1
|
Tang H, Li Y, Tang W, Zhu J, Parker GC, Zhang JH. Endogenous Neural Stem Cell-induced Neurogenesis after Ischemic Stroke: Processes for Brain Repair and Perspectives. Transl Stroke Res 2023; 14:297-303. [PMID: 36057034 DOI: 10.1007/s12975-022-01078-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Ischemic stroke is a very common cerebrovascular accident that occurred in adults and causes higher risk of neural deficits. After ischemic stroke, patients are often left with severe neurological deficits. Therapeutic strategies for ischemic stroke might mitigate neuronal loss due to delayed neural cell death in the penumbra or seek to replace dead neural cells in the ischemic core. Currently, stem cell therapy is the most promising approach for inducing neurogenesis for neural repair after ischemic stroke. Stem cell treatments include transplantation of exogenous stem cells but also stimulating endogenous neural stem cells (NSCs) proliferation and differentiation into neural cells. In this review, we will discuss endogenous NSCs-induced neurogenesis after ischemic stroke and provide perspectives for the therapeutic effects of endogenous NSCs in ischemic stroke. Our review would inform future therapeutic development not only for patients with ischemic stroke but also with other neurological deficits.
Collapse
Affiliation(s)
- Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| | - Graham C Parker
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
2
|
Rezaei F, Tiraihi T, Abdanipour A, Hassoun HK, Taheri T. Immunocytochemical analysis of valproic acid induced histone H3 and H4 acetylation during differentiation of rat adipose derived stem cells into neuron-like cells. Biotech Histochem 2018; 93:589-600. [PMID: 30273059 DOI: 10.1080/10520295.2018.1511063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Valproic acid (VPA) is an inhibitor of histone deacetylases (HDACs) that can regulate differentiation and proliferation of stem cells by epigenetic mechanisms. We investigated VPA induced histone H3 and H4 acetylation in adipose derived stem cells (ADSCs) transdifferentiated into neuron-like cells (NLCs). Rat ADSCs were transdifferentiated into neural stem cells (NSCs) that had been generated from neurospheres. The NSCs were differentiated into NLCs by induction with different concentrations of VPA at 24, 48 and 72 h. The NLCs were evaluated using anti-H3 and -H4 antibodies, and ADSCs, NSCs and NLCs were evaluated using immunofluorescence. The ADSCs were immunoreactive to CD90 and CD49d, but not to CD45 and CD31. Both the neurospheres and NSCs were immunostained with nestin and neurofilament 68. The neurospheres expressed Musashi1, Sox2 and Neu N genes as determined by RT-PCR. Our dose-response study indicated that the optimal concentration of VPA was 1 mM at 72 h. Histone acetylation levels of H3 and H4 immunostaining intensities in NLCs were significantly greater than for ADSCs and NSCs. VPA alters H4 and H3 acetylation immunoreactivities of ADSCs transdifferentiated into NLCs.
Collapse
Affiliation(s)
- F Rezaei
- a Department of Anatomical Sciences, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - T Tiraihi
- a Department of Anatomical Sciences, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - A Abdanipour
- b Department of Anatomy, School of Medicine , Zanjan University of Medical Sciences (ZUMS) , Zanjan , Iran
| | - H K Hassoun
- c Middle Euphrates Neuroscience Center, College of medicine , Kufa University , Kufa , Iraq
| | - T Taheri
- d Shefa Neuroscience Research Center , Khatam Alanbia Hospital , Tehran , Iran
| |
Collapse
|