1
|
A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering (Basel) 2023; 10:bioengineering10020204. [PMID: 36829698 PMCID: PMC9952306 DOI: 10.3390/bioengineering10020204] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol-gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.
Collapse
|
3
|
Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1246-1262. [PMID: 28575964 DOI: 10.1016/j.msec.2017.05.017] [Citation(s) in RCA: 710] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
Abstract
This review is intended to give a state of the art description of scaffold-based strategies utilized in Bone Tissue Engineering. Numerous scaffolds have been tested in the orthopedic field with the aim of improving cell viability, attachment, proliferation and homing, osteogenic differentiation, vascularization, host integration and load bearing. The main traits that characterize a scaffold suitable for bone regeneration concerning its biological requirements, structural features, composition, and types of fabrication are described in detail. Attention is then focused on conventional and Rapid Prototyping scaffold manufacturing techniques. Conventional manufacturing approaches are subtractive methods where parts of the material are removed from an initial block to achieve the desired shape. Rapid Prototyping techniques, introduced to overcome standard techniques limitations, are additive fabrication processes that manufacture the final three-dimensional object via deposition of overlying layers. An important improvement is the possibility to create custom-made products by means of computer assisted technologies, starting from patient's medical images. As a conclusion, it is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval. PUBMED search terms utilized to write this review were: "Bone Tissue Engineering", "regenerative medicine", "bioactive scaffolds", "biomimetic scaffolds", "3D printing", "3D bioprinting", "vascularization" and "dentistry".
Collapse
Affiliation(s)
- Livia Roseti
- RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| | - Valentina Parisi
- RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| | - Mauro Petretta
- RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| | - Carola Cavallo
- RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| | - Giovanna Desando
- RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| | - Isabella Bartolotti
- RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| | - Brunella Grigolo
- RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| |
Collapse
|
4
|
Xia T, Liu W, Yang L. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine. J Biomed Mater Res A 2017; 105:1799-1812. [DOI: 10.1002/jbm.a.36034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College; Chongqing University; Chongqing 400044 China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College; Chongqing University; Chongqing 400044 China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College; Chongqing University; Chongqing 400044 China
| |
Collapse
|