1
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
2
|
Autophagy, not apoptosis, plays a role in lumen formation of eccrine gland organoids. Chin Med J (Engl) 2022; 135:324-332. [PMID: 35108227 PMCID: PMC8812595 DOI: 10.1097/cm9.0000000000001936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Sweat secreted by eccrine sweat glands is transported to the skin surface through the lumen. The eccrine sweat gland develops from the initial solid bud to the final gland structure with a lumen, but how the lumen is formed and the mechanism of lumen formation have not yet been fully elucidated. This study aimed to investigate the mechanism of lumen formation of eccrine gland organoids (EGOs). Methods: Human eccrine sweat glands were isolated from the skin for tissue culture, and the primary cultured cells were collected and cultured in Matrigel for 14 days in vitro. EGOs at different development days were collected for hematoxylin and eosin (H&E) staining to observe morphological changes and for immunofluorescence staining of proliferation marker Ki67, cellular motility marker filamentous actin (F-actin), and autophagy marker LC3B. Western blotting was used to detect the expression of Ki67, F-actin, and LC3B. Moreover, apoptosis was detected using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay kit, and the expression of poly (ADP-ribose) polymerase and Caspase-3 was detected by Western blot. In addition, 3-methyladenine (3MA) was used as an autophagy inhibitor to detect whether the formation of sweat glands can be effectively inhibited. Results: The results showed that a single gland cell proliferated rapidly and formed EGOs on day 4. The earliest lumen formation was observed on day 6. From day 8 to day 14, the rate of lumen formation in EGOs increased significantly. The immunofluorescence and Western blot analyses showed that the expression of Ki67 gradually decreased with the increase in days, while the F-actin expression level did not change. Notably, the expression of autophagy marker LC3B was detected in the interior cells of EGOs as the apoptosis signal of EGOs was negative. Compared with the control group, the autophagy inhibitor 3MA can effectively limit the formation rate of the lumen and reduce the inner diameter of EGOs. Conclusion: Using our model of eccrine gland 3D-reconstruction in Matrigel, we determined that autophagy rather than apoptosis plays a role in the lumen formation of EGOs.
Collapse
|
3
|
Li H, Chen L, Zhang M, Xie S, Zhang C. Detection of fluid secretion of three-dimensional reconstructed eccrine sweat glands by magnetic resonance imaging. Exp Dermatol 2019; 28:53-58. [PMID: 30390354 DOI: 10.1111/exd.13833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 02/05/2023]
Abstract
We previously showed three-dimensional (3D) reconstructed eccrine sweat glands have similar structures as native eccrine sweat glands, but whether the 3D reconstructed sweat glands appropriately secrete fluid is still unknown. In this study, Matrigel-embedded human eccrine sweat gland cells or Matrigel alone were implanted into the groin subcutis of the nude mice. Ten weeks post-implantation, images of the subcutaneously formed plugs, as well as footpads of rats, pre- and post-pilocarpine/normal saline (NS) injection were acquired using a fat-suppressed proton density-weighted magnetic resonance imaging (MRI) sequence at 7.0 T, and the regions of interest (ROIs) in plugs and rat footpads were analysed and graphed. A significant increase in the ROI mean proton intensity occurred in both 3D reconstructed and native eccrine sweat glands after pilocarpine injection. The mean proton intensity had no noticeable changes in ROIs of Matrigel plugs between pre- and post-pilocarpine injection, and in ROIs of rat footpads between pre- and post-NS injection. In conclusion, the 3D reconstructed sweat glands possess fluid secretion, which is detectable by fat-suppressed proton density-weighted MRI.
Collapse
Affiliation(s)
- Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Liyun Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Sitian Xie
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Cuiping Zhang
- Wound Healing and Cell Biology Laboratory, The First Affiliated Hospital, General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
4
|
Zhang M, Li H, Xie S, Chen L. Time course of differentiation of different cell types in 3D-reconstructed eccrine sweat glands. J Mol Histol 2018; 49:567-575. [PMID: 30238337 DOI: 10.1007/s10735-018-9795-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023]
Abstract
Epidermal basal cells invaginate into the dermis to form sweat ducts, which then grow downwards further to form secretory coils during the ontogenesis of eccrine sweat glands, but the time course of differentiation of different cell types in 3D-reconstructed eccrine sweat glands remain unclear. In this study, secretory cell-specific marker K7, clear secretory cell-specific marker CA II, dark secretory cell-specific marker GCDFP-15, myoepithelial cell-specific marker α-SMA, inner duct cell-specific marker S100P and outer duct cell-specific marker S100A2 were detected by immunofluorescence staining. The results showed that S100P and S100A2 were first detected at 2 weeks post implantation, K7 and α-SMA at 3 weeks, and GCDFP-15 and CA II at 4 weeks. The differentiation of ducts preceded secretory coils in 3D-reconstructed eccrine sweat glands. After 8 weeks post implantation, the distribution of these markers in 3D-reconstructed eccrine sweat glands was similar to that in native ones, and the percentage of the 3D-reconstructed glands expressing these markers maintained steady. We conclude that although the 3D-reconstructed and native eccrine sweat glands originated from different cells, the differentiation of different cell types in 3D-reconstructed eccrine sweat glands parallels the sequence observed during embryonic development.
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Haihong Li
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China.
| | - Sitian Xie
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Liyun Chen
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| |
Collapse
|
5
|
Li H, Chen L, Zhang M, Xie S, Cheng L. Expression and localization of Forkhead transcription factor A1 in the three-dimensional reconstructed eccrine sweat glands. Acta Histochem 2018; 120:520-524. [PMID: 29909922 DOI: 10.1016/j.acthis.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 02/05/2023]
Abstract
Previously studies showed that Forkhead transcription factor A1 (FoxA1) was associated with sweat secretion. To investigate the expression and localization of FoxA1 in the three-dimensional (3D) reconstructed eccrine sweat glands, eccrine sweat gland cells were transplanted subcutaneously into nude mice with Matrigel, and at 2, 3, 4, 5, 6, 8, 10 and 12 weeks post-transplantation, the reconstructed eccrine sweat glands were removed and immunostained for FoxA1 and co-immunostained for FoxA1 and eccrine sweat markers, K7, carbonic anhydrase II (CA Ⅱ), gross cystic disease fluid protein-15 (GCDFP-15) and α-smooth muscle actin (α-SMA), and FoxA1 and sweat secretion-related proteins, Na+-K+-ATPase α and Na+-K+-2Cl- cotransporter 1 (NKCC1). The results showed that FoxA1-positive cells weren't detected until 3 weeks post-implantation, a time point of the differntiation of secretory coil-like structures. From the fourth week on, the number of FoxA1-positive cells increased and thereafter maintained at a high number. Double immunofluorescence staining showed that FoxA1-positive cells co-expressed dark cell marker GCDFP-15 and myoepithelial cell marker α-SMA, as well as secretion-related proteins, Na+-K+-ATPase α and NKCC1 in both the native and reconstructed eccrine sweat glands. In conclusion, FoxA1 might be related to the development and differentiation of secretory coil-like structures, as well as the secretory function of the 3D reconstructed eccrine sweat glands.
Collapse
Affiliation(s)
- Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China; Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| | - Liyun Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Sitian Xie
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Liuhanghang Cheng
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| |
Collapse
|
6
|
Zhang M, Li H, Chen L, Fang S, Xie S, Lin C. Three-dimensional reconstructed eccrine sweat glands with vascularization and cholinergic and adrenergic innervation. J Mol Histol 2018; 49:339-345. [PMID: 29667149 DOI: 10.1007/s10735-018-9773-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 02/05/2023]
Abstract
Functional integrity of the regenerated tissues requires not only structural integrity but also vascularization and innervation. We previously demonstrated that the three-dimensional (3D) reconstructed eccrine sweat glands had similar structures as those of the native ones did, but whether the 3D reconstructed glands possessing vascularization and innervation was still unknown. In the study, Matrigel-embedded eccrine sweat gland cells were implanted under the inguinal skin. Ten weeks post-implantation, the vascularization, and innervation in the 10-week reconstructed eccrine sweat glands and native human eccrine sweat glands were detected by immunofluorescence staining. The results showed that the fluorescent signals of general neuronal marker protein gene product 9.5, adrenergic nerve fiber marker tyrosine hydroxylase, and cholinergic nerve fiber markers acetylcholinesterase and vasoactive intestinal peptide embraced the 3D reconstructed glands in circular patterns, as the signals appeared in native eccrine sweat glands. There were many CD31- and von Willebrand factor-positive vessels growing into the plugs. We demonstrated that the 3D reconstructed eccrine sweat glands were nourished by blood vessels, and we for the first time demonstrated that the engineering sweat glands were innervated by both cholinergic and adrenergic fibers. In conclusion, the 3D reconstructed eccrine sweat glands may have functions as the native ones do.
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Haihong Li
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| | - Liyun Chen
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Shuhua Fang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Sitian Xie
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| |
Collapse
|
7
|
Li H, Chen L, Zhang M, Zhang B. Cells in 3D-reconstitutued eccrine sweat gland cell spheroids differentiate into gross cystic disease fluid protein 15-expressing dark secretory cells and carbonic anhydrase II-expressing clear secretory cells. Acta Histochem 2017; 119:620-623. [PMID: 28689642 DOI: 10.1016/j.acthis.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 02/05/2023]
Abstract
Secretory coils of eccrine sweat glands are composed of myoepithelial cells, dark secretory cells and clear secretory cells. The two types of cells play important roles in sweat secretion. In our previous study, we demonstrated that the 3D-reconstituted eccrine sweat gland cell spheroids differentiate into secretory coil-like structures. However, whether the secretory coil-like structures further differentiate into dark secretory cells and clear secretory cells were is still unknown. In this study, we detected the differentiation of clear and dark secretory cells in the 3D-reconstituted eccrine sweat gland cell spheroids using the dark secretory cell-specific marker, GCDFP-15, and clear secretory cell-specific marker, CAII by immunofluorescence staining. Results showed that there were both GCDFP-15- and CAII-expressing cells in 12-week-old 3D spheroids, similar to native eccrine sweat glands, indicating that the spheroids possess a cellular structure capable of sweat secretion. We conclude that the 12-week 3D spheroids may have secretory capability.
Collapse
Affiliation(s)
- Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong Province, China; Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong Province, China.
| | - Liyun Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong Province, China
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong Province, China
| | - Bingna Zhang
- Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong Province, China
| |
Collapse
|