1
|
Syafarina I, Mazaya M, Indrawati A, Akbar SZ, Sukowati C, Sadikin R. Skin Microbial Composition and Genetic Mutation Analysis in Precision Medicine for Epidermolysis Bullosa. Curr Drug Targets 2024; 25:404-415. [PMID: 38566380 DOI: 10.2174/0113894501290512240327091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Epidermolysis bullosa (EB) is an inherited skin disease representing a spectrum of rare genetic disorders. These conditions share the common trait that causes fragile skin, resulting in the development of blisters and erosions. The inheritance follows an autosomal pattern, and the array of clinical presentations leads to significant physical suffering, considerable morbidity, and mortality. Despite EB having no cure, effectively managing EB remains an exceptional challenge due to its rarity and complexity, occasionally casting a profound impact on the lives of affected individuals. Considering that EB management requires a multidisciplinary approach, this sometimes worsens the condition of patients with EB due to inappropriate handling. Thus, more appropriate and precise treatment management of EB is essentially needed. Advanced technology in medicine and health comes into the bioinformatics era. Including treatment for skin diseases, omics-based approaches aim to evaluate and handle better disease management and treatment. In this work, we review several approaches regarding the implementation of omics-based technology, including genetics, pathogenic mutation, skin microbiomics, and metagenomics analysis for EB. In addition, we highlight recent updates on the potential of metagenomics analysis in precision medicine for EB.
Collapse
Affiliation(s)
- Inna Syafarina
- Research Center for Computing, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Maulida Mazaya
- Research Center for Computing, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Ariani Indrawati
- Research Center for Data Science and Information, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| | - Sharfina Zahra Akbar
- Department of Nanotechnology Engineering, Airlangga University, Surabaya, Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
- Liver Cancer Unit, Italian Liver Foundation NPO, Fondazione Italiana Fegato ONLUS, Trieste, Italy
| | - Rifki Sadikin
- Research Center for Computing, National Research and Innovation Agency (BRIN), Jakarta Pusat 10340, Indonesia
| |
Collapse
|
2
|
Raj A, Kumar A, Dames JF. Tapping the Role of Microbial Biosurfactants in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. Front Microbiol 2021; 12:791723. [PMID: 35003022 PMCID: PMC8733403 DOI: 10.3389/fmicb.2021.791723] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Pesticides are used indiscriminately all over the world to protect crops from pests and pathogens. If they are used in excess, they contaminate the soil and water bodies and negatively affect human health and the environment. However, bioremediation is the most viable option to deal with these pollutants, but it has certain limitations. Therefore, harnessing the role of microbial biosurfactants in pesticide remediation is a promising approach. Biosurfactants are the amphiphilic compounds that can help to increase the bioavailability of pesticides, and speeds up the bioremediation process. Biosurfactants lower the surface area and interfacial tension of immiscible fluids and boost the solubility and sorption of hydrophobic pesticide contaminants. They have the property of biodegradability, low toxicity, high selectivity, and broad action spectrum under extreme pH, temperature, and salinity conditions, as well as a low critical micelle concentration (CMC). All these factors can augment the process of pesticide remediation. Application of metagenomic and in-silico tools would help by rapidly characterizing pesticide degrading microorganisms at a taxonomic and functional level. A comprehensive review of the literature shows that the role of biosurfactants in the biological remediation of pesticides has received limited attention. Therefore, this article is intended to provide a detailed overview of the role of various biosurfactants in improving pesticide remediation as well as different methods used for the detection of microbial biosurfactants. Additionally, this article covers the role of advanced metagenomics tools in characterizing the biosurfactant producing pesticide degrading microbes from different environments.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, India
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Joanna Felicity Dames
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
3
|
Dai J, Nishi A, Tran N, Yamamoto Y, Dewey G, Ugai T, Ogino S. Revisiting social MPE: an integration of molecular pathological epidemiology and social science in the new era of precision medicine. Expert Rev Mol Diagn 2021; 21:869-886. [PMID: 34253130 DOI: 10.1080/14737159.2021.1952073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Molecular pathological epidemiology (MPE) is an integrative transdisciplinary area examining the relationships between various exposures and pathogenic signatures of diseases. In line with the accelerating advancements in MPE, social science and its health-related interdisciplinary areas have also developed rapidly. Accumulating evidence indicates the pathological role of social-demographic factors. We therefore initially proposed social MPE in 2015, which aims to elucidate etiological roles of social-demographic factors and address health inequalities globally. With the ubiquity of molecular diagnosis, there are ample opportunities for researchers to utilize and develop the social MPE framework. AREAS COVERED Molecular subtypes of breast cancer have been investigated rigorously for understanding its etiologies rooted from social factors. Emerging evidence indicates pathogenic heterogeneity of neurological disorders such as Alzheimer's disease. Presenting specific patterns of social-demographic factors across different molecular subtypes should be promising for advancing the screening, prevention, and treatment strategies of those heterogeneous diseases. This article rigorously reviewed literatures investigating differences of race/ethnicity and socioeconomic status across molecular subtypes of breast cancer and Alzheimer's disease to date. EXPERT OPINION With advancements of the multi-omics technologies, we foresee a blooming of social MPE studies, which can address health disparities, advance personalized molecular medicine, and enhance public health.
Collapse
Affiliation(s)
- Jin Dai
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, United States
| | - Akihiro Nishi
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, United States.,California Center for Population Research, University of California, Los Angeles, CA United States
| | - Nathan Tran
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, United States
| | - Yasumasa Yamamoto
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto Japan
| | - George Dewey
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, United States
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States.,Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States
| |
Collapse
|