1
|
Morsczeck C. Current Topics in Dental Follicle Cell Research. FRONT BIOSCI-LANDMRK 2025; 30:25327. [PMID: 40018924 DOI: 10.31083/fbl25327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 03/01/2025]
Abstract
Dental follicle cells (DFCs) are dental stem cells that can only be obtained from tooth germs or after extraction of unerupted wisdom teeth. For many years, DFCs have been studied in basic research and preclinical studies in regenerative dentistry, as they are involved in both the development of the periodontium and tooth eruption. Since the first isolation, the number of studies with DFCs has increased. This article summarizes the most important articles of the last five years to provide an overview of current research topics. The focus was on basic research and preclinical research. Basic research includes articles on tooth development and tooth eruption, as well as research into molecular mechanisms during osteogenic differentiation. In addition, articles on preclinical research with DFCs focused on regenerative therapies and immunotherapies are also discussed. These new studies show that DFCs have improved our understanding of periodontal development and regeneration. DFC research is important for the regenerative dentistry of the future; however, preclinical studies indicate that significant progress is still needed before DFCs can be integrated into routine clinical practice.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Zhang S, Liu Y, Dong J, Jiao M, Gu Y, Chen L, Yuan N, Wang J, Yang D, Meng F. Proteome differences of dental stem cells between permanent and deciduous teeth by data-independent acquisition proteomics. Open Life Sci 2025; 20:20220998. [PMID: 39886483 PMCID: PMC11780257 DOI: 10.1515/biol-2022-0998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 02/01/2025] Open
Abstract
Dental pulp stem cells hold significant prospects for tooth regeneration and repair. However, a comprehensive understanding of the molecular differences between dental pulp stem cells (DPSC, from permanent teeth) and stem cells from human exfoliated deciduous teeth (SHED, from deciduous teeth) remains elusive, which is crucial for optimizing their therapeutic potential. To address this gap, we employed a novel data-independent acquisition (DIA) proteomics approach to compare the protein expression profiles of DPSC and SHED. Based on nano-LC-MS/MS DIA proteomics, we identified over 7,000 proteins in both cell types. By comparing their expression levels, 209 differentially expressed proteins were identified. Subsequent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, along with protein-protein interaction network construction, revealed significant metabolic differences and key regulatory nodes. DPSC exhibited significantly higher expression of proteins belonging to the NDUFB family, SMARC family, RPTOR and TLR3. These proteins are known to be involved in critical cellular processes such as mitochondrial energy metabolism, mTOR-related autophagy pathway, and innate immune response. Conversely, SHED displayed elevated expression of AKR1B family, which participated in glycerolipid metabolism and adipogenic differentiation, PRKG1, MGLL and UQCRB proteins associated with thermogenesis. These findings highlight the specific proteomic landscape of DPSC and SHED, suggesting their distinct biological roles and potential applications.
Collapse
Affiliation(s)
- Suping Zhang
- Infectious Disease Prevention and Control Department, Suzhou Center for Disease Control and Prevention,
Suzhou215131, China
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
- Oral Implantology Department, Suzhou Stomatological Hospital,
Suzhou215005, China
| | - Yuqing Liu
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
| | - Jin Dong
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
| | - Min Jiao
- Respiratory Disease Research Institute, Suzhou First Hospital affiliated to Soochow University,
Suzhou215003, China
| | - Yongchun Gu
- Department of Stomatology, Suzhou Ninth Hospital affiliated to Soochow University,
Suzhou215200, China
| | - Liling Chen
- Infectious Disease Prevention and Control Department, Suzhou Center for Disease Control and Prevention,
Suzhou215131, China
| | - Na Yuan
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
| | - Jianrong Wang
- Cyrus Tang Medical Institute, Soochow University School of Medicine,
Suzhou215123, China
| | - Dezhao Yang
- Oral Implantology Department, Suzhou Stomatological Hospital,
Suzhou215005, China
| | - Fanwen Meng
- Oral Implantology Department, Suzhou Stomatological Hospital,
Suzhou215005, China
| |
Collapse
|
3
|
Rostami M, Farahani P, Esmaelian S, Bahman Z, Fadel Hussein A, A Alrikabi H, Hosseini Hooshiar M, Yasamineh S. The Role of Dental-derived Stem Cell-based Therapy and Their Derived Extracellular Vesicles in Post-COVID-19 Syndrome-induced Tissue Damage. Stem Cell Rev Rep 2024; 20:2062-2103. [PMID: 39150646 DOI: 10.1007/s12015-024-10770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Long coronavirus disease 2019 (COVID-19) is linked to an increased risk of post-acute sequelae affecting the pulmonary and extrapulmonary organ systems. Up to 20% of COVID-19 patients may proceed to a more serious form, such as severe pneumonia, acute respiratory distress syndrome (ARDS), or pulmonary fibrosis. Still, the majority of patients may only have mild, self-limiting sickness. Of particular concern is the possibility of parenchymal fibrosis and lung dysfunction in long-term COVID-19 patients. Furthermore, it has been observed that up to 43% of individuals hospitalized with COVID-19 also had acute renal injury (AKI). Care for kidney, brain, lung, cardiovascular, liver, ocular, and tissue injuries should be included in post-acute COVID-19 treatment. As a powerful immunomodulatory tool in regenerative medicine, dental stem cells (DSCs) have drawn much interest. Numerous immune cells and cytokines are involved in the excessive inflammatory response, which also has a significant effect on tissue regeneration. A unique reservoir of stem cells (SCs) for treating acute lung injury (ALI), liver damage, neurological diseases, cardiovascular issues, and renal damage may be found in tooth tissue, according to much research. Moreover, a growing corpus of in vivo research is connecting DSC-derived extracellular vesicles (DSC-EVs), which are essential paracrine effectors, to the beneficial effects of DSCs. DSC-EVs, which contain bioactive components and therapeutic potential in certain disorders, have been shown as potentially effective therapies for tissue damage after COVID-19. Consequently, we explore the properties of DSCs in this work. Next, we'll look at how SARS-CoV-2 affects tissue damage. Lastly, we have looked at the use of DSCs and DSC-EVs in managing COVID-19 and chronic tissue damage, such as injury to the heart, brain, lung, and other tissues.
Collapse
Affiliation(s)
- Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Farahani
- Doctor of Dental Surgery, Faculty of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Zahra Bahman
- Faculty of dentistry, Belarusian state medical university, Minsk, Belarus
| | | | - Hareth A Alrikabi
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
4
|
Miteva M, Mihaylova Z, Mitev V, Aleksiev E, Stanimirov P, Praskova M, Dimitrova VS, Vasileva A, Calenic B, Constantinescu I, Perlea P, Ishkitiev N. A Review of Stem Cell Attributes Derived from the Oral Cavity. Int Dent J 2024; 74:1129-1141. [PMID: 38582718 PMCID: PMC11561491 DOI: 10.1016/j.identj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024] Open
Abstract
Oral cavity stem cells (OCSCs) have been the focus of intense scientific efforts due to their accessibility and stem cell properties. The present work aims to compare the different characteristics of 6 types of dental stem cells derived from the oral cavity: dental pulp stem cells (DPSC), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSC), stem cells from the apical papilla (SCAP), bone marrow mesenchymal stem cells (BMSC), and gingival mesenchymal stem cells (GMSC). Using immunofluorescence and real-time polymerase chain reaction techniques, we analysed the cells for stem cell, differentiation, adhesion, and extracellular matrix markers; the ability to proliferate in vitro; and multilineage differentiation potential. Markers such as vimentin, CD44, alkaline phosphatase, CD146, CD271, CD49f, Oct 3/4, Sox 9, FGF7, nestin, and BMP4 showed significant differences in expression levels, highlighting the heterogeneity and unique characteristics of each cell type. At the same time, we confirmed that all cell types successfully differentiated into osteogenic, chondrogenic, or adipose lineages, with different readiness. In conclusion, our study reveals the distinct properties and potential applications of various dental-derived stem cells. These findings contribute to a deeper understanding of OCSCs and their significance in future clinical applications.
Collapse
Affiliation(s)
- Marina Miteva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Zornitsa Mihaylova
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Evgeniy Aleksiev
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Pavel Stanimirov
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Maria Praskova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Violeta S Dimitrova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Anelia Vasileva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Bogdan Calenic
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania.
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania
| | - Paula Perlea
- Department of Endodontics, UMF Carol Davila, Bucharest, Romania.
| | - Nikolay Ishkitiev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| |
Collapse
|
5
|
Poblano-Pérez LI, Castro-Manrreza ME, González-Alva P, Fajardo-Orduña GR, Montesinos JJ. Mesenchymal Stromal Cells Derived from Dental Tissues: Immunomodulatory Properties and Clinical Potential. Int J Mol Sci 2024; 25:1986. [PMID: 38396665 PMCID: PMC10888494 DOI: 10.3390/ijms25041986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells located in different areas of the human body. The oral cavity is considered a potential source of MSCs because they have been identified in several dental tissues (D-MSCs). Clinical trials in which cells from these sources were used have shown that they are effective and safe as treatments for tissue regeneration. Importantly, immunoregulatory capacity has been observed in all of these populations; however, this function may vary among the different types of MSCs. Since this property is of clinical interest for cell therapy protocols, it is relevant to analyze the differences in immunoregulatory capacity, as well as the mechanisms used by each type of MSC. Interestingly, D-MSCs are the most suitable source for regenerating mineralized tissues in the oral region. Furthermore, the clinical potential of D-MSCs is supported due to their adequate capacity for proliferation, migration, and differentiation. There is also evidence for their potential application in protocols against autoimmune diseases and other inflammatory conditions due to their immunosuppressive capacity. Therefore, in this review, the immunoregulatory mechanisms identified at the preclinical level in combination with the different types of MSCs found in dental tissues are described, in addition to a description of the clinical trials in which MSCs from these sources have been applied.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Marta Elena Castro-Manrreza
- Immunology and Stem Cells Laboratory, FES Zaragoza, National Autonomous University of Mexico (UNAM), Mexico City 09230, Mexico;
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Guadalupe R. Fajardo-Orduña
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| |
Collapse
|
6
|
Shimomura-Kuroki J, Tsuneki M, Ida-Yonemochi H, Seino Y, Yamamoto K, Hirao Y, Yamamoto T, Ohshima H. Establishing protein expression profiles involved in tooth development using a proteomic approach. Odontology 2023; 111:839-853. [PMID: 36792749 DOI: 10.1007/s10266-023-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Various growth and transcription factors are involved in tooth development and developmental abnormalities; however, the protein dynamics do not always match the mRNA expression level. Using a proteomic approach, this study comprehensively analyzed protein expression in epithelial and mesenchymal tissues of the tooth germ during development. First molar tooth germs from embryonic day 14 and 16 Crlj:CD1 (ICR) mouse embryos were collected and separated into epithelial and mesenchymal tissues by laser microdissection. Mass spectrometry of the resulting proteins was carried out, and three types of highly expressed proteins [ATP synthase subunit beta (ATP5B), receptor of activated protein C kinase 1 (RACK1), and calreticulin (CALR)] were selected for immunohistochemical analysis. The expression profiles of these proteins were subsequently evaluated during all stages of amelogenesis using the continuously growing incisors of 3-week-old male ICR mice. Interestingly, these three proteins were specifically expressed depending on the stage of amelogenesis. RACK1 was highly expressed in dental epithelial and mesenchymal tissues during the proliferation and differentiation stages of odontogenesis, except for the pigmentation stage, whereas ATP5B and CALR immunoreactivity was weak in the enamel organ during the early stages, but became intense during the maturation and pigmentation stages, although the timing of the increased protein expression was different between the two. Overall, RACK1 plays an important role in maintaining the cell proliferation and differentiation in the apical end of incisors. In contrast, ATP5B and CALR are involved in the transport of minerals and the removal of organic materials as well as matrix deposition for CALR.
Collapse
Affiliation(s)
- Junko Shimomura-Kuroki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan.
| | - Masayuki Tsuneki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medmain Research, Medmain Inc., 2-4-5-104, Akasaka, Chuo-Ku, Fukuoka, 810-0042, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Yuta Seino
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Keiko Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Yoshitoshi Hirao
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| |
Collapse
|
7
|
Deng S, Lei T, Chen H, Zheng H, Xiao Z, Cai S, Hang Z, Xiong W, Yu Y, Zhang X, Yang Y, Bi W, Du H. Metformin pre-treatment of stem cells from human exfoliated deciduous teeth promotes migration and angiogenesis of human umbilical vein endothelial cells for tissue engineering. Cytotherapy 2022; 24:1095-1104. [PMID: 36064533 DOI: 10.1016/j.jcyt.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AIMS Stem cells from human exfoliated deciduous teeth (SHED) play a significant role in tissue engineering and regenerative medicine. Angiogenesis is crucial in tissue regeneration and a primary target of regenerative medicine. As a first-line anti-diabetic drug, metformin demonstrates numerous valuable impacts on stem cells. This study aimed to explore metformin's impact and mechanism of action on SHED-mediated angiogenesis. METHODS First, cell proliferation; flow cytometry; osteogenic, adipogenic and chondrogenic induction; and proteomics analyses were conducted to explore the role of metformin in SHED. Subsequently, migration and tube formation assays were used to evaluate chemotaxis and angiogenesis enhancement by SHED pre-treated with metformin under co-culture conditions in vitro, and relative messenger RNA expression levels were determined by quantitative reverse transcription polymerase chain reaction. Finally, nude mice were used for in vivo tube formation assay, and sections were analyzed through immunohistochemistry staining with anti-human CD31 antibody. RESULTS Metformin significantly promoted SHED proliferation as well as osteogenic, adipogenic and chondrogenic differentiation. Proteomics showed that metformin significantly upregulated 124 differentially abundant proteins involved in intracellular processes, including various proteins involved in cell migration and angiogenesis, such as MAPK1. The co-culture system demonstrated that SHED pre-treated with metformin significantly improved the migration and angiogenesis of human umbilical vein endothelial cells. In addition, SHED pre-treated with metformin possessed greater ability to promote angiogenesis in vivo. CONCLUSIONS In summary, the authors' findings illustrate metformin's mechanism of action on SHED and confirm that SHED pre-treated with metformin exhibits a strong capacity for promoting angiogenesis. This helps in promoting the application of dental pulp-derived stem cells pre-treated with metformin in regeneration engineering.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Hongyu Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Huiting Zheng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Zhongci Hang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Weini Xiong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yanqing Yu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
8
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Lei T, Liu Y, Deng S, Xiao Z, Yang Y, Zhang X, Bi W, Du H. Hydrogel supplemented with human platelet lysate enhances multi-lineage differentiation of mesenchymal stem cells. J Nanobiotechnology 2022; 20:176. [PMID: 35366889 PMCID: PMC8976277 DOI: 10.1186/s12951-022-01387-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) can be used as a potential clinical material. But the use of xenogeneic ingredients will increase the risk of zoonotic disease transmission. Human platelet lysate (HPL) is a potential surrogate and used in human cell expansion with reliability in clinical applications. In this study, we synthesized chitosan/gelatin/gellan gum hydrogel supplemented with HPL and investigated the effect of 3D culture for SHED. TMT-tagged proteomics was used to decipher the secretome protein profiles of SHEDs and a total of 3209 proteins were identified, of which 23 were up-regulated and 192 were down-regulated. The results showed that hydrogel supplemented with HPL promoted SHED proliferation. After induction, the hydrogel coating contributed to osteogenic differentiation, adipogenic differentiation and differentiation into neural-like cells of SHED. SHED encapsulated in a hydrogel promotes migration and angiogenesis of HUVEC. In conclusion, our research found that hydrogel supplemented with HPL can be used as a method for SHED in standardized production and can contribute to the clinical application of SHED in cell therapy.
Collapse
|
10
|
Mohammadi F, Bahrami N, Nazariyan M, Mohamadnia A, Hakimiha N, Nazariyan A. Effect of Photobiomodulation Therapy on Differentiation of Mesenchymal Stem Cells Derived from Impacted Third Molar Tooth into Neuron-like Cells. Photochem Photobiol 2022; 98:1434-1440. [PMID: 35363889 DOI: 10.1111/php.13627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Peripheral nerve damages are among the most important consequences of dental and maxillofacial procedures. Tissue engineering using mesenchymal stem cells (MSCs) is a promising method to manage such injuries. Moreover, photobiomodulation therapy (PBMT) can enhance this treatment. The present study aimed to investigate the effect of PBMT on differentiation of MSCs derived from dental follicle (DF) into neurons. MSCs were isolated from an impacted tooth follicle by digestion method. The stem cells were cultured, and differentiated into neurons. The cells received two sessions of PBMT with 810 or 980nm diode laser (100 mW, 4 J/cm2 ) in either DMEM or neural inductive medium . Phenotypic characterization of the cells was determined using Flow cytometry. In addition, β-tubulin and MAP2 genes expression level changes were analyzed using RT-PCR and western blot technique. After 14 days, Flow cytometry analysis confirmed the mesenchymal nature of cells. RT-PCR and western blot affirmed the expression of β-tubulin and MAP2 genes and proteins, respectively. PBMT with both wavelengths significantly increased β-tubulin and MAP2 expression in neural inductive medium with highest expression mean in 980-nm group. PBMT with 810 and 980-nm lasers could be a promising adjunctive method in differentiation of DF-originated MSCs into neural cells.
Collapse
Affiliation(s)
- Farnoush Mohammadi
- Craniomaxillofacial Research center, Tehran University of Medical Sciences, Tehran, Iran.,Oral and Maxillofacial Surgery Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Craniomaxillofacial Research center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Nazariyan
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hakimiha
- laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Nazariyan
- Clinical biochemistry Department, Faculty of Medicine, Zanjan University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Lei T, Wang J, Liu Y, Zhang X, Du H. Comparative proteomics analysis of human stem cells from dental gingival and periodontal ligament. Proteomics 2022; 22:e2200027. [PMID: 35297194 DOI: 10.1002/pmic.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022]
Abstract
Dental stem cells isolated from oral tissues have been shown to provide with high proliferation ability and multilineage differentiation potential. Gingival mesenchymal stem cells (GMSCs) and periodontal ligament stem cells (PDLSCs), kinds of dental stem cells, can be used as substitutes for tissue repair materials because of their similar regenerative functions. In this study, we aim to explore the similarities and differences between the protein profiles of GMSCs and PDLSCs through quantitative proteomics. A total of 2821 proteins were identified and retrieved, of which 271 were up-regulated and 57 were down-regulated in GMSCs compared to PDLSCs. GO analysis demonstrated that the 328 differentially abundant proteins (DAPs) were involved in the regulation of gene expression, metabolism and signal transduction in biological process, mainly distributed in organelles related to vesicle transport, and involved in the molecular function of binding protein. And KEGG analysis showed that the DAPs were committed to regulating the synthesis of proteasome and spliceosome. RT-qPCR results showed that ARPC1B, PDAP1 and SEC61B can be used as special markers to distinguish GMSCs from PDLSCs. This research contributes to explaining the molecular mechanism and promoting the clinical application of tissue regeneration of GMSCs and PDLSCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.,Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Jian Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.,Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Yanyan Liu
- Kangyanbao Stem Cell (Beijing) Co., Ltd, Beijing, China
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.,Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.,Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
12
|
Zhaosong M, Na F, Shuling G, Jiacheng L, Ran W. Heterogeneity affects the differentiation potential of dental follicle stem cells through the TGF-β signaling pathway. Bioengineered 2021; 12:12294-12307. [PMID: 34927533 PMCID: PMC8810196 DOI: 10.1080/21655979.2021.2009974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
Adult mesenchymal stem cells play an important role in maintaining organ homeostasis owing to their unique ability to generate more specialized cell populations in a coordinated manner. Adult mesenchymal stem cells are heterogeneous, a feature that is essential for their functions. However, studies have not elucidated how heterogeneity of mesenchymal stem cells affects their differentiation capacity. The current study thus explored the heterogeneous Dental Follicle Stem Cells (DFSCs). A previous study by our research group reported that selecting sub-clones can cause artificial damage of the heterogeneous microenvironment of DFSCs. The finds showed a decrease in differentiation capacity of the three subclones, although the underlying mechanism was not elucidated. In this study, cells were harvested and prepared for gene expression microarray analysis. Sequence data was used in gene ontology and pathway enrichment analysis. The results showed that downregulation of the TGF-β signaling pathway was the main cause of changes in differentiation of sub-clones. Additional analyses revealed that the Hippo pathway, WNT pathway and signaling pathways regulating the pluripotency of stem cells were also implicated in these changes, through a cross talk with TGF-β signaling pathway through Bmp2, Bmp4, and Bambi. In vivo implantation experiments and osteogenic induction showed that differentiation capacity of DFSCs was significantly reduced in the sub-clones. In summary, the findings of the current study show that differentiation potential of DFSCs is correlated with the heterogeneous microenvironment and TGF-β signaling pathway significantly modulates these biological processes.
Collapse
Affiliation(s)
- Meng Zhaosong
- Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Fu Na
- Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Guo Shuling
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Liu Jiacheng
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Wei Ran
- School of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Hariharan A, Iyer J, Wang A, Tran SD. Tracking of Oral and Craniofacial Stem Cells in Tissue Development, Regeneration, and Diseases. Curr Osteoporos Rep 2021; 19:656-668. [PMID: 34741728 DOI: 10.1007/s11914-021-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF REVIEW The craniofacial region hosts a variety of stem cells, all isolated from different sources of bone and cartilage. However, despite scientific advancements, their role in tissue development and regeneration is not entirely understood. The goal of this review is to discuss recent advances in stem cell tracking methods and how these can be advantageously used to understand oro-facial tissue development and regeneration. RECENT FINDINGS Stem cell tracking methods have gained importance in recent times, mainly with the introduction of several molecular imaging techniques, like optical imaging, computed tomography, magnetic resonance imaging, and ultrasound. Labelling of stem cells, assisted by these imaging techniques, has proven to be useful in establishing stem cell lineage for regenerative therapy of the oro-facial tissue complex. Novel labelling methods complementing imaging techniques have been pivotal in understanding craniofacial tissue development and regeneration. These stem cell tracking methods have the potential to facilitate the development of innovative cell-based therapies.
Collapse
Affiliation(s)
- Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Janaki Iyer
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Athena Wang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
14
|
Driesen RB, Gervois P, Vangansewinkel T, Lambrichts I. Unraveling the Role of the Apical Papilla During Dental Root Maturation. Front Cell Dev Biol 2021; 9:665600. [PMID: 34026757 PMCID: PMC8134663 DOI: 10.3389/fcell.2021.665600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The apical papilla is a stem cell rich tissue located at the base of the developing dental root and is responsible for the progressive elongation and maturation of the root. The multipotent stem cells of the apical papilla (SCAP) are extensively studied in cell culture since they demonstrate a high capacity for osteogenic, adipogenic, and chondrogenic differentiation and are thus an attractive stem cell source for stem cell-based therapies. Currently, only few studies are dedicated to determining the role of the apical papilla in dental root development. In this review, we will focus on the architecture of the apical papilla and describe the specific SCAP signaling pathways involved in root maturation. Furthermore, we will explore the heterogeneity of the SCAP phenotype within the tissue and determine their micro-environmental interaction. Understanding the mechanism of postnatal dental root growth could further aid in developing novel strategies in dental root regeneration.
Collapse
Affiliation(s)
- Ronald B Driesen
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Pascal Gervois
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Tim Vangansewinkel
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine, Hasselt University, Biomedical Research Institute, Cardio and Organ Systems, Hasselt, Belgium
| |
Collapse
|
15
|
Lei T, Wang J, Liu Y, Chen P, Zhang Z, Zhang X, Wang X, Li Q, Du H. Calreticulin as a special marker to distinguish dental pulp stem cells from gingival mesenchymal stem cells. Int J Biol Macromol 2021; 178:229-239. [PMID: 33647340 DOI: 10.1016/j.ijbiomac.2021.02.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The construction of protein abundance profiles helps to interpret the clinical applications of stem cells. Dental pulp stem cells (DPSCs) and gingival mesenchymal stem cells (GMSCs) can be isolated from teeth and used as a highly convenient clinical potential material. Here, we aimed to explore commonalities and differences of DPSCs and GMSCs at the protein level. TMT-based quantitative proteomics and two-dimensional gel electrophoresis technology were used in combination to describe the protein profile of DPSCs and GMSCs extracted from the same donor. A total of 2821 proteins were identified by LC-MS/MS, of which 248 differentially abundant proteins (DAPs) were highly expressed in GMSCs while 782 proteins were highly expressed in DPSCs. The biological functions and molecular pathways of DAPs were annotated with GO enrichment and KEGG analysis. The relationship between molecular abundance and cell characteristics including source, proliferation, angiogenesis and inflammation were connected by WGCNA. Special markers, including Calreticulin (CALR), Annexin A5 (ANXA5) and Rho GDP dissociation inhibitor alpha (GDIR1), were proposed to distinguish DPSCs from GMSCs. Our results provide a molecular basis for in-depth understanding of the protein composition and special functions of dental stem cells, and promote the potential clinical application.
Collapse
Affiliation(s)
- Tong Lei
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Wang
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanyan Liu
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Zhihui Zhang
- Stomatology Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Xiaoshuang Zhang
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Wang
- Stomatology Department, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Quanhai Li
- Cell Therapy Laboratory, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China; Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| | - Hongwu Du
- 112 Lab, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|