1
|
Qin Y, Dong X, Li B. Salivary miRNAs and cytokines associated with diagnosis and prognosis of oral squamous cell carcinoma. Front Cell Dev Biol 2025; 13:1531016. [PMID: 39911325 PMCID: PMC11794800 DOI: 10.3389/fcell.2025.1531016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Early diagnosis can significantly improve the 5-year survival rate of patients with OSCC. Therefore, it is extremely important to differentiate OSCC patients early, easily and quickly. Human saliva contains a variety of components that can be used as biomarkers for the diagnosis and prognosis of OSCC. Studies have shown that salivary microRNAs (miRNAs) and cytokines are closely associated with the progression of OSCC. The aim of this review is to summarize the research progress of salivary biomarkers (miRNAs and cytokines) in the past 3 years, and to explore the possibility of using miRNAs and cytokines to improve the diagnosis and prognosis of OSCC.
Collapse
Affiliation(s)
| | | | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
2
|
Burtyn O, Borikun T, Rossylna O, Kopchak A, Kravets О. CLINICAL SIGNIFICANCE OF SALIVARY MIR-21, -155, AND -375 IN PATIENTS WITH SQUAMOUS CELL CARCINOMA OF ORAL CAVITY. Exp Oncol 2024; 46:139-145. [PMID: 39396170 DOI: 10.15407/exp-oncology.2024.02.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The current prognostic markers in oral squamous cell carcinoma (OSCC) have limited accuracy sometimes leading to inappropriate treatment decisions. Identifying new markers would help clinicians tailor treatment plans based on the individual patient risk factors leading to improved survival rates and quality of life. AIM To estimate the value of the miRNA expression indicators in saliva as prognostic and predictive markers of the effectiveness of neoadjuvant chemotherapy (NACT). MATERIALS AND METHODS The work is based on the results of the examination and treatment of 61 patients with stage II-IV OSCC. The miR-21, miR-155, and miR-375 expression levels in the saliva samples were analyzed by the real-time reverse transcription polymerase chain reaction. RESULTS The salivary miR-21 and -155 expression levels in healthy volunteers were 2.49 and 2.84 times lower than in OSCС patients (p < 0.05). The positive association of miR-21 and miR-155 expression levels and the negative correlation of miR-375 expression level with T index by TNM (r = 0.68, r = 0.75, and r = -0.67, respectively) (p < 0.05) and the presence of lymph node metastasis (r = 0.78, r = 0.71, and r = ‒0.59, respectively) (p < 0.05) were found. Patients with good response to NACT had lower miR-21 and -155, and higher miR-375 levels in saliva compared to those with resistant tumors. CONCLUSIONS Our study suggests that salivary miR-21, miR-155, and miR-375 may be potential biomarkers for the prognosis of cancer course and the response to NACT in OSCC patients.
Collapse
Affiliation(s)
- O Burtyn
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - T Borikun
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NASU, Kyiv, Ukraine
| | - O Rossylna
- Clinics for Personalized Diagnostics and Therapy Design "Oncotheranostics", Kyiv, Ukraine
| | - A Kopchak
- Bogomolets National Medical University, Kyiv, Ukraine
| | - О Kravets
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| |
Collapse
|
3
|
Gintoni I, Vassiliou S, Chrousos GP, Yapijakis C. Identification of Stage-Specific microRNAs that Govern the Early Stages of Sequential Oral Oncogenesis by Strategically Bridging Human Genetics with Epigenetics and Utilizing an Animal Model. Int J Mol Sci 2024; 25:7642. [PMID: 39062890 PMCID: PMC11277563 DOI: 10.3390/ijms25147642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly prevalent and aggressive malignancy, with mortality rates reaching 60%, mainly due to its excessive diagnostic delay. MiRNAs, a class of crucial epigenetic gene-expression regulators, have emerged as potential diagnostic biomarkers, with >200 molecules exhibiting expressional dysregulation in OSCC. We had previously established an in silico methodology for the identification of the most disease-specific molecules by bridging genetics and epigenetics. Here, we identified the stage-specific miRNAs that govern the asymptomatic early stages of oral tumorigenesis by exploiting seed-matching and the reverse interplay between miRNA levels and their target genes' expression. Incorporating gene-expression data from our group's experimental hamster model of sequential oral oncogenesis, we bioinformatically detected the miRNAs that simultaneously target/regulate >75% of the genes that are characteristically upregulated or downregulated in the consecutive stages of hyperplasia, dysplasia, and early invasion, while exhibiting the opposite expressional dysregulation in OSCC-derived tissue and/or saliva specimens. We found that all stages share the downregulation of miR-34a-5p, miR124-3p, and miR-125b-5p, while miR-1-3p is under-expressed in dysplasia and early invasion. The malignant early-invasion stage is distinguished by the downregulation of miR-147a and the overexpression of miR-155-5p, miR-423-3p, and miR-34a-5p. The identification of stage-specific miRNAs may facilitate their utilization as biomarkers for presymptomatic OSCC diagnosis.
Collapse
Affiliation(s)
- Iphigenia Gintoni
- Unit of Orofacial Genetics, 1st Department of Pediatrics, School of Medicine, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- Department of Molecular Genetics, Cephalogenetics Center, 176 72 Athens, Greece
- Department of Oral and Maxillofacial Surgery, School of Medicine, National Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece;
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, School of Medicine, National Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece;
| | - George P. Chrousos
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, School of Medicine, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- Department of Molecular Genetics, Cephalogenetics Center, 176 72 Athens, Greece
- Department of Oral and Maxillofacial Surgery, School of Medicine, National Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece;
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| |
Collapse
|
4
|
Deng W, Fu J, Lin S, Wen Q, Fu L, Chen X. Hsa_circRNA_101036 aggravates hypoxic-induced endoplasmic reticulum stress via the miR-21-3p/TMTC1 axis in oral squamous cell carcinoma. Heliyon 2024; 10:e32969. [PMID: 38994041 PMCID: PMC11238011 DOI: 10.1016/j.heliyon.2024.e32969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Objective Circular RNAs (circRNAs) have been identified as potential biomarkers and therapeutic targets for various types of cancer, including Oral squamous cell carcinoma (OSCC). Hsa_circRNA_101036 was found to function as a cancer suppressor gene in OSCC; however, the underlying regulatory mechanism remains unclear. We investigated the role of hsa_circRNA_101036 in OSCC development and progression and explored its potential as a therapeutic target. Methods We performed a bioinformatics analysis and used experimental approaches to investigate the regulatory mechanism of hsa_circRNA_101036. The database StarBase v.2.0 was used to predict potential target-miRNAs of hsa_circRNA_101036. The levels of hsa_circRNA_101036, miR-21-3p, and TMTC2 expression in samples of OSCC cancer tissue (n = 15) and adjacent tissue (n = 15) were determined. We also examined the effects of hsa_circRNA_101036 overexpression on OSCC cell lines by using cell viability, migration, and invasion assays. The proportions of apoptotic cells and the reactive oxygen species (ROS) levels were analyzed by flow cytometry. We also investigated how hsa_circRNA_101036 overexpression affected the levels of miR-21-3p and TMTC2, and endoplasmic reticulum (ER) stress in OSCC cells. Results The levels of hsa_circRNA_101036 and TMTC2 expression were significantly lower, while miR-21-3p expression was higher in tumor tissues and OSCC cells when compared to adjacent tissues and normal oral fibroblasts, respectively. The levels of HIF-1α and miR-21-3p expression were significantly increased under conditions of hypoxia, while the levels of hsa_circRNA_101036 and TMTC2 were decreased. The expression levels of proteins associated with ER stress, the proportions of apoptotic cells, and the levels of ROS were all increased by hypoxia stimulation. In addition, overexpression of hsa_circRNA_101036, but not mutant hsa_circRNA_101036, was found to enhance the effect of hypoxia on HSC3 and OECM-1 cells. Hsa_circRNA_101036 overexpression suppressed tumor growth and induced ER stress. Finally, knockdown of miR-21-3p had the same effect as overexpression of hsa_circRNA_101036. Conclusion Our findings suggest that hsa_circRNA_101036 plays a critical role in the development and progression of OSCC. Overexpression of hsa_circRNA_101036 aggravated ER stress, and increased cell apoptosis and ROS production in OSCC under hypoxic conditions. Hsa_circRNA_101036 up-regulated TMTC2 expression by sponging miR-21-3p in OSCC.
Collapse
Affiliation(s)
- Wei Deng
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Juan Fu
- Department of Infectious Diseases, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Shigeng Lin
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Qitao Wen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Liangbin Fu
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiaoze Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
5
|
Farshbaf A, Mohajertehran F, Aghaee‐Bakhtiari SH, Ayatollahi H, Douzandeh K, Pakfetrat A, Mohtasham N. Downregulation of salivary miR-3928 as a potential biomarker in patients with oral squamous cell carcinoma and oral lichen planus. Clin Exp Dent Res 2024; 10:e877. [PMID: 38481355 PMCID: PMC10938069 DOI: 10.1002/cre2.877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVES Recent studies highlighted the role of miR expressed in saliva as reliable diagnostic and prognostic tools in the long-term monitoring of cancer processes such as oral squamous carcinoma (OSCC). Based on a few previous studies, it seems the miR-3928 can be considered a master regulator in carcinogenesis, and it can be therapeutically exploited. This is the first study that compared oral potentially malignant disorder (OLP) and malignant (OSCC) lesions for miR-3928 expression. MATERIALS AND METHODS In this cross-sectional study, saliva samples from 30 healthy control individuals, 30 patients with erosive/atrophic oral lichen planus, and 31 patients with OSCC were collected. The evaluation of miR-3928 expression by q-PCR and its correlation with clinicopathological indices were analyzed by Shapiro-Wilk, Kruskal-Wallis, Pearson's χ2 , and Mann-Whitney tests. The p-value less than .05 indicated statistically significant results. RESULTS Based on nonparametric Kruskal-Wallis test results, there was a statistically significant difference between the ages of three study groups (p < .05). This test demonstrated a statistically significant difference between the average of miR-3928 expression in three study groups (p < .05). The result of the χ2 test showed a statistically significant difference in miR-3928 expression between patients with OLP (p = .01) and also patients with OSCC (p < .0001) in comparison to the control group. CONCLUSIONS The salivary miR-3928 can play a tumor suppressive role in the pathobiology of OSCC, and it is significantly downregulated in patients. According to the potential tumor suppressive role of miR-3928 in the OSCC process, we can consider this microRNA as a biomarker for future early diagnosis, screening, and potential target therapy.
Collapse
Affiliation(s)
- Alieh Farshbaf
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farnaz Mohajertehran
- Oral and Maxillofacial Diseases Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Seyed Hamid Aghaee‐Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Bioinformatics Research CenterMashhad University of Medical SciencesMashhadIran
| | - Hossein Ayatollahi
- Hematology Department, Faculty of MedicineMashhad University of Medical ScienceMashhadIran
- Pathology Department, Cancer Molecular Pathology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Katayoun Douzandeh
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
6
|
Doghish AS, Elshaer SS, Fathi D, Rizk NI, Elrebehy MA, Al-Noshokaty TM, Elballal MS, Abdelmaksoud NM, Abdel-Reheim MA, Abdel Mageed SS, Zaki MB, Mohammed OA, Tabaa MME, Elballal AS, Saber S, El-Husseiny HM, Abulsoud AI. Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of oral cancer. Pathol Res Pract 2024; 253:155027. [PMID: 38101159 DOI: 10.1016/j.prp.2023.155027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ahmed S Elballal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cairo University, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| |
Collapse
|
7
|
Gintoni I, Vassiliou S, Chrousos GP, Yapijakis C. Review of Disease-Specific microRNAs by Strategically Bridging Genetics and Epigenetics in Oral Squamous Cell Carcinoma. Genes (Basel) 2023; 14:1578. [PMID: 37628629 PMCID: PMC10454361 DOI: 10.3390/genes14081578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent human malignancies and a global health concern with a poor prognosis despite some therapeutic advances, highlighting the need for a better understanding of its molecular etiology. The genomic landscape of OSCC is well-established and recent research has focused on miRNAs, which regulate gene expression and may be useful non-invasive biomarkers or therapeutic targets. A plethora of findings regarding miRNA expression have been generated, posing challenges for the interpretation and identification of disease-specific molecules. Hence, we opted to identify the most important regulatory miRNAs by bridging genetics and epigenetics, focusing on the key genes implicated in OSCC development. Based on published reports, we have developed custom panels of fifteen major oncogenes and five major tumor suppressor genes. Following a miRNA/target gene interaction analysis and a comprehensive study of the literature, we selected the miRNA molecules which target the majority of these panels that have been reported to be downregulated or upregulated in OSCC, respectively. As a result, miR-34a-5p, miR-155-5p, miR-124-3p, miR-1-3p, and miR-16-5p appeared to be the most OSCC-specific. Their expression patterns, verified targets, and the signaling pathways affected by their dysregulation in OSCC are thoroughly discussed.
Collapse
Affiliation(s)
- Iphigenia Gintoni
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- Department of Molecular Genetics, Cephalogenetics Center, 176 72 Athens, Greece
- Department of Oral and Maxillofacial Surgery, School of Medicine, National Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece;
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, School of Medicine, National Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece;
| | - George P. Chrousos
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
- Department of Molecular Genetics, Cephalogenetics Center, 176 72 Athens, Greece
- Department of Oral and Maxillofacial Surgery, School of Medicine, National Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece;
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece;
| |
Collapse
|
8
|
Takenawa T, Harada K, Ferdous T, Kawasaki K, Kuramitsu Y, Mishima K. Silencing of Tropomyosin 1 suppresses the proliferation, invasion and metastasis of oral squamous cell carcinoma in vitro. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2022. [DOI: 10.1016/j.ajoms.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Sekaran S, Pitchaiah S, Ganapathy D. Can miR-21 be considered as a potential biomarker and a therapeutic target in oral cancer? Oral Oncol 2022; 131:105973. [PMID: 35738155 DOI: 10.1016/j.oraloncology.2022.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| | - Sivaperumal Pitchaiah
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
10
|
Gebrie A. Disease progression role as well as the diagnostic and prognostic value of microRNA-21 in patients with cervical cancer: A systematic review and meta-analysis. PLoS One 2022; 17:e0268480. [PMID: 35895593 PMCID: PMC9328569 DOI: 10.1371/journal.pone.0268480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Introduction Cervical cancer is the fourth commonest and the fourth leading cause of cancer death in females globally. The upregulated expression of microRNA-21 in cervical cancer has been investigated in numerous studies, yet given the inconsistency on some of the findings, a systematic review and meta-analysis is needed. Therefore, the aim of this systematic review and meta-analysis is to investigate the role in disease progression as well as the diagnostic and prognostic value of microRNA-21 in patients with cervical cancer. Methods Literature search was carried out through visiting several electronic databases including PubMed/MEDLINE/ PubMed Central, Web of Science, Embase, WorldCat, DOAJ, ScienceDirect, and Google Scholar. After extraction, data analysis was carried out using Rev-Man 5.3, STATA 15.0 and Meta-disk 1.4. I2 and meta-bias statistics assessed heterogeneity and publication bias of the included studies, respectively. The area under summary receiver operating characteristic curve and other diagnostic indexes were used to estimate diagnostic accuracy. Result A total of 53 studies were included for this systematic review and meta-analysis. This study summarized that microRNA-21 targets the expression of numerous genes that regulate their subsequent downstream signaling pathways which promote cervical carcinogenesis. The targets addressed in this study included TNF-α, CCL20, PTEN RasA1, TIMP3, PDCD-4, TPM-1, FASL, BTG-2, GAS-5, and VHL. In addition, the meta-analysis of reports from 6 eligible studies has demonstrated that the overall area under the curve (AUC) of summary receiver operating characteristic (SROC) of microRNA-21 as a diagnostic accuracy index for cervical cancer was 0.80 (95% CI: 0.75, 0.86). In addition, evidence from studies revealed that upregulated microRNA-21 led to worsening progression and poor prognosis in cervical cancer patients. Conclusion microRNA-21 is an oncogenic microRNA molecule playing a key role in the development and progression of cervical malignancy. It has good diagnostic accuracy in the diagnosis of cervical cancer. In addition, the upregulation of microRNA-21 could predict a worse outcome in terms of prognosis in cervical cancer patients.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
- * E-mail:
| |
Collapse
|
11
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|