of this important horticultural crop.
Collapse
Affiliation(s)
- Hongyu Han
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiuhong Li
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Tianze Li
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiuhai Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xianwen Meng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chuanyou Li
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, 271018, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
32
|
Nishimura K, Kokaji H, Motoki K, Yamazaki A, Nagasaka K, Mori T, Takisawa R, Yasui Y, Kawai T, Ushijima K, Yamasaki M, Saito H, Nakano R, Nakazaki T. Degenerate oligonucleotide primer MIG-seq: an effective PCR-based method for high-throughput genotyping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2296-2317. [PMID: 38459738 DOI: 10.1111/tpj.16708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.
Collapse
Affiliation(s)
- Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Hiroyuki Kokaji
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Ko Motoki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Akira Yamazaki
- Faculty of Agriculture, Kindai University, 3327-204, Nakamachi, Nara City, Nara, 631-8505, Japan
| | - Kyoka Nagasaka
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Takashi Mori
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Rihito Takisawa
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu City, Shiga, 520-2194, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Takashi Kawai
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Masanori Yamasaki
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2 no-cho, Nishi-ku, Niigata City, Niigata, 950-2181, Japan
| | - Hiroki Saito
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Ryohei Nakano
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| |
Collapse
|
33
|
Dalprá Dariva F, Subode S, Cho J, Nick C, Francis D. Identification and Validation of Quantitative Trait Loci Associated with Fruit Puffiness in a Processing Tomato Population. PLANTS (BASEL, SWITZERLAND) 2024; 13:1454. [PMID: 38891263 PMCID: PMC11174995 DOI: 10.3390/plants13111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Physiological disorders impact the yield and quality of marketable fruit in tomato. Puffy fruit caused by cavities inside the locule can be problematic for processing and fresh market quality. In this paper, we used a recombinant inbred line (RIL) and three derived processing tomato populations to map and validate quantitative trait loci (QTLs) for fruit puffiness across environments. Binary interval mapping was used for mapping the incidence of fruit puffiness, and non-parametric interval mapping and parametric composite interval mapping were used for mapping severity. Marker-trait regressions were carried out to validate putative QTLs in subsequent crosses. QTLs were detected on chromosome (Chr) 1, 2, and 4. Only the QTL on Chr 1 was validated in progeny from subsequent crosses. This QTL explained up to 22.5% of the variance in the percentage of puffy fruit, with a significant interaction between loci on Chr 2 and 4, increasing the percentage of puffy fruit by an additional 15%. The allele responsible for puffy fruit on Chr 1 was inherited from parent FG02-188 and was dominant towards increased incidence and severity. Marker-assisted selection (MAS) for the QTL on Chr 1 was as efficient as genomic selection (GS) in reducing the incidence and severity of puffy fruit, despite the potential contribution of other loci.
Collapse
Affiliation(s)
- Françoise Dalprá Dariva
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA; (F.D.D.)
- Departamento de Agronomia, Programa de Pós-graduação em Fitotecnia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil;
| | - Su Subode
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA; (F.D.D.)
| | - Jihuen Cho
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA; (F.D.D.)
| | - Carlos Nick
- Departamento de Agronomia, Programa de Pós-graduação em Fitotecnia, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil;
| | - David Francis
- Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA; (F.D.D.)
| |
Collapse
|
34
|
Salazar OR, Chen K, Melino VJ, Reddy MP, Hřibová E, Čížková J, Beránková D, Arciniegas Vega JP, Cáceres Leal LM, Aranda M, Jaremko L, Jaremko M, Fedoroff NV, Tester M, Schmöckel SM. SOS1 tonoplast neo-localization and the RGG protein SALTY are important in the extreme salinity tolerance of Salicornia bigelovii. Nat Commun 2024; 15:4279. [PMID: 38769297 PMCID: PMC11106269 DOI: 10.1038/s41467-024-48595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.
Collapse
Affiliation(s)
- Octavio R Salazar
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ke Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Vanessa J Melino
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Muppala P Reddy
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Denisa Beránková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Juan Pablo Arciniegas Vega
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lina María Cáceres Leal
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manuel Aranda
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nina V Fedoroff
- Department of Biology, Penn State University, University Park, PA, 16801, US
| | - Mark Tester
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Sandra M Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| |
Collapse
|
35
|
Kerwin RE, Hart JE, Fiesel PD, Lou YR, Fan P, Jones AD, Last RL. Tomato root specialized metabolites evolved through gene duplication and regulatory divergence within a biosynthetic gene cluster. SCIENCE ADVANCES 2024; 10:eadn3991. [PMID: 38657073 PMCID: PMC11094762 DOI: 10.1126/sciadv.adn3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Tremendous plant metabolic diversity arises from phylogenetically restricted specialized metabolic pathways. Specialized metabolites are synthesized in dedicated cells or tissues, with pathway genes sometimes colocalizing in biosynthetic gene clusters (BGCs). However, the mechanisms by which spatial expression patterns arise and the role of BGCs in pathway evolution remain underappreciated. In this study, we investigated the mechanisms driving acylsugar evolution in the Solanaceae. Previously thought to be restricted to glandular trichomes, acylsugars were recently found in cultivated tomato roots. We demonstrated that acylsugars in cultivated tomato roots and trichomes have different sugar cores, identified root-enriched paralogs of trichome acylsugar pathway genes, and characterized a key paralog required for root acylsugar biosynthesis, SlASAT1-LIKE (SlASAT1-L), which is nested within a previously reported trichome acylsugar BGC. Last, we provided evidence that ASAT1-L arose through duplication of its paralog, ASAT1, and was trichome-expressed before acquiring root-specific expression in the Solanum genus. Our results illuminate the genomic context and molecular mechanisms underpinning metabolic diversity in plants.
Collapse
Affiliation(s)
- Rachel E. Kerwin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jaynee E. Hart
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
36
|
Xue Y, Li W, Li M, Ru N, Chen S, Jiu M, Feng H, Wei L, Daly P, Zhou D. Biological Control of a Root-Knot Nematode Meloidogyne incognita Infection of Tomato ( Solanum lycopersicum L.) by the Oomycete Biocontrol Agent Pythium oligandrum. J Fungi (Basel) 2024; 10:265. [PMID: 38667936 PMCID: PMC11051105 DOI: 10.3390/jof10040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
The biocontrol agent Pythium oligandrum, which is a member of the phylum Oomycota, can control diseases caused by a taxonomically wide range of plant pathogens, including fungi, bacteria, and oomycetes. However, whether P. oligandrum could control diseases caused by plant root-knot nematodes (RKNs) was unknown. We investigated a recently isolated P. oligandrum strain GAQ1, and the P. oligandrum strain CBS530.74, for the control of an RKN Meloidogyne incognita infection of tomato (Solanum lycopersicum L.). Initially, P. oligandrum culture filtrates were found to be lethal to M. incognita second-stage juveniles (J2s) with up to 84% mortality 24 h after treatment compared to 14% in the control group. Consistent with the lethality to M. incognita J2s, tomato roots treated with P. oligandrum culture filtrates reduced their attraction of nematodes, and the number of nematodes penetrating the roots was reduced by up to 78%. In a greenhouse pot trial, the P. oligandrum GAQ1 inoculation of tomato plants significantly reduced the gall number by 58% in plants infected with M. incognita. Notably, the P. oligandrum GAQ1 mycelial treatment significantly increased tomato plant height (by 36%), weight (by 27%), and root weight (by 48%). A transcriptome analysis of tomato seedling roots inoculated with the P. oligandrum GAQ1 strain identified ~2500 differentially expressed genes. The enriched GO terms and annotations in the up-regulated genes suggested a modulation of the plant hormone-signaling and defense-related pathways in response to P. oligandrum. In conclusion, our results support that P. oligandrum GAQ1 can serve as a potential biocontrol agent for M. incognita control in tomato. Multiple mechanisms appear to contribute to the biocontrol effect, including the direct inhibition of M. incognita, the potential priming of tomato plant defenses, and plant growth promotion.
Collapse
Affiliation(s)
- Yuwei Xue
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.X.); (W.L.)
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
| | - Weishan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.X.); (W.L.)
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengnan Li
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 471023, China
| | - Ningchen Ru
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siqiao Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing 210095, China
| | - Min Jiu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; (Y.X.); (W.L.)
| | - Hui Feng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.L.); (N.R.); (S.C.); (H.F.); (L.W.)
| |
Collapse
|
37
|
Cuello C, Jansen HJ, Abdallah C, Zamar Mbadinga DL, Birer Williams C, Durand M, Oudin A, Papon N, Giglioli-Guivarc'h N, Dirks RP, Jensen MK, O'Connor SE, Besseau S, Courdavault V. The Madagascar palm genome provides new insights on the evolution of Apocynaceae specialized metabolism. Heliyon 2024; 10:e28078. [PMID: 38533072 PMCID: PMC10963385 DOI: 10.1016/j.heliyon.2024.e28078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.
Collapse
Affiliation(s)
- Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Hans J. Jansen
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Cécile Abdallah
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | | | - Ron P. Dirks
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| |
Collapse
|
38
|
Molitor C, Kurowski TJ, Fidalgo de Almeida PM, Kevei Z, Spindlow DJ, Chacko Kaitholil SR, Iheanyichi JU, Prasanna HC, Thompson AJ, Mohareb FR. A chromosome-level genome assembly of Solanum chilense, a tomato wild relative associated with resistance to salinity and drought. FRONTIERS IN PLANT SCIENCE 2024; 15:1342739. [PMID: 38525148 PMCID: PMC10957597 DOI: 10.3389/fpls.2024.1342739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
Introduction Solanum chilense is a wild relative of tomato reported to exhibit resistance to biotic and abiotic stresses. There is potential to improve tomato cultivars via breeding with wild relatives, a process greatly accelerated by suitable genomic and genetic resources. Methods In this study we generated a high-quality, chromosome-level, de novo assembly for the S. chilense accession LA1972 using a hybrid assembly strategy with ~180 Gbp of Illumina short reads and ~50 Gbp long PacBio reads. Further scaffolding was performed using Bionano optical maps and 10x Chromium reads. Results The resulting sequences were arranged into 12 pseudomolecules using Hi-C sequencing. This resulted in a 901 Mbp assembly, with a completeness of 95%, as determined by Benchmarking with Universal Single-Copy Orthologs (BUSCO). Sequencing of RNA from multiple tissues resulting in ~219 Gbp of reads was used to annotate the genome assembly with an RNA-Seq guided gene prediction, and for a de novo transcriptome assembly. This chromosome-level, high-quality reference genome for S. chilense accession LA1972 will support future breeding efforts for more sustainable tomato production. Discussion Gene sequences related to drought and salt resistance were compared between S. chilense and S. lycopersicum to identify amino acid variations with high potential for functional impact. These variants were subsequently analysed in 84 resequenced tomato lines across 12 different related species to explore the variant distributions. We identified a set of 7 putative impactful amino acid variants some of which may also impact on fruit development for example the ethylene-responsive transcription factor WIN1 and ethylene-insensitive protein 2. These variants could be tested for their ability to confer functional phenotypes to cultivars that have lost these variants.
Collapse
Affiliation(s)
- Corentin Molitor
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Tomasz J. Kurowski
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | | | - Zoltan Kevei
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Daniel J. Spindlow
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Steffimol R. Chacko Kaitholil
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - Justice U. Iheanyichi
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| | - H. C. Prasanna
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bangalore, India
| | - Andrew J. Thompson
- Soil, Agrifood and Biosciences, Cranfield University, Wharley End, United Kingdom
| | - Fady R. Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Wharley End, United Kingdom
| |
Collapse
|
39
|
Gupta S, Petrov V, Garg V, Mueller-Roeber B, Fernie AR, Nikoloski Z, Gechev T. The genome of Haberlea rhodopensis provides insights into the mechanisms for tolerance to multiple extreme environments. Cell Mol Life Sci 2024; 81:117. [PMID: 38443747 PMCID: PMC10914886 DOI: 10.1007/s00018-024-05140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
Haberlea rhodopensis, a resurrection species, is the only plant known to be able to survive multiple extreme environments, including desiccation, freezing temperatures, and long-term darkness. However, the molecular mechanisms underlying tolerance to these stresses are poorly studied. Here, we present a high-quality genome of Haberlea and found that ~ 23.55% of the 44,306 genes are orphan. Comparative genomics analysis identified 89 significantly expanded gene families, of which 25 were specific to Haberlea. Moreover, we demonstrated that Haberlea preserves its resurrection potential even in prolonged complete darkness. Transcriptome profiling of plants subjected to desiccation, darkness, and low temperatures revealed both common and specific footprints of these stresses, and their combinations. For example, PROTEIN PHOSPHATASE 2C (PP2C) genes were substantially induced in all stress combinations, while PHYTOCHROME INTERACTING FACTOR 1 (PIF1) and GROWTH RESPONSE FACTOR 4 (GRF4) were induced only in darkness. Additionally, 733 genes with unknown functions and three genes encoding transcription factors specific to Haberlea were specifically induced/repressed upon combination of stresses, rendering them attractive targets for future functional studies. The study provides a comprehensive understanding of the genomic architecture and reports details of the mechanisms of multi-stress tolerance of this resurrection species that will aid in developing strategies that allow crops to survive extreme and multiple abiotic stresses.
Collapse
Affiliation(s)
- Saurabh Gupta
- Intercellular Macromolecular Transport, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, 6102, Australia.
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University Plovdiv, 12 Mendeleev Str., 4000, Plovdiv, Bulgaria
| | - Vanika Garg
- Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria
- Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Plant Signalling, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria.
- Department of Plant Physiology and Molecular Biology, Plovdiv University, 24 Tsar Assen Str., 4000, Plovdiv, Bulgaria.
| |
Collapse
|
40
|
Pardo-Hernández M, Arbona V, Simón I, Rivero RM. Specific ABA-independent tomato transcriptome reprogramming under abiotic stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1746-1763. [PMID: 38284474 DOI: 10.1111/tpj.16642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Crops often have to face several abiotic stresses simultaneously, and under these conditions, the plant's response significantly differs from that observed under a single stress. However, up to the present, most of the molecular markers identified for increasing plant stress tolerance have been characterized under single abiotic stresses, which explains the unexpected results found when plants are tested under real field conditions. One important regulator of the plant's responses to abiotic stresses is abscisic acid (ABA). The ABA signaling system engages many stress-responsive genes, but many others do not respond to ABA treatments. Thus, the ABA-independent pathway, which is still largely unknown, involves multiple signaling pathways and important molecular components necessary for the plant's adaptation to climate change. In the present study, ABA-deficient tomato mutants (flacca, flc) were subjected to salinity, heat, or their combination. An in-depth RNA-seq analysis revealed that the combination of salinity and heat led to a strong reprogramming of the tomato transcriptome. Thus, of the 685 genes that were specifically regulated under this combination in our flc mutants, 463 genes were regulated by ABA-independent systems. Among these genes, we identified six transcription factors (TFs) that were significantly regulated, belonging to the R2R3-MYB family. A protein-protein interaction network showed that the TFs SlMYB50 and SlMYB86 were directly involved in the upregulation of the flavonol biosynthetic pathway-related genes. One of the most novel findings of the study is the identification of the involvement of some important ABA-independent TFs in the specific plant response to abiotic stress combination. Considering that ABA levels dramatically change in response to environmental factors, the study of ABA-independent genes that are specifically regulated under stress combination may provide a remarkable tool for increasing plant resilience to climate change.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Inmaculada Simón
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, Spain
| | - Rosa M Rivero
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain
| |
Collapse
|
41
|
VanBuren R, Nguyen A, Marks RA, Mercado C, Pardo A, Pardo J, Schuster J, Aubin BS, Wilson ML, Rhee SY. Variability in drought gene expression datasets highlight the need for community standardization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578814. [PMID: 38370805 PMCID: PMC10871248 DOI: 10.1101/2024.02.04.578814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Physiologically relevant drought stress is difficult to apply consistently, and the heterogeneity in experimental design, growth conditions, and sampling schemes make it challenging to compare water deficit studies in plants. Here, we re-analyzed hundreds of drought gene expression experiments across diverse model and crop species and quantified the variability across studies. We found that drought studies are surprisingly uncomparable, even when accounting for differences in genotype, environment, drought severity, and method of drying. Many studies, including most Arabidopsis work, lack high-quality phenotypic and physiological datasets to accompany gene expression, making it impossible to assess the severity or in some cases the occurrence of water deficit stress events. From these datasets, we developed supervised learning classifiers that can accurately predict if RNA-seq samples have experienced a physiologically relevant drought stress, and suggest this can be used as a quality control for future studies. Together, our analyses highlight the need for more community standardization, and the importance of paired physiology data to quantify stress severity for reproducibility and future data analyses.
Collapse
|
42
|
Martina M, De Rosa V, Magon G, Acquadro A, Barchi L, Barcaccia G, De Paoli E, Vannozzi A, Portis E. Revitalizing agriculture: next-generation genotyping and -omics technologies enabling molecular prediction of resilient traits in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2024; 15:1278760. [PMID: 38375087 PMCID: PMC10875072 DOI: 10.3389/fpls.2024.1278760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.
Collapse
Affiliation(s)
- Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| |
Collapse
|
43
|
Kang J, Chung A, Suresh S, Bonzi LC, Sourisse JM, Ramirez‐Calero S, Romeo D, Petit‐Marty N, Pegueroles C, Schunter C. Long non-coding RNAs mediate fish gene expression in response to ocean acidification. Evol Appl 2024; 17:e13655. [PMID: 38357358 PMCID: PMC10866067 DOI: 10.1111/eva.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
The majority of the transcribed genome does not have coding potential but these non-coding transcripts play crucial roles in transcriptional and post-transcriptional regulation of protein-coding genes. Regulation of gene expression is important in shaping an organism's response to environmental changes, ultimately impacting their survival and persistence as population or species face global change. However, the roles of long non-coding RNAs (lncRNAs), when confronted with environmental changes, remain largely unclear. To explore the potential role of lncRNAs in fish exposed to ocean acidification (OA), we analyzed publicly available brain RNA-seq data from a coral reef fish Acanthochromis polyacanthus. We annotated the lncRNAs in its genome and examined the expression changes of intergenic lncRNAs (lincRNAs) between A. polyacanthus samples from a natural CO2 seep and a nearby control site. We identified 4728 lncRNAs, including 3272 lincRNAs in this species. Remarkably, 93.03% of these lincRNAs were species-specific. Among the 125 highly expressed lincRNAs and 403 differentially expressed lincRNAs in response to elevated CO2, we observed that lincRNAs were either neighboring or potentially trans-regulating differentially expressed coding genes associated with pH regulation, neural signal transduction, and ion transport, which are known to be important in the response to OA in fish. In summary, lncRNAs may facilitate fish acclimation and mediate the responses of fish to OA by modulating the expression of crucial coding genes, which offers insight into the regulatory mechanisms underlying fish responses to environmental changes.
Collapse
Affiliation(s)
- Jingliang Kang
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Arthur Chung
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Sneha Suresh
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Lucrezia C. Bonzi
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Jade M. Sourisse
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Sandra Ramirez‐Calero
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Daniele Romeo
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Natalia Petit‐Marty
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
| | - Cinta Pegueroles
- Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity (IRBio)University of BarcelonaBarcelonaSpain
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological SciencesThe University of Hong KongPokfulamHong Kong SAR
- State Key Laboratory of Marine Pollution and Department of ChemistryCity University of Hong KongHong Kong SARChina
| |
Collapse
|
44
|
Feng L, Li Q, Zhou D, Jia M, Liu Z, Hou Z, Ren Q, Ji S, Sang S, Lu S, Yu J. B. subtilis CNBG-PGPR-1 induces methionine to regulate ethylene pathway and ROS scavenging for improving salt tolerance of tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:193-211. [PMID: 37812678 DOI: 10.1111/tpj.16489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Soil salinity severely threatens plant growth and crop yields. The utilization of PGPR is an effective strategy for enhancing plant salt tolerance, but the mechanisms involved in this process have rarely been reported. In this study, we investigated the effects of Bacillus subtilis CNBG-PGPR-1 on improving plant salt tolerance and elucidated the molecular pathways involved. The results showed that CNBG-PGPR-1 significantly improved the cellular homeostasis and photosynthetic efficiency of leaves and reduced ion toxicity and osmotic stress caused by salt in tomato. Transcriptome analysis uncovered that CNBG-PGPR-1 enhanced plant salt tolerance through the activation of complex molecular pathways, with plant hormone signal transduction playing an important role. Comparative analysis and pharmacological experiments confirmed that the ethylene pathway was closely related to the beneficial effect of CNBG-PGPR-1 on improving plant salt tolerance. Furthermore, we found that methionine, a precursor of ethylene synthesis, significantly accumulated in response to CNBG-PGPR-1 in tomato. Exogenous L-methionine largely mimicked the beneficial effects of CNBG-PGPR-1 and activated the expression of ethylene pathway-related genes, indicating CNBG-PGPR-1 induces methionine accumulation to regulate the ethylene pathway in tomato. Finally, CNBG-PGPR-1 reduced salt-induced ROS by activating ROS scavenger-encoding genes, mainly involved in GSH metabolism and POD-related genes, which were also closely linked to methionine metabolism. Overall, our studies demonstrate that CNBG-PGPR-1-induced methionine is a key regulator in enhancing plant salt tolerance through the ethylene pathway and ROS scavenging, providing a novel understanding of the mechanism by which beneficial microbes improve plant salt tolerance.
Collapse
Affiliation(s)
- Liuchun Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Dongqin Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Mingyun Jia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhuangzhuang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhaoqi Hou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Quanjin Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Shengdong Ji
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shifei Sang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shipeng Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| |
Collapse
|
45
|
Fan E, Liu C, Wang Z, Wang S, Ma W, Lu N, Liu Y, Fu P, Wang R, Lv S, Qu G, Wang J. Genome-Wide Identification and Expression Analysis of the SQUAMOSA Promoter-Binding Protein-like ( SPL) Transcription Factor Family in Catalpabungei. Int J Mol Sci 2023; 25:97. [PMID: 38203267 PMCID: PMC10779025 DOI: 10.3390/ijms25010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
As a plant-specific transcription factor, the SPL gene family plays a critical role in plant growth and development. Although the SPL gene family has been identified in diverse plant species, there have been no genome-wide identification or systematic study reports on the SPL gene family in Catalpa bungei. In this study, we identified 19 putative SPL gene family members in the C. bungei genome. According to the phylogenetic relationship, they can be divided into eight groups, and the genes in the same group have a similar gene structure and conserved motifs. Synteny analysis showed that fragment duplication played an important role in the expansion of the CbuSPL gene family. At the same time, CbuSPL genes have cis-acting elements and functions related to light response, hormone response, growth and development, and stress response. Tissue-specific expression and developmental period-specific expression analysis showed that CbuSPL may be involved in flowering initiation and development, flowering transition, and leaf development. In addition, the ectopic expression of CbuSPL4 in Arabidopsis confirmed that it can promote early flowering and induce the expression of related flowering genes. These systematic research results will lay a foundation for further study on the functional analysis of SPL genes in C. bungei.
Collapse
Affiliation(s)
- Erqin Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Caixia Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Shanshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Yuhang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
| | - Pengyue Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Rui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Siyu Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| |
Collapse
|
46
|
Xu Y, Yao Z, Cheng Y, Ruan M, Ye Q, Wang R, Zhou G, Liu J, Liu C, Wan H. Divergent Retention of Sucrose Metabolism Genes after Whole Genome Triplication in the Tomato ( Solanum lycopersicum). PLANTS (BASEL, SWITZERLAND) 2023; 12:4145. [PMID: 38140472 PMCID: PMC10747743 DOI: 10.3390/plants12244145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Sucrose, the primary carbon transport mode and vital carbohydrate for higher plants, significantly impacts plant growth, development, yield, and quality formation. Its metabolism involves three key steps: synthesis, transport, and degradation. Two genome triplication events have occurred in Solanaceae, which have resulted in massive gene loss. In this study, a total of 48 and 65 genes from seven sucrose metabolism gene families in Vitis vinifera and Solanum lycopersicum were identified, respectively. The number of members comprising the different gene families varied widely. And there were significant variations in the pattern of gene duplication and loss in the tomato following two WGD events. Tandem duplication is a major factor in the expansion of the SWEET and Acid INV gene families. All the genes are irregularly distributed on the chromosomes, with the majority of the genes showing collinearity with the grape, particularly the CIN family. And the seven gene families were subjected to a purifying selection. The expression patterns of the different gene families exhibited notable variations. This study presents basic information about the sucrose metabolism genes in the tomato and grape, and paves the way for further investigations into the impact of SCT events on the phylogeny, gene retention duplication, and function of sucrose metabolism gene families in the tomato or Solanaceae, and the adaptive evolution of the tomato.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| | - Jia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
- Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China
| | - Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.X.); (Z.Y.); (Y.C.); (M.R.); (Q.Y.); (R.W.); (G.Z.); (J.L.)
| |
Collapse
|
47
|
Wu X, Simpson SA, Youngblood RC, Liu XF, Scheffler BE, Rinehart TA, Alexander LW, Hulse-Kemp AM. Two haplotype-resolved genomes reveal important flower traits in bigleaf hydrangea ( Hydrangea macrophylla) and insights into Asterid evolution. HORTICULTURE RESEARCH 2023; 10:uhad217. [PMID: 38130599 PMCID: PMC10734616 DOI: 10.1093/hr/uhad217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/07/2023] [Indexed: 12/23/2023]
Abstract
The Hydrangea genus belongs to the Hydrangeaceae family, in the Cornales order of flowering plants, which early diverged among the Asterids, and includes several species that are commonly used ornamental plants. Of them, Hydrangea macrophylla is one of the most valuable species in the nursery trade, yet few genomic resources are available for this crop or closely related Asterid species. Two high-quality haplotype-resolved reference genomes of hydrangea cultivars 'Veitchii' and 'Endless Summer' [highest quality at 2.22 gigabase pairs (Gb), 396 contigs, N50 22.8 megabase pairs (Mb)] were assembled and scaffolded into the expected 18 pseudochromosomes. Utilizing the newly developed high-quality reference genomes along with high-quality genomes of other related flowering plants, nuclear data were found to support a single divergence point in the Asterids clade where both the Cornales and Ericales diverged from the euasterids. Genetic mapping with an F1 hybrid population demonstrated the power of linkage mapping combined with the new genomic resources to identify the gene for inflorescence shape, CYP78A5 located on chromosome 4, and a novel gene, BAM3 located on chromosome 17, for causing double flower. Resources developed in this study will not only help to accelerate hydrangea genetic improvement but also contribute to understanding the largest group of flowering plants, the Asterids.
Collapse
Affiliation(s)
- Xingbo Wu
- Department of Environmental Horticulture, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, United States
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC 27695, United States
| | - Sheron A Simpson
- Genomics and Bioinformatics Research Unit, USDA-ARS, Stoneville, MS 38776, United States
| | - Ramey C Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39762, United States
| | - Xiaofen F Liu
- Genomics and Bioinformatics Research Unit, USDA-ARS, Stoneville, MS 38776, United States
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, USDA-ARS, Stoneville, MS 38776, United States
| | - Timothy A Rinehart
- Crop Production and Protection, USDA-ARS, Beltsville, MD 20705, United States
| | - Lisa W Alexander
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, USDA-ARS, McMinnville, TN 37110, United States
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC 27695, United States
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
48
|
Vazquez‐Vilar M, Fernandez‐del‐Carmen A, Garcia‐Carpintero V, Drapal M, Presa S, Ricci D, Diretto G, Rambla JL, Fernandez‐Muñoz R, Espinosa‐Ruiz A, Fraser PD, Martin C, Granell A, Orzaez D. Dually biofortified cisgenic tomatoes with increased flavonoids and branched-chain amino acids content. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2683-2697. [PMID: 37749961 PMCID: PMC10651156 DOI: 10.1111/pbi.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023]
Abstract
Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.
Collapse
Affiliation(s)
- Marta Vazquez‐Vilar
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Asun Fernandez‐del‐Carmen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Victor Garcia‐Carpintero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | | | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Dorotea Ricci
- Biotechnology LaboratoryItalian Agency for New Technologies, Energy and Sustainable Development (ENEA)RomeItaly
| | - Gianfranco Diretto
- Biotechnology LaboratoryItalian Agency for New Technologies, Energy and Sustainable Development (ENEA)RomeItaly
| | - José Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
- Department of Biology, Biochemistry and Natural SciencesUniversitat Jaume ICastellón de la PlanaSpain
| | - Rafael Fernandez‐Muñoz
- Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Instituto de Hortofruticultura Subtropical y Mediterránea La MayoraUniversidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Ana Espinosa‐Ruiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | | | | | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| |
Collapse
|
49
|
Minow MAA, Marand AP, Schmitz RJ. Leveraging Single-Cell Populations to Uncover the Genetic Basis of Complex Traits. Annu Rev Genet 2023; 57:297-319. [PMID: 37562412 PMCID: PMC10775913 DOI: 10.1146/annurev-genet-022123-110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The ease and throughput of single-cell genomics have steadily improved, and its current trajectory suggests that surveying single-cell populations will become routine. We discuss the merger of quantitative genetics with single-cell genomics and emphasize how this synergizes with advantages intrinsic to plants. Single-cell population genomics provides increased detection resolution when mapping variants that control molecular traits, including gene expression or chromatin accessibility. Additionally, single-cell population genomics reveals the cell types in which variants act and, when combined with organism-level phenotype measurements, unveils which cellular contexts impact higher-order traits. Emerging technologies, notably multiomics, can facilitate the measurement of both genetic changes and genomic traits in single cells, enabling single-cell genetic experiments. The implementation of single-cell genetics will advance the investigation of the genetic architecture of complex molecular traits and provide new experimental paradigms to study eukaryotic genetics.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Genetics, University of Georgia, Athens, Georgia, USA;
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
50
|
Stander EA, Lehka B, Carqueijeiro I, Cuello C, Hansson FG, Jansen HJ, Dugé De Bernonville T, Birer Williams C, Vergès V, Lezin E, Lorensen MDBB, Dang TT, Oudin A, Lanoue A, Durand M, Giglioli-Guivarc'h N, Janfelt C, Papon N, Dirks RP, O'connor SE, Jensen MK, Besseau S, Courdavault V. The Rauvolfia tetraphylla genome suggests multiple distinct biosynthetic routes for yohimbane monoterpene indole alkaloids. Commun Biol 2023; 6:1197. [PMID: 38001233 PMCID: PMC10673892 DOI: 10.1038/s42003-023-05574-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.
Collapse
Affiliation(s)
- Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Beata Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Inês Carqueijeiro
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Thomas Dugé De Bernonville
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
- Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Valentin Vergès
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Thu-Thuy Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Sarah Ellen O'connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| |
Collapse
|