1
|
Li Z, Qi C, Pan X, Jia Y, Zhao X, Deng C, Chen S. The relationship between estimated glucose disposal rate and bone turnover markers in type 2 diabetes mellitus. Endocrine 2022; 77:242-251. [PMID: 35697964 DOI: 10.1007/s12020-022-03090-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To investigate the relationship between estimated glucose disposal rate (eGDR) and bone turnover markers in patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS This is a cross-sectional study, which recruited 549 patients with T2DM. The eGDRs of patients were calculated based on the presence of hypertension, glycated hemoglobin, and body mass index. All patients were divided into high-eGDR group and low-eGDR group using the median of eGDR as the boundary. The patients were further divided into two subgroups: males and postmenopausal females. RESULTS The lower the eGDR, the more severe was insulin resistance. The levels of osteocalcin (OC), type I collagen carboxyl-terminal peptide (β-CTX), and type I procollagen amino-terminal peptide (PINP) were significantly lower in the low-eGDR group than those in the high-eGDR group. The eGDR was positively correlated with OC, β-CTX, and PINP in all patients, and in the male subgroups. In the postmenopausal female subgroup, there was no correlation between eGDR and OC, β-CTX, or PINP. In addition, this positive correlation remained after adjusting for other factors in multilinear regression analysis. CONCLUSION Our study was the first to demonstrate that eGDR is positively correlated with bone turnover markers in patients with T2DM. This correlation was observed among the male patients with T2DM but not among postmenopausal female patients with T2DM.
Collapse
Affiliation(s)
- Zelin Li
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cuijuan Qi
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiaoyu Pan
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yujiao Jia
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xuetong Zhao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Chenqian Deng
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
- Hebei North University, Zhangjiakou, Hebei, China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei North University, Zhangjiakou, Hebei, China.
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Zhang HY, He CC, Zhong DF. Long non-coding RNA CCDC183-AS1 regulates gastric cancer AGS cell proliferation, migration, and invasion by targeting miR-1301-3p. Shijie Huaren Xiaohua Zazhi 2021; 29:990-998. [DOI: 10.11569/wcjd.v29.i17.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The long noncoding RNA (lncRNA) CCDC183-AS1 is up-regulated in hepatocellular carcinoma and promotes the progression of hepatocellular carcinoma. However, the effect of CCDC183-AS1 on gastric cancer and its molecular mechanism are unknown. Starbase prediction shows that CCDC183-AS1 may target miR-1301-3p. We hypothesized that CCDC183-AS1 can target and regulate miR-1301-3p to affect the proliferation, migration, and invasion of gastric cancer cells, thereby affecting the development of gastric cancer.
AIM To investigate the effect of CCDC183-AS1 on the proliferation, migration, and invasion of gastric cancer AGS cells and the underlying molecular mechanism.
METHODS Thirty gastric cancer tissues and matched adjacent normal tissues were collected at our hospital. RT-qPCR was used to detect the expression of CCDC183-AS1 and miR-1301-3p in the collected tissues. MTT assay was used to detect cell proliferation in AGS cells, and transwell assay was used to detect cell migration and invasion. Western blot was used to detect the protein expression of CyclinD1, MMP-2, MMP-9, and p21. Small interfering RNA targeting CCDC183-AS1 (si-CCDC183-AS1) and miR-1301-3p were transfected into AGS cells, respectively, and the changes in cell proliferation, migration, and invasion were detected using the above methods. StarBase prediction showed that the sequence of lncRNA CCDC183-AS1 contains nucleotide sequences complementary to miR-1301-3p, and the targeting relationship was confirmed by dual luciferase report assay.
RESULTS Compared with adjacent normal tissues, the expression levels of CCDC183-AS1 and miR-1301-3p in gastric cancer tissues were significantly increased and decreased, respectively (P < 0.05). Inhibition of CCDC183-AS1 or overexpression of miR-1301-3p reduced the proliferation, migration, and invasion of AGS cells, decreased the expression levels of CyclinD1, MMP-2, and MMP-9, and increased the expression level of p21 (P < 0.05). CCDC183-AS1 targeted the expression of miR-1301-3p. Down-regulation of miR-1301-3p reversed the effect of inhibition of CCDC183-AS1 expression on the proliferation, migration, and invasion of AGS cells.
CONCLUSION Inhibition of CCDC183-AS1 regulates the proliferation, migration, and invasion of gastric cancer AGS cells via targeted up-regulation of miR-1301-3p expression.
Collapse
Affiliation(s)
- Hong-Ying Zhang
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China
| | - Chen-Cong He
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China
| | - Ding-Fu Zhong
- Department of Gastroenterology, Jinhua People's Hospital, Jinhua 321000, Zhejiang Province, China
| |
Collapse
|
3
|
Gao J, Qin Y, Luo K, Wang X, Yu C, Zhang A, Pan X. Downregulation of miR-4755-5p promotes fluoride-induced osteoblast activation via tageting Cyclin D1. J Trace Elem Med Biol 2020; 62:126626. [PMID: 32731110 DOI: 10.1016/j.jtemb.2020.126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endemic fluorosis remains a major public health issue in many countries. Fluoride can cause abnormalities in osteoblast proliferation and activation, leading to skeletal fluorosis. However, its detailed molecular mechanism remains unclear. Based on a previous study, the aim of this study is to explore the role of miRNA in osteoblast activation of skeletal fluorosis via targeting of Cyclin D1. METHODS A population study of coal-burning fluorosis and in vitro experiments were performed in this study. Urine fluoride (UF) concentrations of the participants were determined using a national standardized ion selective electrode approach. Based on our previous miRNA sequence results, bioinformatic analysis was used to predict miR-4755-5p targeting Cyclin D1. Quantitative real-time PCR (qRT-PCR) was used to verify the expression of miR-4755-5p. The expression of Cyclin D1 mRNA was detected by qRT-PCR. The expression of Cyclin D1 protein was detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. Cell viability was detected by CCK-8 method. The distribution of the cell cycle was analyzed by flow cytometry. The alkaline phosphatase (ALP) activity and bone Gla protein (BGP) content were detected by micronutrient enzymes standard method and ELISA. The target binding between miR-4755-5p and Cyclin D1 was verified using dual-luciferase reporter assay. RESULTS In the fluoride-exposed population, the results showed that with the increase in UF content, the expression of miR-4755-5p decreased gradually, while the mRNA transcription and protein expression of Cyclin D1 increased gradually. The relative miR-4755-5p expression showed a negative correlation with Cyclin D1 expression. Subsequently, in human osteoblasts treated with sodium fluoride (NaF), the results also showed that NaF caused low expression of miR-4755-5p and increased expression of Cyclin D1. Further, the results of miR-4755-5p mimic transfection confirmed that under the action of NaF, miR-4755-5p overexpression reduced Cyclin D1 protein expression within osteoblasts and further inhibited cell proliferation and activation. Simultaneously, luciferase reporter assays verified that Cyclin D1 was the miR-4755-5p direct target. CONCLUSION The results demonstrate that fluoride exposure induced the downregulation of miR-4755-5p and downregulated miR-4755-5p promoted fluoride-induced osteoblast activation by increasing Cyclin D1 protein expression. This study sheds new light on biomarkers and potential treatment for endemic fluorosis.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Qin
- Guizhou Orthopedics Hospital, Guiyang, 550007, China
| | - Keke Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xilan Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chun Yu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xueli Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Lou S, Xu J, Wang B, Li S, Ren J, Hu Z, Xu B, Luo F. Downregulation of lncRNA AFAP1-AS1 by oridonin inhibits the epithelial-to-mesenchymal transition and proliferation of pancreatic cancer cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:814-825. [PMID: 31314060 DOI: 10.1093/abbs/gmz071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/03/2019] [Indexed: 12/28/2022] Open
Abstract
Recent studies have demonstrated that the expression of the long non-coding RNA (lncRNA) AFAP1-AS1 in pancreatic cancer is negatively correlated with survival and prognosis. However, the effects of oridonin and lncRNA AFAP1-AS1 on the epithelial-to-mesenchymal transition (EMT) and migration of pancreatic cancer cells have not been fully elucidated. Surgery is the only potentially curative method for pancreatic cancer, but postoperative recurrence and metastasis are common. The aim of the present study was to assess the effect of oridonin and lncRNA AFAP1-AS1 silencing on pancreatic cancer cells. The pancreatic cancer cell lines BxPC-3 and PANC-1 cells were transfected with siAFAP1-AS1 and its negative control (siNC). After that, oridonin was used to treat the siAFAP1-AS1-transfected cells. The expression of lncRNA AFAP1-AS1 was downregulated in the pancreatic cancer cell lines BxPC-3 and PANC-1. The apoptosis and cell cycle progression of pancreatic cancer cells were evaluated by flow cytometry and Hoechst 33258 staining. Metastasis and invasion of BxPC-3 and PANC-1 cells were detected by transwell migration assay, real-time cell analysis, and western blot analysis. Cells were transfected with the lentiviral siAFAP1-AS1 and siNC, and tumorigenesis was evaluated in BALB/C nude mice. Immunohistochemical examination was used to verify the effects of oridonin and siAFAP1-AS1 on pancreatic cancer. The results demonstrated that the combination of oridonin and siAFAP1-AS1 inhibited pancreatic cancer cell proliferation, induced apoptosis, arrested cell cycle progression, prevented the migration, regulated EMT-related protein expression in BxPC-3 and PANC-1 cells, and inhibited pancreatic cancer cell tumorigenicity and EMT in nude mice.
Collapse
Affiliation(s)
- Songmei Lou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bili Wang
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuquan Li
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jun Ren
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengjun Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Fan Y, Chen Y, Zhang S, Huang M, Wang S, Li Y, Bai J. Morphine reverses the effects of 1-methyl-4-phenylpyridinium in PC12 cells through activating PI3K/Akt. Int J Neurosci 2018; 129:30-35. [PMID: 29936883 DOI: 10.1080/00207454.2018.1492575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM OF THE STUDY Parkinson's disease (PD) is a neurodegenerative disorder. It is caused by the degeneration of dopaminergic neurons and the dopamine (DA) deletion in the substantia nigra pars compacta (SNpc). Morphine elevates the level of dopamine in the mesolimbic dopamine system and plays a role in alleviating PD symptoms. However, the molecular mechanism is still unclear. The aim of the study is to investigate the mechanism on morphine alleviating PD symptoms. MATERIALS AND METHODS The viability of PC12 cells was measured by using MTT assay. The expressions of tyrosine hydroxylase (TH), thioredoxin-1 (Trx-1), CyclinD1 and Cyclin-dependent kinase5 (Cdk5) were detected by Western Blot. RESULTS In present study, we found that morphine increased the cell viability in PC12 cells. 1-methyl-4-phenylpyridi-nium (MPP+) reduced the cell viability and TH expression, which were reversed by morphine. MPP+ decreased the expressions of Trx-1, CyclinD1, Cdk5, which were restored by morphine. Moreover, the role of morphine in restoring the expressions of Trx-1, CyclinD1 and Cdk5 decreased by MPP+ was abolished by LY294002, phosphatidylinositol-3-kinase (PI3K)/Akt inhibitor. CONCLUSIONS These results suggest that morphine reverses effects induced by MPP þ through activating PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yuan Fan
- a Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming , China.,b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Yan Chen
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Se Zhang
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Mengbing Huang
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Shengdong Wang
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Ye Li
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| | - Jie Bai
- b Medical Faculty , Kunming University of Science and Technology , Kunming , China
| |
Collapse
|
6
|
[Erythropoietin accelerates the proliferation of glioma cells via activating Akt pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38. [PMID: 29735438 PMCID: PMC6765661 DOI: 10.3969/j.issn.1673-4254.2018.04.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To determine whether erythropoietin (EPO) promotes rapid proliferation of glioma through Akt pathway. METHODS We detected the expression of EPO in human glioma tissues using immunohistochemistry. A nude mouse model bearing human glioma U87 cell xenograft was established and given intraperitoneal injection of EPO or saline every other day, and the tumor growth was observed. In the in vitro experiment, U87 cells were treated with PBS (control), EPO, or EPO with Akt inhibitor, and the expression of p-Akt and cyclin D1 was detected using Western blotting; the cell proliferation rate was determined using cell counting kit-8 and clone formation assay, and the cell cycle changes were analyzed with flow cytometry. RESULTS Compared with low-grade glioma tissues, high-grade glioma tissues exhibited a significantly increased EPO expression (P=0.0002). In the tumor-bearing mice, EPO treatment significantly increased the expression of EPO (P=0.0006) and p-Akt (P=0.0003) in the tumor and obviously increased the tumor volume (P<0.0001) and weight (P=0.0003). In U87 cells cultured in vitro, EPO treatment obviously accelerated the cell proliferation (P=0.020 on day 3 and 0.028 on day 5), promoted clone formation (P=0.0010), and increased proliferation index (P=0.0028); EPO significantly enhanced the protein expression of p-Akt (P=0.0020) and cyclin D1 (P=0.0022). The application of Akt inhibitor significantly suppressed the effect of EPO in enhancing cyclin D1 and p-Akt expression (both P<0.0001) and promoting cell proliferation. CONCLUSION EPO can significantly accelerate the proliferation of glioma through Akt pathway.
Collapse
|
7
|
Ma C, Tonks KT, Center JR, Samocha-Bonet D, Greenfield JR. Complex interplay among adiposity, insulin resistance and bone health. Clin Obes 2018; 8:131-139. [PMID: 29334695 DOI: 10.1111/cob.12240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 12/28/2022]
Abstract
Obesity and osteoporosis are common public health problems. Paradoxically, while obesity is associated with higher bone density, type 2 diabetic obese individuals have an increased fracture risk. Although obesity and insulin resistance co-exist, some obese individuals remain insulin-sensitive. We suggest that the apparent paradox relating obesity, bone density and fracture risk in type 2 diabetes may be at least partly influenced by differences in bone strength and quality between insulin-resistant and insulin-sensitive obese individuals. In this review, we focus on the complex interplay between, adiposity, insulin resistance and osteoporotic fracture risk and suggest that this is an important area of study that has implications for individually tailored and targeted treatment to prevent osteoporotic fracture in obese type 2 diabetic individuals.
Collapse
Affiliation(s)
- C Ma
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - K T Tonks
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
- Diabetes and Metabolism Program, Garvan Institute of Medical Research, Sydney, Australia
| | - J R Center
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
- Bone Biology Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - D Samocha-Bonet
- Diabetes and Metabolism Program, Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - J R Greenfield
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Sydney, Australia
- Diabetes and Metabolism Program, Garvan Institute of Medical Research, Sydney, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
8
|
Fu X, Li S, Zhou S, Wu Q, Jin F, Shi J. Stimulatory effect of icariin on the proliferation of neural stem cells from rat hippocampus. Altern Ther Health Med 2018; 18:34. [PMID: 29378551 PMCID: PMC5789743 DOI: 10.1186/s12906-018-2095-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
Background Icariin (ICA), a major ingredient of Epimediumbrevicornum, has various pharmacological activities including central nervous system protective functions such as the improvement of learning and memory function in mice models of Alzheimer’s disease. It has been reported that ICA can promote regeneration of peripheral nerve and functional recovery. The purpose of this study was to investigate the potentiating effect of ICA on the proliferation of rat hippocampal neural stem cells, and explore the possible mechanism involved. Methods Primary neural stem cells were prepared from the hippocampus of newly born SD rats, and cells were cultured in special stem cell culture medium. Neural stem cells were confirmed by immunofluorescence detection of nestin, NSE and GFAP expression. The effect of ICA on the growth and proliferation of the neural stem cells was evaluated by 5-ethynyl-2-deoxyuridine (EdU) labeling of proliferating cells, and photomicrographic images of the cultured neural stem cells. Further, the mechanism of ICA-induced cell proliferation of neural stem cells was investigated by analyzing the gene and protein expression of cell cycle related genes cyclin D1 and p21. Results The present study showed that icariin promotes the growth and proliferation of neural stem cells from rat hippocampus in a dose-dependent manner. Incubation of cells with icariin resulted in significant increase in the number of stem cell spheres as well as the increased incorporation of EdU when compared with cells exposed to control vehicle. In addition, it was found that icariin-induced effect on neural stem cells is associated with increased mRNA and protein expression of cell cycle genes cyclin D1 and p21. Conclusions This study evidently demonstrates the potentiating effect of ICA on neural stem cell growth and proliferation, which might be mediated through regulation of cell cycle gene and protein expression promoting cell cycle progression. Electronic supplementary material The online version of this article (10.1186/s12906-018-2095-y) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Shen H, Zeng B, Wang C, Tang X, Wang H, Liu W, Yang Z. MiR-330 inhibits IL-22-induced keratinocyte proliferation through targeting CTNNB1. Biomed Pharmacother 2017; 91:803-811. [PMID: 28501007 DOI: 10.1016/j.biopha.2017.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease which is characterized by hyperproliferation and aberrant differentiation of keratinocytes; however the exact pathogenesis is largely unknown. Interleukin-22 (IL-22) has demonstrated its vital role in T cell-mediated immune response by interacting with keratinocytes in the pathogenesis of psoriasis. The microRNAs (miRNAs) are a class of small non-coding RNA molecules that play important roles in cellular processes by regulating gene expression at the post-transcriptional level. MiR-330 has been reported to inhibit the proliferation and migration of mouse keratinocytes. In the present study, we indicated that miR-330 expression in lesion tissue of psoriasis patients was specifically down-regulated, and could inhibit IL-22-induced proliferation of HaCaT and HKC cell. Wnt/β-catenin pathway plays an essential role in the pathogenesis of psoriasis. By direct targeting CTNNB1, miR-330 could significantly downregulate IL-22-induced CTNNB1 expression. In addition, we found that the downstream targets of β-catenin, CyclinD1 and Axin2, could be affected by miR-330; miR-330 could suppress CyclinD1 protein expression and rescue Axin2 protein expression. Taken together, we indicated miR-330 inhibits IL-22-induced proliferation of HaCaT and HKC cell by targeting CTNNB1 and subsequently affect the downstream factors, CyclinD1 and Axin2 for the first time, and provide diagnostic markers and a novel target for psoriasis treatment.
Collapse
Affiliation(s)
- Hui Shen
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, 410005, China; Department of Dermatology, Ruikang Hospital affiliated to Guanxi University of Chinese Medicine, Nanning, Guangxi Province, 530000, China
| | - Bijun Zeng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, 410005, China
| | - Chang Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, 410005, China
| | - Xueyong Tang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, 410005, China
| | - Haizhen Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, 410005, China
| | - Wen Liu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, 410005, China
| | - Zhibo Yang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, 410005, China.
| |
Collapse
|
10
|
Oh JH, Lee NK. Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation. Mol Cells 2017; 40:371-377. [PMID: 28535663 PMCID: PMC5463046 DOI: 10.14348/molcells.2017.0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/20/2017] [Accepted: 04/28/2017] [Indexed: 01/13/2023] Open
Abstract
Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive (TRAP+) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar (H+) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.
Collapse
Affiliation(s)
- Ju Hee Oh
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan 31538,
Korea
| | - Na Kyung Lee
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan 31538,
Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538,
Korea
| |
Collapse
|
11
|
Kanaya S, Komatsu H, Shimauchi H, Nemoto E. Metabotropic glutamate receptor 1 promotes cementoblast proliferation via MAP kinase signaling pathways. Connect Tissue Res 2016; 57:417-26. [PMID: 27261070 DOI: 10.1080/03008207.2016.1195826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE/AIM Glutamate is one of the signaling molecules responsible for transmission in the central nervous system. Periodontal ligament (PDL) cells were recently reported to express metabotropic glutamate receptors (mGluRs). However, the functions of mGluR signaling in PDL cells or PDL-related cells remain largely unknown. The aim of this study was to investigate the expression and function of mGluRs in PDL-related cells. MATERIALS AND METHODS OCCM-30 cells, immortalized murine cementoblasts, were stimulated with l-glutamate or mGluRs antagonists. The cells' proliferative response was evaluated using a colorimetric assay and gene expression was assessed using real-time polymerase chain reaction. The nuclear translocation of cyclin D1 was evaluated by immunohistochemistry. RESULTS l-Glutamate promoted the proliferation of OCCM-30 cells, which expressed mGluR1, but not mGluR5. Dihydroxyphenylglycine (DHPG), an agonist of group I mGluRs (mGluR1 and mGluR5), also promoted cell proliferation, and this was inhibited by LY456236, an mGluR1 antagonist. DHPG increased the expression of cyclin D1, a key regulator of cell proliferation, and its nuclear translocation. DHPG also increased the expression of Bcl2A1, an antiapoptotic oncogene and simultaneously reduced the expression of Bax, a pro-apoptotic marker. Furthermore, the DHPG-induced proliferation of OCCM-30 cells was reduced by pretreatment with SB203580, SP600125, and PD98059, inhibitors of p38, JNK, and ERK1/2, respectively. CONCLUSIONS These findings indicate that activation of mGluR1 expressed by OCCM-30 cells induces cell proliferation in a manner that is dependent on mitogen-activated protein kinase pathways and that cyclin D1 and Bcl2A1/Bax may be involved. Our results provide useful information for elucidating the mechanisms underlying cementum homeostasis and regeneration.
Collapse
Affiliation(s)
- Sousuke Kanaya
- a Department of Periodontology and Endodontology , Tohoku University Graduate School of Dentistry , Sendai , Japan.,b Liaison Center for Innovative Dentistry , Graduate School of Dentistry, Tohoku University , Sendai , Japan
| | - Hidehiro Komatsu
- a Department of Periodontology and Endodontology , Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Hidetoshi Shimauchi
- a Department of Periodontology and Endodontology , Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Eiji Nemoto
- a Department of Periodontology and Endodontology , Tohoku University Graduate School of Dentistry , Sendai , Japan
| |
Collapse
|
12
|
Cao Y, Jansen IDC, Sprangers S, Stap J, Leenen PJ, Everts V, de Vries TJ. IL-1β differently stimulates proliferation and multinucleation of distinct mouse bone marrow osteoclast precursor subsets. J Leukoc Biol 2016; 100:513-23. [DOI: 10.1189/jlb.1a1215-543r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 02/02/2023] Open
|
13
|
Durham E, Jen S, Wang L, Nasworthy J, Elsalanty M, Weinberg S, Yu J, Cray J. Effects of Citalopram on Sutural and Calvarial Cell Processes. PLoS One 2015; 10:e0139719. [PMID: 26431045 PMCID: PMC4592261 DOI: 10.1371/journal.pone.0139719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
The use of selective serotonin reuptake inhibitors (SSRIs) for the treatment of depression during pregnancy is suggested to increase the incidence of craniofacial abnormalities including craniosynostosis. Little is known about this mechanism, however based on previous data we propose a mechanism that affects cell cycle. Excessive proliferation, and reduction in apoptosis may lead to hyperplasia within the suture that may allow for differentiation, bony infiltration, and fusion. Here we utilized in vivo and in vitro analysis to investigate this proposed phenomenon. For in vivo analysis we used C57BL–6 wild-type breeders treated with a clinical dose of citalopram during the third trimester of pregnancy to produce litters exposed to the SSRI citalopram in utero. At post-natal day 15 sutures were harvested from resulting pups and subjected to histomorphometric analysis for proliferation (PCNA) and apoptosis (TUNEL). For in vitro studies, we used mouse calvarial pre-osteoblast cells (MC3T3-E1) to assess proliferation (MTS), apoptosis (Caspase 3/7-activity), and gene expression after exposure to titrated doses of citalopram. In vivo analysis for PCNA suggested segregation of effect by location, with the sagittal suture, showing a statistically significant increase in proliferative response. The coronal suture was not similarly affected, however there was a decrease in apoptotic activity at the dural edge as compared to the periosteal edge. No differences in apoptosis by suture or area due to SSRI exposure were observed. In vitro results suggest citalopram exposure increased proliferation and proliferative gene expression, and decreased apoptosis of the MC3T3-E1 cells. Decreased apoptosis was not confirmed in vivo however, an increase in proliferation without a concomitant increase in apoptosis is still defined as hyperplasia. Thus prenatal SSRI exposure may exert a negative effect on post-natal growth through a hyperplasia effect at the cranial growth sites perhaps leading to clinically significant craniofacial abnormalities.
Collapse
Affiliation(s)
- Emily Durham
- Departments of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Serena Jen
- School of Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Lin Wang
- Institute for Plastic Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Joseph Nasworthy
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Mohammed Elsalanty
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Oral Maxillofacial Surgery, Georgia Regents University, Augusta, Georgia, United States of America
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Seth Weinberg
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jack Yu
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Surgery, Division of Plastic Surgery, Georgia Regents University, Augusta, Georgia, United States of America
| | - James Cray
- Departments of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Oh JH, Lee JY, Joung SH, Oh YT, Kim HS, Lee NK. Insulin enhances RANKL-induced osteoclastogenesis via ERK1/2 activation and induction of NFATc1 and Atp6v0d2. Cell Signal 2015; 27:2325-31. [PMID: 26343857 DOI: 10.1016/j.cellsig.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/21/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
Insulin is one of the main factors affecting bone and energy metabolism, however, the direct effect of insulin on osteoclast differentiation remains unclear. Thus, in order to help elucidate that puzzle, the authors investigated the roles and regulatory mechanisms of insulin on osteoclasts differentiation. Co-stimulation with insulin and RANKL significantly enhanced the number of larger (>100 μm) osteoclastic cells and of TRAP-positive multinucleated cells compared with treatment by RANKL alone. Conversely, the insulin receptor shRNA markedly decreased osteoclast differentiation induced by insulin and RANKL. Insulin treatment significantly activated ERK1/2 MAP kinase as well as markedly induced the expression of NFATc1, an osteoclast marker gene, and Atp6v0d2, an osteoclast fusion-related gene. The pretreatment of PD98059, an ERK1/2 inhibitor, or insulin receptor shRNA effectively suppressed osteoclast differentiation and, in addition, blocked the expression of NFATc1 and Atp6vod2 induced by insulin stimulation. These data reveal insights into the regulation of osteoclast differentiation and fusion through ERK1/2 activation and the induction of NFATc1 and Atp6v0d2 by insulin.
Collapse
Affiliation(s)
- Ju Hee Oh
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea; Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea
| | - Jae Yoon Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea
| | - Seung Hee Joung
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea
| | - Yoon Taek Oh
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea
| | - Hong Sung Kim
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan-Si, Chungnam 331-718, Republic of Korea
| | - Na Kyung Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea; Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan-Si, Chungnam 336-745, Republic of Korea.
| |
Collapse
|
15
|
ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways. Exp Cell Res 2015; 335:107-14. [DOI: 10.1016/j.yexcr.2015.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/22/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022]
|
16
|
Oh JH, Lee JY, Park JH, No JH, Lee NK. Obatoclax regulates the proliferation and fusion of osteoclast precursors through the inhibition of ERK activation by RANKL. Mol Cells 2015; 38:279-84. [PMID: 25666350 PMCID: PMC4363729 DOI: 10.14348/molcells.2015.2340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 11/27/2022] Open
Abstract
Obatoclax, a pan-Bcl2 inhibitor, shows antitumor activities in various solid malignancies. Bcl2-deficient mice have shown the importance of Bcl2 in osteoclasts, as the bone mass of the mice was increased by the induced apoptosis of osteoclasts. Despite the importance of Bcl2, the effects of obatoclax on the proliferation and differentiation of osteoclast precursors have not been studied extensively. Here, we describe the anti-proliferative effects of obatoclax on osteoclast precursors and its negative role on fusion of the cells. Stimulation with low doses of obatoclax significantly suppressed the proliferation of osteoclast precursors in a dose-dependent manner while the apoptosis was markedly increased. Its stimulation was sufficient to block the activation of ERK MAP kinase by RANKL. The same was true when PD98059, an ERK inhibitor, was administered to osteoclast precursors. The activation of JNK1/2 and p38 MAP kinase, necessary for osteoclast differentiation, by RANKL was not affected by obatoclax. Interestingly, whereas the number of TRAP-positive mononuclear cells was increased by both obatoclax and PD98059, fused, multinucleated cells larger than 100 μm in diameter containing more than 20 nuclei were completely reduced. Consistently, obatoclax failed to regulate the expression of osteoclast marker genes, including c-Fos, TRAP, RANK and CtsK. Instead, the expression of DC-STAMP and Atp6v0d2, genes that regulate osteoclast fusion, by RANKL was significantly abrogated by both obatoclax and PD98059. Taken together, these results suggest that obatoclax down-regulates the proliferation and fusion of osteoclast precursors through the inhibition of the ERK1/2 MAP kinase pathway.
Collapse
Affiliation(s)
- Ju Hee Oh
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, 336-745,
Korea
| | - Jae Yoon Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, 336-745,
Korea
| | - Jin Hyeong Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, 336-745,
Korea
| | - Jeong Hyeon No
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, 336-745,
Korea
| | - Na Kyung Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, 336-745,
Korea
| |
Collapse
|
17
|
Kim HS, Lee NK. Gene expression profiling in osteoclast precursors by insulin using microarray analysis. Mol Cells 2014; 37:827-32. [PMID: 25377254 PMCID: PMC4255103 DOI: 10.14348/molcells.2014.0223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/11/2014] [Indexed: 12/29/2022] Open
Abstract
The balance between bone formation by osteoblasts and destruction of mineralized bone matrix by osteoclasts is important for bone homeostasis. The increase of osteoclast differentiation by RANKL induces bone diseases such as osteoporosis. Recent studies have shown that insulin is one of main factors mediating the cross-talk between bone remodeling and energy metabolism. However, the systemic examination of insulin-induced differential gene expression profiles in osteoclasts has not been extensively studied. Here, we investigated the global effects of insulin on osteoclast precursors at the level of gene transcription by microarray analysis. The number of genes that were up-regulated by ≥ 1.5 fold after insulin treatment for 6 h, 12 h, or 24 h was 76, 73, and 39; and 96, 83, and 54 genes were down-regulated, respectively. The genes were classified by 20 biological processes or 24 molecular functions and the number of genes involved in 'development processes' and 'cell proliferation and differentiation' was 25 and 18, respectively, including Inhba, Socs, Plk3, Tnfsf4, and Plk1. The microarray results of these genes were verified by real-time RT-PCR analysis. We also compared the effects of insulin and RANKL on the expression of these genes. Most genes had a very similar pattern of expressions in insulin- and RANKL-treated cells. Interestingly, Tnfsf4 and Inhba genes were affected by insulin but not by RANKL. Taken together, these results suggest a potential role for insulin in osteoclast biology, thus contributing to the understanding of the pathogenesis and development of therapeutics for numerous bone and metabolic diseases.
Collapse
Affiliation(s)
| | - Na Kyung Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 336-745,
Korea
| |
Collapse
|