1
|
Camolesi GCV, El Kattan AS, Lopez-Lopez J, Blanco-Carrión A, García-García A, Gándara-Vila P, Pérez-Sayáns M. PAIN, OEDEMA AND TRISMUS RESPONSES FOLLOWING PHOTOBIOMODULATION THERAPY IMMEDIATELY AFTER LOWER THIRD MOLAR EXTRACTION: RESULTS OF A RANDOMIZED, DOBLE-BLIND AND SPLIT MOUTH CLINICAL TRIAL. J Evid Based Dent Pract 2025; 25:102080. [PMID: 39947773 DOI: 10.1016/j.jebdp.2024.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 05/09/2025]
Abstract
OBJECTIVES To assess the impact of photobiomodulation therapy in pain, facial oedema, and trismus mitigation in the postoperative period after lower third molar extractions. METHODS We conducted a comparison between active photobiomodulation and simulated photobiomodulation after both lower third molars extraction in the same patients, within a double-center clinical trial. The role of photobiomodulation was evaluated based on pain, measured using the VAS scale. Oedema and trismus, assessed through millimetric measurements. Additionally, analgesic consumption was monitored during the 7-day's postoperative period. The study adhered to the CONSORT checklist and was registered on the ClinicalTrials (NCT05255731). The Levene test was used to assess precision (α=0.05), and statistical analysis was performed using Jamovi software. Paired t-tests or the Wilcoxon test were employed to analyze the primary and secondary outcomes. RESULTS The study included 83 patients and 166 randomization units. The study group showed a significant reduction in pain at all evaluation times (P < .01), as well as reductions in facial oedema and trismus on postoperative days 2 and 7 (P < .01). A significant difference in analgesic use was observed on all days, except on the seventh postoperative day. CONCLUSION The photobiomodulation protocol, using an 808 nm, 100 mW Ga-Al-As diode laser, applied both intraorally and extraorally in a single 30 seconds (3 Joules/per point) postoperative session, significantly reduced pain, oedema, and trismus following mandibular third molar extraction, particularly on postoperative days 2 and 7. CLINICAL SIGNIFICANCE Photobiomodulation can be an effective complementary therapy for reducing pain, facial oedema, and trismus in patients after lower third molar extraction.
Collapse
Affiliation(s)
- Gisela Cristina Vianna Camolesi
- Oral Medicine, Oral Surgery, and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela (USC). Calle Entrerríos s/n., Santiago de Compostela, Galicia, Spain; Foundation Health Research Institute of Santiago de Compostela (FIDIS). Av. Choupana s/n., Santiago de Compostela, Galicia, Spain
| | | | - José Lopez-Lopez
- Oral Health and Masticatory System Group, Bellvitge Biomedical Research Institute, IDIBELL, University of Barcelona, Barcelona, Cataluña, Spain; Department of Odontostomatology, Faculty of Medicine and Health Sciences (Dentistry), Barcelona University Dental Hospital, University of Barcelona, Barcelona, Cataluña, Spain
| | - Andrés Blanco-Carrión
- Oral Medicine, Oral Surgery, and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela (USC). Calle Entrerríos s/n., Santiago de Compostela, Galicia, Spain; Foundation Health Research Institute of Santiago de Compostela (FIDIS). Av. Choupana s/n., Santiago de Compostela, Galicia, Spain
| | - Abel García-García
- Oral Medicine, Oral Surgery, and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela (USC). Calle Entrerríos s/n., Santiago de Compostela, Galicia, Spain; Foundation Health Research Institute of Santiago de Compostela (FIDIS). Av. Choupana s/n., Santiago de Compostela, Galicia, Spain
| | - Pilar Gándara-Vila
- Oral Medicine, Oral Surgery, and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela (USC). Calle Entrerríos s/n., Santiago de Compostela, Galicia, Spain; Foundation Health Research Institute of Santiago de Compostela (FIDIS). Av. Choupana s/n., Santiago de Compostela, Galicia, Spain.
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery, and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela (USC). Calle Entrerríos s/n., Santiago de Compostela, Galicia, Spain; Foundation Health Research Institute of Santiago de Compostela (FIDIS). Av. Choupana s/n., Santiago de Compostela, Galicia, Spain; Materials Institute of Santiago de Compostela (iMATUS), Santiago de Compostela, Galicia, Spain
| |
Collapse
|
2
|
da Rocha VP, Mansano BSDM, Dos Santos CFC, Teixeira ILA, de Oliveira HA, Vieira SS, Antonio EL, Izar MCDO, Fonseca FAH, Serra AJ. How long does the biological effect of a red light-emitting diode last on adipose-derived mesenchymal stem cells? Photochem Photobiol 2025; 101:206-214. [PMID: 38888236 DOI: 10.1111/php.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
This research investigated the duration of the influence of red light-emitting diodes (LED, 630 nm; output power: 2452.5 mW; laser beam: 163.5 cm2; irradiance: 15 mW/cm2; radiant exposure: 4 J/cm2) on different periods after irradiation (6, 12, 24, 48, and 72 h) on adipose-derived mesenchymal stem cells' (AdMSCs) metabolism and paracrine factors. AdMSCs were irradiated three times every 48 h. Twenty-four hours after the last irradiation, there was a higher MTT absorbance, followed by a decrease after 48 h. The cells' secretome showed increased levels of IL-6 and VEGF after 12 and 24 h, but this was reversed after 48 h. Additionally, LED irradiation resulted in higher levels of nitrite and did not affect oxidative stress markers. LED irradiation had significant effects on AdMSCs after 24 h compared to other groups and its control group.
Collapse
Affiliation(s)
- Vitor Pocani da Rocha
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Stella Sousa Vieira
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | - Ednei Luiz Antonio
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | | | | | - Andrey Jorge Serra
- Department of Medicine, Cardiology Division, Federal University of Sao Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Trajano LADSN, Siqueira PB, Rodrigues MMDS, Pires BRB, da Fonseca ADS, Mencalha AL. Does photobiomodulation alter mitochondrial dynamics? Photochem Photobiol 2025; 101:21-37. [PMID: 38774941 DOI: 10.1111/php.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 01/18/2025]
Abstract
Mitochondrial dysfunction is one of the leading causes of disease development. Dysfunctional mitochondria limit energy production, increase reactive oxygen species generation, and trigger apoptotic signals. Photobiomodulation is a noninvasive, nonthermal technique involving the application of monochromatic light with low energy density, inducing non-thermal photochemical effects at the cellular level, and it has been used due to its therapeutic potential. This review focuses on the mitochondrial dynamic's role in various diseases, evaluating the possible therapeutic role of low-power lasers (LPL) and light-emitting diodes (LED). Studies increasingly support that mitochondrial dysfunction is correlated with severe neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's, and Charcot-Marie-Tooth diseases. Furthermore, a disturbance in mitofusin activity is also associated with metabolic disorders, including obesity and type 2 diabetes. The effects of PBM on mitochondrial dynamics have been observed in cells using a human fibroblast cell line and in vivo models of brain injury, diabetes, spinal cord injury, Alzheimer's disease, and skin injury. Thus, new therapies aiming to improve mitochondrial dynamics are clinically relevant. Several studies have demonstrated that LPL and LED can be important therapies to improve health conditions when there is dysfunction in mitochondrial dynamics.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Pró-Reitoria de Pesquisa e pós-graduação, Mestrado Profissional em Ciências Aplicadas em Saúde, Universidade de Vassouras, Rio de Janeiro, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Bahr AC, Naasani LIS, de Gregório E, Wink MR, da Rosa Araujo AS, Turck P, Dal Lago P. Photobiomodulation improves cell survival and death parameters in cardiomyocytes exposed to hypoxia/reoxygenation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112991. [PMID: 39033547 DOI: 10.1016/j.jphotobiol.2024.112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Ischemic heart disease is one of the most harmful conditions to cellular structure and function. After reperfusion treatment, a spectrum of adverse effects becomes evident, encompassing altered cell viability, heightened oxidative stress, activated autophagy, and increased apoptosis. Photobiomodulation (PBM) has been utilized in experimental models of cardiac hypoxia to enhance mitochondrial response and ameliorate biochemical changes in injured tissue. However, the effects of PBM on cultured cardiomyocytes subjected to hypoxia/reoxygenation are not yet well established. METHOD H9C2 cardiomyocytes were exposed to hypoxia with concentrations of 300 μM CoCl2 for 24 h, followed by 16 h of reoxygenation through incubation in a normoxic medium. Treatment was conducted using GaAIAs Laser (850 nm) after hypoxia at an intensity of 1 J/cm2. Cells were divided into three groups: Group CT (cells maintained under normoxic conditions), Group HR (cells maintained in hypoxia and reoxygenation conditions without treatment), Group HR + PBM (cells maintained in hypoxia and reoxygenation conditions that underwent PBM treatment). Cell viability was analyzed using MTT, and protein expression was assessed by western blot. One-way ANOVA with the Tukey post hoc test was used for data analysis. Differences were significant when p < 0.05. RESULTS PBM at an intensity of 1 J/cm2 mitigated the alterations in cell survival caused by hypoxia/reoxygenation. Additionally, it significantly increased the expression of proteins Nrf2, HSP70, mTOR, LC3II, LC3II/I, and Caspase-9, while reducing the expression of PGC-1α, SOD2, xanthine oxidase, Beclin-1, LC3I, and Bax. CONCLUSION PBM at intensities of 1 J/cm2 reverses the changes related to oxidative stress, mitochondrial biogenesis, autophagy, and apoptosis caused by hypoxia and reoxygenation in a culture of cardiomyocytes.
Collapse
Affiliation(s)
- Alan Christhian Bahr
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil
| | - Liliana Ivet Sous Naasani
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Elizama de Gregório
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Cell Biology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Patrick Turck
- Department of Physiology, Universidade Federal Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Experimental Physiology Laboratory, Graduate Program in Rehabilitation Sciences (PPG-CR), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Physiotherapy, UFCSPA, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Vasconcelos MR, Cardoso-Silva L, Barbosa ACL, Borsatto MC, Corona SAM. Influence of Intravascular Laser Irradiation of Blood (ILIB) on inflammatory cytokines and nitric oxide in vivo: a systematic review. Lasers Med Sci 2024; 39:85. [PMID: 38433159 DOI: 10.1007/s10103-024-04031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
The use of Intravascular Laser Irradiation of Blood (ILIB) as a treatment or adjunct tool has been used around the world since the 1980s. So that more professionals can deliver benefits to their patients in different areas of health, it is necessary to understand in depth the mechanisms of laser action at the molecular level, for correct indication and success in the treatment. To analyze works that evaluated the influence of ILIB on inflammatory cytokines and nitric oxide (NO) in animals and humans. The literature search was carried out between February and April 2023 in Pubmed, Medline, Web of Science, SciELO, Lilacs database. The risk of bias was assessed using the bias table where the authors performed the analyzes of all articles with the risk of bias domains. The methodology was defined following the PRISMA guidelines (Preferred Systematic Reviews and MetaAnalysis Report). The search retrieved 135 possibly relevant articles. After removing duplicates, according to the eligibility criteria, evaluation of titles and review of abstracts, in the end, 6 articles were included. An increase in anti-inflammatory cytokines, a decrease in pro-inflammatory cytokines and an increase in NO can be observed. The wavelengths used ranged from 660 to 808 nm when using a low intensity laser and when using a VIP light source 480-3400 nm, they also differed in terms of the light emission pattern. ILIB may be a complementary treatment option for patients who have comorbidities that lead to systemic inflammation.
Collapse
Affiliation(s)
- Milena Rodrigues Vasconcelos
- Department of Clinical Oncology, Stem Cells and Cell Therapy, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Lana Cardoso-Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Carolina Loyola Barbosa
- Department of Periodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Cristina Borsatto
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
6
|
Mansano BSDM, da Rocha VP, Teixeira ILA, de Oliveira HA, Vieira SS, Antonio EL, Tucci PJF, Serra AJ. Light-emitting Diode Can Enhance the Metabolism and Paracrine Action of Mesenchymal Stem Cells. Photochem Photobiol 2023; 99:1420-1428. [PMID: 36807286 DOI: 10.1111/php.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
This study investigated the influence of red light-emitting diodes (LED, 630 nm) on different irradiation parameters and the number of applications on mesenchymal stem cells derived from adipose tissue (AdMSCs) metabolism and paracrine factors. The AdMSCs were irradiated with a LEDbox device (output power: 2452.5 mW; laser beam: 163.5 cm2 ; irradiance: 15 mW cm-2 ) using radiant exposures of 0.5, 2, and 4 J cm-2 , respectively. AdMSCs were irradiated once or every 48 h up to three irradiations. All molecular analyses were performed 24 h after the last irradiation. LED did not induce changes in cell count, DNA damage, and oxidative stress. A significant repercussion of the LED has been noticed after three irradiations with 4 J cm-2 . AdMSCs had higher levels of IL-6, IGF-1, and NOx index. A higher ATP content and MMT/Resazurin assay were identified in AdMSCs irradiated three times with 4 J cm-2 . Mitochondrial basal respiration, maximal respiration and proton leak under metabolic stress were reduced by 0.5 and 2 J cm-2 irradiations. These data showed that three LED irradiations with 4 J cm-2 may be a suitable parameter for future AdMSCs therapy because of its improved metabolic activity, ATP content, and IL-6, IGF-1, and nitric oxide secretion.
Collapse
Affiliation(s)
| | - Vitor Pocani da Rocha
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | | | | | - Stella Souza Vieira
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil
- Base Hospital Foundation, Medicine School of São José do Rio Preto, Sao Paulo, SP, Brazil
| | - Ednei Luiz Antonio
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | | | - Andrey Jorge Serra
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Hoh Kam J, Mitrofanis J. Glucose Improves the Efficacy of Photobiomodulation in Changing ATP and ROS Levels in Mouse Fibroblast Cell Cultures. Cells 2023; 12:2533. [PMID: 37947612 PMCID: PMC10648764 DOI: 10.3390/cells12212533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
In this study, we tested the idea that photobiomodulation-the application of red to near infrared light (~λ = 600-1300 nm) to body tissues-is more effective in influencing cell metabolism when glucose is readily available. To this end, we used a mouse fibroblast (L-929) cell culture model and had two sets of conditions: non-stressed (10% FBS (foetal bovine serum)) and stressed (1% FBS), both either with or without glucose. We treated (or not) cells with photobiomodulation using an 810 nm laser at 15 mW/cm2 (~7.2 J/cm2). Our results showed that photobiomodulation was neither cytotoxic nor effective in enhancing measures of cell viability and proliferation, together with protein levels in any of the cell cultures. Photobiomodulation was, however, effective in increasing adenosine triphosphate (ATP) and decreasing reactive oxygen species (ROS) levels and this was-most importantly-only in conditions where glucose was present; corresponding cultures that did not contain glucose did not show these changes. In summary, we found that the benefits of photobiomodulation, in particular in changing ATP and ROS levels, were induced only when there was glucose available. Our findings lay a template for further explorations into the mechanisms of photobiomodulation, together with having considerable experimental and clinical implications.
Collapse
Affiliation(s)
- Jaimie Hoh Kam
- Fonds de Dotation Clinatec, Grenoble Alpes University, 38000 Grenoble, France;
| | - John Mitrofanis
- Fonds de Dotation Clinatec, Grenoble Alpes University, 38000 Grenoble, France;
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
8
|
Syed SB, Ahmet I, Chakir K, Morrell CH, Arany PR, Lakatta EG. Photobiomodulation therapy mitigates cardiovascular aging and improves survival. Lasers Surg Med 2023; 55:278-293. [PMID: 36821717 PMCID: PMC10084725 DOI: 10.1002/lsm.23644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/03/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Photobiomodulation (PBM) therapy, a form of low-dose light therapy, has been noted to be effective in several age-associated chronic diseases such as hypertension and atherosclerosis. Here, we examined the effects of PBM therapy on age-associated cardiovascular changes in a mouse model of accelerated cardiac aging. METHODS Fourteen months old Adenylyl cyclase type VIII (AC8) overexpressing transgenic mice (n = 8) and their wild-type (WT) littermates (n = 8) were treated with daily exposure to Near-Infrared Light (850 nm) at 25 mW/cm2 for 2 min each weekday for a total dose of 1 Einstein (4.5 p.J/cm2 or fluence 3 J/cm2 ) and compared to untreated controls over an 8-month period. PBM therapy was administered for 3.5 months (Early Treatment period), paused, due to Covid-19 restrictions for the following 3 months, and restarted again for 1.5 months. Serial echocardiography and gait analyses were performed at monthly intervals, and serum TGF-β1 levels were assessed following sacrifice. RESULTS During the Early Treatment period PBM treatments: reduced the age-associated increases in left ventricular (LV) mass in both genotypes (p = 0.0003), reduced the LV end-diastolic volume (EDV) in AC8 (p = 0.04); and reduced the left atrial dimension in both genotypes (p = 0.02). PBM treatments substantially increased the LV ejection fraction (p = 0.03), reduced the aortic wall stiffness (p = 0.001), and improved gait symmetry, an index of neuro-muscular coordination (p = 0.005). The effects of PBM treatments, measured following the pause, persisted. Total TGF-β1 levels were significantly increased in circulation (serum) in AC8 following PBM treatments (p = 0.01). We observed a striking increase in cumulative survival in PBM-treated AC8 mice (100%; p = 0.01) compared to untreated AC8 mice (43%). CONCLUSION PBM treatment mitigated age-associated cardiovascular remodeling and reduced cardiac function, improved neuromuscular coordination, and increased longevity in an experimental animal model. These responses correlate with increased TGF-β1 in circulation. Future mechanistic and dose optimization studies are necessary to assess these anti-aging effects of PBM, and validation in future controlled human studies is required for effective clinical translation.
Collapse
Affiliation(s)
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Sciences, NIA, NIH, Baltimore, Maryland, USA
| | - Khalid Chakir
- Laboratory of Cardiovascular Sciences, NIA, NIH, Baltimore, Maryland, USA
| | | | - Praveen R Arany
- Oral Biology, Surgery, and Biomedical Engineering, University of Buffalo, Buffalo, New York, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Sciences, NIA, NIH, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
10
|
Yang Z, Ning X, Zhang Y. Forsythiaside Protected H9c2 Cardiomyocytes from H<sub>2</sub>O<sub>2</sub>-Induced Oxidative Stress and Apoptosis <i>via</i> Activating Nrf2/HO-1 Signaling Pathway. Int Heart J 2022; 63:904-914. [DOI: 10.1536/ihj.21-585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhicai Yang
- Department of Cardiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine
| | - Xiaokang Ning
- Department of Cardiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine
| | - Ying Zhang
- Department of Cardiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine
| |
Collapse
|
11
|
The Treatment of Complementary and Alternative Medicine on Female Infertility Caused by Endometrial Factors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4624311. [PMID: 36118081 PMCID: PMC9473886 DOI: 10.1155/2022/4624311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022]
Abstract
Recently, with the development of the social economy, the incidence of infertility has increased year by year. With its complex etiology and diversified syndromes, infertility has become one of the most important diseases that plague the physical and mental health of women of childbearing age worldwide. Endometrial factors as an important part affecting female reproductive capacity, due to which induced repeated abortion and multiple uterine cavity operations occur, can destruct endometrium, failing to provide a normal implantation environment for zygote, thus resulting in infertility. Many patients failed to achieve expected results after receiving conventional treatments such as hormone therapy, assisted reproductive technology (ART), granulocyte colony-stimulating factor (G-CSF) therapy, and cell therapy, then turn to complementary and alternative medicine (CAM) therapies for help. Aiming at clarifying the effectiveness and mechanisms of CAM therapy in the treatment of infertility caused by endometrial factors, our paper systematically searched and studied present related literature on the PubMed, CNKI, and other databases, focusing on the aspects of clinical application and mechanism explorations and highlighting the therapeutic effects of Chinese herbal medicine (CHM), acupuncture, and moxibustion on such diseases. Moreover, this paper also introduces the CAM treatments of traditional Chinese medicine (TCM) retention enema, neuromuscular electrical stimulation (NMES), photobiomodulation therapy, dietary intervention, and other measures for infertility caused by endometrial factors, in order to provide a reference for subsequent basic research and clinical work.
Collapse
|
12
|
Therapeutic Potential of Photobiomodulation for Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23148043. [PMID: 35887386 PMCID: PMC9320354 DOI: 10.3390/ijms23148043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic kidney disease (CKD) is a growing global public health problem. The implementation of evidence-based clinical practices only defers the development of kidney failure. Death, transplantation, or dialysis are the consequences of kidney failure, resulting in a significant burden on the health system. Hence, innovative therapeutic strategies are urgently needed due to the limitations of current interventions. Photobiomodulation (PBM), a form of non-thermal light therapy, effectively mitigates mitochondrial dysfunction, reactive oxidative stress, inflammation, and gut microbiota dysbiosis, all of which are inherent in CKD. Preliminary studies suggest the benefits of PBM in multiple diseases, including CKD. Hence, this review will provide a concise summary of the underlying action mechanisms of PBM and its potential therapeutic effects on CKD. Based on the findings, PBM may represent a novel, non-invasive and non-pharmacological therapy for CKD, although more studies are necessary before PBM can be widely recommended.
Collapse
|
13
|
Silva M, Gáspari A, Barbieri J, Barroso R, Figueiredo G, Motta L, Moraes A. Far-infrared-emitting fabric improves neuromuscular performance of knee extensor. Lasers Med Sci 2022; 37:2527-2536. [PMID: 35146580 DOI: 10.1007/s10103-022-03523-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study was to verify if exposure to the far-IR emitted by fabric (FIR) is able to improve the neuromuscular performance of the knee extensors of resistance-trained males regardless of changes of the temperature. It is a crossover, randomized, double-blind, and placebo-controlled trial. Fourteen resistance-trained males (age: 24.3 ± 4 years; body mass: 82.8 ± 11.3 kg; height: 176.3 ± 4.2 cm) were randomly assigned to one of initial conditions: FIR (n = 7) or placebo (n = 7). After 4 days, the participants were submitted to neuromuscular tests in an isokinetic dynamometer (maximal isometric voluntary contraction (MVC) and fatigue test). After a week of washout, participants performed the other condition. We measured peak torque (Nm), total work (J), fatigue index (%), root mean square (mV), median frequency (Hz), and temperature (°C) of thigh. The FIR was worn for 82 ± 19 h before the experimental session, totaling 317 ± 74 kJ of energy irradiation. There was a significant increase (p < 0.05) for pre-MVC (318.5 ± 68.7 Nm) and post-MVC (284.1 ± 58.2 Nm), and a trend (p = 0.055) for significant increase for total work (4,122.2 ± 699.8 J) on FIR condition regardless of none change on temperature and electromyographic (EMG) signals. FIR improved the neuromuscular performance of knee extensors in resistance-trained males regardless of changes on temperature and EMG. The present results suggest that the FIR could optimize the neuromuscular performance with 82 ± 19 h of wear.
Collapse
Affiliation(s)
- Manoel Silva
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil.
| | - Arthur Gáspari
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - João Barbieri
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Renato Barroso
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Gabriel Figueiredo
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Leonardo Motta
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| | - Antônio Moraes
- Laboratory of Electromyography Studies, Department of Sport Science, School of Physical Education, University of Campinas (UNICAMP), Av. Érico Veríssimo, 701, São Paulo, Campinas, CEP 13083-851, Brazil
| |
Collapse
|
14
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
15
|
Yokomizo S, Katagiri W, Maki Y, Sano T, Inoue K, Fukushi M, Atochin DN, Kushibiki T, Kawana A, Kimizuka Y, Kashiwagi S. Brief exposure of skin to near-infrared laser augments early vaccine responses. NANOPHOTONICS 2021; 10:3187-3197. [PMID: 34868804 PMCID: PMC8635068 DOI: 10.1515/nanoph-2021-0133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid establishment of herd immunity with vaccination is effective to combat emerging infectious diseases. Although the incorporation of adjuvant and intradermal (ID) injection could augment early responses to the vaccine, the current chemical or biological adjuvants are inappropriate for this purpose with their side effects and high reactogenicity in the skin. Recently, a near-infrared (NIR) laser has been shown to augment the immune response to ID vaccination and could be alternatively used for mass vaccination programs. Here, we determined the effect of NIR laser as well as licensed chemical adjuvants on the immunogenicity 1, 2, and 4 weeks after ID influenza vaccination in mice. The NIR laser adjuvant augmented early antibody responses, while the widely used alum adjuvant induced significantly delayed responses. In addition, the oil-in-water and alum adjuvants, but not the NIR laser, elicited escalated TH2 responses with allergenic immunoglobulin E (IgE) responses. The effect of the NIR laser was significantly suppressed in the basic leucine zipper transcription factor ATF-like 3 (Batf3) knockout mice, suggesting a critical role of the cluster of differentiation 103+ (CD103)+ dendritic cells. The current preliminary study suggests that NIR laser adjuvant is an alternative strategy to chemical and biological agents to timely combat emerging infectious diseases. Moreover, its immunomodulatory property could be used to enhance the efficacy of immunotherapy for allergy and cancer.
Collapse
Affiliation(s)
- Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown 02129, MA, USA
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa 116-8551, Tokyo, Japan
| | - Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown 02129, MA, USA
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Kanagawa, Japan
| | - Yohei Maki
- Division of Infectious Diseases and Respiratory Medicine, Department of Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Tomoya Sano
- Division of Infectious Diseases and Respiratory Medicine, Department of Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Kazumasa Inoue
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa 116-8551, Tokyo, Japan
| | - Masahiro Fukushi
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa 116-8551, Tokyo, Japan
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown 02129, MA, USA
| | - Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | |
Collapse
|
16
|
Photobiomodulation Regulation as One Promising Therapeutic Approach for Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9962922. [PMID: 34336126 PMCID: PMC8313355 DOI: 10.1155/2021/9962922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction refers to myocardial necrosis caused by acute or persistent coronary ischemia and hypoxia. It is considered to be one of the significant crises threatening human health in the world. Following myocardial infarction, collagen gradually replaces the original tissue due to the loss of many cardiomyocytes, myocardial contractile function decreases, and myocardial fibrosis eventually leads to heart failure. Phototherapy is a new treatment which has shown superior efficacy on the nerve, skeletal muscle, skin, and other tissues. Likewise, there is growing evidence that phototherapy also has many positive effects on the heart. Therefore, this article introduces the progress of research on phototherapy as a new therapeutic strategy in the treatment of myocardial infarction. The wavelength of photobiomodulation in the treatment of myocardial infarction is specific, and the influence of light source power and light duration on the tissue presents a bell-shaped distribution. Under these conditions, phototherapy can promote ATP synthesis and angiogenesis, inhibit the inflammatory response, improve heart function, reduce infarct size, and protect myocardium. In addition, we summarized the molecular mechanisms of phototherapy. According to the location of photoreceptors, they can be divided into mitochondrial and nonmitochondrial parts.
Collapse
|
17
|
Feliciano RDS, Atum ALB, Ruiz ÉGDS, Serra AJ, Antônio EL, Manchini MT, Silva JMA, Tucci PJF, Nathanson L, Morris M, Chavantes MC, Silva Júnior JA. Photobiomodulation Therapy on Myocardial Infarction in Rats: Transcriptional and Posttranscriptional Implications to Cardiac Remodeling. Lasers Surg Med 2021; 53:1247-1257. [PMID: 33846991 DOI: 10.1002/lsm.23407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Induction of myocardial infarction (MI) in rats by occlusion of the left anterior descending coronary artery is an experimental model used in research to elucidate functional, structural, and molecular modifications associated with ischemic heart disease. Photobiomodulation therapy (PBMT) has become a therapeutic alternative by modulating various biological processes eliciting several effects, including anti-inflammatory and pro-proliferative actions. The main objective of this work was to evaluate the effect of PBMT in the modulation of transcriptional and post-transcriptional changes that occurred in myocardium signal transduction pathways after MI. STUDY DESIGN/MATERIALS AND METHODS Continuous wave (CW) non-thermal laser parameters were: 660 nm wavelength, power 15 mW, with a total energy of 0.9 J, fluence of 1.15 J/cm2 , spot size of 0.785 cm2 , and time of 60 seconds. Using in silico analysis, we selected and then, quantified the expression of messenger RNA (mRNA) of 47 genes of 9 signaling pathways associated with MI (angiogenesis, cell survival, hypertrophy, oxidative stress, apoptosis, extracellular matrix, calcium kinetics, cell metabolism, and inflammation). Messenger RNA expression quantification was performed in myocardial samples by polymerase chain reaction real-time array using TaqMan customized plates. RESULTS Our results evidenced that MI modified mRNA expression of several well-known biomarkers related to detrimental cardiac activity in almost all signaling pathways analyzed. However, PBMT reverted most of these transcriptional changes. More expressively, PBMT provoked a robust decrease in mRNA expression of molecules that participate in post-MI inflammation and ECM composition, such as IL-6, TNF receptor, TGFb1, and collagen I and III. Global microRNA (miRNA) expression analysis revealed that PBMT decreased miR-221, miR-34c, and miR-93 expressions post-MI, which are related to deleterious effects in cardiac remodeling. CONCLUSION Thus, the identification of transcriptional and post-transcriptional changes induced by PBMT may be used to interfere in the molecular dynamics of cardiac remodeling post-MI.
Collapse
Affiliation(s)
| | | | | | - Andrey Jorge Serra
- Universidade Federal de São Paulo, Rua Pedro de Toledo 709, Vila Clementino, São Paulo, SP, 04039-001, Brazil
| | - Ednei Luiz Antônio
- Universidade Federal de São Paulo, Rua Pedro de Toledo 709, Vila Clementino, São Paulo, SP, 04039-001, Brazil
| | | | | | - Paulo José Ferreira Tucci
- Universidade Federal de São Paulo, Rua Pedro de Toledo 709, Vila Clementino, São Paulo, SP, 04039-001, Brazil
| | - Lubov Nathanson
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, 33314
| | - Mariana Morris
- Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, Florida, 33314
| | | | | |
Collapse
|
18
|
Liebert A, Kiat H. The history of light therapy in hospital physiotherapy and medicine with emphasis on Australia: Evolution into novel areas of practice. Physiother Theory Pract 2021; 37:389-400. [PMID: 33678141 DOI: 10.1080/09593985.2021.1887060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: The objective of this narrative review was to investigate the history of light therapy in hospital settings, with reference to physiotherapy and particularly in an Australian context.Types of articles and search method:a review of available literature was conducted on PubMed, Medline and Google Scholar using keywords light therapy, photobiomodulation, physiotherapy, low-level laser, heliotherapy. Physiotherapy textbooks from Sydney University Library were searched. Historical records were accessed from the San Hospital library. Interviews were conducted with the San Hospital Chief Librarian and a retired former Head Physiotherapist from Royal Prince Alfred Hospital.Summary: Historically, light treatment has been used in both medical and physiotherapy practice. From its roots in ancient Egypt, India, and Greece, through to medieval times, the modern renaissance in 'light as therapy ' was begun by Florence Nightingale who, in the 1850s, advocated the use of clean air and an abundance of sunlight to restore health. Modern light therapy (phototherapy) had a marked uptake in use in medicine in Scandinavia, America, and Australia from 1903, following the pioneering work of Niels Finsen in the late 19th century, which culminated in Dr Finsen receiving the Nobel Prize for Medicine for the treatment of tuberculosis scarring with ultraviolet (UV) light, and treatment of smallpox scarring with red light. Treatment with light, especially UVB light, has been widely applied by physiotherapists in hospitals for dermatological conditions since the 1950s, particularly in Australia, Scandinavia, USA, England and Canada. In parallel, light treatment in hospitals for hyperbilirubinemia was used for neonatal jaundice. Since the 1980s light was also used in the medical specialties of ophthalmology, dermatology, and cardiology. In more recent years in physiotherapy, light was mostly used as an adjunct to the management of orthopedic/rheumatological conditions. Since the 1990s, there has been global use of light, in the form of photobiomodulation for the management of lymphedema, including in supportive cancer care. Photobiomodulation in the form of low-level laser has been used by physiotherapists and pain doctors since the 1990s in the management of chronic pain. The use of light as therapy is exemplified by its use in the San Hospital in Sydney, where light therapy was introduced in 1903 (after Dr. John Harvey Kellogg visited Niels Finsen in Denmark) and is practiced by nurses, physiotherapists and doctors until the present day. The use of light has expanded into new and exciting practices including supportive cancer care, and treatment of depression, oral mucositis, retinopathy of prematurity, and cardiac surgery complications. Light is also being used in the treatment of neurological diseases, such as Parkinson's disease, traumatic brain injury, and multiple sclerosis. The innovative uses of light in physiotherapy treatment would not be possible without the previous experience of successful application of light treatment.Conclusion: Light therapy has had a long tradition in medicine and physiotherapy. Although it has fallen somewhat out of favour over the past decades, there has been a renewed interest using modern techniques in recent times. There has been continuous use of light as a therapy in hospitals in Australia, most particularly the San Hospital in Sydney where it has been in use for almost 120 years.
Collapse
Affiliation(s)
- Ann Liebert
- Photobiomodulation Therapy Clinic, Fox Valley Medical Centre, Wahroonga, NSW, Australia
| | - Hosen Kiat
- Cardiac Health Institute Wahroonga, Sydney Adventist Hospital, Wahroonga, NSW, Australia
| |
Collapse
|
19
|
Schiffer F. Unilateral transcranial photobiomodulation for opioid addiction in a clinical practice: A clinical overview and case series. J Psychiatr Res 2021; 133:134-141. [PMID: 33340792 DOI: 10.1016/j.jpsychires.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Opioid Use Disorders (OUD) cause great disfunction and pain to individuals, families, and societies. There are few good treatments. This paper presents a novel, easily applied, painless, therapy that can be applied as an adjunct to psychotherapies and medications. METHODS The author presents a retrospective overview and 4 brief case reports. Two are typical of very positively responsive patients, one is of a positively but not remarkably responsive patient, and one of a non-responsive patient. The author used unilateral transcranial photobiomodulation (UtPBM), near infrared mode, applied to the hemisphere with the more positive hemispheric emotional valence (HEV) as a treatment to augment the patients' usual treatment. RESULTS The case reports are from 42 consecutive patients in his practice with OUD where he has given 382 treatments over 18 months, as needed. The author's subjective clinical observations were that of the 42 patients, 26 (62%) consistently had responses to the UtPBM (as described in the case reports) that were easily observable to the patient and the author as strikingly beneficial, 8 (19%) had helpful, but not remarkable responses, and 8 (19%) had no noticeable response. These 3 characterizations will be illustrated with clinical examples. There were no side-effects reported or observed aside from 2 women who experienced anxiety which resolved with psychotherapy. CONCLUSIONS Using UtPBM as an adjunctive treatment to the author's usual in-depth psychotherapy and medication management, he found subjectively that for the majority of his patients, this treatment was a valuable, safe benefit to their treatment for OUD.
Collapse
Affiliation(s)
- Fredric Schiffer
- 30 Lincoln Street, Newton Highlands, MA, USA; Developmental Biopsychiatry Research Program, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA; MindLight, LLC of Massachusetts, 30 Lincoln Street, Newton Highlands, MA, USA.
| |
Collapse
|
20
|
Liebert A, Bicknell B, Markman W, Kiat H. A Potential Role for Photobiomodulation Therapy in Disease Treatment and Prevention in the Era of COVID-19. Aging Dis 2020; 11:1352-1362. [PMID: 33269093 PMCID: PMC7673843 DOI: 10.14336/ad.2020.0901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is an evolving pandemic that has far reaching global effects, with a combination of factors that makes the virus difficult to contain. The symptoms of infection can be devastating or at the least very debilitating for vulnerable individuals. It is clear that the elderly are at most risk of the adverse impacts of the virus, including hospitalization and death. Others at risk are those with comorbidities such as cardiovascular disease and metabolic conditions and those with a hyper-excitable immune response. Treatment options for those with acute responses to the virus are limited and there is an urgent need for potential strategies that can mitigate these severe effects. One potential avenue for treatment that has not been explored is the microbiome gut/lung axis. In addition to those severely affected by their acute reaction to the virus, there is also a need for treatment options for those that are slow to recover from the effects of the infection and also those who have been adversely affected by the measures put in place to arrest the spread of the virus. One potential treatment option is photobiomodulation (PBM) therapy. PBM has been shown over many years to be a safe, effective, non-invasive and easily deployed adjunctive treatment option for inflammatory conditions, pain, tissue healing and cellular energy. We have also recently demonstrated the effectiveness of PBM to alter the gut microbiome. PBM therapy is worthy of consideration as a potential treatment for those most vulnerable to COVID-19, such as the elderly and those with comorbidities. The treatment may potentially be advantageous for those infected with the virus, those who have a slow recovery from the effects of the virus and those who have been denied their normal exercise/rehabilitation programs due to the isolation restrictions that have been imposed to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
- Research and Governance, Adventist Hospital Group, Wahroonga, Australia.
- SYMBYX Pty Ltd, Artarmon, Australia.
| | - Brian Bicknell
- SYMBYX Pty Ltd, Artarmon, Australia.
- Faculty of Health Science, Australian Catholic University, North Sydney, Australia.
| | - Wayne Markman
- SYMBYX Pty Ltd, Artarmon, Australia.
- School of Business, University of Technology, Sydney, Australia.
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.
- Faculty of Medicine, University of NSW, Kensington, Australia.
- Faculty of Medicine, health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
21
|
Gerelli E, Wagnières G, Joniová J. Stimulation of the oxygen consumption by photobiomodulation in the chicken embryo chorioallantoic membrane during hypoxia. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Emmanuel Gerelli
- Laboratory for Functional and Metabolic ImagingSwiss Federal Institute of Technology (EPFL) Lausanne Switzerland
| | - Georges Wagnières
- Laboratory for Functional and Metabolic ImagingSwiss Federal Institute of Technology (EPFL) Lausanne Switzerland
| | - Jaroslava Joniová
- Laboratory for Functional and Metabolic ImagingSwiss Federal Institute of Technology (EPFL) Lausanne Switzerland
| |
Collapse
|
22
|
Pigatto GR, Quinteiro MH, Nunes‐de‐Souza RL, Coimbra NC, Parizotto NA. Low‐Intensity Photobiomodulation Decreases Neuropathic Pain in Paw Ischemia‐Reperfusion and Spared Nervus Ischiadicus Injury Experimental Models. Pain Pract 2020; 20:371-386. [DOI: 10.1111/papr.12862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Glauce R. Pigatto
- Laboratory of Regenerative Medicine University of Araraquara (UNIARA) Araraquara Brazil
| | - Maiara H.S. Quinteiro
- Laboratory of Regenerative Medicine University of Araraquara (UNIARA) Araraquara Brazil
| | - Ricardo L. Nunes‐de‐Souza
- Laboratory of Neuropsychopharmacology School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Norberto C. Coimbra
- Laboratory of Neuroanatomy & Neuropsychobiology Department of Pharmacology Ribeirão Preto Medical School of the University of São Paulo (FMRP‐USP) Ribeirão Preto Brazil
| | - Nivaldo A. Parizotto
- Laboratory of Regenerative Medicine University of Araraquara (UNIARA) Araraquara Brazil
- Department of Physical Therapy Federal University of São Carlos (UFSCar) São Carlos Brazil
- Biomedical Engineering Program University of Brasil (UNIBRASIL) São Paulo Brazil
| |
Collapse
|
23
|
Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing. J Clin Med 2020; 9:jcm9020559. [PMID: 32085605 PMCID: PMC7073965 DOI: 10.3390/jcm9020559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Fluorescent light energy (FLE) has been used to treat various injured tissues in a non-pharmacological and non-thermal fashion. It was applied to stimulate cell proliferation, accelerate healing in chronic and acute wounds, and reduce pain and inflammation. FLE has been shown to reduce pro-inflammatory cytokines while promoting an environment conducive to healing. A possible mechanism of action of FLE is linked to regulation of mitochondrial homeostasis. This work aims to investigate the effect of FLE on mitochondrial homeostasis in an in vitro model of inflammation. Confocal microscopy and gene expression profiling were performed on cultures of inflamed human dermal fibroblasts treated with either direct light from a multi-LED lamp, or FLE from either an amorphous gel or sheet hydrogel matrix. Assessment using confocal microscopy revealed mitochondrial fragmentation in inflamed cells, likely due to exposure to inflammatory cytokines, however, mitochondrial networks were restored to normal 24-h after treatment with FLE. Moreover, gene expression analysis found that treatment with FLE resulted in upregulation of uncoupling protein 1 (UCP1) and carnitine palmitoyltransferase 1B (CPT1B) genes, which encode proteins favoring mitochondrial ATP production through oxidative phosphorylation and lipid β-oxidation, respectively. These observations demonstrate a beneficial effect of FLE on mitochondrial homeostasis in inflamed cells.
Collapse
|
24
|
Richter C, Bruegmann T. No light without the dark: Perspectives and hindrances for translation of cardiac optogenetics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 154:39-50. [PMID: 31515056 DOI: 10.1016/j.pbiomolbio.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
Over the last decade, optogenetic stimulation of the heart and its translational potential for rhythm control attracted more and more interest. Optogenetics allows to stimulate cardiomyocytes expressing the light-gated cation channel Channelrhodopsin 2 (ChR2) with light and thus high spatio-temporal precision. Therefore this new approach can overcome the technical limitations of electrical stimulation. In regard of translational approaches, the prospect of pain-free stimulation, if ChR2 expression is restricted to cardiomyocytes, is especially intriguing and could be highly beneficial for cardioversion and defibrillation. However, there is no light without shadow and cardiac optogenetics has to surmount critical hurdles, namely "how" to inscribe light-sensitivity by expressing ChR2 in a native heart and how to avoid side effects such as possible immune responses against the gene transfer. Furthermore, implantable light devices have to be developed which ensure sufficient illumination in a highly contractile environment. Therefore this article reviews recent advantages in the field of cardiac optogenetics with a special focus on the hindrances for the potential translation of this new approach into clinics and provides an outlook how these have to be carefully investigated and could be solved step by step.
Collapse
Affiliation(s)
- Claudia Richter
- RG Biomedical Physics, Max Planck Institute for Dynamics & Self-Organization, Am Fassberg 17, 37077, Goettingen, Germany; Department of Cardiology and Pneumology, University Medical Center, Robert-Koch-Str. 42a, 37075, Goettingen, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Goettingen, 37075, Goettingen, Germany.
| | - Tobias Bruegmann
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Goettingen, 37075, Goettingen, Germany; Institute for Cardiovascular Physiology, University Medical Center Goettingen, Humboldtallee 23, 37073, Goettingen, Germany.
| |
Collapse
|
25
|
Lodola F, Rosti V, Tullii G, Desii A, Tapella L, Catarsi P, Lim D, Moccia F, Antognazza MR. Conjugated polymers optically regulate the fate of endothelial colony-forming cells. SCIENCE ADVANCES 2019; 5:eaav4620. [PMID: 31598549 PMCID: PMC6764832 DOI: 10.1126/sciadv.aav4620] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/04/2019] [Indexed: 05/02/2023]
Abstract
The control of stem and progenitor cell fate is emerging as a compelling urgency for regenerative medicine. Here, we propose a innovative strategy to gain optical control of endothelial colony-forming cell fate, which represents the only known truly endothelial precursor showing robust in vitro proliferation and overwhelming vessel formation in vivo. We combine conjugated polymers, used as photo-actuators, with the advantages offered by optical stimulation over current electromechanical and chemical stimulation approaches. Light modulation provides unprecedented spatial and temporal resolution, permitting at the same time lower invasiveness and higher selectivity. We demonstrate that polymer-mediated optical excitation induces a robust enhancement of proliferation and lumen formation in vitro. We identify the underlying biophysical pathway as due to light-induced activation of TRPV1 channel. Altogether, our results represent an effective way to induce angiogenesis in vitro, which represents the proof of principle to improve the outcome of autologous cell-based therapy in vivo.
Collapse
Affiliation(s)
- F. Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Corresponding author. (F.L.); (M.R.A.)
| | - V. Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - G. Tullii
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - A. Desii
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
| | - L. Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro,” Novara, Italy
| | - P. Catarsi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - D. Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro,” Novara, Italy
| | - F. Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - M. R. Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Corresponding author. (F.L.); (M.R.A.)
| |
Collapse
|
26
|
Zhou TY, Xiang XW, Du M, Zhang LF, Cheng NX, Liu XL, Zheng B, Wen ZS. Protective effect of polysaccharides of sea cucumber Acaudina leucoprocta on hydrogen peroxide-induced oxidative injury in RAW264.7 cells. Int J Biol Macromol 2019; 139:1133-1140. [PMID: 31419551 DOI: 10.1016/j.ijbiomac.2019.08.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 12/18/2022]
Abstract
The aim of this experiment was to investigate the protective effects of polysaccharides of sea cucumber Acaudina leucoprocta (ALP) against hydrogen peroxide (H2O2) induced oxidative injury in RAW264.7 cells. Analysis of monosaccharide composition and structure of one fraction from ALP (ALPN) were analyzed by High Performance Liquid Chromatography (HPLC) and Fourier Transform Infrared Spectoscopy (FT-IR). The results showed that ALPN contain sulfate groups, which is sulfated polysaccharides. The results from MTT assay indicated that ALPN could markedly increase viability of cells compared with RAW264.7 cells exposed to H2O2. Moreover, ALPN significantly increased the levels of catalase (CAT), glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD), decreased the production of malondialdehyde (MDA) and lactate dehydrogenase (LDH) in RAW264.7 cells. The data from RT-PCR showed that ALPN (300 μg/mL) could increase the gene expression levels of SOD1 and GPX1. ALPN could also observably increase the protein expression level of Nrf2 and decrease the protein expression level of Keap1 with western blot. Collectively, this study suggested that polysaccharides of sea cucumber Acaudina leucoprocta (ALP) could effectively protect RAW264.7 cells against H2O2-induced oxidative injury. This protection mechanism may be related to activation of the Nrf2/Keap1 signaling pathway.
Collapse
Affiliation(s)
- Tian-Yi Zhou
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Xing-Wei Xiang
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, People's Republic of China
| | - Ming Du
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Lei-Fang Zhang
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Nai-Xue Cheng
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Xuan-Lin Liu
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Bin Zheng
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China; Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang 316000, People's Republic of China
| | - Zheng-Shun Wen
- Zhejiang Provincial Key Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, People's Republic of China.
| |
Collapse
|
27
|
Vahabzadeh-Hagh A, McCarthy TJ, De Taboada L, Streeter J, Pascual-Leone A, Lo EH, Hayakawa K. Near infrared light amplifies endothelial progenitor cell accumulation after stroke. CONDITIONING MEDICINE 2019; 2:170-177. [PMID: 34291201 PMCID: PMC8291201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Damage-associated molecular pattern signals may play key roles in mediating non-cell autonomous effects of pre and post-conditioning. Here, we show that near-infrared (NIR) light stimulation of astrocytes increases a calcium-dependent secretion of the prototypical DAMP, HMGB1, which may then accelerate endothelial progenitor cell (EPC) accumulation after stroke. Conditioned media from NIR-stimulated astrocytes increased EPC proliferation in vitro, and blockade of HMGB1 with siRNA diminished the effect. In vivo transcranial NIR treatment confirmed that approximately 40% of NIR could penetrate the scalp and skull. Concomitantly, NIR increased GFAP expression in normal mouse brain at 30 min after the irradiation. In a mouse model of focal ischemia, repeated irradiation of NIR at days 5, 9, and 13 successfully increased HMGB1 in peri-infarct cortex, leading to a higher accumulation of EPCs at 14 days post-stroke. Conditioning and tolerance are now known to involve cell-cell signaling between all cell types in the neurovascular unit. Taken together, our proof-of-concept study suggest that NIR light may be an effective conditioning tool to stimulate astrocytic signaling and promote EPC accumulation after stroke.
Collapse
Affiliation(s)
- Andrew Vahabzadeh-Hagh
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
28
|
Wang S, Wu L, Li X, Li B, Zhai Y, Zhao D, Jiang H. Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model. J Neuroinflammation 2019; 16:139. [PMID: 31287006 PMCID: PMC6615251 DOI: 10.1186/s12974-019-1513-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sympathetic overactivation and inflammation are two major mediators to post-myocardial ischemia-reperfusion (I/R)-induced ventricular arrhythmia (VA). The vicious cycle between microglia and sympathetic activation plays an important role in sympathetic hyperactivity related to cardiovascular diseases. Recently, studies have shown that microglial activation might be attenuated by light-emitting diode (LED) therapy. Therefore, we hypothesized that LED therapy might protect against myocardial I/R-induced VAs by attenuating microglial and sympathetic activation. Methods Thirty-six male anesthetized rats were randomized into four groups: control group (n = 6), LED group (n = 6), I/R group (n = 12), and LED+I/R group (n = 12). I/R was generated by left anterior descending artery occlusion for 30 min followed by 3 h reperfusion. ECG and left stellate ganglion (LSG) neural activity were recorded continuously. After 3 h reperfusion, a programmed stimulation protocol was conducted to test the inducibility of VA. Furthermore, we extracted the brain tissue to examine the microglial activation, and the peri-ischemic myocardium to examine the expression of NGF and inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α). Results As compared to the I/R group, LED illumination significantly inhibited the LSG neural activity (P < 0.01) and reduced the inducibility of VAs (arrhythmia score 4.417 ± 0.358 vs. 3 ± 0.3257, P < 0.01) in the LED+I/R group. Furthermore, LED significantly attenuated microglial activation and downregulated the expression of inflammatory cytokines and NGF in the peri-infarct myocardium. Conclusions LED therapy may protect against myocardial I/R-induced VAs by central and peripheral neuro-immune regulation.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xuemeng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Yi Zhai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
29
|
Wang S, Wu L, Zhai Y, Li X, Li B, Zhao D, Jiang H. Noninvasive light emitting diode therapy: A novel approach for postinfarction ventricular arrhythmias and neuroimmune modulation. J Cardiovasc Electrophysiol 2019; 30:1138-1147. [PMID: 31104349 DOI: 10.1111/jce.13974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sympathetic neural activation plays a key role in the incidence and maintenance of acute myocardial infarction (AMI) induced ventricular arrhythmia (VA). Furthermore, previous studies showed that AMI might induce microglia and sympathetic activation and that microglial activation might contribute to sympathetic activation. Recently, studies showed that light emitting diode (LED) therapy might attenuate microglial activation. Therefore, we hypothesized that LED therapy might reduce AMI-induced VA by attenuating microglia and sympathetic activation. METHODS Thirty anesthetized rats were randomly divided into three groups: the Control group (n = 6), AMI group (n = 12), and AMI + LED group (n = 12). Electrocardiogram (ECG) and left stellate ganglion (LSG) neural activity were continuously recorded. The incidence of VAs was recorded during the first hour after AMI. Furthermore, we sampled the brain and myocardium tissue of the different groups to examine the microglial activation and expression of nerve growth factor (NGF), interleukin-18 (IL-18), and IL-1β, respectively. RESULTS Compared to the AMI group, LED therapy significantly reduced the incidence of AMI-induced VAs (ventricular premature beats [VPB] number: 85.08 ± 13.91 vs 27.5 ± 9.168, P < .01; nonsustained ventricular tachycardia (nSVT) duration: 34.39 ± 8.562 vs 9.005 ± 3.442, P < .05; nSVT number: 18.92 ± 4.52 vs 7.583 ± 3.019, P < .05; incidence rate of SVT/VF: 58.33% vs. 8.33%, P < .05) and reduced the LSG neural activity (P < .01) in the AMI + LED group. Furthermore, LED significantly attenuated microglial activation and reduced IL-18, IL-1β, and NGF expression in the peri-infarct myocardium. CONCLUSION LED therapy may protect against AMI-induced VAs by suppressing sympathetic neural activity and the inflammatory response.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yi Zhai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xuemeng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
30
|
Schiffer F. The physical nature of subjective experience and its interaction with the brain. Med Hypotheses 2019; 125:57-69. [DOI: 10.1016/j.mehy.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 11/30/2022]
|
31
|
Vidrascu EM, Bashore AC, Howard TD, Moore JB. Effects of early- and mid-life stress on DNA methylation of genes associated with subclinical cardiovascular disease and cognitive impairment: a systematic review. BMC MEDICAL GENETICS 2019; 20:39. [PMID: 30866842 PMCID: PMC6417232 DOI: 10.1186/s12881-019-0764-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Background Traditional and novel risk factors cannot sufficiently explain the differential susceptibility to cardiovascular disease (CVD). Epigenetics may serve to partially explain this residual disparity, with life course stressors shown to modify methylation of genes implicated in various diseases. Subclinical CVD is often comorbid with cognitive impairment (CI), which warrants research into the identification of common genes for both conditions. Methods We conducted a systematic review of the existing literature to identify studies depicting the relationship between life course stressors, DNA methylation, subclinical CVD, and cognition. Results A total of 16 articles (8 human and 8 animal) were identified, with the earliest published in 2008. Four genes (COMT, NOS3, Igfl1, and Sod2) were analyzed by more than one study, but not in association with both CVD and CI. One gene (NR3C1) was associated with both outcomes, albeit not within the same study. There was some consistency among studies with markers used for subclinical CVD and cognition, but considerable variability in stress exposure (especially in human studies), cell type/tissue of interest, method for detection of DNA methylation, and risk factors. Racial and ethnic differences were not considered, but analysis of sex in one human study found statistically significant differentially methylated X-linked loci associated with attention and intelligence. Conclusions This review suggests the need for additional studies to implement more comprehensive and methodologically rigorous study designs that can better identify epigenetic biomarkers to differentiate individuals vulnerable to both subclinical CVD and associated CI. Electronic supplementary material The online version of this article (10.1186/s12881-019-0764-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena M Vidrascu
- Department of Family & Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Alexander C Bashore
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy D Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Justin B Moore
- Department of Family & Community Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
32
|
Naderi N, Bahrami H, Homaei H, Maleki M. Study design: The effects of photobiomodulation therapy combined with exercise training on functional capacity and quality of life in patients with heart failure (double-blind randomized). Res Cardiovasc Med 2019. [DOI: 10.4103/rcm.rcm_27_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
33
|
Bicknell B, Liebert A, Johnstone D, Kiat H. Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers Med Sci 2018; 34:317-327. [PMID: 30074108 DOI: 10.1007/s10103-018-2594-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
The human microbiome is intimately associated with human health, with a role in obesity, metabolic diseases such as type 2 diabetes, and divergent diseases such as cardiovascular and neurodegenerative diseases. The microbiome can be changed by diet, probiotics, and faecal transplants, which has flow-on effects to health outcomes. Photobiomodulation has a therapeutic effect on inflammation and neurological disorders (amongst others) and has been reported to influence metabolic disorders and obesity. The aim of this study was to examine the possibility that PBM could influence the microbiome of mice. Mice had their abdomen irradiated with red (660 nm) or infrared (808 nm) low-level laser, either as single or multiple doses, over a 2-week period. Genomic DNA extracted from faecal pellets was pyrosequenced for the 16S rRNA gene. There was a significant (p < 0.05) difference in microbial diversity between PBM- and sham-treated mice. One genus of bacterium (Allobaculum) significantly increased (p < 0.001) after infrared (but not red light) PBM by day 14. Despite being a preliminary trial with small experimental numbers, we have demonstrated for the first time that PBM can alter microbiome diversity in healthy mice and increase numbers of Allobaculum, a bacterium associated with a healthy microbiome. This change is most probably a result of PBMt affecting the host, which in turn influenced the microbiome. If this is confirmed in humans, the possibility exists for PBMt to be used as an adjunct therapy in treatment of obesity and other lifestyle-related disorders, as well as cardiovascular and neurodegenerative diseases. The clinical implications of altering the microbiome using PBM warrants further investigation.
Collapse
Affiliation(s)
- Brian Bicknell
- Australasian Research Institute, Wahroonga, Australia. .,Faculty of Health Sciences, Australian Catholic University, North Sydney, Australia.
| | - Ann Liebert
- Australasian Research Institute, Wahroonga, Australia.,Department of Medicine, University of Sydney, Camperdown, Australia
| | | | - Hosen Kiat
- Faculty of Medicine and Health Sciences, Macquarie University, West Ryde, Australia.,School of Medical Sciences, University of New South Wales, Kensington, Australia
| |
Collapse
|
34
|
Shinjo T, Tanaka T, Okuda H, Kawaguchi AT, Oh-hashi K, Terada Y, Isonishi A, Morita-Takemura S, Tatsumi K, Kawaguchi M, Wanaka A. Propofol induces nuclear localization of Nrf2 under conditions of oxidative stress in cardiac H9c2 cells. PLoS One 2018; 13:e0196191. [PMID: 29689082 PMCID: PMC5915683 DOI: 10.1371/journal.pone.0196191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress contributes to myocardial ischemia-reperfusion injury, which causes cardiomyocyte death and precipitate life-threatening heart failure. Propofol has been proposed to protect cells or tissues against oxidative stress. However, the mechanisms underlying its beneficial effects are not fully elucidated. In the present study, we employed an in vitro oxidative injury model, in which rat cardiac H9c2 cells were treated with H2O2, and investigated roles of propofol against oxidative stress. Propofol treatment reduced H2O2-induced apoptotic cell death. While H2O2 induced expression of the antioxidant enzyme HO-1, propofol further increased HO-1 mRNA and protein levels. Propofol also promoted nuclear localization of Nrf2 in the presence of H2O2. Knockdown of Nrf2 using siRNA suppressed propofol-inducible Nrf2 and expression of Nrf2-downstream antioxidant enzyme. Knockdown of Nrf2 suppressed the propofol-induced cytoprotection. In addition, Nrf2 overexpression induced nuclear localization of Nrf2 and HO-1 expression. These results suggest that propofol exerts antioxidative effects by inducing nuclear localization of Nrf2 and expression of its downstream enzyme in cardiac cells. Finally, we examined the effect of propofol on cardiomyocytes using myocardial ischemia-reperfusion injury models. The expression level of Nrf2 protein was increased at 15 min after reperfusion in the ischemia-reperfusion and propofol group compared with ischemia-reperfusion group in penumbra region. These results suggest that propofol protects cells or tissues from oxidative stress via Nrf2/HO-1 cascade.
Collapse
Affiliation(s)
- Takeaki Shinjo
- Department of Anesthesiology, Nara Medical University, Kashihara, Nara, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
- * E-mail:
| | - Hiroaki Okuda
- Department of Functional Anatomy, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akira T. Kawaguchi
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kentaro Oh-hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yuki Terada
- Department of Anesthesiology, Nara Medical University, Kashihara, Nara, Japan
| | - Ayami Isonishi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Shoko Morita-Takemura
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| | - Masahiko Kawaguchi
- Department of Anesthesiology, Nara Medical University, Kashihara, Nara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
35
|
Has the time come to include low-level laser photobiomodulation as an adjuvant therapy in the treatment of impaired endometrial receptivity? Lasers Med Sci 2018; 33:1105-1114. [DOI: 10.1007/s10103-018-2476-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
|
36
|
Abstract
Photobiomodulation or low-level light therapy (LLLT) has extensive applications based on light-induced effects in biological systems. Photobiomodulation remains controversial because of a poorly understood biochemical mechanism limited by the well-known biphasic dose response or Arndt-Schulz curve. The Arndt-Schulz curve states that an optimal dose of light is a key factor for realizing a therapeutic effect. In this report, we demonstrate a tunable optical system for photobiomodulation to aid physicians in overcoming the constraints of light due to biphasic dose response. The tunable optical system is based on a white light-emitting diode and four liquid crystal (LC) photonic devices: three LC phase retarders, and one LC lens. The output light of the tunable optical system exhibits electrical tunability for the wavelength, energy density and beam size. The operating principle is introduced, and the experimental results are presented. The proposed concept can be further extended to other electrically tunable photonic devices for different clinical purposes for photobiomodulation.
Collapse
|
37
|
Zhang R, Han D, Li Z, Shen C, Zhang Y, Li J, Yan G, Li S, Hu B, Li J, Liu P. Ginkgolide C Alleviates Myocardial Ischemia/Reperfusion-Induced Inflammatory Injury via Inhibition of CD40-NF-κB Pathway. Front Pharmacol 2018; 9:109. [PMID: 29515442 PMCID: PMC5826377 DOI: 10.3389/fphar.2018.00109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence shows that inflammation plays a vital role in the occurrence and development of ischemia/reperfusion (I/R). Suppression of excessive inflammation can ameliorate impaired cardiac function, which shows therapeutic potential for clinical treatment of myocardial ischemia/reperfusion (MI/R) diseases. In this study, we investigated whether Ginkgolide C (GC), a potent anti-inflammatory flavone, extenuated MI/R injury through inhibition of inflammation. In vivo, rats with the occlusion of the left anterior descending (LAD) coronary artery were applied to mimic MI/R injury. In vitro, primary cultured neonatal ventricular myocytes exposed to hypoxia/reoxygenation (H/R) were applied to further discuss the anti-H/R injury property of GC. The results revealed that GC significantly improved the symptoms of MI/R injury, as evidenced by reducing infarct size, preventing myofibrillar degeneration and reversing the mitochondria dysfunction. Moreover, histological analysis and Myeloperoxidase (MPO) activity measurement showed that GC remarkably suppressed Polymorphonuclears (PMNs) infiltration and ameliorated the histopathological damage. Furthermore, GC pretreatment was shown to improve H/R-induced ventricular myocytes viability and enhance tolerance of inflammatory insult, as evidenced by suppressing expression of CD40, translocation of NF-κB p65 subunit, phosphorylation of IκB-α, as well as the activity of IKK-β. In addition, downstream inflammatory cytokines modulated by NF-κB signaling were effectively down-regulated both in vivo and in vitro, as determined by immunohistochemistry and ELISA. In conclusion, these results indicate that GC possesses a beneficial effect against MI/R injury via inflammation inhibition that may involve suppression of CD40-NF-κB signal pathway and downstream inflammatory cytokines expression, which may offer an alternative medication for MI/R diseases.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jun Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Genquan Yan
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shasha Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Hu
- Minimally Invasive Urology Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiangbing Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ping Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
38
|
Vuka I, Vučić K, Repić T, Ferhatović Hamzić L, Sapunar D, Puljak L. Electrical Stimulation of Dorsal Root Ganglion in the Context of Pain: A Systematic Review of In Vitro and In Vivo Animal Model Studies. Neuromodulation 2017; 21:213-224. [PMID: 29152818 DOI: 10.1111/ner.12722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Dorsal root ganglion (DRG) has recently emerged as an attractive target for neuromodulation therapy since primary sensory neurons and their soma in DRGs are important sites for pathophysiologic changes that lead to neuropathic pain. Our aim was to create evidence synthesis about the effects of electrical stimulation of DRG in the context of pain from in vitro and in vivo animal models, analyze methodology and quality of studies in the field. METHODS For conducting systematic review we searched three data bases: MEDLINE, Embase and Web of Science. The quality of included studies was assessed with the Systematic Review Centre for Laboratory Animal Experimentation risk of bias tool for animal studies. The study was registered in the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies data base. RESULTS We included six in vitro and eight in vivo animal studies. All included in vitro studies combined neurostimulation with substances or drugs and reported an improvement in pain-related parameters due to neurostimulation. Among in vivo studies, six used pulsed radiofrequency, while two used electrical field stimulation. All in vivo studies reported improvement in pain-related behavior following stimulation. Meta-analysis was not possible because of heterogeneity and missing data. The quality of included studies was suboptimal since all had an unclear risk of bias in multiple domains. CONCLUSIONS Limited data from in vitro and in vivo animal studies indicate that electrical stimulation of DRG has a positive therapeutic effect in the context of pain-related outcomes. Further studies with a standardized methodological approach and outcomes will provide useful information about electrical stimulation of DRG in animal models.
Collapse
Affiliation(s)
- Ivana Vuka
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Katarina Vučić
- Department for Quality, Safety and Efficacy Assessment of Medicinal Products, Agency for Medicinal Products and Medical Devices, Zagreb, Croatia
| | - Tihana Repić
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | | | - Damir Sapunar
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Livia Puljak
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia.,Department for Development, Research and Health Technology Assessment, Agency for Quality and Accreditation in Health Care and Social Welfare, Zagreb, Croatia
| |
Collapse
|
39
|
Jeong YM, Cheng XW, Lee S, Lee KH, Cho H, Kang JH, Kim W. Preconditioning with far-infrared irradiation enhances proliferation, cell survival, and migration of rat bone marrow-derived stem cells via CXCR4-ERK pathways. Sci Rep 2017; 7:13718. [PMID: 29057951 PMCID: PMC5651919 DOI: 10.1038/s41598-017-14219-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/06/2017] [Indexed: 01/06/2023] Open
Abstract
Far-infrared radiation (FIR) has been shown to exert positive effects on the cardiovascular system. However, the biological effects of FIR on bone marrow-derived stem cells (BMSCs) are not understood. In the present study, BMSCs were isolated from rat femur bone marrow and cultured in vitro. To investigate the effects of an FIR generator with an energy flux of 0.13 mW/cm2 on rat BMSCs, survival of BMSCs was measured by crystal violet staining, and cell proliferation was additionally measured using Ez-Cytox cell viability, EdU, and Brd U assays. FIR preconditioning was found to significantly increase BMSC proliferation and survival against H2O2. The scratch and transwell migration assays showed that FIR preconditioning resulted in an increase in BMSC migration. qRT-PCR and Western blot analyses demonstrated that FIR upregulated Nanog, Sox2, c-Kit, Nkx2.5, and CXCR4 at both the mRNA and protein levels. Consistent with these observations, PD98059 (an ERK inhibitor) and AMD3100 (a CXCR4 inhibitor) prevented the activation of CXCR4/ERK and blocked the cell proliferation and migration induced by FIR. Overall, these findings provide the first evidence that FIR confers a real and significant benefit on the preconditioning of BMSCs, and might lead to novel strategies for improving BMSC therapy for cardiac ischemia.
Collapse
Affiliation(s)
- Yun-Mi Jeong
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Xian Wu Cheng
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea.,The Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Sora Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Hye Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Haneul Cho
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jung Hee Kang
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Photobiomodulation Therapy Improves Acute Inflammatory Response in Mice: the Role of Cannabinoid Receptors/ATP-Sensitive K+ Channel/p38-MAPK Signalling Pathway. Mol Neurobiol 2017; 55:5580-5593. [DOI: 10.1007/s12035-017-0792-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/26/2017] [Indexed: 01/10/2023]
|