1
|
Hervás-Rivero C, Srihi H, López-Carbonell D, Casellas J, Ibáñez-Escriche N, Negro S, Varona L. Genomic Scanning of Inbreeding Depression for Litter Size in Two Varieties of Iberian Pigs. Genes (Basel) 2023; 14:1941. [PMID: 37895290 PMCID: PMC10606707 DOI: 10.3390/genes14101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Inbreeding depression is expected to be more pronounced in fitness-related traits, such as pig litter size. Recent studies have suggested that the genetic determinism of inbreeding depression may be heterogeneous across the genome. Therefore, the objective of this study was to conduct a genomic scan of the whole pig autosomal genome to detect the genomic regions that control inbreeding depression for litter size in two varieties of Iberian pigs (Entrepelado and Retinto). The datasets consisted of 2069 (338 sows) and 2028 (327 sows) records of litter size (Total Number Born and Number Born Alive) for the Entrepelado and Retinto varieties. All sows were genotyped using the Geneseek GGP PorcineHD 70 K chip. We employed the Unfavorable Haplotype Finder software to extract runs of homozygosity (ROHs) and conducted a mixed-model analysis to identify highly significant differences between homozygous and heterozygous sows for each specific ROH. A total of eight genomic regions located on SSC2, SSC5, SSC7, SSC8, and SSC13 were significantly associated with inbreeding depression, housing some relevant genes such as FSHR, LHCGR, CORIN, AQP6, and CEP120.
Collapse
Affiliation(s)
- Carlos Hervás-Rivero
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.)
| | - Houssemeddine Srihi
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.)
| | - David López-Carbonell
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.)
| | - Joaquim Casellas
- Department Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Noelia Ibáñez-Escriche
- Instituto Universitario de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Sara Negro
- Programa de Mejora Genética “Castua”, INGA FOOD S. A. (Nutreco), 06200 Almendralejo, Spain
| | - Luis Varona
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.)
| |
Collapse
|
2
|
Li C, Tan Y, Ma X, Wang Z, Meng T, Sun Q. CDT1 is the major functional regulatory subunit of the pre-replication complex in zygotes. Cell Prolif 2022; 56:e13377. [PMID: 36479743 PMCID: PMC9977660 DOI: 10.1111/cpr.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Pre-replication complex (pre-RC) is critical for DNA replication initiation. CDT1 and MCM2 are the subunits of pre-RC, and proper regulation of CDT1 and MCM2 are necessary for DNA replication and cell proliferation. The present study aimed to explore the role of CDT1 and MCM2 in oocyte meiotic maturation and early embryonic development. The depletion and overexpression of Cdt1 and Mcm2 in oocyte and zygote were achieved by microinjecting specific siRNA and mRNA to explored their functions in oocyte meiotic maturation and embryonic development. Then, we examined the effect of CDT1 and MCM2 on other signal pathways by immunostaining the expression of related maker genes. We showed that neither depletion nor overexpression of Cdt1 affected oocyte meiotic progressions. The CDT1 was degraded in S phase and remained at a low level in G2 phase of zygote. Exogenous expression of Cdt1 in G2 phase led to embryo attest at zygote stage. Mechanistically, CDT1 overexpression induced DNA re-replication and thus DNA damage check-point activation. Protein abundance of MCM2 was stable throughout the cell cycle, and embryos with overexpressed MCM2 could develop to blastocysts normally. Overexpression or depletion of Mcm2 also had no effect on oocyte meiotic maturation. Our results indicate that pre-RC subunits CDT1 and MCM2 are not involved in oocyte meiotic maturation. In zygote, CDT1 but not MCM2 is the major regulator of DNA replication in a cell cycle dependent manner. Furthermore, its' degradation is essential for zygotes to prevent from DNA re-replication in G2 stage.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Peng Tan
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Xue‐Shan Ma
- Reproductive Genetics DepartmentThe Affiliated Tai'an City Central Hospital of Qingdao UniversityTaianChina
| | - Zhen‐Bo Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Tie‐Gang Meng
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Qing‐Yuan Sun
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| |
Collapse
|
3
|
Chen J, Wu Z, Chen R, Huang Z, Han X, Qiao R, Wang K, Yang F, Li XJ, Li XL. Identification of Genomic Regions and Candidate Genes for Litter Traits in French Large White Pigs Using Genome-Wide Association Studies. Animals (Basel) 2022; 12:ani12121584. [PMID: 35739920 PMCID: PMC9219640 DOI: 10.3390/ani12121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
The reproductive traits of sows are one of the important economic traits in pig production, and their performance directly affects the economic benefits of the entire pig industry. In this study, a total of 895 French Large White pigs were genotyped by GeneSeek Porcine 50K SNP Beadchip and four phenotypic traits of 1407 pigs were recorded, including total number born (TNB), number born alive (NBA), number healthy piglets (NHP) and litter weight born alive (LWB). To identify genomic regions and genes for these traits, we used two approaches: a single-locus genome-wide association study (GWAS) and a single-step GWAS (ssGWAS). Overall, a total of five SNPs and 36 genomic regions were identified by single-locus GWAS and ssGWAS, respectively. Notably, fourof all five significant SNPs were located in 10.72–11.06 Mb on chromosome 7, were also identified by ssGWAS. These regions explained the highest or second highest genetic variance in the TNB, NBA and NHP traits and harbor the protein coding gene ENSSSCG00000042180. In addition, several candidate genes associated with litter traits were identified, including JARID2, PDIA6, FLRT2 and DICER1. Overall, these novel results reflect the polygenic genetic architecture of the litter traits and provide a theoretical reference for the following implementation of molecular breeding.
Collapse
|
4
|
Lewis EMA, Sankar S, Tong C, Patterson ES, Waller LE, Gontarz P, Zhang B, Ornitz DM, Kroll KL. Geminin is required for Hox gene regulation to pattern the developing limb. Dev Biol 2020; 464:11-23. [PMID: 32450229 DOI: 10.1016/j.ydbio.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/09/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Development of the complex structure of the vertebrate limb requires carefully orchestrated interactions between multiple regulatory pathways and proteins. Among these, precise regulation of 5' Hox transcription factor expression is essential for proper limb bud patterning and elaboration of distinct limb skeletal elements. Here, we identified Geminin (Gmnn) as a novel regulator of this process. A conditional model of Gmnn deficiency resulted in loss or severe reduction of forelimb skeletal elements, while both the forelimb autopod and hindlimb were unaffected. 5' Hox gene expression expanded into more proximal and anterior regions of the embryonic forelimb buds in this Gmnn-deficient model. A second conditional model of Gmnn deficiency instead caused a similar but less severe reduction of hindlimb skeletal elements and hindlimb polydactyly, while not affecting the forelimb. An ectopic posterior SHH signaling center was evident in the anterior hindlimb bud of Gmnn-deficient embryos in this model. This center ectopically expressed Hoxd13, the HOXD13 target Shh, and the SHH target Ptch1, while these mutant hindlimb buds also had reduced levels of the cleaved, repressor form of GLI3, a SHH pathway antagonist. Together, this work delineates a new role for Gmnn in modulating Hox expression to pattern the vertebrate limb.
Collapse
Affiliation(s)
- Emily M A Lewis
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Savita Sankar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Caili Tong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ethan S Patterson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Ali H, Braga L, Giacca M. Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS J 2020; 287:417-438. [PMID: 31743572 DOI: 10.1111/febs.15146] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/27/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Adult mammals are unable to regenerate their hearts after cardiac injury, largely due to the incapacity of cardiomyocytes (CMs) to undergo cell division. However, mammalian embryonic and fetal CMs, similar to CMs from fish and amphibians during their entire life, exhibit robust replicative activity, which stops abruptly after birth and never significantly resumes. Converging evidence indicates that formation of the highly ordered and stable cytoarchitecture of mammalian mature CMs is coupled with loss of their proliferative potential. Here, we review the available information on the role of the cardiac cytoskeleton and sarcomere in the regulation of CM proliferation. The actin cytoskeleton, the intercalated disc, the microtubular network and the dystrophin-glycoprotein complex each sense mechanical cues from the surrounding environment. Furthermore, they participate in the regulation of CM proliferation by impinging on the yes-associated protein/transcriptional co-activator with PDZ-binding motif, β-catenin and myocardin-related transcription factor transcriptional co-activators. Mastering the molecular mechanisms regulating CM proliferation would permit the development of innovative strategies to stimulate cardiac regeneration in adult individuals, a hitherto unachieved yet fundamental therapeutic goal.
Collapse
Affiliation(s)
- Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| |
Collapse
|
6
|
Rad9a is involved in chromatin decondensation and post-zygotic embryo development in mice. Cell Death Differ 2018; 26:969-980. [PMID: 30154445 DOI: 10.1038/s41418-018-0181-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/01/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Zygotic chromatin undergoes extensive reprogramming immediately after fertilization. It is generally accepted that maternal factors control this process. However, little is known about the underlying mechanisms. Here we report that maternal RAD9A, a key protein in DNA damage response pathway, is involved in post-zygotic embryo development, via a mouse model with conditional depletion of Rad9a alleles in oocytes of primordial follicles. Post-zygotic losses originate from delayed zygotic chromatin decondensation after depletion of maternal RAD9A. Pronucleus formation and DNA replication of most mutant zygotes are therefore deferred, which subsequently trigger the G2/M checkpoint and arrest development of most mutant zygotes. Delayed zygotic chromatin decondensation could also lead to increased reabsorption of post-implantation mutant embryos. In addition, our data indicate that delayed zygotic chromatin decondensation may be attributed to deferred epigenetic modification of histone in paternal chromatin after fertilization, as fertilization and resumption of secondary meiosis in mutant oocytes were both normal. More interestingly, most mutant oocytes could not support development beyond one-cell stage after parthenogenetic activation. Therefore, RAD9A may also play an important role in maternal chromatin reprogramming. In summary, our data reveal an important role of RAD9A in zygotic chromatin reprogramming and female fertility.
Collapse
|
7
|
Yuan Y, Ma XS, Liang QX, Xu ZY, Huang L, Meng TG, Lin F, Schatten H, Wang ZB, Sun QY. Geminin deletion in pre-meiotic DNA replication stage causes spermatogenesis defect and infertility. J Reprod Dev 2017; 63:481-488. [PMID: 28690291 PMCID: PMC5649097 DOI: 10.1262/jrd.2017-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Geminin plays a critical role in cell cycle regulation by regulating DNA replication and serves as a transcriptional molecular switch that directs cell fate decisions. Spermatogonia lacking Geminin disappear
during the initial wave of mitotic proliferation, while geminin is not required for meiotic progression of spermatocytes. It is unclear whether geminin plays a role in pre-meiotic DNA replication in later-stage spermatogonia and
their subsequent differentiation. Here, we selectively disrupted Geminin in the male germline using the Stra8-Cre/loxP conditional knockout system.
Geminin-deficient mice showed atrophic testes and infertility, concomitant with impaired spermatogenesis and reduced sperm motility. The number of undifferentiated spermatogonia and spermatocytes was significantly
reduced; the pachytene stage was impaired most severely. Expression of cell proliferation-associated genes was reduced in Gmnnfl/Δ; Stra8-Cre testes compared to in controls. Increased
DNA damage, decreased Cdt1, and increased phosphorylation of Chk1/Chk2 were observed in Geminin-deficient germ cells. These results suggest that geminin plays important roles in pre-meiotic DNA replication and
subsequent spermatogenesis.
Collapse
Affiliation(s)
- Yue Yuan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Reproductive Medical Center, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Qiu-Xia Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Yang Xu
- The Reproductive Medical Center, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Lin Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Xu YW, Cao LR, Wang M, Xu Y, Wu X, Liu J, Tong C, Fan HY. Maternal DCAF2 is crucial for maintenance of genome stability during the first cell cycle in mice. J Cell Sci 2017; 130:3297-3307. [DOI: 10.1242/jcs.206664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
Precise regulation of DNA replication and genome integrity is crucial for gametogenesis and early embryogenesis. Cullin ring-finger ubiquitin ligase 4 (CRL4) has multiple functions in the maintenance of germ cell survival, oocyte meiotic maturation, and maternal-zygotic transition in mammals. DDB1-cullin 4-associated factor-2 (DCAF2, also known as DTL or CDT2) is an evolutionarily conserved substrate receptor of CRL4. To determine whether DCAF2 is a key CRL4 substrate adaptor in mammalian oocytes, we generated a novel mouse strain that carries a Dcaf2 allele flanked by LoxP sequences, and specifically deleted Dcaf2 in oocytes. Dcaf2 knockout in mouse oocytes leads to female infertility. Although Dcaf2 null oocytes were able to develop and mature normally, the embryos derived from them were arrested at 1- to 2-cell stages owing to prolonged DNA replication and accumulation of massive DNA damage. These results indicate that DCAF2 is a previously unrecognized maternal factor that safeguards zygotic genome stability. Maternal DCAF2 protein is crucial for prevention of DNA rereplication in the first and unique mitotic cell cycle of the zygote.
Collapse
Affiliation(s)
- Yi-Wen Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Lan-Rui Cao
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Xu
- Cambridge-Suda Genomic Resource, Soochow University, Suzhou 215123, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Junping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Tong
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Patmanidi AL, Champeris Tsaniras S, Karamitros D, Kyrousi C, Lygerou Z, Taraviras S. Concise Review: Geminin-A Tale of Two Tails: DNA Replication and Transcriptional/Epigenetic Regulation in Stem Cells. Stem Cells 2016; 35:299-310. [DOI: 10.1002/stem.2529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/18/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Dimitris Karamitros
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| | - Christina Kyrousi
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| | - Zoi Lygerou
- Department of Biology; Medical School, University of Patras; Rio Patras Greece
| | - Stavros Taraviras
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| |
Collapse
|
10
|
Abstract
Reproduction across mammalian species is conserved with a general pattern of fertilization followed by nascent embryo development in transcriptional silence for a variable length of time, a series of cleavage divisions that occur without growth in size of the embryo, compaction to form a morula, and production of a blastocyst. Following blastocyst formation, the embryo may implant immediately or after substantial differentiation of the epiblast and hypoblast layers. In this chapter, the shared and unique properties of several species, commonly used in studies of reproduction and embryology, are outlined.
Collapse
Affiliation(s)
| | - L Prezzoto
- Agricultural Research Centers, Montana State University, Bozeman, MT, United States
| |
Collapse
|