1
|
Labanca L, Berti L, Tedeschi R, D'Auria L, Platano D, Benedetti MG. Effects of MLS Laser on pain, function, and disability in chronic non-specific low back pain: A double-blind placebo randomized-controlled trial. J Back Musculoskelet Rehabil 2024; 37:1289-1298. [PMID: 38820011 DOI: 10.3233/bmr-230383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
BACKGROUND Among non-pharmacological interventions, Multiwave Locked System (MLS) Laser therapy has been used in patients with several musculoskeletal pathologies and in combination with other therapeutical interventions. The effects of sole MLS therapy on pain and function in patients with chronic non-specific low-back pain are unknown. OBJECTIVE The objective of this study was to investigate the effects of MLS Laser therapy on pain, function, and disability in patients with chronic non-specific low back pain in comparison to a placebo treatment group. METHODS Forty-five patients were randomized into two groups: the MLS Laser group and the Sham Laser group, undergoing 8 sessions of either a MLS Laser therapy or a Sham Laser therapy, respectively. At the beginning of the therapy (T0), at the end of the therapy (T1), and 1 month after the end of therapy (T2) patients were assessed for low back pain (by means of a VAS scale), function (by means of kinematic and electromyographic assessment of a forward bending movement) and self-reported disability (by means of the Roland-Morris and Oswestry Disability questionnaires). RESULTS There was a significant reduction of pain and disability in both groups at T1 and T2 in comparison with T0. At T2 patients in the MLS group showed a significantly lower pain in comparison with patients in the Sham group (VAS = 2.2 ± 2 vs. 3.6 ± 2.4; p< 0.05). No differences between the two groups were found for function and disability. CONCLUSION Both MLS Laser and Sham Laser therapies lead to a significant and comparable reduction in pain and disability in patients with chronic non-specific low back pain. However, one month after treatment, MLS Laser therapy has been found to be significantly more effective in reducing pain as compared to sham treatment.
Collapse
Affiliation(s)
- Luciana Labanca
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lisa Berti
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberto Tedeschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucia D'Auria
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Daniela Platano
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Grazia Benedetti
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Yan M, Wu MX. Low-level light pre-conditioning promotes C2C12 myoblast differentiation under hypoxic conditions. JOURNAL OF BIOPHOTONICS 2022; 15:e202100246. [PMID: 34751510 DOI: 10.1002/jbio.202100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Exercise, especially anaerobic one, can gradually increase muscle mass over time as a result of adaptive responses of muscle cells to ensure metabolic homeostasis in the tissue. Low-level light therapy (LLLT) or photobiomodulation exhibits beneficial effects on promoting muscular functions, regeneration, and recovery from exhausting exercise, although the underlying cellular mechanisms remain poorly understood. We found that hypoxia, a condition following anaerobic exercise, significantly impeded myotube differentiation from myoblasts. However, this adverse effect was blunted greatly by pre-exposure of myoblast cells to a 980 nm laser at 0.1 J/cm2 , resulting in almost nearly normal myotube differentiation. LLL pre-treatment enhanced myotube formation by 80%, with a tubular diameter of 4.28 ± 0.11 μm on average, representative of a 53.4% increase over sham light treatment. The normalized myoblast differentiation concurred with 68% more mitochondrial mass and myogenin expression over controls. Moreover, LLL pre-treatment appeared to enhance glucose uptake, prevent energy metabolic switch from oxidative phosphorylation to glycolysis, and diminish lactate production under hypoxic conditions. The observation provides valuable guidance with respect to the timing of LLLT and its potential effects on muscle strengths in concert with anaerobic exercise.
Collapse
Affiliation(s)
- Min Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mei X Wu
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Shepherd DW, Norris JM, Simpson BS, Player DJ, Whitaker HC. Effects of photobiomodulation therapy on regulation of myogenic regulatory factor mRNA expression in vivo: A systematic review. JOURNAL OF BIOPHOTONICS 2022; 15:e202100219. [PMID: 34799996 DOI: 10.1002/jbio.202100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Non-invasive promotion of myogenic regulatory factors (MRFs), through photobiomodulation therapy (PBMT), may be a viable method of facilitating skeletal muscle regeneration post-injury, given the importance of MRF in skeletal muscle regeneration. The aim of this systematic review was to collate current evidence, identifying key themes and changes in expression of MRF in in vivo models. Web of Science, PubMed, Scopus and Cochrane databases were systematically searched and identified 1459 studies, of which 10 met the inclusion criteria. Myogenic determination factor was most consistently regulated in response to PBMT treatment, and the expression of remaining MRFs was heterogenous. All studies exhibited a high risk of bias, primarily due to lack of blinding in PBMT application and MRF analysis. Our review suggests that the current evidence base for MRF expression from PBMT is highly variable. Future research should focus on developing a robust methodology for determining the effect of laser therapy on MRF expression, as well as long-term assessment of skeletal muscle regeneration.
Collapse
Affiliation(s)
- David W Shepherd
- UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Joseph M Norris
- UCL Division of Surgery and Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Benjamin S Simpson
- UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Darren J Player
- UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Hayley C Whitaker
- UCL Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
4
|
Gerace E, Cialdai F, Sereni E, Lana D, Nosi D, Giovannini MG, Monici M, Mannaioni G. NIR Laser Photobiomodulation Induces Neuroprotection in an In Vitro Model of Cerebral Hypoxia/Ischemia. Mol Neurobiol 2021; 58:5383-5395. [PMID: 34319540 PMCID: PMC8497317 DOI: 10.1007/s12035-021-02496-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
Brain photobiomodulation (PBM) is an innovative treatment for a variety of neurological conditions, including cerebral ischemia. However, the capability of PBM for ischemic stroke needs to be further explored and its mechanisms of action remain currently unclear. The aim of the present research was to identify a treatment protocol capable of inducing neuroprotection and to investigate the molecular mechanisms activated by a dual-wavelength near infrared (NIR) laser source in an organotypic hippocampal slice model of hypoxia/ischemia. Hippocampal slices were exposed to oxygen and glucose deprivation (OGD) for 30 min followed by NIR laser light (fluence 3.71, 7.42, or 14.84 J/cm2; wavelengths 808 nm and 905 nm) delivered immediately or 30 min or 60 min after OGD, in order to establish a therapeutic window. Neuronal injury was assessed by propidium iodide fluorescence 24 h later. Our results show that NIR laser irradiation attenuates OGD neurotoxicity once applied immediately or 30 min after OGD. Western blot analysis of proteins involved in neuroinflammation (iNOS, COX-2, NFkB subunit p65, and Bcl-2) and in glutamatergic-mediated synaptic activity (vGluT1, EAAT2, GluN1, and PSD95) showed that the protein modifications induced by OGD were reverted by NIR laser application. Moreover, CA1 confocal microscopy revealed that the profound morphological changes induced by OGD were reverted by NIR laser radiation. In conclusion, NIR laser radiation attenuates OGD neurotoxicity in organotypic hippocampal slices through attenuation of inflammatory mechanisms. These findings shed light on molecular definition of NIR neuroprotective mechanisms, thus underlining the potential benefit of this technique for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div. - Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elettra Sereni
- ASAcampus Joint Laboratory, ASA Res. Div. - Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div. - Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
5
|
Vetrici MA, Mokmeli S, Bohm AR, Monici M, Sigman SA. Evaluation of Adjunctive Photobiomodulation (PBMT) for COVID-19 Pneumonia via Clinical Status and Pulmonary Severity Indices in a Preliminary Trial. J Inflamm Res 2021; 14:965-979. [PMID: 33776469 PMCID: PMC7989376 DOI: 10.2147/jir.s301625] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Evidence-based and effective treatments for COVID-19 are limited, and a new wave of infections and deaths calls for novel, easily implemented treatment strategies. Photobiomodulation therapy (PBMT) is a well-known adjunctive treatment for pain management, wound healing, lymphedema, and cellulitis. PBMT uses light to start a cascade of photochemical reactions that lead to local and systemic anti-inflammatory effects at multiple levels and that stimulate healing. Numerous empirical studies of PBMT for patients with pulmonary disease such as pneumonia, COPD and asthma suggest that PBMT is a safe and effective adjunctive treatment. Recent systematic reviews suggest that PBMT may be applied to target lung tissue in COVID-19 patients. In this preliminary study, we evaluated the effect of adjunctive PBMT on COVID-19 pneumonia and patient clinical status. PATIENTS AND METHODS We present a small-scale clinical trial with 10 patients randomized to standard medical care or standard medical care plus adjunctive PBMT. The PBMT group received four daily sessions of near-infrared light treatment targeting the lung tissue via a Multiwave Locked System (MLS) laser. Patient outcomes were measured via blood work, chest x-rays, pulse oximetry and validated scoring tools for pneumonia. RESULTS PBMT patients showed improvement on pulmonary indices such as SMART-COP, BCRSS, RALE, and CAP (Community-Acquired Pneumonia questionnaire). PBMT-treated patients showed rapid recovery, did not require ICU admission or mechanical ventilation, and reported no long-term sequelae at 5 months after treatment. In the control group, 60% of patients were admitted to the ICU for mechanical ventilation. The control group had an overall mortality of 40%. At a 5-month follow-up, 40% of the control group experienced long-term sequelae. CONCLUSION PBMT is a safe and effective potential treatment for COVID-19 pneumonia and improves clinical status in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Mariana A Vetrici
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Soheila Mokmeli
- Training Institute, Canadian Optic and Laser Center, Victoria, BC, Canada
| | - Andrew R Bohm
- Department of Orthopedics, Lenox Hill Hospital, New York, NY, USA
| | - Monica Monici
- ASA Campus J.L., ASA Res. Division – Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Scott A Sigman
- Department of Orthopedics, Lowell General Hospital, Lowell, MA, 01863, USA
| |
Collapse
|
6
|
Effect of NIR Laser Therapy by MLS-MiS Source on Fibroblast Activation by Inflammatory Cytokines in Relation to Wound Healing. Biomedicines 2021; 9:biomedicines9030307. [PMID: 33809724 PMCID: PMC8002295 DOI: 10.3390/biomedicines9030307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The fine control of inflammation following injury avoids fibrotic scars or impaired wounds. Due to side effects by anti-inflammatory drugs, the research is continuously active to define alternative therapies. Among them, physical countermeasures such as photobiomodulation therapy (PBMT) are considered effective and safe. To study the cellular and molecular events associated with the anti-inflammatory activity of PBMT by a dual-wavelength NIR laser source, human dermal fibroblasts were exposed to a mix of inflammatory cytokines (IL-1β and TNF-α) followed by laser treatment once a day for three days. Inducible inflammatory key enzymatic pathways, as iNOS and COX-2/mPGES-1/PGE2, were upregulated by the cytokine mix while PBMT reverted their levels and activities. The same behavior was observed with the proangiogenic factor vascular endothelial growth factor (VEGF), involved in neovascularization of granulation tissue. From a molecular point of view, PBMT retained NF-kB cytoplasmatic localization. According to a change in cell morphology, differences in expression and distribution of fundamental cytoskeletal proteins were observed following treatments. Tubulin, F-actin, and α-SMA changed their organization upon cytokine stimulation, while PBMT reestablished the basal localization. Cytoskeletal rearrangements occurring after inflammatory stimuli were correlated with reorganization of membrane α5β1 and fibronectin network as well as with their upregulation, while PBMT induced significant downregulation. Similar changes were observed for collagen I and the gelatinolytic enzyme MMP-1. In conclusion, the present study demonstrates that the proposed NIR laser therapy is effective in controlling fibroblast activation induced by IL-1β and TNF-α, likely responsible for a deleterious effect of persistent inflammation.
Collapse
|
7
|
Sigman SA, Mokmeli S, Monici M, Vetrici MA. A 57-Year-Old African American Man with Severe COVID-19 Pneumonia Who Responded to Supportive Photobiomodulation Therapy (PBMT): First Use of PBMT in COVID-19. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e926779. [PMID: 32865522 PMCID: PMC7449510 DOI: 10.12659/ajcr.926779] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patient: Male, 57-year-old Final Diagnosis: COVID-19 Symptoms: Shortness of breath • hypoxia Medication: — Clinical Procedure: Photobiomodulation therapy (PBMT) Specialty: Infectious Diseases • Pulmonology
Collapse
Affiliation(s)
- Scott A Sigman
- Team Physician, UMASS Lowell, Fellow of the World Society of Sports and Exercise Medicine, Fellow of the Royal College of Surgeons in Ireland, Chelmsford, MA, USA
| | - Soheila Mokmeli
- Training Institute, Canadian Optic and Laser Center, Victoria, BC, Canada
| | - Monica Monici
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mariana A Vetrici
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
8
|
Santos TC, Brito Sousa K, Andreo L, Martinelli A, Rodrigues MFSD, Bussadori SK, Fernandes KPS, Mesquita‐Ferrari RA. Effect of Photobiomodulation on C2C12 Myoblasts Cultivated in M1 Macrophage‐conditioned Media. Photochem Photobiol 2020; 96:906-916. [DOI: 10.1111/php.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Tainá Caroline Santos
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Kaline Brito Sousa
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Lucas Andreo
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Andreia Martinelli
- Postgraduate Program in Rehabilitation Sciences UNINOVE São Paulo SP Brazil
| | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
- Postgraduate Program in Rehabilitation Sciences UNINOVE São Paulo SP Brazil
| | | | - Raquel Agnelli Mesquita‐Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
- Postgraduate Program in Rehabilitation Sciences UNINOVE São Paulo SP Brazil
| |
Collapse
|
9
|
Safari S, Rostami-Nejad M, Rezaei-Tavirani M, Mansouri V, Razzaghi Z, Rezaei-Tavirani M. Assessment of Dysregulation of HERC6 and Essential Biological Processes in Response to Laser Therapy of Human Arm Skin. J Lasers Med Sci 2020; 11:115-119. [PMID: 32273950 DOI: 10.34172/jlms.2020.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: The widespread application of lasers in medicine, especially in the treatment of diseases implies more investigations to understand the precious molecular mechanism of the laser effect on the human body. In the present study, the prominent role of HERC6 in response to CO2 Laser therapy of human skin is investigated. Methods: The numbers of 16 gene expression profiles before and after the treatment with the CO2 laser are downloaded from Gene Expression Omnibus (GEO), and differentially-expressed genes (DEGs) are analyzed to find the significant DEGs. Gene ontology analysis revealed that HERC6 and a set of its neighbors played a significant role in response to laser application. Results: The expression changes of 52 significant DEGs were compared via heat map analysis and 27 significant DEGs were introduced as the critical genes which are involved in response to laser irradiation. "Thymidylate kinase activity" among 9 clusters of biological terms was highlighted as an important biological process related to the identified DEGs. HERC2 was proposed as a critical DEG which was related to several essential cellular processes in response to laser application. Conclusion: The findings from the present study indicate that HERC6 and the numbers of its first neighbors are involved in the essential cellular response to laser therapy of human skin.
Collapse
Affiliation(s)
- Saeed Safari
- Department of Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Rezaei-Tavirani
- Firoozabadi Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Razzaghi M, Rostami-Nejad M, Rezaei-Taviran M, Zamanian Azodi M, Okhovatian F, Mansouri V, Ahmadi N. Muscle Recovery Is Highlighted by IR Laser Therapy. J Lasers Med Sci 2019; 10:S49-S53. [PMID: 32021673 DOI: 10.15171/jlms.2019.s9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: In sports medicine, laser application has been well-established for the recovery of muscles. The mechanisms by which benefits of this kind of therapy can be studied is molecular research approach. Protein-protein interaction network analysis as one of the important complementary studies of proteomics can accelerate this goal by the identification of novel contributing markers. Methods: By the use of Cytoscape V3.7.1 and its applications, a network of differential expressed proteins (DEPs) from IR laser treatment samples were constructed and analyzed. Six hub-bottlenecks were determined, 4 of which were from differentially expressed proteins. Results: ClueGO discovered 4 biological processes related to these hub-bottlenecks that their function could alter due to IR laser therapy. Conclusion: In fact, by the expression changes of hub-bottlenecks including the up-regulation of HSP90s, one of the prominent biological processes in muscle recovery could be activated. This process is called nitric oxide synthase (NOS) activation that could be proposed as one of the underlying mechanisms of IR laser treatments in muscle recovery.
Collapse
Affiliation(s)
- Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Taviran
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Okhovatian
- Physiotherapy Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Micheli L, Cialdai F, Pacini A, Branca JJV, Morbidelli L, Ciccone V, Lucarini E, Ghelardini C, Monici M, Di Cesare Mannelli L. Effect of NIR laser therapy by MLS-MiS source against neuropathic pain in rats: in vivo and ex vivo analysis. Sci Rep 2019; 9:9297. [PMID: 31243320 PMCID: PMC6594937 DOI: 10.1038/s41598-019-45469-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/03/2019] [Indexed: 12/26/2022] Open
Abstract
Neuropathic pain is characterized by an uncertain etiology and by a poor response to common therapies. The ineffectiveness and the frequent side effects of the drugs used to counteract neuropathic pain call for the discovery of new therapeutic strategies. Laser therapy proved to be effective for reducing pain sensitivity thus improving the quality of life. However, its application parameters and efficacy in chronic pain must be further analyzed. We investigated the pain relieving and protective effect of Photobiomodulation Therapy in a rat model of compressive mononeuropathy induced by Chronic Constriction Injury of the sciatic nerve (CCI). Laser (MLS-MiS) applications started 7 days after surgery and were performed ten times over a three week period showing a reduction in mechanical hypersensitivity and spontaneous pain that started from the first laser treatment until the end of the experiment. The ex vivo analysis highlighted the protective role of laser through the myelin sheath recovery in the sciatic nerve, inhibition of iNOS expression and enhancement of EAAT-2 levels in the spinal cord. In conclusion, this study supports laser treatment as a future therapeutic strategy in patients suffering from neuropathic pain induced by trauma.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Res. Div. - Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | | - Valerio Ciccone
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Res. Div. - Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| |
Collapse
|
12
|
Low-level laser irradiation induces a transcriptional myotube-like profile in C2C12 myoblasts. Lasers Med Sci 2018; 33:1673-1683. [PMID: 29717386 DOI: 10.1007/s10103-018-2513-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Low-level laser irradiation (LLLI) has been used as a non-invasive method to improve muscular regeneration capability. However, the molecular mechanisms by which LLLI exerts these effects remain largely unknown. Here, we described global gene expression profiling analysis in C2C12 myoblasts after LLLI that identified 514 differentially expressed genes (DEG). Gene ontology and pathway analysis of the DEG revealed transcripts among categories related to cell cycle, ribosome biogenesis, response to stress, cell migration, and cell proliferation. We further intersected the DEG in C2C12 myoblasts after LLLI with publicly available transcriptomes data from myogenic differentiation studies (myoblasts vs myotube) to identify transcripts with potential effects on myogenesis. This analysis revealed 42 DEG between myoblasts and myotube that intersect with altered genes in myoblasts after LLLI. Next, we performed a hierarchical cluster analysis with this set of shared transcripts that showed that LLLI myoblasts have a myotube-like profile, clustering away from the myoblast profile. The myotube-like transcriptional profile of LLLI myoblasts was further confirmed globally considering all the transcripts detected in C2C12 myoblasts after LLLI, by bi-dimensional clustering with myotubes transcriptional profiles, and by the comparison with 154 gene sets derived from previous published in vitro omics data. In conclusion, we demonstrate for the first time that LLLI regulates a set of mRNAs that control myoblast proliferation and differentiation into myotubes. Importantly, this set of mRNAs revealed a myotube-like transcriptional profile in LLLI myoblasts and provide new insights to the understanding of the molecular mechanisms underlying the effects of LLLI on skeletal muscle cells.
Collapse
|
13
|
Manfredini D, Favero L, Cocilovo F, Monici M, Guarda-Nardini L. A comparison trial between three treatment modalities for the management of myofascial pain of jaw muscles: A preliminary study. Cranio 2017; 36:327-331. [PMID: 28697676 DOI: 10.1080/08869634.2017.1349571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To compare three treatment modalities for the management of myofascial pain of jaw muscles. METHODS Thirty (N = 30) patients with low pain-related impairment were randomly assigned to receive laser therapy (LST), oral appliance therapy (OA), or counseling (CSL). Visual Analog Scale (VAS) pain levels and the Muscular Index (MI) of the Craniomandibular Index were the outcome variables, which were assessed at baseline, at three weeks, three months, and six months. RESULTS At six months, improvement in the MI was maintained both in the LST (p = .025) and OA groups (p < .001). As for VAS values, positive changes were still shown for LST (p = .001), and were also shown for the OA (p = .002) and CSL groups (p = .048). CONCLUSIONS Despite differences in the short-term effectiveness of LST and OA, with respect to CSL alone, all three treatment groups improved at six months. This suggests that active treatments should be directed to maximize the positive changes in the short-term period.
Collapse
Affiliation(s)
| | - Lorenzo Favero
- a School of Dentistry, University of Padova , Padova , Italy
| | | | - Monica Monici
- b ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences , University of Florence , Florence , Italy
| | - Luca Guarda-Nardini
- c Department of Dentistry and Maxillofacial Surgery , Treviso Hospital , Treviso , Italy
| |
Collapse
|
14
|
Iacopetti I, Perazzi A, Maniero V, Martinello T, Patruno M, Glazar M, Busetto R. Effect of MLS(®) laser therapy with different dose regimes for the treatment of experimentally induced tendinopathy in sheep: pilot study. Photomed Laser Surg 2017; 33:154-63. [PMID: 25751667 DOI: 10.1089/pho.2014.3775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The aim of this preliminary study was to investigate the effect of Multiwave Locked System (MLS(®)), a particular model of low-level laser, in the acute phase of collagenase-induced tendon lesions in six adult sheep randomly assigned to two groups. BACKGROUND DATA Tendon injuries are common among human athletes and in sport horses, require a long recovery time, and have a high risk of relapse. Many traditional treatments are not able to repair the injured tendon tissue correctly. In recent years, the use of low-level laser therapy (LLLT) produced interesting results in inflammatory modulation in different musculoskeletal disorders. METHODS Group 1 received 10 treatments of MLS laser therapy at a fluence of 5 J/cm(2) on the left hindlimb. Group 2 received 10 treatments of MLS laser therapy at a fluence of 2.5 J/cm(2) on the left hindlimb. In every subject in both groups, the right hindlimb was considered as the control leg. RESULTS Clinical follow-up and ultrasonography examinations were performed during the postoperative period, and histological examinations were performed at day 30 after the first application of laser therapy. In particular, results from histological examinations indicate that both treatments induced a statistically significant cell number decrease, although only in the second group did the values return to normal. Moreover, the MLS laser therapy dose of 2.5 J/cm(2) (group 2) caused a significant decrease of vessel area. CONCLUSIONS In this study, clinical and histological evaluation demonstrated that a therapeutic dose <5 J/cm(2) furnished an anti-inflammatory effect, and induced a decrease of fibroblasts and vessel area. Overall, our results suggest that MLS laser therapy was effective in improving collagen fiber organization in the deep digital flexor tendon.
Collapse
Affiliation(s)
- Ilaria Iacopetti
- 1 Department of Animal Medicine, Production and Health, University of Padua , Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Luti S, Caselli A, Taiti C, Bazihizina N, Gonnelli C, Mancuso S, Pazzagli L. PAMP Activity of Cerato-Platanin during Plant Interaction: An -Omic Approach. Int J Mol Sci 2016; 17:ijms17060866. [PMID: 27271595 PMCID: PMC4926400 DOI: 10.3390/ijms17060866] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/12/2016] [Accepted: 05/21/2016] [Indexed: 12/25/2022] Open
Abstract
Cerato-platanin (CP) is the founder of a fungal protein family consisting in non-catalytic secreted proteins, which work as virulence factors and/or as elicitors of defense responses and systemic resistance, thus acting as PAMPs (pathogen-associated molecular patterns). Moreover, CP has been defined an expansin-like protein showing the ability to weaken cellulose aggregates, like the canonical plant expansins do. Here, we deepen the knowledge on CP PAMP activity by the use of a multi-disciplinary approach: proteomic analysis, VOC (volatile organic compound) measurements, and gas exchange determination. The treatment of Arabidopsis with CP induces a differential profile either in protein expression or in VOC emission, as well changes in photosynthetic activity. In agreement with its role of defense activator, CP treatment induces down-expression of enzymes related to primary metabolism, such as RuBisCO, triosephosphate isomerase, and ATP-synthase, and reduces the photosynthesis rate. Conversely, CP increases expression of defense-related proteins and emission of some VOCs. Interestingly, CP exposure triggered the increase in enzymes involved in GSH metabolism and redox homeostasis (glutathione S-transferase, thioredoxin, Cys-peroxiredoxin, catalase) and in enzymes related to the “glucosinolate-myrosinase” system, which are the premise for synthesis of defence compounds, such as camalexin and some VOCs, respectively. The presented results are in agreement with the accepted role of CP as a PAMP and greatly increase the knowledge of plant primary defences induced by a purified fungal elicitor.
Collapse
Affiliation(s)
- Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, Università di Firenze, viale Morgagni 50, 50134 Firenze, Italy.
| | - Anna Caselli
- Department of Biomedical Experimental and Clinical Sciences, Università di Firenze, viale Morgagni 50, 50134 Firenze, Italy.
| | - Cosimo Taiti
- Department of Agri-Food and Environmental Science, Università di Firenze, via delle Idee 30, 50019 Sesto Fiorentino, Italy.
| | - Nadia Bazihizina
- Department of Agri-Food and Environmental Science, Università di Firenze, via delle Idee 30, 50019 Sesto Fiorentino, Italy.
| | - Cristina Gonnelli
- Department of Biology, Università di Firenze, via Micheli 1, 50121 Firenze, Italy.
| | - Stefano Mancuso
- Department of Agri-Food and Environmental Science, Università di Firenze, via delle Idee 30, 50019 Sesto Fiorentino, Italy.
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, Università di Firenze, viale Morgagni 50, 50134 Firenze, Italy.
| |
Collapse
|
16
|
Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology. Vet Res Commun 2016; 40:39-48. [PMID: 26757735 DOI: 10.1007/s11259-016-9652-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
Tendons regenerate poorly due to a dense extracellular matrix and low cellularity. Cellular therapies aim to improve tendon repair using mesenchymal stem cells and tenocytes; however, a current limitation is the low proliferative potential of tenocytes in cases of severe trauma. The purpose of this study was to develop a method useful in veterinary medicine to improve the differentiation of Peripheral Blood equine mesenchymal stem cells (PB-MSCs) into tenocytes. PB-MSCs were used to study the effects of the addition of some growth factors (GFs) as TGFβ3 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without Low Level Laser Technology (LLLT) on the mRNA expression levels of genes important in the tenogenic induction as Early Growth Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not show any influence on the mRNA expression of tenogenic genes whereas the specific combinations that arrested cell proliferation in favour of differentiation were the following: bFGF2 + TGFβ3 and bFGF2 + TGFβ3 + LLLT. Indeed, the supplement of bFGF2 and TGFβ3 significantly upregulated the expression of Early Growth Response Protein-1 and Decorin, while the use of LLLT induced a significant increase of Tenascin C levels. In conclusion, the present study might furnish significant suggestions for developing an efficient approach for tenocyte induction since the external administration of bFGF2 and TGFβ3, along with LLLT, influences the differentiation of PB-MSCs towards the tenogenic fate.
Collapse
|
17
|
In vitro study on the safety of near infrared laser therapy in its potential application as postmastectomy lymphedema treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:285-96. [PMID: 26355716 DOI: 10.1016/j.jphotobiol.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Clinical studies demonstrated the effectiveness of laser therapy in the management of postmastectomy lymphedema, a discomforting disease that can arise after surgery/radiotherapy and gets progressively worse and chronic. However, safety issues restrict the possibility to treat cancer patients with laser therapy, since the effects of laser radiation on cancer cell behavior are not completely known and the possibility of activating postmastectomy residual cancer cells must be considered. This paper reports the results of an in vitro study aimed to investigate the effect of a class IV, dual-wavelength (808 nm and 905 nm), NIR laser system on the behavior of two human breast adenocarcinoma cell lines (namely, MCF7 and MDA-MB361 cell lines), using human dermal fibroblasts as normal control. Cell viability, proliferation, apoptosis, cell cycle and ability to form colonies were analyzed in order to perform a cell-based safety testing of the laser treatment in view of its potential application in the management of postmastectomy lymphedema. The results showed that, limited to the laser source, treatment conditions and experimental models used, laser radiation did not significantly affect the behavior of human breast adenocarcinoma cells, including their clonogenic efficiency. Although these results do not show any significant laser-induced modification of cancer cell behavior, further studies are needed to assess the possibility of safely applying NIR laser therapy for the management of postmastectomy lymphedema.
Collapse
|
18
|
Clemente AM, Rizzetto L, Castronovo G, Perissi E, Tanturli M, Cozzolino F, Cavalieri D, Fusi F, Cialdai F, Vignali L, Torcia MG, Monici M. Effects of near-infrared laser radiation on the survival and inflammatory potential of Candida spp. involved in the pathogenesis of chemotherapy-induced oral mucositis. Eur J Clin Microbiol Infect Dis 2015; 34:1999-2007. [PMID: 26173694 DOI: 10.1007/s10096-015-2443-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023]
Abstract
Candida spp. usually colonize ulcerative lesions of atrophic mucosa in patients with chemotherapy-induced oral mucositis inducing severe inflammation. The spread of antifungal-resistant strains strongly encouraged the search of complementary or alternative therapeutic strategies to cure inflamed mucosa. In this paper, we studied the effects of a near-infrared (NIR) laser system with dual-wavelength emission (808 nm + 904 nm) on the survival and inflammatory potential of C. albicans, C. glabrata, and C. parapsilosis. Laser treatment was performed with a Multiwave Locked System laser. Survival and apoptosis of fungal strains were evaluated by colony-forming units (CFU) counting and annexin V staining. Cytokine production was evaluated by ImmunoPlex array. Laser treatment significantly affected the survival of Candida spp. by inducing apoptosis and induced a lower production of inflammatory cytokines by dendritic cells compared to untreated fungi. No differences in the survival and inflammatory potential were recorded in treated or untreated Saccharomyces cerevisiae cells, used as the control non-pathogenic microorganism. Laser treatment altered the survival and inflammatory potential of pathogenic Candida spp. These data provide experimental support to the use of NIR laser radiation as a co-adjuvant of antifungal therapy in patients with oral mucositis (OM) complicated by Candida infections.
Collapse
Affiliation(s)
- A M Clemente
- Department of Clinical and Experimental Medicine, University of Firenze, Firenze, FI, Italy
| | - L Rizzetto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - G Castronovo
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, FI, Italy
| | - E Perissi
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, FI, Italy
| | - M Tanturli
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, FI, Italy
| | - F Cozzolino
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, FI, Italy
| | - D Cavalieri
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - F Fusi
- Medical Physics Unit, Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, FI, Italy
| | - F Cialdai
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, FI, Italy
| | - L Vignali
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, FI, Italy
| | - M G Torcia
- Department of Clinical and Experimental Medicine, University of Firenze, Firenze, FI, Italy.
| | - M Monici
- ASAcampus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, FI, Italy
| |
Collapse
|
19
|
Emel'yanov AN, Kir'yanova VV. [The application of stem cells, visible and infrared light in regenerative medicine. Part 1]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2015; 92:51-62. [PMID: 25876436 DOI: 10.17116/kurort2015151-62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The present article was designed to overview the experimental studies of visible and infrared light irradiation of human and animal stem cells (SC) in vitro and in vivo for the evaluation of its photobiomodulatory effects. The results will be used to elaborate substantiation for the choice of the parameters of SC light irradiation and to develop recommendations for the application of this method in regenerative medicine (RM). BACKGROUND The clinical application of light irradiation is a matter of contrsy, in the first place due to the difficulties encountered in the rational choice of irradiation parameters. The theoretical substantiation of such choice remains a stumbling block too despite the long history of photoghromotherapy. There is thus far no reliable theoretical basis for the adequate choice of such irradiation parameters as power density, radiation dose, and exposure time. The experiences with the light application for the purpose of regenerative medicine have never been summarized. RESULTS The present review encompasses 78 articles selected for the basic analysis that report the studies with the use of a variety of SC types. The analysis has demonstrated that clinical investigations into the influence of light on the stem cells are still in their infancy. It was shown that the irradiation parameters need to be chosen taking into consideration the type of the stem cells. Different authors report the achievement of the maximum SC proliferation and differentiation rates at energy densities as high as 50 mW/sq.cm, small radiation doses (around 1 J/sq.cm) and exposure time (on the order of seconds). CONCLUSION The general conclusion for Parts 1 and II of this communication will be presented in the next issue of this journal (number 2, 2015).
Collapse
Affiliation(s)
- A N Emel'yanov
- GBOU VPO 'Severo-Zapadnyj gosudarstvennyj meditsinskij universitet im. I.I. Mechnikova' Minzdrava Rossii, ul. Kirochnaja, 41, Sankt-Peterburg, Rossijskaja Federatsija, 191015
| | - V V Kir'yanova
- GBOU VPO 'Severo-Zapadnyj gosudarstvennyj meditsinskij universitet im. I.I. Mechnikova' Minzdrava Rossii, ul. Kirochnaja, 41, Sankt-Peterburg, Rossijskaja Federatsija, 191015
| |
Collapse
|
20
|
Emelyanov AN, Kiryanova VV. Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed Laser Surg 2015; 33:164-74. [PMID: 25692649 DOI: 10.1089/pho.2014.3830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The aim of this article is to review experimental studies of visible and infrared light irradiation of human and animal stem cells (SCs) in vitro and in vivo to assess photobiomodulation effects on their proliferation and differentiation. BACKGROUND DATA The clinical application of light irradiation remains controversial, primarily because of the complexity of the rational choice of irradiation parameters. In laboratories, the theoretical justification underlying the choice of irradiation parameters also remains a challenge. METHODS A systematic review was completed of original research articles that investigated the effects of light irradiation on human and animal SCs in vitro and in vivo (to June 2014). Relevant articles were sourced from PubMed and MEDLINE(®). The search terms were laser (light) therapy (irradiation), stem cells, and phototherapy, stem cells. RESULTS The analysis revealed the importance of cell type when choosing the cell irradiation parameters. The influence of wavelength on the SC proliferation rate seemed to be nonsignificant. The high values of increased proliferation or differentiation were obtained using high power density, low energy density, and short exposure time. SC exposure to light without inducers did not lead to their differentiation. The maximum differentiation was achieved using irradiation parameters different from the ones needed to achieve the maximum proliferation of the same cells. CONCLUSIONS Increased power density and reduced energy density were needed to increase the SC response. Based on the analysis, we have presented a graph of the cell response to generalized photostimulus, and introduced the concepts of "photostress" and "photoshock" to describe the stages of this response.
Collapse
Affiliation(s)
- Artem Nikolaevich Emelyanov
- 1 Laboratory of High Laser and Magnetic Technology, North-Western State Medical University , St. Petersburg, Russia
| | | |
Collapse
|
21
|
Mesquita-Ferrari RA, Alves AN, de Oliveira Cardoso V, Artilheiro PP, Bussadori SK, Rocha LA, Nunes FD, Fernandes KPS. Low-level laser irradiation modulates cell viability and creatine kinase activity in C2C12 muscle cells during the differentiation process. Lasers Med Sci 2015; 30:2209-13. [PMID: 25616713 DOI: 10.1007/s10103-015-1715-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/09/2015] [Indexed: 12/16/2022]
Abstract
Low-level laser irradiation (LLLI) is increasingly used to treat musculoskeletal disorders, with satisfactory results described in the literature. Skeletal muscle satellite cells play a key role in muscle regeneration. The aim of the present study was to evaluate the effect of LLLI on cell viability, creatine kinase (CK) activity, and the expression of myogenic regulatory factors in C2C12 myoblasts during the differentiation process. C2C12 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 2% horse serum and submitted to irradiation with GaAlAs diode laser (wavelength, 780 nm; output power, 10 mW; energy density, 5 J/cm2). Cell viability and the expression of myogenic regulatory factors were assessed 24, 48, and 72 h after irradiation by 3-(4,5-dimethylthiazol-2-yl)-2,5,-diphenyltetrazolium bromide (MTT) assay and quantitative real-time polymerase chain reaction (RT-qPCR), respectively. CK activity was analyzed at 24 and 72 h. An increase in cell viability was found in the laser group in comparison to the control group at all evaluation times. CK activity was significantly increased in the laser group at 72 h. Myogenin messenger RNA (mRNA) demonstrated a tendency toward an increase in the laser group, but the difference in comparison to the control group was non-significant. In conclusion, LLLI was able to modulate cell viability and CK activity in C2C12 myoblasts during the differentiation process.
Collapse
Affiliation(s)
- Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Rehabilitation Sciences and Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, São Paulo, SP, 01504-001, Brazil.
| | - Agnelo Neves Alves
- Postgraduate Program in Rehabilitation Sciences and Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, São Paulo, SP, 01504-001, Brazil
| | - Vinicius de Oliveira Cardoso
- Postgraduate Program in Rehabilitation Sciences and Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, São Paulo, SP, 01504-001, Brazil
| | - Paola Pelegrineli Artilheiro
- Postgraduate Program in Rehabilitation Sciences and Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, São Paulo, SP, 01504-001, Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Rehabilitation Sciences and Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, São Paulo, SP, 01504-001, Brazil
| | - Lilia Alves Rocha
- Departament of Molecular Pathology, School of Dentistry, University of São Paulo, Av. Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, 05508-000, SP, Brazil
| | - Fábio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, Av. Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, 05508-000, SP, Brazil
| | - Kristianne Porta Santos Fernandes
- Postgraduate Program in Rehabilitation Sciences and Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 235/249, Liberdade, São Paulo, SP, 01504-001, Brazil
| |
Collapse
|
22
|
Abstract
SIGNIFICANCE Here, we review recent advances with regard to the role of Src kinase in the regulation of cytoskeleton organization, cell adhesion, and motility, focusing on redox circuitries engaging this kinase for anchorage and motility, control of cell survival to anoikis, as well as metabolic deregulation, all features belonging to the new hallmarks of cancer. RECENT ADVANCES Several recent insights have reported that, alongside the well-known phosphorylation/dephosphorylation control, cysteine oxidation is a further mechanism of enzyme activation for both c-Src kinase and its oncogenic counterparts. Indeed, mounting evidence portrays redox regulation of Src kinase as a compulsory outcome in growth factors/cytokines signaling, integrin engagement, motility and invasiveness of tissues, receptor cross-talking at plasmamembrane, as well as during carcinogenesis and progression toward tumor malignancy or fibrotic disease. In addition, the kinase is an upstream regulator of NADPH oxidase-driven oxidants, a critical step for invadopodia formation and metastatic spread. CRITICAL ISSUES Not satisfactorily unraveled yet, the exact role of Src kinase in redox cancer biology needs to be implemented with studies that are aimed at clarifying (i) the exact hierarchy between oxidants sources, Src redox-dependent activation and the regulation of cell motility, and (ii) the actual susceptibility of invading cells to redox-based treatments, owing to the well-recognized ability of cancer cells to find new strategies to adapt to new environments. FUTURE DIRECTIONS Once these critical issues are addressed, redox circuitries involving Src kinase should potentially be used as both biomarkers and targets for personalized therapies in the fight against cancer or fibrotic diseases.
Collapse
Affiliation(s)
- Elisa Giannoni
- 1 Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence, Italy
| | | |
Collapse
|