1
|
Rogozina EV, Gurina AA, Chalaya NA, Zoteyeva NM, Kuznetsova MA, Beketova MP, Muratova OA, Sokolova EA, Drobyazina PE, Khavkin EE. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:273. [PMID: 36678985 PMCID: PMC9862067 DOI: 10.3390/plants12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de Bary is the greatest threat to potato production worldwide. Current potato breeding for LB resistance heavily depends on the introduction of new genes for resistance to P. infestans (Rpi genes). Such genes have been discovered in highly diverse wild, primitive, and cultivated species of tuber-bearing potatoes (Solanum L. section Petota Dumort.) and introgressed into the elite potato cultivars by hybridization and transgenic complementation. Unfortunately, even the most resistant potato varieties have been overcome by LB due to the arrival of new pathogen strains and their rapid evolution. Therefore, novel sources for germplasm enhancement comprising the broad-spectrum Rpi genes are in high demand with breeders who aim to provide durable LB resistance. The Genbank of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in St. Petersburg harbors one of the world's largest collections of potato and potato relatives. In this study, LB resistance was evaluated in a core selection representing 20 species of seven Petota series according to the Hawkes (1990) classification: Bulbocastana (Rydb.) Hawkes, Demissa Buk., Longipedicellata Buk., Maglia Bitt., Pinnatisecta (Rydb.) Hawkes, Tuberosa (Rydb.) Hawkes (wild and cultivated species), and Yungasensa Corr. LB resistance was assessed in 96 accessions representing 18 species in the laboratory test with detached leaves using a highly virulent and aggressive isolate of P. infestans. The Petota species notably differed in their LB resistance: S. bulbocastanum Dun., S. demissum Lindl., S. cardiophyllum Lindl., and S. berthaultii Hawkes stood out at a high frequency of resistant accessions (7-9 points on a 9-point scale). Well-established specific SCAR markers of ten Rpi genes-Rpi-R1, Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8, Rpi-blb1/Rpi-sto1, Rpi-blb2, and Rpi-vnt1-were used to mine 117 accessions representing 20 species from seven Petota series. In particular, our evidence confirmed the diverse Rpi gene location in two American continents. The structural homologs of the Rpi-R2, Rpi-R3a, Rpi-R3b, and Rpi-R8 genes were found in the North American species other than S. demissum, the species that was the original source of these genes for early potato breeding, and in some cases, in the South American Tuberosa species. The Rpi-blb1/Rpi-sto1 orthologs from S. bulbocastanum and S. stoloniferum Schlechtd et Bché were restricted to genome B in the Mesoamerican series Bulbocastana, Pinnatisecta, and Longipedicellata. The structural homologs of the Rpi-vnt1 gene that were initially identified in the South American species S. venturii Hawkes and Hjert. were reported, for the first time, in the North American series of Petota species.
Collapse
Affiliation(s)
- Elena V. Rogozina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Alyona A. Gurina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda M. Zoteyeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | | | | | | | | | | | - Emil E. Khavkin
- Institute of Agricultural Biotechnology, Moscow 127550, Russia
| |
Collapse
|
2
|
Muratova (Fadina) OA, Beketova MP, Kuznetsova MA, Rogozina EV, Khavkin EE. South American species <i>Solanum alandiae</i> Card. and <i>S. okadae</i> Hawkes et Hjerting as potential sources of genes for potato late blight resistance. PROCEEDINGS ON APPLIED BOTANY, GENETICS AND BREEDING 2020. [DOI: 10.30901/2227-8834-2020-1-73-83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
For several decades, wild species of Solanum L. section Petota Dumort. have been involved in potato cultivar breeding for robust resistance to pests and diseases. Potato late blight (LB) is caused by oomycete Phytophthora infestans (Mont.) de Bary, and the genes for race-specific resistance to P. infestans (Rpi genes) have been introgressed into cultivated potatoes by remote crosses and trans- or cisgenesis, first from S. demissum Buk. and, more recently, from other wild species, such as S. bulbocastanum Dun., S. stoloniferum Schlechtd. et Bché, and S. venturii Hawkes et Hjerting (according to the nomenclature by Hawkes, 1990). Most wild species already involved in breeding for LB resistance came from North and Central Americas: series Bulbocastana (Rydb.) Hawkes, Demissa Buk. and Longipedicellata Buk., and some Rpi genes of these species have been already characterized in much detail. Rpi genes of South American species, including the series Tuberosa (Rydb.) Hawkes, have not been sufficiently investigated. Among the latter, this study focuses on the Rpi genes of S. alandiae Card. and S. okadae Hawkes et Hjerting. Four accessions of S. alandiae, one accession of S. okadae and 11 clones of interspecific potato hybrids comprising S. alandiae germplasm from the VIR collection were PCR-screened using specific SCAR (Sequence Characterized Amplified Region) markers for eight Rpi genes. SCAR amplicons of five Rpi genes registered in this study were validated by comparing their sequences with those of prototype genes deposited in the NCBI Genbank. Among the structural homologues of Rpi genes found in S. alandiae and S. okadae, of special interest are homologues of CC-NB-LRR resistance genes with broad specificity towards P. infestans races, in particular R2=Rpi-blb3, R8, R9a, Rpi-vnt1 and Rpi-blb2 (94–99, 94–99, 86–89, 92–98 and 91% identity with the prototype genes, respectively). Our data may help to better understand the process of Rpi gene divergence along with the evolution of tuberbearing Solanum species, particularly in the series Tuberosa.
Collapse
Affiliation(s)
| | - M. P. Beketova
- All-Russian Research Institute of Agricultural Biotechnology
| | | | - E. V. Rogozina
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources
| | - E. E. Khavkin
- All-Russian Research Institute of Agricultural Biotechnology
| |
Collapse
|
3
|
Chen X, Lewandowska D, Armstrong MR, Baker K, Lim TY, Bayer M, Harrower B, McLean K, Jupe F, Witek K, Lees AK, Jones JD, Bryan GJ, Hein I. Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1287-1297. [PMID: 29560514 PMCID: PMC5945768 DOI: 10.1007/s00122-018-3078-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/24/2018] [Indexed: 05/22/2023]
Abstract
A broad-spectrum late blight disease-resistance gene from Solanum verrucosum has been mapped to potato chromosome 9. The gene is distinct from previously identified-resistance genes. We have identified and characterised a broad-spectrum resistance to Phytophthora infestans from the wild Mexican species Solanum verrucosum. Diagnostic resistance gene enrichment (dRenSeq) revealed that the resistance is not conferred by previously identified nucleotide-binding, leucine-rich repeat genes. Utilising the sequenced potato genome as a reference, two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (Generic-mapping enrichment Sequencing; GenSeq), respectively, were deployed for the rapid, SNP-based mapping of the resistance through bulked-segregant analysis. Both approaches independently positioned the resistance, referred to as Rpi-ver1, to the distal end of potato chromosome 9. Stringent post-enrichment read filtering identified a total of 64 informative SNPs that corresponded to the expected ratio for significant polymorphisms in the parents as well as the bulks. Of these, 61 SNPs are located on potato chromosome 9 and reside within 27 individual genes, which in the sequenced potato clone DM locate to positions 45.9 to 60.9 Mb. RenSeq- and GenSeq-derived SNPs within the target region were converted into allele-specific PCR-based KASP markers and further defined the position of the resistance to a 4.3 Mb interval at the bottom end of chromosome 9 between positions 52.62-56.98 Mb.
Collapse
Affiliation(s)
- Xinwei Chen
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | | | | | | | - Tze-Yin Lim
- Columbia University, New York, NY, 10027, USA
| | - Micha Bayer
- The James Hutton Institute, ICS, Dundee, DD2 5DA, UK
| | - Brian Harrower
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | - Karen McLean
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | | | - Kamil Witek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7GJ, UK
| | - Alison K Lees
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | - Jonathan D Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7GJ, UK
| | - Glenn J Bryan
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Scotland's Rural College (SRUC), Peter Wilson Building, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Ingo Hein
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK.
- School of Life Sciences, Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK.
| |
Collapse
|
4
|
Di Donato A, Andolfo G, Ferrarini A, Delledonne M, Ercolano MR. Investigation of orthologous pathogen recognition gene-rich regions in solanaceous species. Genome 2017; 60:850-859. [PMID: 28742982 DOI: 10.1139/gen-2016-0217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathogen receptor proteins such as receptor-like protein (RLP), receptor-like kinase (RLK), and nucleotide-binding leucine-rich repeat (NLR) play a leading role in plant immunity activation. The genome architecture of such genes has been extensively investigated in several plant species. However, we still know little about their elaborate reorganization that arose during the plant speciation process. Using recently released pepper and eggplant genome sequences, we were able to identify 1097 pathogen recognition genes (PRGs) in the cultivated pepper Zunla-1 and 775 in the eggplant line Nakate-Shinkuro. The retrieved genes were analysed for their tendency to cluster, using different methods to infer the means of grouping. Orthologous relationships among clustering loci were found, and interesting reshuffling within given loci was observed for each analysed species. The information obtained was integrated into a comparative map to highlight the evolutionary dynamics in which the PRG loci were involved. Diversification of 14 selected PRG-rich regions was also explored using a DNA target-enrichment approach. A large number of gene variants were found as well as rearrangements of sequences encoding single protein domain and changes in chromosome gene order among species. Gene duplication and transposition activity have clearly influenced plant genome R-gene architecture and diversification. Our findings contribute to addressing several biological questions concerning the parallel evolution that occurred between genomes of the family Solanaceae. Moreover, the integration of different methods proved a powerful approach to reconstruct the evolutionary history in plant families and to transfer important biology findings among plant genomes.
Collapse
Affiliation(s)
- A Di Donato
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - G Andolfo
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - A Ferrarini
- b Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - M Delledonne
- b Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie, 15, 37134 Verona, Italy
| | - M R Ercolano
- a Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| |
Collapse
|
5
|
Vossen JH, van Arkel G, Bergervoet M, Jo KR, Jacobsen E, Visser RGF. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1785-96. [PMID: 27314264 PMCID: PMC4983296 DOI: 10.1007/s00122-016-2740-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/04/2016] [Indexed: 05/22/2023]
Abstract
The potato late blight resistance gene R8 has been cloned. R8 is found in five late blight resistant varieties deployed in three different continents. R8 recognises Avr8 and is homologous to the NB-LRR protein Sw-5 from tomato. The broad spectrum late blight resistance gene R8 from Solanum demissum was cloned based on a previously published coarse map position on the lower arm of chromosome IX. Fine mapping in a recombinant population and bacterial artificial chromosome (BAC) library screening resulted in a BAC contig spanning 170 kb of the R8 haplotype. Sequencing revealed a cluster of at least ten R gene analogues (RGAs). The seven RGAs in the genetic window were subcloned for complementation analysis. Only one RGA provided late blight resistance and caused recognition of Avr8. From these results, it was concluded that the newly cloned resistance gene was indeed R8. R8 encodes a typical intracellular immune receptor with an N-terminal coiled coil, a central nucleotide binding site and 13 C-terminal leucine rich repeats. Phylogenetic analysis of a set of representative Solanaceae R proteins shows that R8 resides in a clearly distinct clade together with the Sw-5 tospovirus R protein from tomato. It was found that the R8 gene is present in late blight resistant potato varieties from Europe (Sarpo Mira), USA (Jacqueline Lee, Missaukee) and China (PB-06, S-60). Indeed, when tested under field conditions, R8 transgenic potato plants showed broad spectrum resistance to the current late blight population in the Netherlands, similar to Sarpo Mira.
Collapse
Affiliation(s)
- Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| | - Gert van Arkel
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Marjan Bergervoet
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Kwang-Ryong Jo
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| |
Collapse
|
6
|
Silva A, Parra P, Campos V, Costa S, Vicente C, Ferreira L, Souza R, Mota M. Genetic diversity of Bursaphelenchus cocophilus in South America. NEMATOLOGY 2016. [DOI: 10.1163/15685411-00002980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Molecular characterisation ofBursaphelenchus cocophilus, the causal agent of ‘red ring disease’, is imperative for efficient identification procedures in Brazil and Colombia, because quarantine species such asB. xylophilusandB. mucronatusare already listed in both countries. ITS-1/2 region and D2-D3 segment of LSU rDNA were used to characterise isolates ofB. cocophilusobtained from coconut plantations in Brazil and Colombia. Results from ITS-1/2 and LSU rDNA regions showed that all isolates ofB. cocophilusfrom Brazil and Colombia formed a monophyletic group. The LSU rDNA region indicated that all isolates formed a single monophyletic group with high Bayesian posterior probability (100%). This is the first study on ITS-1/2 for the characterisation ofB. cocophiluspopulations. A species-specific primer was designed for identification ofB. cocophilus.
Collapse
Affiliation(s)
- Arinaldo P. Silva
- Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil
- NemaLab/ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas & Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - Pedro P. Parra
- International Centre for Tropical Agriculture (CIAT), Cali, Colombia
| | - Vicente P. Campos
- Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil
| | - Sara S. Costa
- Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil
| | - Cláudia S.L. Vicente
- NemaLab/ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas & Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
- Department of Environmental Biology, Chubu University, Kasugai, Japan
| | - Letícia G. Ferreira
- Lab. de Pesquisa em Nematologia, CCTA/LEF, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Ricardo M. Souza
- Lab. de Pesquisa em Nematologia, CCTA/LEF, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | - Manuel Mota
- NemaLab/ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas & Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
- Departamento de Ciências da Vida, Universidade Lusófona de Humanidades e Tecnologias, EPCV, C. Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
7
|
Genetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.). G3-GENES GENOMES GENETICS 2015; 5:2357-64. [PMID: 26374597 PMCID: PMC4632055 DOI: 10.1534/g3.115.019646] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications.
Collapse
|
8
|
Jo KR, Visser RGF, Jacobsen E, Vossen JH. Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2 (2) homologs on chromosome IX. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:931-41. [PMID: 25725999 PMCID: PMC4544503 DOI: 10.1007/s00122-015-2480-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/09/2015] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE The durable late blight resistance in potato plant Ma R9 is genetically characterized. A novel R -gene is mapped. The monogenic nature and map positions of R9 are negated and rectified. Late blight of potato (Solanum tuberosum), caused by Phytophthora infestans, can effectively be managed by genetic resistance. The MaR9 differential plant provides durable resistance to a broad spectrum of late blight strains. This resistance is brought about by at least seven genes derived from S. demissum including R1, Rpi-abpt1, R3a, R3b, R4, R8 and, so far uncharacterized resistance gene(s). Here we set out to genetically characterize this additional resistance in MaR9. Three BC1 populations derived from MaR9 were identified that segregated for IPO-C resistance but that lacked R8. One BC1 population showed a continuous scale of resistance phenotypes, suggesting that multiple quantitative resistance genes were segregating. In two other BC1 populations resistance and susceptibility were segregating in a 1:1 ratio, suggesting a single qualitative resistance gene (R9a). A chromosome IX PCR marker, 184-81, fully co-segregated with R9a. The map position of R9a on the distal end of the lower arm of chromosome IX was confirmed using PCR markers GP101 and Stm1021. Successively, cluster-directed profiling (CDP) was carried out, revealing six closely linked markers. CDP(Sw)58, CDP(Sw)59 and CDP(Sw5)10 flanked the R9a gene at the distal end (5.8 cM) and, as expected, were highly homologous to Sw-5. CDP(Tm2)2 flanked R9a on the proximal side (2.9 cM). CDP(Tm2)6 and CDP(Tm2)7 fully co-segregated with resistance and had high homology to Tm-2 (2) , showing that R9a resides in a cluster of NBS-LRR genes with homology to Tm-2 (2) . Besides R9a, additional resistance of quantitative nature is found in MaR9, which remains to be genetically characterized.
Collapse
Affiliation(s)
- Kwang-Ryong Jo
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Evert Jacobsen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Jack H. Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|