1
|
Zeng X, Yin L, Zhang Y, Wang Q, Li J, Yin Y, Wang Q, Li J, Yang H. Dietary Iron Alleviates Dextran Sodium Sulfate-Induced Intestinal Injury by Regulating Regeneration of Intestinal Stem Cells in Weaned Mice. Biol Trace Elem Res 2025:10.1007/s12011-025-04546-9. [PMID: 39998602 DOI: 10.1007/s12011-025-04546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Iron deficiency is the most common comorbidity of inflammatory bowel disease (IBD), but the effect of iron supplementation on the repair processes of intestinal injury in weaned mice is unknown. This study aimed to evaluate the potential mechanism of dietary iron on intestinal injury and intestinal regeneration in the dextran sodium sulfate (DSS)-induced colitis of the weaned mouse model. The mice were fed either a control diet containing (45.00 mg/kg Fe) or iron supplemental (448.30 mg/kg Fe) diet for 14 days, followed by a 7-day oral administration of 2.5% DSS to all mice. The result showed that at day 0 of the recovery period (0 DRP), the impact of iron on the gut index and intestinal morphology was found to be more significant in weaned mice compared to adult mice. At 3 DRP, the iron diet alleviated inflammation-induced weight loss, shortening of colon length, thickening of the muscle layer, and disruption of gut morphology. At 0, 3, and 7 DRP, we found that an iron diet increased intestinal stem cell (ISC) viability and protected epithelial integrity. Furthermore, FeSO4 significantly enhanced organoid viability and increased mRNA expression of differentiation, ISC, and retinol metabolism-related marker genes in the organoids compared with the control group. Overall, this study demonstrates that the iron diet accelerates intestinal regeneration after intestinal injury in weaned mice by activating the retinol metabolic pathway to regulate the proliferation and differentiation of ISCs.
Collapse
Affiliation(s)
- Xianglin Zeng
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| | - Yitong Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
2
|
Matsumoto Y, Fukui T, Horitani S, Tanimura Y, Suzuki R, Tomiyama T, Honzawa Y, Tahara T, Okazaki K, Naganuma M. A Short-Term Model of Colitis-Associated Colorectal Cancer That Suggests Initial Tumor Development and the Characteristics of Cancer Stem Cells. Int J Mol Sci 2023; 24:11697. [PMID: 37511456 PMCID: PMC10380789 DOI: 10.3390/ijms241411697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The mechanisms underlying the transition from colitis-associated inflammation to carcinogenesis and the cell origin of cancer formation are still unclear. The azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse model reproduces human colitis-associated colorectal cancer. To elucidate the mechanisms of cancer development and dynamics of the linker threonine-phosphorylated Smad2/3 (pSmad2/3L-Thr)-positive cells, we explored the early stages of colitis-associated colorectal cancer in AOM/DSS mice. The AOM/DSS mice were sacrificed at 4 to 6 weeks following AOM administration. To analyze the initial lesions, immunofluorescence staining for the following markers was performed: β-catenin, Ki67, CDK4, Sox9, Bmi1, cyclin D1, and pSmad2/3L-Thr. Micro-neoplastic lesions were flat and unrecognizable, and the uni-cryptal ones were either open to the surfaces or hidden within the mucosae. These neoplastic cells overexpressed β-catenin, Sox9, Ki67, and Cyclin D1 and had large basophilic nuclei in the immature atypical cells. In both the lesions, pSmad2/3L-Thr-positive cells were scattered and showed immunohistochemical co-localization with β-catenin, CDK4, and Bmi1 but never with Ki67. More β-catenin-positive neoplastic cells of both lesions were detected at the top compared to the base or center of the mucosae. We confirmed initial lesions in the colitis-associated colorectal cancer model mice and observed results that suggest that pSmad2/3L-Thr is a biomarker for tissue stem cells and cancer stem cells.
Collapse
Affiliation(s)
- Yasushi Matsumoto
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| | - Toshiro Fukui
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| | - Shunsuke Horitani
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yuji Tanimura
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| | - Ryo Suzuki
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| | - Takashi Tomiyama
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yusuke Honzawa
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| | - Tomomitsu Tahara
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| | - Kazuichi Okazaki
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, Third Department of Internal Medicine, Kansai Medical University, Hirakata 573-1010, Japan
| |
Collapse
|
3
|
Peng J, He Z, Yuan Y, Xie J, Zhou Y, Guo B, Guo J. Docetaxel suppressed cell proliferation through Smad3/HIF-1α-mediated glycolysis in prostate cancer cells. Cell Commun Signal 2022; 20:194. [PMID: 36536346 PMCID: PMC9762006 DOI: 10.1186/s12964-022-00950-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tumor glycolysis is a critical event for tumor progression. Docetaxel is widely used as a first-line drug for chemotherapy and shown to have a survival advantage. However, the role of docetaxel in tumor glycolysis remained poorly understood. METHODS The effect of Docetaxel in tumor glycolysis and proliferation were performed by CCK-8, Western blotting, real-time PCR, glucose, and lactate detection and IHC. ChIP and luciferase assay were used to analyze the mechanism of Docetaxel on Smad3-mediated HIF-1α transactivity. RESULTS In this study, we showed that docetaxel treatment led to a significant inhibition of cell proliferation in prostate cancer cells through PFKP-mediated glycolysis. Addition of lactate, a production of glycolysis, could reverse the inhibitory effect of docetaxel on cell proliferation. Further analysis has demonstrated that phosphorylation of Smad3 (Ser213) was drastically decreased in response to docetaxel stimulation, leading to reduce Smad3 nuclear translocation. Luciferase and Chromatin immunoprecipitation (ChIP) analysis revealed that docetaxel treatment inhibited the binding of Smad3 to the promoter of the HIF-1α gene, suppressing transcriptional activation of HIF-1α. Moreover, ectopic expression of Smad3 in prostate cancer cells could overcome the decreased HIF-1α expression and its target gene PFKP caused by docetaxel treatment. Most importantly, endogenous Smad3 regulated and interacted with HIF-1α, and this interaction was destroyed in response to docetaxel treatment. What's more, both HIF-1α and PFKP expression were significantly reduced in prostate cancer received docetaxel treatment in vivo. CONCLUSION These findings extended the essential role of docetaxel and revealed that docetaxel inhibited cell proliferation by targeting Smad3/HIF-1α signaling-mediated tumor Warburg in prostate cancer cells. Video Abstract.
Collapse
Affiliation(s)
- Junming Peng
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China
| | - Zhijun He
- Department of Pharmacy, Zhuhai Center for Maternal and Child Health Care, Zhuhai, 519000 China
| | - Yeqing Yuan
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China ,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China
| | - Jing Xie
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China
| | - Yu Zhou
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China
| | - Baochun Guo
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China ,grid.440218.b0000 0004 1759 7210Shenzhen Key Laboratory of Kidney Diseases (ZDSYS201504301616234), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518055 Guangdong China ,grid.440218.b0000 0004 1759 7210Department of Nephrology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020 Guangdong China
| | - Jinan Guo
- grid.263817.90000 0004 1773 1790The Department of Urology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, 518055 Guangdong China ,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, China ,grid.258164.c0000 0004 1790 3548Department of Urology, Shenzhen People’s Hospital, The Second Clinical College of Jinan University, Shenzhen, 518000 China
| |
Collapse
|
4
|
Specific Smad2/3 Linker Phosphorylation Indicates Esophageal Non-neoplastic and Neoplastic Stem-Like Cells and Neoplastic Development. Dig Dis Sci 2021; 66:1862-1874. [PMID: 32705438 DOI: 10.1007/s10620-020-06489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/11/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND There is little known about stem cells in human non-neoplastic and neoplastic esophageal epithelia. We have demonstrated expression of linker threonine-phosphorylated Smad2/3 (pSmad2/3L-Thr), suggesting presence of stem-like cells in mouse esophageal epithelium, and identified presence of pSmad2/3L-Thr-positive cells that might function as cancer stem cells in mouse model of colorectal carcinoma. AIMS We explore whether pSmad2/3L-Thr can be used as a biomarker for stem cells of human esophageal epithelia and/or neoplasms. METHODS We have used esophageal tissues from inpatients undergoing endoscopic submucosal dissection and performed double immunofluorescent staining of pSmad2/3L-Thr and Ki67, CDK4, p63, Sox2, CK14, p53, ALDH1, CD44 or D2-40 after which the sections were stained with hematoxylin and eosin. RESULTS pSmad2/3L-Thr-positive cells showed immunohistochemical co-localization with CDK4, p63, CD44 and Sox2 in the basal and parabasal layers of non-neoplastic esophageal epithelia. In esophageal neoplasms, they showed immunohistochemical co-localization with p53, CDK4, ALDH1 and CD44. There was a significant increase in the percentage of pSmad2/3L-Thr-positive cells in the p53-positive neoplastic cell population with development of esophageal neoplasia. pSmad2/3L-Thr-positive cells localized to the lower section of low-grade intraepithelial neoplasia and were observed up to the upper section in carcinoma in situ. In invasive squamous cell carcinoma, they were scattered throughout the tumor with disappearance of polarity and were found in intraepithelial primary lesions and sites of submucosal and vessel invasion. CONCLUSIONS We determined significant expression of pSmad2/3L-Thr in human esophageal non-neoplastic and neoplastic epithelia, indicating that these are epithelial stem-like cells and cancer stem cells, respectively, that correlate with developing esophageal neoplasms.
Collapse
|
5
|
Tanimura Y, Fukui T, Horitani S, Matsumoto Y, Miyamoto S, Suzuki R, Tanaka T, Tomiyama T, Ikeura T, Ando Y, Nishio A, Okazaki K. Long-term model of colitis-associated colorectal cancer suggests tumor spread mechanism and nature of cancer stem cells. Oncol Lett 2020; 21:7. [PMID: 33240413 DOI: 10.3892/ol.2020.12268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Although chemical-induced animal models of colorectal cancer (CRC) suggest a lot about the disease, more efforts are required to establish metastasis models. Azoxymethane (AOM) and dextran sodium sulfate (DSS)-treated (AOM/DSS) Crl:CD-1 mice were sacrificed after 10 or 20 weeks in our previous study, and most colon tumors exhibited intramucosal adenocarcinomas. Our observations were extended until 30 weeks to study a colitis-associated advanced CRC mouse model, and explore whether linker threonine-phosphorylated Smad2/3 (pSmad2/3L-Thr) immunostaining-positive cells were involved in the progressive course of colitis-associated CRC as cancer stem cells. AOM/DSS mice were sacrificed at 10, 20 and 30 weeks after AOM administration. Following the histopathological analysis, immunohistochemical staining was performed for the following markers: CD34, podoplanin, β-catenin, E-cadherin, Ki67, Bmi1 and pSmad2/3L-Thr. Compared with AOM/DSS mice at 10 and 20 weeks, submucosal tumor infiltration and tumor invasion into vessels were markedly increased at 30 weeks. In the parts of colon tumors from AOM/DSS mice, particularly in mice at 30 weeks, the positive signal of E-cadherin was clearly reduced in the cell membranes. The percentage of Ki67-positive tumor cells in mucosal areas of AOM/DSS mice was higher than that in the sites of submucosal infiltration. In mucosal areas of colon tumors, pSmad2/3L-Thr-positive cells were scattered among tumor cells. At sites of submucosal infiltration and vessel invasion of these tumors, pSmad2/3L-Thr-positive cells were also observed among tumor cells. In colon tumors from AOM/DSS mice at 30 weeks, the percentage of pSmad2/3L-Thr-positive cells among the nuclear β-catenin-positive tumor cells was higher than that among the cytoplasmic β-catenin-positive tumor cells. For both non-neoplastic and neoplastic epithelial cells, pSmad2/3L-Thr-positive cells exhibited immunohistochemical co-localization with Bmi1. The present study developed an advanced CRC mouse model that exhibited tumor infiltration into the submucosa and invasion into vessels. The present study re-confirmed the theory that pSmad2/3L-Thr-positive cells may be cancer stem cells.
Collapse
Affiliation(s)
- Yuji Tanimura
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Shunsuke Horitani
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yasushi Matsumoto
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Sachi Miyamoto
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Ryo Suzuki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Toshihiro Tanaka
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Takashi Tomiyama
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Tsukasa Ikeura
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yugo Ando
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Akiyoshi Nishio
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
6
|
Tian Y, Ma X, Lv C, Sheng X, Li X, Zhao R, Song Y, Andl T, Plikus MV, Sun J, Ren F, Shuai J, Lengner CJ, Cui W, Yu Z. Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis. eLife 2017; 6. [PMID: 28870287 PMCID: PMC5584991 DOI: 10.7554/elife.29538] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease including colorectal cancer. Here we show that miR-31 drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation injury. Furthermore, miR-31 has oncogenic properties, promoting intestinal tumorigenesis. Mechanistically, miR-31 acts to balance input from Wnt, BMP, TGFβ signals to coordinate control of intestinal homeostasis, regeneration and tumorigenesis. We further find that miR-31 is regulated by the STAT3 signaling pathway in response to radiation injury. These findings identify miR-31 as a critical modulator of ISC biology, and a potential therapeutic target for a broad range of intestinal regenerative disorders and cancers. Cells lining the inner wall of the gut help to absorb nutrients and to protect the body against harmful microbes and substances. Being on the front line of defense means that these cells often sustain injuries. Specialized cells called intestinal stem cells keep the tissues healthy by replacing the damaged and dying cells. The intestinal stem cells can produce copies of themselves and generate precursors of the gut cells. They also have specific mechanism to protect themselves from cell death. These processes are regulated by different signals that are generated by the cell themselves or the neighboring cells. If these processes get out of control, cells can easily be depleted or develop into cancer cells. Until now, it remained unclear how intestinal stem cells can differentiate between and respond to multiple and simultaneous signals. It is known that short RNA molecules called microRNA play an important role in the signaling pathways of damaged cells and during cancer development. In the gut, different microRNAs, including microRNA-31,help to keep the gut lining intact. However, previous research has shown that bowel cancer cells also contain high amounts of microRNA-31. To see whether microRNA-31 plays a role in controlling the signaling systems in intestinal stem cells, Tian, Ma, Lv et al. looked at genetically modified mice that either had too much microRNA-31 or none. Mice with too much microRNA-31 produced more intestinal stem cells and were able to better repair any cell damage. Mice without microRNA-31 gave rise to fewer intestinal stem cellsand had no damage repair, but were able to stop cancer cells in the gut from growing. The results showed that microRNA-31 in intestinal stem cells helps the cells to divide and to protect themselves from cell death. It controlled and balanced the different types of cell signaling by either repressing or activating various signals. When Tian et al. damaged the stem cells using radiation, the cells increased their microRNA-31 levels as a defense mechanism. This helped the cells to survive and to activate repair mechanisms. Furthermore, Tian et al. discovered that microRNA-31 can enhance the growth of tumors. These results indicate that microRNA-31 plays an important role both in repairing gut linings and furthering tumor development. A next step will be to see whether cancer cells use microRNA-31 to protect themselves from chemo- and radiation therapy. This could help scientists find new ways to render cancerous cells more susceptible to existing cancer therapies.
Collapse
Affiliation(s)
- Yuhua Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianghui Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ran Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongli Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Thomas Andl
- Vanderbilt University Medical Center, Nashville, United States
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - Jinyue Sun
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Xu W, Zhang Z, Zou K, Cheng Y, Yang M, Chen H, Wang H, Zhao J, Chen P, He L, Chen X, Geng L, Gong S. MiR-1 suppresses tumor cell proliferation in colorectal cancer by inhibition of Smad3-mediated tumor glycolysis. Cell Death Dis 2017; 8:e2761. [PMID: 28471448 PMCID: PMC5520746 DOI: 10.1038/cddis.2017.60] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/16/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Aberrant expression of microRNA (miR)-1 has been observed in many human malignancies. However, the function and underlying mechanism of miR-1 remains elusive. To address the specific role of miR-1 in tumor glycolysis using the gain- or loss-of-function studies. Metabolic studies combined with gene expression analysis were performed in vitro and in vivo. We demonstrated aberrant expression of miR-1 in aerobic glycolysis, the Warburg effect, in cancer cells. MiR-1 suppressed aerobic glycolysis and tumor cell proliferation via inactivation of Smad3 and targeting HIF-1α, leading to reduce HK2 and MCT4 expression, which illustrated a novel pathway to mediate aerobic glycolysis in cancer cells. Overexpression of miR-1 mimics significantly decreased tumor glycolysis, including lactate production and glucose uptake, and cell proliferation, and these effects were reversed by ectopic expression of Smad3. Importantly, endogenous Smad3 regulated and interacted with HIF-1α, resulting in increasing activity of Smad3, and this interaction was dramatically abolished by addition of miR-1. We further demonstrated that Smad3 was central to the effects of miR-1 in colorectal cancer cells, establishing a previously unappreciated mechanism by which the miR-1/Smad3/HIF-1α axis facilitates the Warburg effect to promote cancer progression in vitro and in vivo. The results indicate that miR-1 may have an essential role as a tumor suppressor, suggesting its potential role in molecular therapy of patients with advanced colorectal cancer.
Collapse
Affiliation(s)
- Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.,Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.,Wuhan Institutes of Virology, Chinese Academy of Sciences, Wuhan, Guangdong 510623, China
| | - Zijing Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Kejian Zou
- Department of General Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.,Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.,Wuhan Institutes of Virology, Chinese Academy of Sciences, Wuhan, Guangdong 510623, China
| | - Min Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Junhong Zhao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Liying He
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xinwen Chen
- Wuhan Institutes of Virology, Chinese Academy of Sciences, Wuhan, Guangdong 510623, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
8
|
Smad2/3 Linker Phosphorylation Is a Possible Marker of Pancreatic Stem/Progenitor Cells in the Regenerative Phase of Acute Pancreatitis. Pancreas 2017; 46:605-613. [PMID: 28099259 DOI: 10.1097/mpa.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aims of this study are to characterize cell proliferation and differentiation during regeneration after pancreatitis and pancreatic buds during development to evaluate the role of Smad2/3, phosphorylated at the specific linker threonine residues (pSmad2/3L-Thr) in positive cells. METHODS Male C57BL/6 mice received hourly intraperitoneal injections of cerulein and were analyzed after induced pancreatitis. Pancreatitis-affected tissue sections and pancreatic buds were immunostained for pSmad2/3L-Thr, with other markers thought to be stem/progenitor markers of the pancreas. RESULTS pSmad2/3L-Thr immunostaining-positive cells increased as the pancreatitis progressed. The expression of pSmad2/3L-Thr was seen in acinar cells and ductlike tubular complexes. These results suggest that pSmad2/3L-Thr is expressed during acinar-ductal metaplasia. Immunohistochemical colocalization of pSmad2/3L-Thr with Ki67 was never observed. pSmad2/3L-Thr-positive cells may remain in an undifferentiated state. During the pancreatic development process, pSmad2/3L-Thr was expressed as other markers. pSmad2/3L-Thr develops in duct structure of the undifferentiated cell population in the last part of viviparity that acinar structure is formed clearly. CONCLUSIONS pSmad2/3L-Thr expression occurs during acinar-ductal metaplasia after pancreatitis and may represent the contribution of stem cells and/or progenitor cells to the differentiation of the pancreas.
Collapse
|
9
|
Association of TGFβ signaling with the maintenance of a quiescent stem cell niche in human oral mucosa. Histochem Cell Biol 2016; 146:539-555. [PMID: 27480259 DOI: 10.1007/s00418-016-1473-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 12/26/2022]
Abstract
A dogma in squamous epithelial biology is that proliferation occurs in the basal cell layer. Notable exceptions are squamous epithelia of the human oral cavity, esophagus, ectocervix, and vagina. In these human epithelia, proliferation is rare in the basal cell layer, and the vast majority of cells positive for Ki67 and other proliferation markers are found in para- and suprabasal cell layers. This unique human feature of a generally quiescent basal cell layer overlaid by highly proliferative cells offers the rare opportunity to study the molecular features of undifferentiated, quiescent, putative stem cells in their natural context. Here, we show that the quiescent human oral mucosa basal cell layer expresses putative markers of stemness, while para- and suprabasal cells are characterized by cell cycle genes. We identified a TGFβ signature in this quiescent basal cell layer. In in vitro organotypic cultures, human keratinocytes could be induced to express markers of these quiescent basal cells when TGFβ signaling is activated. The study suggests that the separation of basal cell layer and proliferation in human oral mucosa may function to accommodate high proliferation rates and the protection of a quiescent reserve stem cell pool. Psoriasis, an epidermal inflammatory hyperproliferative disease, exhibits features of a quiescent basal cell layer mimicking normal oral mucosa. Our data indicate that structural changes in the organization of epithelial proliferation could contribute to longevity and carcinogenesis.
Collapse
|
10
|
Yoshida K, Murata M, Yamaguchi T, Matsuzaki K, Okazaki K. Reversible Human TGF-β Signal Shifting between Tumor Suppression and Fibro-Carcinogenesis: Implications of Smad Phospho-Isoforms for Hepatic Epithelial-Mesenchymal Transitions. J Clin Med 2016; 5:jcm5010007. [PMID: 26771649 PMCID: PMC4730132 DOI: 10.3390/jcm5010007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 12/23/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are observed during both physiological liver wound healing and the pathological fibrotic/carcinogenic (fibro-carcinogenetic) process. TGF-β and pro-inflammatory cytokine are considered to be the major factors accelerating liver fibrosis and promoting liver carcinogenesis. Smads, consisting of intermediate linker regions connecting Mad homology domains, act as the intracellular mediators of the TGF-β signal transduction pathway. As the TGF-β receptors, c-Jun N-terminal kinase and cyclin-dependent kinase, differentially phosphorylate Smad2/3, we have generated numerous antibodies against linker (L) and C-terminal (C) phosphorylation sites in Smad2/3 and identified four types of phosphorylated forms: cytostatic COOH-terminally-phosphorylated Smad3 (pSmad3C), mitogenic pSmad3L (Ser-213) signaling, fibrogenic pSmad2L (Ser-245/250/255)/C signaling and migratory pSmad2/3L (Thr-220/179)/C signaling. After acute liver injury, TGF-β upregulates pSmad3C signaling and terminates pSmad3L (Ser-213)-mediated hepatocyte proliferation. TGF-β and pro-inflammatory cytokines cooperatively enhance collagen synthesis by upregulating pSmad2L (Thr-220)/C and pSmad3L (Thr-179)/C pathways in activated hepatic stellate cells. During chronic liver injuries, hepatocytes persistently affected by TGF-β and pro-inflammatory cytokines eventually become pre-neoplastic hepatocytes. Both myofibroblasts and pre-neoplastic hepatocyte exhibit the same carcinogenic (mitogenic) pSmad3L (Ser-213) and fibrogenic pSmad2L (Ser-245/250/255)/C signaling, with acquisition of fibro-carcinogenic properties and increasing risk of hepatocellular carcinoma (HCC). Firstly, we review phospho-Smad-isoform signalings in epithelial and mesenchymal cells in physiological and pathological conditions and then consider Smad linker phosphorylation as a potential target for pathological EMT during human fibro-carcinogenesis, because human Smad phospho-isoform signals can reverse from fibro-carcinogenesis to tumor-suppression in a process of MET after therapy.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
11
|
Suzuki R, Fukui T, Kishimoto M, Miyamoto S, Takahashi Y, Takeo M, Mitsuyama T, Sakaguchi Y, Uchida K, Nishio A, Okazaki K. Smad2/3 linker phosphorylation is a possible marker of cancer stem cells and correlates with carcinogenesis in a mouse model of colitis-associated colorectal cancer. J Crohns Colitis 2015; 9:565-74. [PMID: 25908723 DOI: 10.1093/ecco-jcc/jjv073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/14/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Epithelial cells affected by somatic mutations undergo transition from a tumour-suppressive to a carcinogenic Smad pathway during sporadic colorectal carcinogenesis, and the specific linker threonine phosphorylation of Smad2/3 in colon epithelial cells indicates stem-like cells. This study extends previous observations to a model of colitis-associated colorectal cancer. METHODS After Crl:CD-1 mice received an administration of azoxymethane [AOM], the mice were given dextran sodium sulfate [DSS] for 7 days. AOM/DSS-treated mice [AOM/DSS mice] were killed at 10 or 20 weeks. After macroscopic observations, a histopathological analysis was conducted. Immunohistochemical staining was performed using the avidin-biotin immunoperoxidase method [pSmad3C-Ser, pSmad3L-Ser, c-Myc] and immunofluorescent methods [Ki67, β-catenin, CDK4, cyclin D1, Sox9, pSmad2/3L-Thr]. RESULTS The colons from AOM/DSS mice were shorter than those from control mice. The number of colon tumours at Week 20 was higher than at Week 10. The inflammation scores for AOM/DSS mice were greater than those for control mice. Immunostaining-positive cells (staining by Ki67, β-catenin [nuclear and cytoplasmic], cyclin D1, and Sox9) were diffusely distributed in colon tumours. The percentage of pSmad3L-Ser-positive cells in colon tumours was higher than in sites of pre-neoplastic colitis, and that in sites of pre-neoplastic colitis was higher than in control mice. pSmad2/3L-Thr-positive cells were sparsely detected around crypt bases in non-neoplastic colon epithelia and at the tops of tumours, and immunohistochemical co-localisation of pSmad2/3L-Thr with Ki67 was not observed. Immunohistochemical co-localisation of pSmad2/3L-Thr with β-catenin and CDK4 was observed. CONCLUSIONS pSmad3L-Ser signalling is an early event in colitis-associated colorectal cancer, and pSmad2/3L-Thr immunostaining-positive cells might be cancer stem cells.
Collapse
Affiliation(s)
- Ryo Suzuki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Masanobu Kishimoto
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Sachi Miyamoto
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Yu Takahashi
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Masahiro Takeo
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Toshiyuki Mitsuyama
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Yutaku Sakaguchi
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Kazushige Uchida
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Akiyoshi Nishio
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| |
Collapse
|