1
|
Zhong J, Zhang X, Ruan Y, Huang Y. Photobiomodulation therapy's impact on angiogenesis and osteogenesis in orthodontic tooth movement: in vitro and in vivo study. BMC Oral Health 2024; 24:147. [PMID: 38297232 PMCID: PMC10832110 DOI: 10.1186/s12903-023-03824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND This study explores the effectiveness of Photobiomodulation Therapy (PBMT) in enhancing orthodontic tooth movement (OTM), osteogenesis, and angiogenesis through a comprehensive series of in vitro and in vivo investigations. The in vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells to assess PBMT's impact on cell proliferation, osteogenesis, angiogenesis, and associated gene expression. Simultaneously, an in vivo experiment utilized an OTM rat model subjected to laser irradiation at specific energy densities. METHODS In vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells treated with PBMT, enabling a comprehensive assessment of cell proliferation, osteogenesis, angiogenesis, and gene expression. In vivo, an OTM rat model was subjected to laser irradiation at specified energy densities. Statistical analyses were performed to evaluate the significance of observed differences. RESULTS The results revealed a significant increase in blood vessel formation and new bone generation within the PBMT-treated group compared to the control group. In vitro, PBMT demonstrated positive effects on cell proliferation, osteogenesis, angiogenesis, and gene expression in the co-culture model. In vivo, laser irradiation at specific energy densities significantly enhanced OTM, angiogenesis, and osteogenesis. CONCLUSIONS This study highlights the substantial potential of PBMT in improving post-orthodontic bone quality. The observed enhancements in angiogenesis and osteogenesis suggest a pivotal role for PBMT in optimizing treatment outcomes in orthodontic practices. The findings position PBMT as a promising therapeutic intervention that could be seamlessly integrated into orthodontic protocols, offering a novel dimension to enhance overall treatment efficacy. Beyond the laboratory, these results suggest practical significance for PBMT in clinical scenarios, emphasizing its potential to contribute to the advancement of orthodontic treatments. Further exploration of PBMT in orthodontic practices is warranted to unlock its full therapeutic potential.
Collapse
Affiliation(s)
- Jietong Zhong
- School of Stomatology, Southwest Medical University, Sichuang, Luzhou, China
| | - Xinyu Zhang
- The Second People's Hospital of Yibin, Yibin, Sichuang, China
| | - Yaru Ruan
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China.
| | - Yue Huang
- School of Stomatology, Southwest Medical University, Sichuang, Luzhou, China.
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Kanazirski N, Vladova D, Neychev D, Raycheva R, Kanazirska P. Effect of Er:YAG Laser Exposure on the Amorphous Smear Layer in the Marginal Zone of the Osteotomy Site for Placement of Dental Screw Implants: A Histomorphological Study. J Funct Biomater 2023; 14:376. [PMID: 37504871 PMCID: PMC10381257 DOI: 10.3390/jfb14070376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
The placement of dental screw implants typically involves the use of rotary techniques and drills to create a bone bed. This study explores the potential benefits of combining this method with an Er:YAG laser. Split osteotomies were performed on 10 jaws of euthanized domestic pigs (Sus scrofa domestica), with 12 mandibular implant osteotomies in each jaw, divided into 4 groups. In order to make a comprehensive assessment of the effect of Er:YAG lasers, histomorphological techniques were used to measure the reduction in amorphous layer thickness after Er:YAG laser treatment, both with and without the placement of dental screw implants from different manufacturers. Following bone decalcification and staining, the thickness of the amorphous layer was measured in four groups: Group A-osteotomy performed without Er:YAG laser treatment-had amorphous layer thicknesses ranging from 21.813 to 222.13 µm; Group B-osteotomy performed with Er:YAG laser treatment-had amorphous layer thicknesses ranging from 6.08 to 64.64 µm; Group C-an implant placed in the bone without laser treatment-had amorphous layer thicknesses of 5.90 to 54.52 µm; and Group D-an implant placed after bone treatment with Er:YAG laser-had amorphous layer thicknesses of 1.29 to 7.98 µm. The examination and photomicrodocumentation was performed using a LEICA DM1000 LED microscope (Germany) and LAS V 4.8 software (Leica Application Suite V4, Leica Microsystems, Germany). When comparing group A to group B and group C to D, statistically significant differences were indicated (p-value = 0.000, p < 0.05). The study demonstrates the synergistic effects and the possibility of integrating lasers into the conventional implantation protocol. By applying our own method of biomodification, the smear layer formed during rotary osteotomy can be reduced using Er:YAG lasers. This reduction leads to a narrower peri-implant space and improved bone-to-implant contact, facilitating accelerated osseointegration.
Collapse
Affiliation(s)
- Nikolay Kanazirski
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Diyana Vladova
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - Deyan Neychev
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Ralitsa Raycheva
- Department of Social Medicine and Public Health, Faculty of Public Health, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Petya Kanazirska
- Department of Imaging Diagnostics, Dental Allergology and Physiotherapy, Faculty of Dental Medicine, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Dos Santos Jorge Sousa K, Parisi JR, de Souza A, Cruz MDA, Erbereli R, de Araújo Silva J, do Espirito Santo G, do Amaral GO, Martignago CCS, Fortulan CA, Granito RN, Renno ACM. 3D Printed Scaffolds Manufactured with Biosilica from Marine Sponges for Bone Healing in a Cranial Defect in Rats. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:259-271. [PMID: 36892731 DOI: 10.1007/s10126-023-10202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/18/2023] [Indexed: 05/06/2023]
Abstract
The inorganic part of marine sponges, called Biosilica (BS), presents an osteogenic potential and the ability of consolidating fractures. Moreover, 3D printing technique is highly effective for manufacturing scaffolds for tissue engineering proposals. Thus, the aims of this study were to characterize the 3D rinted scaffolds, to evaluate the biological effects in vitro and to investigate the in vivo response using an experimental model of cranial defects in rats. The physicochemical characteristics of 3D printed BS scaffolds were analyzed by FTIR, EDS, calcium assay, evaluation of mass loss and pH measurement. For in vitro analysis, the MC3T3-E1 and L929 cells viability was evaluated. For the in vivo evaluation, histopathology, morphometrical and immunohistochemistry analyses were performed in a cranial defect in rats. After the incubation, the 3D printed BS scaffolds presented lower values in pH and mass loss over time. Furthermore, the calcium assay showed an increased Ca uptake. The FTIR analysis indicated the characteristic peaks for materials with silica and the EDS analysis demonstrated the main presence of silica. Moreover, 3D printed BS demonstrated an increase in MC3T3-E1 and L929 cell viability in all periods analyzed. In addition, the histological analysis demonstrated no inflammation in days 15 and 45 post-surgery, and regions of newly formed bone were also observed. The immunohistochemistry analysis demonstrated increased Runx-2 and OPG immunostaining. Those findings support that 3D printed BS scaffolds may improve the process of bone repair in a critical bone defect as a result of stimulation of the newly formed bone.
Collapse
Affiliation(s)
- Karolyne Dos Santos Jorge Sousa
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil.
| | - Júlia Risso Parisi
- Metropolitan University of Santos (UNIMES), 8 Francisco Glycerio Avenue, 11045002, Santos, SP, Brazil
| | - Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Matheus de Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Rogério Erbereli
- Department of Mechanic Engineering, University of São Paulo (USP), 400 Trabalhador São-Carlense Avenue, 13566-590, São Carlos, SP, Brazil
| | - Jonas de Araújo Silva
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Giovanna do Espirito Santo
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Gustavo Oliva do Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | | | - Carlos Alberto Fortulan
- Department of Mechanic Engineering, University of São Paulo (USP), 400 Trabalhador São-Carlense Avenue, 13566-590, São Carlos, SP, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), 136 Silva Jardim Street, 11015020, Santos, SP, Brazil
| |
Collapse
|
4
|
Kido HW, Gabbai-Armelin PR, Magri A, Fernandes KR, Cruz MA, Santana AF, Caliari HM, Parisi JR, Avanzi IR, Daguano J, Granito RN, Fortulan CA, Rennó A. Bioglass/collagen scaffolds combined with bone marrow stromal cells on bone healing in an experimental model in cranial defects in rats. J Biomater Appl 2023; 37:1632-1644. [PMID: 36916869 DOI: 10.1177/08853282231163752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
This study aimed to develop bone regenerative therapeutic strategies, based on the addition of bone marrow stromal cells (BMSC) on bioglass/collagen (BG/COL) scaffolds. For this purpose, an in vivo study was conducted using tissue response of the BG/COL scaffolds combined with BMSC in a critical-size defects. Wistar rats were submitted to the surgical procedure to perform the cranial critical size bone defects and distributed in four groups (20 animals per group): Control Group (CG) (rats submitted to the cranial bone defect surgery without treatment), Bioglass Group (BG) (rats treated with BG), BG/COL Group (rats treated with BG/COL) and Bioglass/Collagen and BMSC Group (BG/COL/BMSC) (rats treated with BG/COL scaffolds enriched with BMSCs). Animals were euthanized 15 and 30 days after surgery. Scanning electron microscopy, histopathological and immunohistochemistry analysis were used. SEM analysis demonstrated that porous scaffolds were obtained, and Col fibers were successfully impregnated to BG matrices. The implantation of the BMSC on BG/COL based scaffolds was effective in stimulating newly bone formation and produced an increased immunoexpression of markers related to the bone repair. These results highlight the potential of BG/COL scaffolds and BMSCs to be used as a therapeutic approach for bone regeneration.
Collapse
Affiliation(s)
- H W Kido
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - P R Gabbai-Armelin
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Amp Magri
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil.,University Center of the Guaxupé Educational Foundation (UNIFEG), Guaxupé, Brazil
| | - K R Fernandes
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - M A Cruz
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A F Santana
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - H M Caliari
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - J R Parisi
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - I R Avanzi
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Jkmb Daguano
- Center for Engineering, Modeling and Applied Social Sciences, 74362Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - R N Granito
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, 28133University of São Paulo (USP) São Carlos, São Carlos, Brazil
| | - Acm Rennó
- Department of Biosciences, 28105Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
5
|
Bonifacio M, Benfato ID, de Almeida Cruz M, de Sales DC, Pandolfo IL, Quintana HT, Carvalho CPDF, de Oliveira CAM, Renno ACM. Effects of photobiomodulation on glucose homeostasis and morphometric parameters in pancreatic islets of diabetic mice. Lasers Med Sci 2021; 37:1799-1809. [PMID: 34604943 DOI: 10.1007/s10103-021-03434-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
High-fat diets lead to accumulation of body fat that is associated with the onset of insulin resistance and type II diabetes mellitus. On the other hand, photobiomodulation (PBM) is an electrophysical resource that interacts with cells, stimulating mitochondrial respiration, increasing ATP production, reducing key inflammatory mediators, inhibiting apoptosis, and stimulating angiogenesis. However, little is known about its therapeutic effectiveness on the development of diabetes in diet-induced obese mice. Thus, our aim was to evaluate the effect of PBM applied single point over the pancreas area on glucose homeostasis, insulin expression, and pancreatic morphometric parameters of mice submitted to high-fat diet for 12 weeks. Male mice C57BL6/J were divided into three groups: control group (C), diabetic group (D), and diabetic + PBM (D + PBM). The treatment with PBM started at 9th week and ended in the 12th week, applied 3 × /week. Body mass, fast blood glucose, and glucose and insulin tolerance were evaluated. Immunohistochemistry to detect insulin expression and pancreatic morphometry were also performed. At the end of 12th week, both groups submitted to high-fat diet showed an increase in body mass, adiposity, disturbances on glucose homeostasis, and high insulin expression when compared to the control group. However, mice treated with PBM had more discrete impairments on glucose homeostasis during the glucose tolerance test when compared to untreated D animals. Despite modest, the results were positive and encourage future investigations to explore different doses and duration of PBM to better elucidate its role in obesity-associated type 2 diabetes development.
Collapse
Affiliation(s)
- Mirian Bonifacio
- Graduação em Fisioterapia, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Izabelle Dias Benfato
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil. .,Laboratório de Diabetes Experimental e Sinalização Celular, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136. Vila Mathias, 11015-020, Santos, São Paulo, Brazil.
| | - Matheus de Almeida Cruz
- Departamento de Biociências, Programa de Pós-Graduação em Bioprodutos e Bioprocessos, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniele Correia de Sales
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Isabella Liba Pandolfo
- Graduação em Fisioterapia, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Hananiah Tardivo Quintana
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - Camila Aparecida Machado de Oliveira
- Laboratório de Diabetes Experimental e Sinalização Celular, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136. Vila Mathias, 11015-020, Santos, São Paulo, Brazil.,Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Ana Cláudia Muniz Renno
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| |
Collapse
|
6
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
7
|
Magri AMP, Parisi JR, de Andrade ALM, Rennó ACM. Bone substitutes and photobiomodulation in bone regeneration: A systematic review in animal experimental studies. J Biomed Mater Res A 2021; 109:1765-1775. [PMID: 33733598 DOI: 10.1002/jbm.a.37170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 11/08/2022]
Abstract
In general, bone fractures are able of healing by itself. However, in critical situations such as large bone defects, poor blood supply or even infections, the biological capacity of repair can be impaired, resulting in a delay of the consolidation process or even in non-union fractures. Thus, technologies able of improving the process of bone regeneration are of high demand. In this context, ceramic biomaterials-based bone substitutes and photobiomodulation (PBM) have been emerging as promising alternatives. Thus, the present study performed a systematic review targeting to analyze studies in the literature which investigated the effects of the association of ceramic based bone substitutes and PBM in the process of bone healing using animal models of bone defects. The search was conducted from March and April of 2019 in PubMed, Web of Science and Scopus databases. After the eligibility analyses, 16 studies were included in this review. The results showed that the most common material used was hydroxyapatite (HA) followed by Biosilicate associated with infrared PBM. Furthermore, 75% of the studies demonstrated positive effects to stimulate bone regeneration from association of ceramic biomaterials and PBM. All studies used low-level laser therapy (LLLT) device and the most studies used LLLT infrared. The evidence synthesis was moderate for all experimental studies for the variable histological analysis demonstrating the efficacy of techniques on the process of bone repair stimulation. In conclusion, this review demonstrates that the association of ceramic biomaterials and PBM presented positive effects for bone repair in experimental models of bone defects.
Collapse
Affiliation(s)
- Angela Maria Paiva Magri
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.,University Center of the Guaxupé Education Foundation (UNIFEG), Guaxupé, Minas Gerais, Brazil
| | - Júlia Risso Parisi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.,Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | | | - Ana Claudia Muniz Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.,Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Torquato LC, Suárez EAC, Bernardo DV, Pinto ILR, Mantovani LO, Silva TIL, Jardini MAN, Santamaria MP, De Marco AC. Bone repair assessment of critical size defects in rats treated with mineralized bovine bone (Bio-Oss®) and photobiomodulation therapy: a histomorphometric and immunohistochemical study. Lasers Med Sci 2021; 36:1515-1525. [PMID: 33400010 DOI: 10.1007/s10103-020-03234-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
This study aimed to investigate the effects of administering photobiomodulation therapy (PBM) with bovine bone matrix on critical size defects in rats. Seventy-two adult male rats (albinus, Wistar), 90 days old, were used. Defect of 5 mm in diameter was made in their calvaria. The animals were divided into 4 groups: C-blood clot, B-Bio-Oss®, L-PBM, B+L-Bio-Oss®+PBM. Each group has been subdivided into 07, 30, and 60 days of observation. For PBM, a low GaAlAs energy of 660 nm was irradiated, total energy density of 45 J/cm2 . PBM was conducted in a trans-surgical form once only. For immunohistochemistry, a semi-quantitative analysis was made of expression of osteoprotegerin (OPG), nuclear kappa B-factor ligand receptor activator (RANKL), and tartrate-resistant acid phosphatase (TRAP). All histomorphometric data were statistically analyzed by ANOVA and Tukey test, significance level of 5%. The groups that showed the highest proportion of neoformation were L (0.39% ± 0.13) and C (0.37% ± 0.97), but groups B and B+L had larger defect size (C-1.75 mm2 ± 0.40, B-3.02 mm2 ± 0.63, L-2.45 mm2 ± 0.53, B+L-3.23 mm2 ± 1.01). In immunohistochemistry, groups B and B+L had higher immunostaining scores for OPG and RANKL at 60 days, and TRAP immunostaining increased in all groups at 30 days, but group L was the only one to present specimens with score 0. Although, at 60 days, groups L and C presented the highest proportion of bone neoformation, at 30 days group B+L had more than twice as much bone neoformation as group B, the choice of treatment application should depend on the aim of the treatment.
Collapse
Affiliation(s)
- Letícia Cavassini Torquato
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), Institute of Science and Technology, Av. Eng. Francisco José Longo, n° 777 - Jardim São Dimas, São José dos Campos, SP, 12245-000, Brazil.
| | - Eduardo Antonio Chelin Suárez
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), Institute of Science and Technology, Av. Eng. Francisco José Longo, n° 777 - Jardim São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Daniella Viscensotto Bernardo
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), Institute of Science and Technology, Av. Eng. Francisco José Longo, n° 777 - Jardim São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | | | | | - Thiago Igor Lemes Silva
- São Paulo State University (UNESP), Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Maria Aparecida Neves Jardini
- Department of Diagnosis and Surgery - Division of Periodontology, São Paulo State University (UNESP), Institute of Science and Tecnology, São José dos Campos, SP, Brazil
| | - Mauro Pedrine Santamaria
- Department of Diagnosis and Surgery - Division of Periodontology, São Paulo State University (UNESP), Institute of Science and Tecnology, São José dos Campos, SP, Brazil
| | - Andrea Carvalho De Marco
- Department of Diagnosis and Surgery - Division of Periodontology, São Paulo State University (UNESP), Institute of Science and Tecnology, São José dos Campos, SP, Brazil
| |
Collapse
|
9
|
Cruz MA, Fernandes KR, Parisi JR, Vale GCA, Junior SRA, Freitas FR, Sales AFS, Fortulan CA, Peitl O, Zanotto E, Granito RN, Ribeiro AM, Renno ACM. Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects. J Bone Miner Metab 2020; 38:639-647. [PMID: 32303916 DOI: 10.1007/s00774-020-01102-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Collagen from marine esponges has been used as a promising material for tissue engineering proposals. Similarly, photobiomodulation (PBM) is able of modulating inflammatory processes after an injury, accelerating soft and hard tissue healing and stimulating neoangiogenesis. However, the effects of the associated treatments on bone tissue healing have not been studied yet. In this context, the present study aimed to evaluate the biological temporal modifications (using two experimental periods) of marine sponge collagen or sponging (SPG) based scaffold and PBM on newly formed bone using a calvaria bone defect model. MATERIAL AND METHODS Wistar rats were distributed into two groups: SPG or SPG/PBM and euthanized into two different experimental periods (15 and 45 days post-surgery). A cranial critical bone defect was used to evaluate the effects of the treatments. Histology, histomorfometry and immunohistological analysis were performed. RESULTS Histological findings demonstrated that SPG/PBM-treated animals, 45 days post-surgery, demonstrated a higher amount of connective and newly formed bone tissue at the region of the defect compared to CG. Notwithstanding, no difference among groups were observed in the histomorphometry. Interestingly, for both anti-transforming growth factor-beta (TGF-β) and anti-vascular endothelial growth factor (VEGF) immunostaining, higher values for SPG/PBM, at 45 days post-surgery could be observed. CONCLUSION It can be concluded that the associated treatment can be considered as a promising therapeutical intervention.
Collapse
Affiliation(s)
- M A Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil.
| | - K R Fernandes
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - J R Parisi
- Department of Fisiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - G C A Vale
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - S R A Junior
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - F R Freitas
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A F S Sales
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - C A Fortulan
- Department of Fisiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - O Peitl
- Department of Fisiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - E Zanotto
- Department of Fisiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - R N Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A M Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - A C M Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
10
|
Vitor LLR, Bergamo MTOP, Lourenço-Neto N, Sakai VT, Oliveira RC, Cruvinel T, Rios D, Garlet GP, Santos CF, Machado MAAM, Oliveira TM. Photobiomodulation effect on angiogenic proteins produced and released by dental pulp cells. Clin Oral Investig 2020; 24:4343-4354. [PMID: 32333178 DOI: 10.1007/s00784-020-03298-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To verify the photobiomodulation effect on angiogenic proteins produced and released by dental human pulpal fibroblasts (HPFs). MATERIAL AND METHODS HPFs were irradiated with 660-nm low-level laser at fluences of 2.5 J/cm2 and 3.7 J/cm2. The control group was not irradiated. MTT, crystal violet, and ELISA assays respectively verified viability, proliferation, and angiogenic protein (supernatant/lysate) at 6 h, 12 h, and 24 h after photobiomodulation. Capillary-like structure formation assay verified functional role. Two-way ANOVA/Tukey's test and ANOVA/Bonferroni's multiple comparisons test respectively verified cell viability/proliferation and intragroup and intergroup comparisons of protein synthesis (p < 0.05). RESULTS Irradiated and non-irradiated HPFs showed statistically similar cell viability and proliferation pattern. Intragroup comparisons showed similar patterns of protein synthesis for all groups: VEGF-A, VEGF-C, and vascular endothelial growth factor receptor 1 (VEGFR1) increased significantly in the supernatant, while FGF-2 and VEGF-A increased significantly in the lysate. The lower fluence significantly increased BMP-9 (6 h) in the supernatant and VEGFR1 (6 h and 12 h) and VEGF-D (24 h) in the lysate, while the higher fluence significantly increased BMP-9 (6 h) in the supernatant and VEGFR1 (12 h) in the lysate. Regardless of the time, both fluences statistically downregulated placental growth factor (PLGF) and PDGF secretion. Both fluences statistically decreased VEGF-A secretion (24 h) and PLGF production (6 h). CONCLUSION Photobiomodulation produced stimulatory effects on angiogenic protein secretion by pulp fibroblasts. In terms of photobiomodulation, over time, both fluences significantly increased the secretion of VEGF-A, VEGF-C, and VEGFR1 and significantly upregulated BMP-9 (6 h) in the supernatant; for capillary-like structure formation, the fluence of 2.5 J/cm2 was better than the fluence of 3.7 J/cm2. CLINICAL RELEVANCE This study results addressed effective photobiomodulation parameters tailored for pulp angiogenesis.
Collapse
Affiliation(s)
- Luciana Lourenço Ribeiro Vitor
- Department of Pediatric Dentistry, University of Sacred Heart, Rua Irmã Arminda, 10-50, Bauru, São Paulo, 17011-160, Brazil.
| | | | - Natalino Lourenço-Neto
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Vivien Thiemy Sakai
- Department of Clinics and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Daniela Rios
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Thais Marchini Oliveira
- Department of Pediatric Dentistry, Orthodontics, and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| |
Collapse
|
11
|
Neto FCJ, Martimbianco ALC, de Andrade RP, Bussadori SK, Mesquita-Ferrari RA, Fernandes KPS. Effects of photobiomodulation in the treatment of fractures: a systematic review and meta-analysis of randomized clinical trials. Lasers Med Sci 2020; 35:513-522. [PMID: 30982176 DOI: 10.1007/s10103-019-02779-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022]
Abstract
Several therapeutic strategies have been proposed to optimize the conventional treatment of fractures. Photobiomodulation (PBM) appears to help reduce pain and control inflammation, and it also accelerates bone repair. This systematic review aimed to evaluate the effectiveness and safety of PBM with low-level laser therapy (LLLT) in the bone fracture healing process. We included randomized controlled trials (RCTs) comparing the effects of PBM with those of any other intervention in adults with lower or upper limb bone fractures. The primary outcomes investigated were pain reduction, radiographic healing, and adverse events. The searches were conducted in October 2018. Two RCTs were included that compared PBM to the placebo. A meta-analysis showed significant difference in favor of PBM for pain reduction (MD 1.19, 95% CI [0.61 to 1.77], 106 participants, two RCTs), but this difference was not clinically significant. One RCT (50 participants) showed a clinical and statistical improvement in physical function (MD - 14.60, 95% CI [- 21.39 to - 7.81]) and no difference in radiographic healing, regarding absence of fracture line (RR 1.00, 95% CI [0.93 to 1.08]) and visible bone callus (RR 0.33, 95% CI [0.01 to 7.81]). The certainty of evidence was classified as low to very low. Based on the evidence of low to very low certainty, PBM seems to be associated with the improvement of pain and function. Therefore, new RCTs are required that meet the recommendations of CONSORT to prove the effectiveness and safety of this intervention and support its recommendation in clinical practice.
Collapse
Affiliation(s)
| | - Ana Luiza Cabrera Martimbianco
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 -Encruzilhada, Santos, SP, 11045-002, Brazil.
| | | | - Sandra Kalil Bussadori
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | |
Collapse
|
12
|
Tunér J, Hosseinpour S, Fekrazad R. Photobiomodulation in Temporomandibular Disorders. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:826-836. [DOI: 10.1089/photob.2019.4705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jan Tunér
- Private Practice, Swedish Laser Medical Society (SLMS), Stockholm, Sweden
| | | | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
13
|
Hosseinpour S, Tunér J, Fekrazad R. Photobiomodulation in Oral Surgery: A Review. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:814-825. [DOI: 10.1089/photob.2019.4712] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, Oral Health Centre, The University of Queensland, Brisbane, Australia
| | - Jan Tunér
- Private Practice, Swedish Laser Medical Society (SLMS), Stockholm, Sweden
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
14
|
Escudero JSB, Perez MGB, de Oliveira Rosso MP, Buchaim DV, Pomini KT, Campos LMG, Audi M, Buchaim RL. Photobiomodulation therapy (PBMT) in bone repair: A systematic review. Injury 2019; 50:1853-1867. [PMID: 31585673 DOI: 10.1016/j.injury.2019.09.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/16/2019] [Accepted: 09/20/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Photobiomodulation therapy (PBMT) using low-level laser influences the release of several growth factors involved in the formation of epithelial cells, fibroblasts, collagen and vascular proliferation, besides accelerating the synthesis of bone matrix due to the increased vascularization and lower inflammatory response, with significant increase of osteocytes in the irradiated bone. Considering its properties, beneficial effects and clinical relevance, the aim of this review was to analyze the scientific literature regarding the use of PBMT in the process of bone defect repair. METHODS Electronic search was carried out in PubMed/MEDLINEⓇ and Web of Science databases with combination of the descriptors low-level laser therapy AND bone repair, considering the period of publication until the year 2018. RESULTS The literature search identified 254 references in PubMed/MEDLINE and 204 in Web of Science, of which 33 and 4 were selected, respectively, in accordance with the eligibility requirements. The analysis of researches showed articles using PBMT in several places of experimentation in the subjects, different types of associated biomaterials, stimulatory effects on cell proliferation, besides variations in the parameters of use of laser therapy, mainly in relation to the wavelength and density of energy. Only four articles reported that the laser did not improve the osteogenic properties of a biomaterial. CONCLUSIONS Many studies have shown that PBMT has positive photobiostimulatory effects on bone regeneration, accelerating its process regardless of parameters and the use of biomaterials. However, standardization of its use is still imperfect and should be better studied to allow correct application concerning the utilization protocols.
Collapse
Affiliation(s)
- Jose Stalin Bayas Escudero
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | - Maria Gabriela Benitez Perez
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil; Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Marília, SP, Brazil; Medical School, Discipline of Neuroanatomy, University Center of Adamantina (UNIFAI), Adamantina, SP, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil
| | | | - Mauro Audi
- Physiotherapy School, University of Marilia (UNIMAR), Marília-SP, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, SP, Brazil; Medical School, Discipline of Human Morphophysiology, University of Marilia (UNIMAR), Marília, SP, Brazil.
| |
Collapse
|
15
|
Magri AMP, Fernandes KR, Kido HW, Fernandes GS, Fermino SDS, Gabbai-Armelin PR, Braga FJC, Góes CP, Prado JLDS, Neves Granito R, Rennó ACM. Bioglass/PLGA associated to photobiomodulation: effects on the healing process in an experimental model of calvarial bone defect. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:105. [PMID: 31494718 DOI: 10.1007/s10856-019-6307-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Bioactive glasses (BG) are known for their ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not enough to induce bone consolidation. Thus, the enrichment of BG with polymers such as Poly (D, L-lactic-co-glycolic) acid (PLGA) and associated to photobiomodulation (PBM) may be a promising strategy to promote bone tissue healing. The aim of the present study was to investigate the in vivo performance of PLGA supplemented BG, associated to PBM therapy, using an experimental model of cranial bone defect in rats. Rats were distributed in 4 different groups (Bioglass, Bioglass/PBM, Bioglas/PLGA and BG/PLGA/PBM). After the surgical procedure to induce cranial bone defects, the pre-set samples were implanted and PBM treatment (low-level laser therapy) started (808 nm, 100 mW, 30 J/cm2). After 2 and 6 weeks, animals were euthanized, and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. At 2 weeks post-surgery, it was observed granulation tissue and areas of newly formed bone in all experimental groups. At 6 weeks post-surgery, BG/PLGA (with or without PBM) more mature tissue around the biomaterial particles. Furthermore, there was a higher deposition of collagen for BG/PLGA in comparison with BG/PLGA/PBM, at second time-point. Histomorphometric analysis demonstrated higher values of BM.V/TV for BG compared to BG/PLGA (2 weeks post-surgery) and N.Ob/T.Ar for BG/PLGA compared to BG and BG/PBM (6 weeks post-surgery). This current study concluded that the use of BG/PLGA composites, associated or not to PBM, is a promising strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Angela Maria Paiva Magri
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil.
- University Center of the Guaxupé Educational Foundation (UNIFEG), Avenida Dona Floriana, Guaxupé, MG, 37800000, Brazil.
| | | | - Hueliton Wilian Kido
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | | | | | | | - Cíntia Pereirade Góes
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | - Renata Neves Granito
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | - Ana Claudia Muniz Rennó
- Federal University of São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| |
Collapse
|
16
|
Incorporation of collagen and PLGA in bioactive glass: in vivo biological evaluation. Int J Biol Macromol 2019; 134:869-881. [PMID: 31102678 DOI: 10.1016/j.ijbiomac.2019.05.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 01/19/2023]
Abstract
Bioactive glasses (BG) are known for their unique ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not sufficient to produce bone consolidation. The use of composite materials may constitute an optimized therapeutical intervention for bone stimulation. The aim of this study was to characterize BG/collagen/poly (d,l-lactic-co-glycolic) acid (BG/COL/PLGA) composites, in vitro biocompatibility and in vivo biological properties. MC3T3-E1 cells were evaluated by cell proliferation, ALP activity, cell adhesion and morphology. Qualitative histology and immunohistochemistry were performed in a calvarial bone defect model in rats. The in vitro study demonstrated, after 3 and 6 days of culture, a significant increase of proliferation was observed for BG/PLGA compared to BG/COL and BG/COL/PLGA. BG/COL/PLGA presented a higher value for ALP activity after 3 days of culture compared to BG/PLGA. For in vivo analysis, 6 weeks post-surgery, BG/PLGA showed a more mature neoformed bone tissue. As a conclusion, the in vitro and in vivo studies pointed out that BG/PLGA samples improved biological properties in calvarial bone defects, highlighting the potential of BG/PLGA composites to be used as a bone graft for bone regeneration applications.
Collapse
|
17
|
Gabbai-Armelin PR, Wilian Kido H, Fernandes KR, Fortulan CA, Muniz Renno AC. Effects of bio-inspired bioglass/collagen/magnesium composites on bone repair. J Biomater Appl 2019; 34:261-272. [PMID: 31027447 DOI: 10.1177/0885328219845594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Paulo Roberto Gabbai-Armelin
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| | - Hueliton Wilian Kido
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| | - Kelly Rossetti Fernandes
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| | - Carlos Alberto Fortulan
- 2 Department of Mechanical Engineering, University of São Paulo (USP), Trabalhador São Carlense, São Carlos, Brazil
| | - Ana Claudia Muniz Renno
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| |
Collapse
|
18
|
Hosseinpour S, Fekrazad R, Arany PR, Ye Q. Molecular impacts of photobiomodulation on bone regeneration: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:147-159. [PMID: 31002851 DOI: 10.1016/j.pbiomolbio.2019.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Photobiomodulation (PBM) encompasses a light application aimed to increase healing process, tissue regeneration, and reducing inflammation and pain. PBM is specifically aimed to modify the expression of cellular molecules; however, PBM impacts on cellular and molecular pathways especially in bone regenerative medicine have been investigated in scattered different studies. The purpose of the current study is to systematically review evidence on molecular impact of PBM on bone regeneration. A comprehensive electronic search in Medline, Scopus, EMBASE, EBSCO, Cochrane library, web of science, and google scholar was conducted from January 1975 to October 2018 limited to English language publications on administrations of photobiomodulation for bone regeneration which evaluated biological factors. In addition, hand search of selected journals was done to retrieve all articles. This systematic review was performed based on PRISMA guideline. Among these studies, five articles reported in vitro results, twelve articles were in vivo, and three of them were clinical trials. The data tabulated according to the type of markers (osteogenic markers, angiogenic markers, growth factors, and inflammation mediators). PBM's effects depend on many parameters which energy density is more important than the others. PBM can significantly enhance expression of osteocalcin, collagen, RUNX-2, vascular endothelial growth factor, bone morphogenic proteins, and COX-2. Although since the heterogeneity of the studies and their limitations, an evidence-based decision for definite therapeutic application of PBM is still unattainable, the findings of our review can help other researchers to ameliorate their study design and elect more efficient approach for their investigation.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia; Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran.
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, 19839, Fatemi, Tehran, Iran; International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Praveen R Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, NY, 14214, USA.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
19
|
Scalize PH, de Sousa LG, Gonçalves LMN, Pitol DL, Palinkas M, Coppi AA, Righeti MA, Ricardo V, Bombonato‐Prado KF, Regalo SCH, Siessere S. Low-level laser therapy enhances the number of osteocytes in calvaria bone defects of ovariectomized rats. Animal Model Exp Med 2019; 2:51-57. [PMID: 31016287 PMCID: PMC6431244 DOI: 10.1002/ame2.12056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Osteoporosis can make bone repair difficult. Low-level laser therapy (LLLT) has been shown to be a promising tool for bone neoformation. This study aimed to analyze the effect of LLLT on calvaria bone defects of ovariectomized rats using stereology. METHODS Fifty-four Wistar rats were subjected to bilateral ovariectomy, and bone defects were created in calvaria after 150 days. The animals were divided into nine groups (n = 6 per group), and 24 hours after the bone defects were created they received 3, 6 or 12 sessions of LLLT at 0, 20 or 30 J/cm2, using a 780-nm low-intensity GaAlAs laser. One-way ANOVA followed by Tukey's post hoc test was used for data processing. A difference of P < 0.05 was considered statistically significant. The parameters evaluated were osteocyte density (Nv ost), total osteocyte number (Nto ost), trabecular surface density (Sv t), and trabecular surface area (Sa t). RESULTS Data obtained showed that Nto ost, Sv t, and Sa t in group G2 rats were significantly different from G1 (0 J/cm2) (P < 0.05). Compared to group G4, G5 presented higher values for the parameters Sv t and Sa t, and G6 presented significantly higher values for almost all the analyzed parameters (Nv ost, Nto ost, Sv t, and Sa t) (P < 0.05). Compared to group G7, G8 showed a higher value only for the parameter Sa t, and G9 showed significantly higher values for parameters Nv ost, Nto ost, Sv t, and Sa t. CONCLUSION We conclude that LLLT stimulated bone neoformation and contributed to an increase in the total number of osteocytes, especially with a laser energy density of 30 J/cm2 given for 6 and 12 sessions.
Collapse
Affiliation(s)
- Priscilla Hakime Scalize
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Luiz Gustavo de Sousa
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Lígia Maria Napolitano Gonçalves
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Dimitrius Leonardo Pitol
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Marcelo Palinkas
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Antônio Augusto Coppi
- Faculty of Health and Medical SciencesSchool of Veterinary MedicineUniversity of SurreyGuildfordSurreyUK
| | - Mariah Acioli Righeti
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Vitória Ricardo
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Karina Fittipaldi Bombonato‐Prado
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Simone Cecílio Hallak Regalo
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| | - Selma Siessere
- Department of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUSP ‐ University of São PauloRibeirão PretoSPBrazil
| |
Collapse
|
20
|
Magri AMP, Fernandes KR, Kido HW, Fernandes GS, Fermino SDS, Gabbai-Armelin PR, Braga FJC, de Góes CP, Prado JLDS, Granito RN, Rennó ACM. Photobiomodulation guided healing in a sub-critical bone defect in calvarias of rats. Laser Ther 2019; 28:171-179. [PMID: 32009730 DOI: 10.5978/islsm.28_19-or-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Background Photobiomodulation presents stimulatory effects on tissue metabolism, constituting a promising strategy to produce bone tissue healing. Objective the aim of the present study was to investigate the in vivo performance of PBM using an experimental model of cranial bone defect in rats. Material and Methods rats were distributed in 2 different groups (control group and PBM group). After the surgical procedure to induce cranial bone defects, PBM treatment initiated using a 808 nm laser (100 mW, 30 J/cm2, 3 times/week). After 2 and 6 weeks, animals were euthanized and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. Results Histology analysis demonstrated that for PBM most of the bone defect was filled with newly formed bone (with a more mature aspect when compared to CG). Histomorphomeric analysis also demonstrated a higher amount of newly formed bone deposition in the irradiated animals, 2 weeks post-surgery. Furthermore, there was a more intense deposition of collagen for PBM, with ticker fibers. Results from Runx-2 immunohistochemistry demonstrated that a higher immunostaining for CG 2 week's post-surgery and no other difference was observed for Rank-L immunostaining. Conclusion This current study concluded that the use of PBM was effective in stimulating newly formed bone and collagen fiber deposition in the sub-critical bone defect, being a promising strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Angela Maria Paiva Magri
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil.,University Center of the Guaxupé Educational Foundation (UNIFEG), Avenida Dona Floriana, 463, Guaxupé, MG, 37800000, Brazil
| | | | - Hueliton Wilian Kido
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | | | | | | | - Cintia Pereira de Góes
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | | | - Renata Neves Granito
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| | - Ana Claudia Muniz Rennó
- Federal University of São Paulo (UNIFESP). Rua Silva Jardim, 136, Santos, SP, 11015020, Brazil
| |
Collapse
|
21
|
P R GA, H M C, D F S, M A C, A M P M, K R F, A C M R. Association of Bioglass/Collagen/Magnesium composites and low level irradiation: effects on bone healing in a model of tibial defect in rats. Laser Ther 2018; 27:271-282. [PMID: 31182902 DOI: 10.5978/islsm.27_18-or-25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022]
Abstract
Background and Aims Bioglass (BG) and Magnesium (Mg) composites have been used for bone tissue engineering proposes due to its osteogenic activity and increased mechanical properties respectively. The introduction of Collagen (Col) is a common and efficient approach for bone tissue engineering applications toward cell proliferation. Recently, studies demonstrated that BG/Col/Mg composites presented proper mechanical properties and were non-cytotoxic. Although the osteogenic potential of BG/Col/Mg composites, in specific situations, biomaterials may not be capable of stimulating bone tissue. Therefore, combining biomaterial matrices and effective post-operative therapies (such as low level lasertherapy; LLLT) may be necessary to appropriately stimulate bone tissue. In this context, the aim of this study was to develop intra- and extra-operatively bone regenerative therapeutical strategies, based on the association of Col-enriched BG/Mg composites with LLLT. Materials and Methods Thereby, an in vivo study, using tibial defect in Wistar rats, was performed in order to investigate the bone regenerative capacity. LLLT treatment (Ga-Al-As laser 808 nm, 30 mW, 2.8 J, 94 s) was performed 3 times a week, in non-consecutive days. Histology, histomorphometry, immunohistochemical analysis and mechanical test were done after 15 and 45 days post-implantation. Results The results showed that Col could be successfully introduced into BG/Mg and the association of BG/Mg/Col and LLLT constituted an optimized treatment for accelerating material degradation and increasing bone deposition. Additionally, mechanical tests showed an increased maximal load for BG/Mg + LLLT compared to other groups. Conclusions These results lead us to conclude that the Col enriched BG/Mg composites irradiated with LLLT presented superior biological and mechanical properties, demonstrating to be a promising bone graft.
Collapse
Affiliation(s)
- Gabbai-Armelin P R
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Caliari H M
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Silva D F
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Cruz M A
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Magri A M P
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Fernandes K R
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| | - Renno A C M
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of Sao Paulo (UNIFESP)
| |
Collapse
|
22
|
Wang L, Wu F, Liu C, Song Y, Guo J, Yang Y, Qiu Y. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers Med Sci 2018; 34:169-178. [PMID: 30456535 DOI: 10.1007/s10103-018-2673-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/12/2018] [Indexed: 10/27/2022]
Abstract
The aim of this in vitro study was to evaluate the effects of low-level laser therapy (LLLT) at different energy intensities on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under healthy and inflammatory microenvironments. Human BMSCs and BMSCs from inflammatory conditions (i-BMSCs, BMSCs treated with tumor necrosis factor α; TNF-α) were subject to LLLT (Nd:YAG;1064 nm) at different intensities. We designed one control group (without irradiation) and four testing groups (irradiation at 2, 4, 8, and 16 J/cm2) for both BMSCs and i-BMSCs. Cell proliferation was measured using colony-forming unit fibroblast assay and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay. Osteogenic capacity of cells was determined by alkaline phosphatase (ALP) staining, ALP activity assay, Alizarin Red S staining and the mRNA transcript levels of genes runt-related transcription factor 2 (Runx2), ALP, and osteocalcin. Moreover, the effects of LLLT on secretion of TNF-α in BMSCs and i-BMSCs were measured by enzyme-linked immunosorbent assay. Our results demonstrated LLLT could significantly promote BMSC proliferation and osteogenesis at densities of 2 and 4 J/cm2. LLLT at density of 8 J/cm2 could promote the proliferation and osteogenesis of i-BMSCs. However, LLLT at 16 J/cm2 significantly suppressed the proliferation and osteogenesis of BMSCs both in healthy and in inflammatory microenvironment. Moreover, we also found that the expression of TNF-α was obviously inhibited by LLLT at 4, 8, and 16 J/cm2, in an inflammatory microenvironment. Considering these findings, LLLT could improve current in vitro methods of differentiating BMSCs under healthy and inflammatory microenvironments prior to transplantation.
Collapse
Affiliation(s)
- Liying Wang
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Command of PLA, 333 South Binhe Road, Qili River District, Lanzhou, 730050, Gansu, People's Republic of China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou General Hospital, Lanzhou Command of PLA, Lanzhou, Gansu, China
| | - Fan Wu
- Department of Laparoscope Surgery, The 451st Hospital of People's Liberation Army, Xi'an, Shaanxi, China
| | - Chen Liu
- Department of General Dentistry, Stomatological Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Yang Song
- Department of Stomatology, The 323rd Hospital of People's Liberation Army, Xi'an, Shaanxi, China
| | - Jiawen Guo
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Command of PLA, 333 South Binhe Road, Qili River District, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yanwei Yang
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Command of PLA, 333 South Binhe Road, Qili River District, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yinong Qiu
- Department of Stomatology, Lanzhou General Hospital, Lanzhou Command of PLA, 333 South Binhe Road, Qili River District, Lanzhou, 730050, Gansu, People's Republic of China.
| |
Collapse
|
23
|
Heo JH, Choi JH, Kim IR, Park BS, Kim YD. Combined Treatment with Low-Level Laser and rhBMP-2 Promotes Differentiation and Mineralization of Osteoblastic Cells under Hypoxic Stress. Tissue Eng Regen Med 2018; 15:793-801. [PMID: 30603597 DOI: 10.1007/s13770-018-0167-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022] Open
Abstract
Background The aim of this study was to evaluate the combined effect of low-level laser treatment (LLLT) and recombinant human bone morphological protein-2 (rhBMP-2) applied to hypoxic-cultured MC3T3-E1 osteoblastic cells and to determine possible signaling pathways underlying differentiation and mineralization of osteoblasts under hypoxia. Methods MC3T3-E1 cells were cultured under 1% oxygen tension for 72 h. Cell cultures were divided into four groups: normoxia control, low-level laser (LLL) alone, rhBMP-2 combined with LLLT, and rhBMP-2 under hypoxia. Laser irradiation was applied at 0, 24, and 48 h. Cells were treated with rhBMP-2 at 50 ng/mL. Alkaline phosphatase activity was measured at 3, 7, and 14 days to evaluate osteoblastic differentiation. Cell mineralization was determined with Alizarin red S staining at 7 and 14 days. Western blot assays were performed to evaluate whether p38/protein kinase D (PKD) signaling was involved. Results The results indicate that LLLT and rhBMP-2 synergistically increased alkaline phosphatase (ALP) activity and mineralization. Western blot analyses showed that expression of type I collagen, runt-related transcription factor 2 (RUNX2), and Osterix (Osx), increased and expression of hypoxia-inducible factor 1-alpha (HIF-1α), decreased more in the LLLT and rhBMP-2 combined group than in the rhBMP-2 or LLL alone groups. Moreover, LLLT and rhBMP-2 stimulated p38 phosphorylation and rhBMP-2 and LLLT increased Prkd1 phosphorylation. Conclusion Combined treatment with rhBMP-2 and LLL induced differentiation and mineralization of hypoxic-cultured MC3T3-E1 osteoblasts by activating p38/PKD signaling in vitro.
Collapse
Affiliation(s)
- Jin-Ho Heo
- 1Department of Oral and Maxillofacial Surgery, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612 Republic of Korea
| | - Jeong-Hun Choi
- 1Department of Oral and Maxillofacial Surgery, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612 Republic of Korea
| | - In-Ryoung Kim
- 2Department of Oral Anatomy, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612 Korea
| | - Bong-Soo Park
- 2Department of Oral Anatomy, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612 Korea
| | - Yong-Deok Kim
- 1Department of Oral and Maxillofacial Surgery, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612 Republic of Korea.,3Dental Research Institute and Institute of Translational Dental Sciences, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612 Korea
| |
Collapse
|
24
|
Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci 2018; 19:ijms19071946. [PMID: 29970828 PMCID: PMC6073131 DOI: 10.3390/ijms19071946] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm2 energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.
Collapse
Affiliation(s)
- Alessia Tani
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, via dell' Olivuzzo 162, 50143 Florence, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
25
|
Na S, TruongVo T, Jiang F, Joll JE, Guo Y, Utreja A, Chen J. Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 30030913 DOI: 10.1117/1.jbo.23.7.075008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to evaluate the effects of varying light doses on the viability and cellular activity of osteoblasts, osteocytes, and osteoclasts. A light application device was developed to apply 940-nm wavelength light from light-emitting diodes on three cultured cells, MC3T3-E1, MLO-A5, and RANKL-treated RAW264.7 cells. The doses (energy density) on cells were 0, 1, 5, and 7.5 J / cm2. The corresponding light power densities at the cell site were 0, 1.67, 8.33, and 12.5 mW / cm2, respectively, and the duration was 10 min. The results showed that the three cell types respond differently to light and their responses were dose dependent. Low-dose treatment (1 J / cm2) enhanced osteoblast proliferation, osteoclast differentiation, and osteoclastic bone resorption activity. Osteocyte proliferation was not affected by both low- and high-dose (5 J / cm2) treatments. While 1 J / cm2 did not affect viability of all three cell types, 5 J / cm2 significantly decreased viability of osteocytes and osteoclasts. Osteoblast viability was negatively impacted by the higher dose (7.5 J / cm2). The findings suggest that optimal doses exist for osteoblast and osteoclast, which can stimulate cell activities, and there is a safe dose range for each type of cell tested.
Collapse
Affiliation(s)
- Sungsoo Na
- Indiana University-Purdue University Indianapolis, Department of Biomedical Engineering, Indianapoli, United States
| | - ThucNhi TruongVo
- Indiana University-Purdue University Indianapolis, Department of Biomedical Engineering, Indianapoli, United States
| | - Feifei Jiang
- Indiana University-Purdue University Indianapolis, Department of Mechanical Engineering, Indianapoli, United States
| | - Jeffery E Joll
- Indiana University-Purdue University Indianapolis, Department of Biomedical Engineering, Indianapoli, United States
| | - Yunxia Guo
- Indiana University-Purdue University Indianapolis, Department of Biomedical Engineering, Indianapoli, United States
| | - Achint Utreja
- Indiana University-Purdue University Indianapolis, Department of Orthodontics and Oral Facial Geneti, United States
| | - Jie Chen
- Indiana University-Purdue University Indianapolis, Department of Mechanical Engineering, Indianapoli, United States
- Indiana University-Purdue University Indianapolis, Department of Orthodontics and Oral Facial Geneti, United States
| |
Collapse
|
26
|
Alves AMM, de Miranda Fortaleza LM, Filho ALMM, Ferreira DCL, da Costa CLS, Viana VGF, Santos JZLV, de Oliveira RA, de Meira Gusmão GO, Soares LES. Evaluation of bone repair after application of a norbixin membrane scaffold with and without laser photobiomodulation (λ 780 nm). Lasers Med Sci 2018; 33:1493-1504. [DOI: 10.1007/s10103-018-2506-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
27
|
Bayat M, Virdi A, Jalalifirouzkouhi R, Rezaei F. Comparison of effects of LLLT and LIPUS on fracture healing in animal models and patients: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 132:3-22. [PMID: 28688752 DOI: 10.1016/j.pbiomolbio.2017.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022]
Abstract
The aim of this paper is to study the in vivo potency of low-level laser therapy (LLLT) and low intensity pulsed ultrasound (LIPUS) alone, accompanied by bone grafts, or accompanied by other factors on fracture healing in animal models and patients. In this paper, we aim to systematically review the published scientific literature regarding the use of LLLT and LIPUS to accelerate fracture healing in animal models and patients. We searched the PubMed database for the terms LLLT or LIPUS and/or bone, and fracture. Our analysis also suggests that both LIPUS and LLLT may be beneficial to fracture healing in patients, and that LIPUS is more effective. These finding are of considerable importance in those treatments with a LIPUS, as a laser device may reduce healing time. The most clinically relevant impact of the LIPUS treatment could be a significant reduction in the proportion of patients who go on to develop a nonunion. If it is confirmed that the therapeutic influence is true and reliable, patients will obtain benefits from LIPUS and LLLT. Further clinical trials of high methodological quality are needed in order to determine the optimal role of LIPUS and LLLT in fracture healing in patients.
Collapse
Affiliation(s)
- Mohammad Bayat
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA; Cellular and Molecular Biology Research Center, Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amarjit Virdi
- Department of Cell & Molecular Medicine, (formerly, Anatomy and Cell Biology), Rush University Medical Center, 1750 W. Harrison St., Suite 1413A, Chicago, IL 60612, USA.
| | | | - Fatemehalsadat Rezaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Li Q, Chen Y, Dong S, Liu S, Zhang X, Si X, Zhou Y. Laser irradiation promotes the proliferation of mouse pre-osteoblast cell line MC3T3-E1 through hedgehog signaling pathway. Lasers Med Sci 2017; 32:1489-1496. [PMID: 28667508 DOI: 10.1007/s10103-017-2269-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/16/2017] [Indexed: 01/19/2023]
Abstract
Low-level laser could promote osteoblast proliferation, and it has been applied in clinical practice to promote wound healing and tissue regeneration. However, the mechanism related to laser irradiation remains unclear. This study aimed to investigate the effects of low-level laser irradiation on the cell proliferation and the expressions of hedgehog signaling molecules Indian hedgehog (Ihh), Ptch, and Gli in vitro. In our present study, the MTT method was used to evaluate the effect on cell proliferation of laser irradiation on MC3T3-E1 cells. And cell cycle was examined by flow cytometry. Gene and protein expressions of hedgehog signaling molecules, including Ihh, Ptch, Smoothened (Smo), and Gli, were examined by qRT-PCR and western blot analysis. The results showed that laser irradiation at dosage of 3.75 J/cm2 enhances the proliferation of MC3T3-E1 cells compared with control groups (p = 0.00). Moreover, laser irradiation (3.75 J/cm2) increased the cell amount at S phase (p = 0.00). In addition, the expressions of Ihh, Ptch, Smo, and Gli were significantly increased compared to the control during laser irradiation (3.75 J/cm2)-induced MC3T3-E1 osteoblast proliferation. After adding the hedgehog signaling inhibitor CY (cyclopamine), cell proliferation and Ihh, Ptch, Smo, and Gli expressions were inhibited (p = 0.00), and the cell amount at S phase was reduced compared with combination groups (p = 0.00). These results indicated that laser irradiation promotes proliferation of MC3T3-E1 cells through hedgehog signaling pathway. Our findings provide insights into the mechanistic link between laser irradiation-induced osteogenesis and hedgehog signaling pathway.
Collapse
Affiliation(s)
- Qiushi Li
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yingxin Chen
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shujun Dong
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Shujie Liu
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaodan Zhang
- Department of Oral Health Science, Affiliated Stomatological Hospital of Harbin Medical University, Harbin, China
| | - Xi Si
- Department of Oral Medicine, Hainan Medical University, Haikou, China
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
29
|
de Oliveira LSDS, de Araújo AA, de Araújo Júnior RF, Barboza CAG, Borges BCD, da Silva JSP. Low-level laser therapy (780 nm) combined with collagen sponge scaffold promotes repair of rat cranial critical-size defects and increases TGF-β, FGF-2, OPG/RANK and osteocalcin expression. Int J Exp Pathol 2017; 98:75-85. [PMID: 28556971 DOI: 10.1111/iep.12226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the effect of collagen sponge scaffold (CSS) implantation associated with low-level laser therapy (LLLT) on repairing bone defects. A single 5-mm cranial defect was surgically created in forty Wistar rats, which then received one of the following four interventions (n = 10 per group): no treatment (G0); bone defect implanted with collagen sponge scaffold (CSS) alone (G1); defect treated with low-level laser therapy (LLLT) (wavelength 780 nm; total energy density 120 J/cm2 ; power 50 mW) alone (G2); and CSS associated with LLLT treatment (G3). After surgery, animals in each group were euthanized at 21 days and 30 days (n = 5 per euthanasia time group). Bone formation was monitored by X-ray imaging analysis. Biopsies were collected and processed for histological analysis and immunohistochemical evaluation of transforming growth factor-beta (TGF-β), fibroblast growth factor-2 (FGF-2), osteoprotegerin (OPG) and receptor activator of nuclear factor ƙ (RANK). Osteocalcin (OCN) was detected by immunofluorescence analysis. Compared to the G0 group, defects in the 30-day G3 group exhibited increased bone formation, both by increase in radiopaque areas (P < 0.01) and by histomorphometric analysis (P < 0.001). The histopathological analysis showed a decreased number of inflammatory cells (P < 0.001). The combined CCS + LLLT (G3) treatment also resulted in the most intense immunostaining for OPG, RANK, FGF-2 and TGF-β, and the most intense and diffuse OCN immunofluorescent labelling at 30 days postsurgery (G3 vs. G0 group, P < 0.05). Therefore, the use of CCS associated with LLLT could offer a synergistic advantage in improving the healing of bone fractures.
Collapse
Affiliation(s)
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Post Graduation Program in Public Health/Post Graduation Program in Pharmaceutical Science, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo Fernandes de Araújo Júnior
- Department of Morphology, Post Graduation Program in Health Science/Post Graduation Program in Functional and Structural Biology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos Augusto Galvão Barboza
- Department of Morphology, Post-Graduation Program in Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Boniek Castillo Dutra Borges
- Department of Dentistry, Post-Graduation Program in Public Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - José Sandro Pereira da Silva
- Department of Dentistry, Post-Graduation Program in Public Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
30
|
Bozkurt SB, Hakki EE, Kayis SA, Dundar N, Hakki SS. Biostimulation with diode laser positively regulates cementoblast functions, in vitro. Lasers Med Sci 2017; 32:911-919. [PMID: 28332131 DOI: 10.1007/s10103-017-2192-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the effects of diode laser biostimulation on cementoblasts (OCCM.30). A total of 40 root plates were obtained from healthy third molar teeth and assigned to the following two groups: (1) control group and (2) laser-treated group. Root plates were placed into the cell culture inserts, and OCCM.30 cells were seeded onto root plates. Cells were irradiated with a low level of diode laser (power: 0.3 W in continuous wave, 60 s/cm2). Proliferation and mineralized tissue-associated gene's and BMP's messenger RNA (mRNA) expressions of cementoblasts were evaluated. Total RNAs were isolated on day 3 and integrin-binding sialoprotein (Ibsp), bone gamma-carboxyglutamate protein (Bglap), Type I collagen (Col1a1), osteoblastic transcription factor, runt-related transcription factor (Runx2), and Bone Morphogenetic Protein (BMP)-2, 3, 4, 6, and 7 mRNA expressions were determined using quantitative RT-PCR. von Kossa staining was performed to evaluate biomineralization of OCCM.30 cells. In the proliferation experiment, while there was no significant difference until 96 h, laser irradiation retarded the decrease in cell proliferation trend after 96 h compared to the untreated control group. Statistically significant increase in Ibsp, Bglap, and BMP-2,3,6,7 mRNA expressions were noted in the laser groups when compared to the untreated control group (p < 0.05). Laser irradiation induced mineralized nodule formation of cementoblasts. The results of this study reveal that the biostimulation setting of diode laser modulates the behavior of cementoblasts inducing mineralized tissue-associated gene's mRNA expressions and mineralization. Therefore, biostimulation can be used during regenerative periodontal therapies to trigger cells with periodontal attachment apparatus.
Collapse
Affiliation(s)
| | - Erdogan E Hakki
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Molecular Genetics & Biotechnology Laboratories, Selcuk University, Konya, Turkey
| | - Seyit Ali Kayis
- Faculty of Medicine, Department of Biostatistics, Karabuk University, Karabuk, Turkey
| | - Niyazi Dundar
- Faculty of Dentistry, Research Center, Selcuk University, Konya, Turkey
| | - Sema S Hakki
- Faculty of Dentistry, Research Center, Selcuk University, Konya, Turkey. .,Faculty of Dentistry, Department of Periodontology, Selcuk University, 42079, Konya, Turkey.
| |
Collapse
|
31
|
de Almeida JM, de Moraes RO, Gusman DJR, Faleiros PL, Nagata MJH, Garcia VG, Theodoro LH, Bosco AF. Influence of low-level laser therapy on the healing process of autogenous bone block grafts in the jaws of systemically nicotine-modified rats: A histomorphometric study. Arch Oral Biol 2017; 75:21-30. [DOI: 10.1016/j.archoralbio.2016.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/21/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
|
32
|
Atasoy KT, Korkmaz YT, Odaci E, Hanci H. The efficacy of low-level 940 nm laser therapy with different energy intensities on bone healing. Braz Oral Res 2017; 31:e7. [PMID: 28076498 DOI: 10.1590/1807-3107bor-2017.vol31.0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to evaluate the efficacy of low-level 940 nm laser therapy with energy intensities of 5, 10 and 20 J/cm2 on bone healing in an animal model. A total of 48 female adult Wistar rats underwent surgery to create bone defects in the right tibias. Low-level laser therapy (LLLT) was applied immediately after surgery and on post-operative days 2, 4, 6, 8, 10 and 12 in three study groups with energy intensities of 5 J/cm2, 10 J/cm2 and 20 J/cm2 using a 940 nm Gallium-Aluminium-Arsenide (Ga-Al-As) laser, while one control group underwent only the tibia defect surgery. All animals were sacrificed 4 or 8 weeks post-surgery. Fibroblasts, osteoblasts, osteocytes, osteoclasts and newly formed vessels were evaluated by a histological examination. No significant change was observed in the number of osteocytes, osteoblasts, osteoclasts and newly formed vessels at either time period across all laser groups. Although LLLT with the 10 J/cm2 energy density increased fibroblast activity at the 4th week in comparison with the 5 and 20 J/cm2 groups, no significant change was observed between the laser groups and the control group. These results indicate that low-level 940 nm laser with different energy intensities may not have marked effects on the bone healing process in both phases of bone formation.
Collapse
Affiliation(s)
- Kerem Turgut Atasoy
- Karadeniz Technical University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Trabzon, Turkey
| | - Yavuz Tolga Korkmaz
- Karadeniz Technical University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Trabzon, Turkey
| | - Ersan Odaci
- Karadeniz Technical University, Faculty of Medicine, Department of Histology and Embriology, Trabzon, Turkey
| | - Hatice Hanci
- Karadeniz Technical University, Faculty of Medicine, Department of Histology and Embriology, Trabzon, Turkey
| |
Collapse
|
33
|
Abdulhameed EA, Enezei HH, Omar M, Komori A, Sugita Y, Hegazy FA, AR S, Maeda H, Alam MK. The Effect of Low Intensity Pulsed Ultrasound Therapy on Osseointegration and Marginal Bone Loss Around Dental Implants. J HARD TISSUE BIOL 2017. [DOI: 10.2485/jhtb.26.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Elaf Akram Abdulhameed
- Sharjah Institute for Medical Research, University of Sharjah
- Oral & Maxillofacial Surgery, School of Dental Sciences, Universiti Sains Malaysia
| | | | - Marzuki Omar
- Oral & Maxillofacial Surgery, School of Dental Sciences, Universiti Sains Malaysia
| | - Atsuo Komori
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | - Yoshihiko Sugita
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | | | - Samsudin AR
- Sharjah Institute for Medical Research, University of Sharjah
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi Gakuin University
| | | |
Collapse
|
34
|
The Comparison of the Efficacy of Blue Light-Emitting Diode Light and 980-nm Low-Level Laser Light on Bone Regeneration. J Craniofac Surg 2016; 27:2185-2189. [DOI: 10.1097/scs.0000000000003068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Borzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 162:577-582. [PMID: 27475781 DOI: 10.1016/j.jphotobiol.2016.07.022] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
CONTEXT Identification of factors that enhance the proliferation of human dental mesenchymal stem cells (DMSCs) is vital to facilitate tissue regeneration. The role of low-level laser irradiation (LLLI) on proliferation of human DMSCs has not been well established. OBJECTIVE To assess the effect of LLLI on proliferation of human DMSCs when applied in-vitro. DATA SOURCES Electronic search of literature was conducted (2000-2016) on PubMed, Web of Science, and Scopus databases. Search terms included low-level light therapy, low-level laser irradiation, low-level light irradiation, LLLT, humans, adolescent, adult, cells, cultured, periodontal ligament, dental pulp, stem cells, dental pulp stem cells, mesenchymal stem cells, periodontal ligament stem cell, deciduous teeth, cell proliferation, adult stem cells, radiation, and proliferation. RESULTS The literature search identified 165 studies with 6 being eligible for inclusion; all used diode lasers; 5 studies used InGaAIP diode lasers; 4 used 660nm, and the other two applied 810nm or 980nm wavelength LLLI. The distance between the DMSCs and the laser spot ranged between 0.5mm to 2mm. The time intervals of cell proliferation analysis ranged from 0h to 7days after LLLI. After 660nm LLLI, an increase in the DMSC's proliferation was reported [DMSCs extracted from dental pulp of deciduous teeth (two irradiations, 3J/cm(2), 20mW was more effective than 40mW), adult teeth (two irradiations, 0.5 and 1.0J/cm(2), 30mW), and from adult periodontal ligament (two irradiations, 1.0J/cm(2) was more effective than 0.5J/cm(2), 30mW)]. Similarly, an increase in the proliferation of DMSCs extracted from dental pulp of adult teeth was reported after 810nm LLLI (7 irradiations in 7days, 0.1 and 0.2J/cm(2), 60mW) or 980nm LLLI (single irradiation, 3J/cm(2), 100mW). However, 660nm LLLI in one study did not increase the proliferation of DMSCs (single irradiation, energy densities of 0.05, 0.30, 7, and 42J/cm(2), 28mW). CONCLUSION There is limited evidence that in-vitro LLLI (660/810/980nm, with energy densities of 0.1-3J/cm(2)) increases the proliferation of DMSCs. Considering the limited evidence and their method heterogeneity it is difficult to reach a firm conclusion. Further research is necessary to identify the optimal characteristics of the LLLI setting (wave length, energy density, power output, frequency/duration of irradiations, distance between the cells and the laser spot/probe) to increase proliferation of DMSCs, and assess its impact on replicative senescence, as well as determine feasibility of the use in the clinical setting.
Collapse
Affiliation(s)
- Ali Borzabadi-Farahani
- Orthodontics, Department of Clinical Sciences and Translational Medicine, Univeristy of Rome Tor Vergata, Rome, Italy; Warwick Medical School, University of Warwick, Coventry, and Specialist Orthodontic Practice, London, United Kingdom.
| |
Collapse
|
36
|
Noda M, Aoki A, Mizutani K, Lin T, Komaki M, Shibata S, Izumi Y. High-frequency pulsed low-level diode laser therapy accelerates wound healing of tooth extraction socket: An in vivo study. Lasers Surg Med 2016; 48:955-964. [PMID: 27454457 DOI: 10.1002/lsm.22560] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE This study aimed to evaluate the effects of high-frequency pulsed (HiFP) low-level laser therapy (LLLT) on early wound healing of tooth extraction sockets in rats. STUDY DESIGN/MATERIALS AND METHODS Bilateral maxillary first molars were extracted from 6-week-old Sprague-Dawley rats. Sockets on the right were treated by HiFP low-level diode laser irradiation (904-910 nm); the left sides served as unirradiated controls. LLLT (0.28 W, 30 kHz, 200-ns pulse, 0.6% duty cycle, 61.2 J/cm2 total power density) was employed immediately after extraction and every 24 hours thereafter. The maxillae including the sockets were resected 3 or 7 days after extraction. Soft-tissue healing was evaluated on days 0, 3, and 7. The bone mineral content (BMC), bone volume (BV), and bone mineral density (BMD) of the extraction sockets were evaluated by microcomputed tomography, and histomorphometric analysis was carried out on day 7. Real-time PCR analysis of osteogenic marker expression and immunohistochemical detection of proliferating cell nuclear antigen (PCNA)-positive cells were performed on day 3. RESULTS Compared with control sites, the un-epithelialized areas of the extracted sites were significantly reduced by irradiation (P = 0.04), and the BMC, BV, and BMD of laser-treated sites were significantly increased (P = 0.004, 0.006, and 0.009, respectively). On day 7, the mean height of newly formed immature woven bone was higher in laser-treated sites (P = 0.24). On day 3, laser-treated sites showed significantly higher osteocalcin mRNA expression (P = 0.04) and PCNA-positive cell numbers (P = 0.01). CONCLUSION HiFP low-level diode laser irradiation enhanced soft- and hard-tissue healing of tooth extraction sockets. Lasers Surg. Med. 48:955-964, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Masahiro Noda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Taichen Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motohiro Komaki
- Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shunichi Shibata
- Maxillofacial Anatomy, Division of Maxillofacial/Neck Reconstruction, Department of Maxillofacial Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
37
|
Guo J, Wang Q, Wai D, Zhang QZ, Shi SH, Le AD, Shi ST, Yen SLK. Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells. Orthod Craniofac Res 2016; 18 Suppl 1:50-61. [PMID: 25865533 DOI: 10.1111/ocr.12081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study tested whether or not gene expression in human marrow stromal fibroblast (MSF) cells depends on light wavelength and energy density. MATERIALS AND METHODS Primary cultures of isolated human bone marrow stem cells (hBMSC) were exposed to visible red (VR, 633 nm) and infrared (IR, 830 nm) radiation wavelengths from a light emitting diode (LED) over a range of energy densities (0.5, 1.0, 1.5, and 2.0 Joules/cm2) Cultured cells were assayed for cell proliferation, osteogenic potential, adipogenesis, mRNA and protein content. mRNA was analyzed by microarray and compared among different wavelengths and energy densities. Mesenchymal and epithelial cell responses were compared to determine whether responses were cell type specific. Protein array analysis was used to further analyze key pathways identified by microarrays. RESULT Different wavelengths and energy densities produced unique sets of genes identified by microarray analysis. Pathway analysis pointed to TGF-beta 1 in the visible red and Akt 1 in the infrared wavelengths as key pathways to study. TGF-beta protein arrays suggested switching from canonical to non-canonical TGF-beta pathways with increases to longer IR wavelengths. Microarrays suggest RANKL and MMP 10 followed IR energy density dose-response curves. Epithelial and mesenchymal cells respond differently to stimulation by light suggesting cell type-specific response is possible. CONCLUSIONS These studies demonstrate differential gene expression with different wavelengths, energy densities and cell types. These differences in gene expression have the potential to be exploited for therapeutic purposes and can help explain contradictory results in the literature when wavelengths, energy densities and cell types differ.
Collapse
Affiliation(s)
- J Guo
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Medalha CC, Santos ALYS, Veronez SDO, Fernandes KR, Magri AMP, Renno ACM. Low level laser therapy accelerates bone healing in spinal cord injured rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:179-85. [DOI: 10.1016/j.jphotobiol.2016.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/12/2023]
|
39
|
Brassolatti P, Bossini PS, Oliveira MCD, Kido HW, Tim CR, Almeida-Lopes L, De Avó LRDS, Araújo-Moreira FM, Parizotto NA. Comparative effects of two different doses of low-level laser therapy on wound healing third-degree burns in rats. Microsc Res Tech 2016; 79:313-20. [PMID: 26853699 DOI: 10.1002/jemt.22632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
Abstract
Burns are injuries caused by direct or indirect contact to chemical, physical, or biological agents. Low-level laser therapy (LLLT) is a promising treatment since it is low-cost, non-invasive, and induces cell proliferation. This study aimed to investigate the effects of LLLT (660 nm) at two different fluences (12.5 J/cm(2) and 25 J/cm(2) ) per point of application on third-degree burns in rats. Thirty rats (Wistar) divided into GC, GL12.5, and GL25 were used in the study, and submitted to burn injury through a soldering iron at 150°C, pressed on their back for 10 s. LLLT was applied immediately, and 2, 4, 6, and 8 days after wound induction. Histological analysis revealed a decreased inflammatory infiltrate in the group treated with 25 J/cm(2) , and intense inflammatory infiltrate in the control group and in the group treated with 12.5 J/cm(2) . The immunostaining of COX-2 was more intense in the control groups and in the group treated with 12.5 J/cm(2) than in the group treated with 25 J/cm(2) . Conversely, VEGF immunomarking was more expressive in the group treated with 25 J/cm(2) than it was in the other two groups. Therefore, our findings suggest that the use of 25 J/cm(2) and 1 J of energy was more effective in stimulating the cellular processes involved in tissue repair on third-degree burns in rats by reducing the inflammatory phase, and stimulating angiogenesis, thus restoring the local microcirculation which is essential for cell migration.
Collapse
Affiliation(s)
- Patricia Brassolatti
- Department of Physiotherapy, Post-Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Paulo Sérgio Bossini
- Department of Physiotherapy, Post-Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | | | - Hueliton Wilian Kido
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Carla Roberta Tim
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | - Fernando M Araújo-Moreira
- Department of Physics, Post-Graduate Program of Biotechnology Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Nivaldo Antonio Parizotto
- Department of Physiotherapy, Post-Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
40
|
Assis L, Manis C, Fernandes KR, Cabral D, Magri A, Veronez S, Renno ACM. Investigation of the Comparative Effects of Red and Infrared Laser Therapy on Skeletal Muscle Repair in Diabetic Rats. Am J Phys Med Rehabil 2016; 95:525-34. [PMID: 26829073 DOI: 10.1097/phm.0000000000000431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the in vivo response of 2 different laser wavelengths (red and infrared) on skeletal muscle repair process in diabetic rats. DESIGN Forty Wistar rats were randomly divided into 4 experimental groups: basal control-nondiabetic and muscle-injured animals without treatment (BC); diabetic muscle-injured without treatment (DC); diabetic muscle-injured, treated with red laser (DCR) and infrared laser (DCIR). The injured region was irradiated daily for 7 consecutive days, starting immediately after the injury using a red (660 nm) and an infrared (808 nm) laser. RESULTS The histological results demonstrated in both treated groups (red and infrared wavelengths) a modulation of the inflammatory process and a better tissue organization located in the site of the injury. However, only infrared light significantly reduced the injured area and increased MyoD and myogenin protein expression. Moreover, both red and infrared light increased the expression of the proangiogenic vascular endothelial growth factor and reduced the cyclooxygenase 2 protein expression. CONCLUSION These results suggest that low-level laser therapy was efficient in promoting skeletal muscle repair in diabetic rats. However, the effect of infrared wavelength was more pronounced by reducing the area of the injury and modulating the expression proteins related to the repair.
Collapse
Affiliation(s)
- Lívia Assis
- From the Department of Bioscience, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Effects of low level laser therapy on inflammatory and angiogenic gene expression during the process of bone healing: A microarray analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 154:8-15. [DOI: 10.1016/j.jphotobiol.2015.10.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/18/2015] [Accepted: 10/11/2015] [Indexed: 12/13/2022]
|
42
|
Micro-computed tomography and histomorphometric analysis of human alveolar bone repair induced by laser phototherapy: a pilot study. Int J Oral Maxillofac Surg 2015; 44:1521-8. [DOI: 10.1016/j.ijom.2015.08.989] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/30/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022]
|
43
|
Nascimento MFD, Almeida BMD, Cunha JLS, Valois RBV, Pinheiro JC, Ribeiro MAG, Lima SO, Albuquerque-Júnior RLCD. Improvement of bone repair in diabetic rats subjected to ƛ780 nm low-level laser therapy. Acta Cir Bras 2015; 30:660-7. [DOI: 10.1590/s0102-865020150100000002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
|
44
|
Effects of low-level laser therapy on the expression of osteogenic genes during the initial stages of bone healing in rats: a microarray analysis. Lasers Med Sci 2015; 30:2325-33. [DOI: 10.1007/s10103-015-1807-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022]
|
45
|
Kido HW, Brassolatti P, Tim CR, Gabbai‐Armelin PR, Magri AM, Fernandes KR, Bossini PS, Parizotto NA, Crovace MC, Malavazi I, da Cunha AF, Plepis AM, Anibal FF, Rennó AC. Porous poly (
D,L
‐lactide‐
co
‐glycolide) acid/biosilicate
®
composite scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2015; 105:63-71. [DOI: 10.1002/jbm.b.33536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/26/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Hueliton W. Kido
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Patricia Brassolatti
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Carla R. Tim
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | | | - Angela M.P. Magri
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Kelly R. Fernandes
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Paulo S. Bossini
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Nivaldo A. Parizotto
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Murilo C. Crovace
- Department of Materials EngineeringVitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Iran Malavazi
- Department of Genetics and EvolutionFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Anderson F. da Cunha
- Department of Genetics and EvolutionFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Ana M.G. Plepis
- Institute of Chemistry of Sao Carlos, University of São Paulo (USP)São Carlos Sao Paulo Brazil
| | - Fernanda F. Anibal
- Department of Morphology and PathologyFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Ana C.M. Rennó
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| |
Collapse
|
46
|
Photobiomodulation and bone healing in diabetic rats: evaluation of bone response using a tibial defect experimental model. Lasers Med Sci 2015. [DOI: 10.1007/s10103-015-1789-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Tschon M, Incerti-Parenti S, Cepollaro S, Checchi L, Fini M. Photobiomodulation with low-level diode laser promotes osteoblast migration in an in vitro micro wound model. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:78002. [PMID: 26140461 DOI: 10.1117/1.jbo.20.7.078002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/03/2015] [Indexed: 05/15/2023]
Abstract
Laser photobiomodulation can improve bone healing, but well-defined treatment parameters are lacking. Saos-2 human osteoblast-like cells were subjected to an in vitro scratch-wound healing assay and irradiated by a 915-nm gallium-aluminum-arsenide diode laser for 0, 48, 96, and 144 s using doses of, respectively, 0, 5, 10, and 15 J/cm(2) . Wound area was measured after 4, 24, 48, and 72 h. Cell viability, DNA content, gene expression, and release of bone-related proteins were evaluated after 24, 48, and 72 h. Laser significantly improved wound healing compared with nonirradiated controls. Cells treated with laser doses of 5 and 10 J/cm(2) reached wound closure after 72 h, followed by 15 J/cm(2) after 96 h. With the cell proliferation inhibitor Mitomycin C, the doses of 10 and 15 J/cm(2) maintained an improved wound healing compared with controls. Laser increased collagen type 1 gene expression with higher doses inducing a longer-lasting effect, whereas transforming growth factor-beta 1 showed comparable or decreased levels in irradiated versus nonirradiated groups, with no effect on protein release. This study demonstrated that laser photobiomodulation at 915 nm promoted wound healing mainly through stimulation of cell migration and collagen deposition by osteoblasts.
Collapse
Affiliation(s)
- Matilde Tschon
- Rizzoli Orthopaedic Institute, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, Bologna 40136, Italy
| | - Serena Incerti-Parenti
- University of Bologna, Unit of Orthodontics, Department of Biomedical and Neuromotor Sciences, via San Vitale 59, Bologna 40125, Italy
| | - Simona Cepollaro
- Rizzoli Orthopaedic Institute, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, Bologna 40136, ItalycUniversity of Bologna, Department of Medical and Surgical Sciences, via Massarenti 9, Bologna 40138, Italy
| | - Luigi Checchi
- University of Bologna, Unit of Periodontology, Department of Biomedical and Neuromotor Sciences, via San Vitale 59, Bologna 40125, Italy
| | - Milena Fini
- Rizzoli Orthopaedic Institute, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, Bologna 40136, Italy
| |
Collapse
|
48
|
Scalize PH, de Sousa LG, Regalo SCH, Semprini M, Pitol DL, da Silva GA, de Almeida Coelho J, Coppi AA, Laad AABL, Prado KFB, Siessere S. Low-level laser therapy improves bone formation: stereology findings for osteoporosis in rat model. Lasers Med Sci 2015; 30:1599-607. [PMID: 26037661 DOI: 10.1007/s10103-015-1773-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/24/2015] [Indexed: 11/26/2022]
Abstract
Low-level laser therapy (LLLT) benefits bone metabolism, but its use needs to be standardized. We evaluated the effects of LLLT on bone defects in calvaria of ovariectomized rats. Stereology was used to calculate tissue repair volume (V tr ), density of trabecular bone volume (Vv t ), total volume of newly formed trabecular bone (Vtot), and the area occupied by collagen fibers (A C ). Fifty-four Wistar rats were submitted to bilateral ovariectomy, and bone defects were created in calvaria after 150 days. The animals were divided into nine groups (n = 6), and 24 h after defects, the treatment started with a 780-nm low-intensity GaAlAs laser: G1, G2, and G3 received 3 sessions of 0, 20, and 30 J/cm(2) respectively; G4, G5, and G6 received 6 sessions of 0, 20, and 30 J/cm(2), respectively; and G7, G8, and G9 received 12 sessions of 0, 20, and 30 J/cm(2), respectively. A normal distribution was found for all of the data. The test used to verify the normality was the Kolmogorov-Smirnov (KS, p > 0.05). The one-way ANOVA followed by Tukey's post hoc test was used for data processing. A difference of p < 0.05 was considered statistically significant. Groups G2 and G1 showed significance for V tr , Vv t , Vtot, and (A C ). Results were significant for (Vv t ) and (Vtot) between G3 and G1. There were no significant results between G5 and G4 as well as between G8 and G7. Groups G6 and G4 results showed statistical difference for V tr , Vv t , Vtot, and (A C ). Groups G9 and G7 showed significance for V tr , Vv t , Vtot, and (A C ). In conclusion, there was new bone formation in the groups that received 20 and 30 J/cm(2) when compared to control groups, but over time, the dose of 30 J/cm(2) showed better stereological parameters when compared to 20 J/cm(2).
Collapse
Affiliation(s)
- Priscilla Hakime Scalize
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP-University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Biomechanical properties: effects of low-level laser therapy and Biosilicate® on tibial bone defects in osteopenic rats. J Appl Biomater Funct Mater 2014; 12:271-7. [PMID: 24700268 DOI: 10.5301/jabfm.5000198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effects of laser therapy and Biosilicate® on the biomechanical properties of bone callus in osteopenic rats. METHODS Fifty female Wistar rats were equally divided into 5 groups (n=10/group): osteopenic rats with intact tibiae (SC); osteopenic rats with unfilled and untreated tibial bone defects (OC); osteopenic rats whose bone defects were treated with Biosilicate® (B); osteopenic rats whose bone defects were treated with 830-nm laser, at 120 J/cm2 (L120) and osteopenic rats whose bone defects were treated with Biosilicate® and 830-nm laser, at 120 J/cm2 (BL120). Ovariectomy (OVX) was used to induce osteopenia. A non-critical bone defect was created on the tibia of the osteopenic animals 8 weeks after OVX. In Biosilicate® groups, bone defects were completely filled with the biomaterial. For the laser therapy, an 830-nm laser, 120 J/cm2 was used. On day 14 postsurgery, rats were euthanized, and tibiae were removed for biomechanical analysis. RESULTS Maximal load and energy absorption were higher in groups B and BL120, according to the indentation test. Animals submitted to low-level laser therapy (LLLT) did not show any significant biomechanical improvement, but the association between Biosilicate® and LLLT was shown to be efficient to enhance callus biomechanical properties. Conversely, no differences were found between study groups in the bending test. CONCLUSIONS Biosilicate® alone or in association with low level laser therapy improves biomechanical properties of tibial bone callus in osteopenic rats.
Collapse
|
50
|
Rodrigues NC, Brunelli R, Abreu DCC, Fernandes K, Parizotto NA, Renno ACM. Morphological aspects and Cox-2 expression after exposure to 780-nm laser therapy in injured skeletal muscle: an in vivo study. Braz J Phys Ther 2014; 18:395-401. [PMID: 25372001 PMCID: PMC4228624 DOI: 10.1590/bjpt-rbf.2014.0057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022] Open
Abstract
Background: The effectiveness of low-level laser therapy in muscle regeneration is still not
well known. Objective: To investigate the effects of laser irradiation during
muscle healing. Method: For this purpose, 63 rats were distributed to 3 groups: non-irradiated control
group (CG); group irradiated at 10 J/cm² (G10); and group irradiated at 50 J/cm²
(G50). Each group was divided into 3 different subgroups (n=7), and on days 7, 14
and 21 post-injury the rats were sacrificed. Results: Seven days post-surgery, the CG showed destroyed zones and extensive myofibrillar
degeneration. For both treated groups, the necrosis area was smaller compared to
the CG. On day 14 post-injury, treated groups demonstrated better tissue
organization, with newly formed muscle fibers compared to the CG. On the 21st day,
the irradiated groups showed similar patterns of tissue repair, with improved
muscle structure at the site of the injury, resembling uninjured muscle tissue
organization. Regarding collagen deposition, the G10 showed an increase in
collagen synthesis. In the last period evaluated, both treated groups showed
statistically higher values in comparison with the CG. Furthermore, laser
irradiation at 10 J/cm2 produced a down-regulation of cyclooxygenase 2 (Cox-2)
immunoexpression on day 7 post-injury. Moreover, Cox-2 immunoexpression was
decreased in both treated groups on day 14. Conclusions: Laser therapy at both fluencies stimulated muscle repair through the formation of
new muscle fiber, increase in collagen synthesis, and down-regulation of Cox-2
expression.
Collapse
Affiliation(s)
- Natalia C Rodrigues
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Roberta Brunelli
- Departamento de Cirurgia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Daniela C C Abreu
- Departamento de Biomecânica, Medicina e Reabilitação do Sistema Locomotor, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Kelly Fernandes
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Nivaldo A Parizotto
- Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Ana C M Renno
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil
| |
Collapse
|