1
|
Zhou Y, Chen Q, Zhang W, Ye L, Wang Y. The effect of low energy LED red light on osteogenetic differentiation of periodontal ligament stem cell via the ERK5 signal pathway. Lasers Med Sci 2025; 40:52. [PMID: 39873791 DOI: 10.1007/s10103-025-04303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
PURPOSE The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway. METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm2 LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups. The addition of BIX02189 could block the ERK5 signaling pathway. Under irradiation with 5J/cm2 LED red light, the expression levels of the ERK5 gene, related proteins ERK5, p-ERK5, as well as early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by qRT-PCR and Western blot in the osteogenic medium group and the osteogenic medium + BIX02189 group. RESULTS: Both low-energy LED red light and osteogenic medium could induce osteogenesis and differentiation of PDLSCs, upregulating the expression of ALP, Col-1, BSP, and OPN genes in PDLSCs. Their combination also produced a synergistic effect. Moreover, the ERK5 signaling pathway participated in the promoting effect of LED red light on the early to middle-stage osteogenic differentiation of PDLSCs, indicating a positive role of LED red light in this process. CONCLUSIONS: The ERK5 signaling pathway can mediate the promotion of early to middle-stage osteogenic differentiation of PDLSCs by low-energy LED red light.
Collapse
Affiliation(s)
- Yan Zhou
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Qiang Chen
- The Traditional Chinese Medicine Hospital of Longquanyi, Chengdu, 610100, China
| | - Wantong Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Lin Ye
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yao Wang
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Mohaghegh S, Fathi H, Molaasadollah F, Teimoori M, Chiniforush N, Taghipour N, Shekarchi F, Nokhbatolfoghahaei H. Evaluating the effect of strontium ranelate and photobiomodulation on cementogenic and osteogenic differentiation of buccal fat pad-derived stem cells: An in vitro study. Photochem Photobiol 2024; 100:1419-1430. [PMID: 38234287 DOI: 10.1111/php.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/03/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
This study aimed to analyze the impact of strontium ranelate (Str), photobiomodulation (PBM), or their combination of the proliferation, osteogenic differentiation, and cementogenic differentiation of buccal fat pad-derived stem cells. BFPdSCs were exposed to one of the following interventions: (1) PBM (660 nm), (2) PBM (660 nm) + Str, (3) PBM (880 nm), (4) PBM (880 nm) + Str, (5) Str. All study groups had significantly higher osteogenic differentiation than the control group (p < 0.05), and no significant difference existed between the 660 and 808 nm groups (p = 0.97). Compared to the Str group, 660 nm and 880 nm group samples had significantly lower osteogenic differentiation (p < 0.0001), while other groups did not show a significant difference. Regarding cementogenic differentiation, the 660 nm group showed higher values than the 808 nm group (p < 0.01). Compared with the Str group, 660 nm, 660 nm + Str, and 808 nm + Str groups showed significantly higher gene expression (p < 0.05). In the case of osteogenic differentiation, although photobiomodulation alone had a lower inducing effect than strontium ranelate, combining 808 nm diode lasers and strontium ranelate may provide the best results. Moreover, using a 660 nm diode laser and exposing stem cells to strontium ranelate can be the most effective approach to induce cementogenic differentiation.
Collapse
Affiliation(s)
- S Mohaghegh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Fathi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Molaasadollah
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Teimoori
- Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - N Chiniforush
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - N Taghipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Shekarchi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pediatric Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Safari AH, Sadat Mansouri S, Iranpour B, Hodjat M, Hakimiha N. An in vitro study on the effects of photobiomodulation by diode lasers (red, infrared, and red-infrared combination) on periodontal ligament mesenchymal stem cells treated with bisphosphonates. Photochem Photobiol 2024; 100:1399-1407. [PMID: 38217350 DOI: 10.1111/php.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/02/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
This study evaluated the effect of photobiomodulation therapy (PBMT) using 660 and 808 nm diode lasers (individual and in combination) on periodontal ligament mesenchymal stem cells (PDLSCs) in the presence of zoledronic acid (ZA). PDLSCs were cultured for 48 h in DMEM complete medium containing 5 μM ZA. PBMT was done three times with a 24-h interval in groups 1 (660 nm, 5 J/cm2), 2 (880 nm, 3 J/cm2), and 3 (660 + 808 nm) either in normal or ZA-treated culture medium. Control groups did not receive PBMT. Twenty-four hours post-irradiation, cell proliferation and expression of RANKL and OPG were assessed using MTT and real-time PCR tests, respectively. The results showed a significant decrease in cell viability in ZA-treated cells (p < 0.001). Additionally, ZA induced the expression of OPG (p = 0.03) while reducing RANKL (p < 0.001). Cell proliferation was significantly increased in 808 and 660 + 808 nm groups. Moreover, all PBMT groups could significantly increase and decrease the RANKL and OPG, respectively, in the presence of ZA (all p < 0.001). A combination of 660 + 808 nm showed the highest effects on both genes. In conclusion, it seems that PBMT can modulate the effects of ZA by inducing PDLSC proliferation and increasing RANKL-to-OPG gene expression ratio.
Collapse
Affiliation(s)
- Amir Hossein Safari
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Sadat Mansouri
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Babak Iranpour
- Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Alves ED, Benevenuto LGD, Morais BP, Barros MA, Achcar JA, Montrezor LH. Ovarian Microenvironment Modulation by Adipose-Mesenchymal Stem Cells and Photobiomodulation Can Alter Osteoblasts Functions In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1007/s40883-023-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Si D, Su B, Zhang J, Zhao K, Li J, Chen D, Hu S, Wang X. Low-level laser therapy with different irradiation methods modulated the response of bone marrow mesenchymal stem cells in vitro. Lasers Med Sci 2022; 37:3509-3516. [PMID: 36066778 DOI: 10.1007/s10103-022-03624-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/03/2022] [Indexed: 10/14/2022]
Abstract
Low-level laser therapy (LLLT) also known as photobiomodulation is a treatment to change cellular biological activity. The exact effects of LLLT remain unclear due to the different irradiation protocols. The purpose of this study was to investigate the effects of LLLT by three different irradiation methods on the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BMSCs were inoculated in 24-well plates and then irradiated or not (control) with a laser using three different irradiation methods. The irradiation methods were spot irradiation, covering irradiation, and scanning irradiation according to different spot areas (0.07 cm2 or 1.96 cm2) and irradiation areas (0.35 cm2 or 1.96 cm2), respectively. The laser was applied three times at energy densities of 4 J/cm2. The cell proliferation by CCK-8. ALP activity assay, alizarin red, and quantitative real-time polymerase chain reaction (RT-PCR) were performed to assess osteogenic differentiation and mineralization. Increases in cell proliferation was obvious following irradiation, especially for covering irradiation. The ALP activity was significantly increased in irradiated groups compared with non-irradiated control. The level of mineralization was obviously improved following irradiation, particularly for covering irradiation. RT-PCR detected significantly higher expression of ALP, OPN, OCN, and RUNX-2 in the group covering than in the others, and control is the lowest. The presented results indicate that the biostimulative effects of LLLT on BMSCs was influenced by t he irradiation method, and the covering irradiation is more favorable method to promote the proliferation and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Daiwei Si
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Bo Su
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Jingwei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Kui Zhao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - JinMeng Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - DeChun Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - ShiQi Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xintao Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
6
|
Calabrese EJ. Hormesis and bone marrow stem cells: Enhancing cell proliferation, differentiation and resilience to inflammatory stress. Chem Biol Interact 2021; 351:109730. [PMID: 34728189 DOI: 10.1016/j.cbi.2021.109730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
This paper identifies and provides the first detailed assessment of hormetic dose responses by bone marrow stem cells (BMSCs) from a broad range of animal models and humans with particular emphasis on cell renewal (proliferation), cell differentiation and enhancing resilience to inflammatory stress. Such hormetic dose responses are commonly reported, being induced by a broad range of chemicals, including pharmaceuticals (e.g., caffeine, dexamethasone, nicotine), dietary supplements (e.g., curcumin, Ginkgo biloba, green tea extracts. resveratrol, sulforaphane), endogenous agents (e.g., hydrogen sulfide, interleukin 10), environmental contaminants (e.g., arsenic, PFOS) and physical stressor agents (e.g., EMF, shockwaves). Hormetic dose responses reported here for BMSCs are similar to those induced with other stem cell types [e.g., adipose-derived stem cells (ADSCs), dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), neuro stem cells (NSCs), embryonic stem cells (ESCs)], indicating a substantial degree of generality for hormetic responses in stem cells. The paper assesses both the underlying mechanistic foundations of BMSC hormetic responses and their potential therapeutic implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Professor of Toxicology, Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
7
|
Photobiomodulation therapy does not depend on the differentiation of dental pulp cells to enhance functional activity associated with angiogenesis and mineralization. Lasers Med Sci 2021; 36:1979-1988. [PMID: 34374881 DOI: 10.1007/s10103-021-03395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study is to analyze the influence of InGaAlP diode laser (660 nm) with or without an odontogenic medium (OM) in the functional activity of OD-21 cells. Undifferentiated OD-21 pulp cells were cultivated with or without OM and divided into four groups (n = 5): nonirradiated control (C -), nonirradiated + OM (C +), irradiated (L -), and irradiated + OM (L +). Laser application was performed in two sessions of a 24-h interval with an irradiance of 11.3 mW/cm2, energy density of 1 J/cm2, and total cumulative energy/well of 4.6 J. Cell proliferation, VEGF-164 expression, mineralization, and expression of Alp, Runx2, and Dmp1 genes, as well as immunolocalization of RUNX2 and MEPE proteins, were evaluated. Data were analyzed by statistical tests (α = 0.05). All studied groups showed a similar increase in cell proliferation with or without OM. After 7 and 10 days, a significatively higher concentration of VEGF-164 in L - group when compared to C - group was observed. A significant increase in mineralized nodules in the L + was noted when compared to C + in the same conditions. Photobiomodulation upregulated significantly Runx2 and Dmp1 expression after 10 days in L - and after 7 days in L + , with downregulation of Dmp1 after 10 days in L + group. Immunolocalization of RUNX2 and MEPE was expressive after 7 days of culture in the cytoplasm adjacent to the nucleus with a decrease after 10 days, regardless of the presence of OM. Photobiomodulation enhances metabolism associated with angiogenesis, gene expression, and mineralization regardless of the odontogenic medium in OD-21 cells.
Collapse
|
8
|
Pinto H, Goñi Oliver P, Sánchez-Vizcaíno Mengual E. The Effect of Photobiomodulation on Human Mesenchymal Cells: A Literature Review. Aesthetic Plast Surg 2021; 45:1826-1842. [PMID: 33616715 DOI: 10.1007/s00266-021-02173-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/03/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cell-based therapy is known to have the potential to induce angiogenesis. However, there are still some limitations regarding their clinical application. Photomodulation/photobiomodulation is non-invasive and non-toxic phototherapy able to stimulate cell viability, proliferation, differentiation, and migration, when the right irradiation parameters are applied. A review of the published articles on human conditioned-by-photobiomodulation mesenchymal cells in an in vitro set up was carried out. Our aim was to describe the studies' results and identify any possible tendency that might highlight the most suitable procedures. METHODS A search in English of the PubMed database was carried out with the search criteria: photobiomodulation or photoactivation or photomodulation, and mesenchymal cells. All irradiations applied in vitro, on human mesenchymal cells, with wavelengths ranged from 600 to 1000 nm. RESULTS The search yielded 42 original articles and five reviews. Finally, 37 articles were selected with a total of 43 procedures. Three procedures (7.0%) from 620 to 625 nm; 26 procedures (60.5%) from 625 to 740 nm; 13 procedures (30.2%) from 740 to 1000 nm; and one procedure (2.3%) with combinations of wavelengths. Of the 43 procedures, 14 assessed cell viability (n = 14/43, 32.6%); 34 cell proliferation (n = 34/43, 79.1%); 19 cell differentiation (n = 19/43, 44.2%); and three cell migration (n = 3/43, 7.0%). CONCLUSIONS Photobiomodulation is a promising technology that can impact on cell viability, differentiation, proliferation, or migration, leading to enhance its regenerative capacity. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Hernán Pinto
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | - Paloma Goñi Oliver
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | | |
Collapse
|
9
|
Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther 2021; 15:400-413. [PMID: 32013851 DOI: 10.2174/1574888x15666200204123722] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stem cells have attracted the researchers interest, due to their applications in regenerative medicine. Their self-renewal capacity for multipotent differentiation, and immunomodulatory properties make them unique to significantly contribute to tissue repair and regeneration applications. Recently, stem cells have shown increased proliferation when irradiated with low-level laser therapy or Photobiomodulation Therapy (PBMT), which induces the activation of intracellular and extracellular chromophores and the initiation of cellular signaling. The purpose of this study was to evaluate this phenomenon in the literature. METHODS The literature investigated the articles written in English in four electronic databases of PubMed, Scopus, Google Scholar and Cochrane up to April 2019. Stem cell was searched by combining the search keyword of "low-level laser therapy" OR "low power laser therapy" OR "low-intensity laser therapy" OR "photobiomodulation therapy" OR "photo biostimulation therapy" OR "LED". In total, 46 articles were eligible for evaluation. RESULTS Studies demonstrated that red to near-infrared light is absorbed by the mitochondrial respiratory chain. Mitochondria are significant sources of reactive oxygen species (ROS). Mitochondria play an important role in metabolism, energy generation, and are also involved in mediating the effects induced by PBMT. PBMT may result in the increased production of (ROS), nitric oxide (NO), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP). These changes, in turn, initiate cell proliferation and induce the signal cascade effect. CONCLUSION The findings of this review suggest that PBMT-based regenerative medicine could be a useful tool for future advances in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran;
and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, NRF SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research
Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
10
|
Wu Y, Zhu T, Yang Y, Gao H, Shu C, Chen Q, Yang J, Luo X, Wang Y. Irradiation with red light-emitting diode enhances proliferation and osteogenic differentiation of periodontal ligament stem cells. Lasers Med Sci 2021; 36:1535-1543. [PMID: 33719020 DOI: 10.1007/s10103-021-03278-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Abstract
This study aimed to evaluate the effects of low-energy red light-emitting diode (LED) irradiation on the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). PDLSCs were derived from human periodontal ligament tissues of premolars and were irradiated with 0 (control group), 1, 3, or 5 J/cm2 red LED in osteogenic induction medium. Cell proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Osteogenic differentiation activity was evaluated by monitoring alkaline phosphatase (ALP) activity, alizarin red staining, and real-time polymerase chain reaction (RT-PCR) results. Osteoblast-associated proteins (Runx2, OCN, OPN, and BSP) were detected using western blotting. The results of the MTT assay indicated that PDLSCs in the irradiation groups exhibited a higher proliferation rate than those in the control group (P < 0.05). ALP results showed that after 7 days of illumination, only 5 J/cm2 promoted the expression of ALP of PDLSCs. However, after 14 days of illumination, the irradiation treatments did not increase ALP activity. The results of alizarin red staining showed that red LED promoted osteogenic differentiation of the PDLSCs. The real-time polymerase chain reaction (RT-PCR) results demonstrated that red LED upregulated the expression levels of osteogenic genes. Expression of the proteins BSP, OPN, OCN, and Runx2 in the irradiation groups was higher than that in the control group. Our results confirmed that low-energy red LED at 1, 3, and 5 J/cm2 promotes proliferation and osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Yan Wu
- Southwest Medical University, Lu Zhou, 646000, China.,West China-Guang'an Hospital, Sichuan University, Guang'an, 638550, China
| | - Tingting Zhu
- Yantai Stomatological Hospital, Yan Tai, 264000, China
| | - Yaoyao Yang
- Hospital/School of Stomatology, Zunyi Medical University, Zun Yi, 563000, China
| | - Hong Gao
- Yantai Stomatological Hospital, Yan Tai, 264000, China
| | - Chunxia Shu
- Southwest Medical University, Lu Zhou, 646000, China
| | - Qiang Chen
- Southwest Medical University, Lu Zhou, 646000, China
| | - Juan Yang
- Southwest Medical University, Lu Zhou, 646000, China
| | - Xiang Luo
- Southwest Medical University, Lu Zhou, 646000, China
| | - Yao Wang
- Hospital of Stomatology, Southwest Medical University, Lu Zhou, 646000, China.
| |
Collapse
|
11
|
In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration. Int J Mol Sci 2020; 21:ijms21239002. [PMID: 33256246 PMCID: PMC7730548 DOI: 10.3390/ijms21239002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease caused by periodontal bacteria. Recently, periodontal phototherapy, treatment using various types of lasers, has attracted attention. Photobiomodulation, the biological effect of low-power laser irradiation, has been widely studied. Although many types of lasers are applied in periodontal phototherapy, molecular biological effects of laser irradiation on cells in periodontal tissues are unclear. Here, we have summarized the molecular biological effects of diode, Nd:YAG, Er:YAG, Er,Cr:YSGG, and CO2 lasers irradiation on cells in periodontal tissues. Photobiomodulation by laser irradiation enhanced cell proliferation and calcification in osteoblasts with altering gene expression. Positive effects were observed in fibroblasts on the proliferation, migration, and secretion of chemokines/cytokines. Laser irradiation suppressed gene expression related to inflammation in osteoblasts, fibroblasts, human periodontal ligament cells (hPDLCs), and endothelial cells. Furthermore, recent studies have revealed that laser irradiation affects cell differentiation in hPDLCs and stem cells. Additionally, some studies have also investigated the effects of laser irradiation on endothelial cells, cementoblasts, epithelial cells, osteoclasts, and osteocytes. The appropriate irradiation power was different for each laser apparatus and targeted cells. Thus, through this review, we tried to shed light on basic research that would ultimately lead to clinical application of periodontal phototherapy in the future.
Collapse
|
12
|
Wang CY, Hong PD, Wang DH, Cherng JH, Chang SJ, Liu CC, Fang TJ, Wang YW. Polymeric Gelatin Scaffolds Affect Mesenchymal Stem Cell Differentiation and Its Diverse Applications in Tissue Engineering. Int J Mol Sci 2020; 21:ijms21228632. [PMID: 33207764 PMCID: PMC7696434 DOI: 10.3390/ijms21228632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Studies using polymeric scaffolds for various biomedical applications, such as tissue engineering, implants and medical substitutes, and drug delivery systems, have attempted to identify suitable material for tissue regeneration. This study aimed to investigate the biocompatibility and effectiveness of a gelatin scaffold seeded with human adipose stem cells (hASCs), including physical characteristics, multilineage differentiation in vitro, and osteogenic potential, in a rat model of a calvarial bone defect and to optimize its design. This functionalized scaffold comprised gelatin-hASCs layers to improve their efficacy in various biomedical applications. The gelatin scaffold exhibited excellent biocompatibility in vitro after two weeks of implantation. Furthermore, the gelatin scaffold supported and specifically regulated the proliferation and osteogenic and chondrogenic differentiation of hASCs, respectively. After 12 weeks of implantation, upon treatment with the gelatin-hASCs scaffold, the calvarial bone harboring the critical defect regenerated better and displayed greater osteogenic potential without any damage to the surrounding tissues compared to the untreated bone defect. These findings suggest that the present gelatin scaffold is a good potential carrier for stem cells in various tissue engineering applications.
Collapse
Affiliation(s)
- Chia-Yu Wang
- Department of Materials Sciences and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (C.-Y.W.); (P.-D.H.)
| | - Po-Da Hong
- Department of Materials Sciences and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (C.-Y.W.); (P.-D.H.)
| | - Ding-Han Wang
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 112, Taiwan;
| | - Juin-Hong Cherng
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan; (J.-H.C.); (S.-J.C.)
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Shu-Jen Chang
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan; (J.-H.C.); (S.-J.C.)
| | - Cheng-Che Liu
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.L.); (T.-J.F.)
| | - Tong-Jing Fang
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.L.); (T.-J.F.)
| | - Yi-Wen Wang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-8792-3100 (ext. 18749); Fax: +886-2-87923767
| |
Collapse
|
13
|
Biostimulative effect of laser on growth of mesenchymal stem/stromal cells in vitro. Postepy Dermatol Alergol 2020; 37:771-780. [PMID: 33240019 PMCID: PMC7675089 DOI: 10.5114/ada.2020.100487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/14/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction Human adipose tissue-derived mesenchymal stem/stromal cells (hAT-MSCs) are multipotent stromal cells with a high potential application in tissue engineering and regenerative medicine. Laser irradiation of the place where the cells were implanted can stimulate their proliferation, increase the secretion of growth factors and thus increase the therapeutic effect. Aim To evaluate the influence of two lasers: Er:YAG and diode on the growth of hAT-MSCs in vitro. Material and methods hAT-MSCs were isolated from human subcutaneous adipose tissue. Immunophenotype of hAT-MSCs was confirmed by flow cytometry. Multipotency of hAT-MSCs was confirmed by differentiation into adipogenic, osteogenic and chondrogenic lineages. hAT-MSCs were irradiated with Er:YAG laser (wavelength 2940 nm, frequency 5, 10 Hz, doses: 0.1–1.2 J/cm2) for 2 s and 4 s and diode laser (wavelength 635 nm and doses: 1–8 J/cm2) for 5, 10, 20, 30 and 40 s. Cell viability was analysed 24 h after the exposure using MTT assay. Results Growth stimulation of hAT-MSCs after 5 Hz Er:YAG laser exposure, 0.1 J/cm2 dose for 4 s and 0.3 J/cm2 dose for 4 s was shown in comparison with the control group. Significant growth stimulation of hAT-MSCs after diode laser irradiation in doses of 1–4 J/cm2 was demonstrated compared to the control group. Conclusions The presented results indicate that both lasers, Er:YAG and diode can be used to stimulate stem/stromal cell growth in vitro. The biostimulative effect of laser therapy on stromal cells may be used in the future in aesthetic dermatology in combined laser and cell therapy.
Collapse
|
14
|
Zaccara IM, Mestieri LB, Pilar EFS, Moreira MS, Grecca FS, Martins MD, Kopper PMP. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers Med Sci 2020; 35:741-749. [PMID: 32095920 DOI: 10.1007/s10103-019-02931-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
This in vitro study evaluated the role of photobiomodulation therapy (PBMT) on viability and migration of human dental pulp stem cells (hDPSCs) and its association to epigenetic mechanisms such as histone acetylation. The hDPSCs were characterized and assigned into control and PBMT groups. For the PBMT, five laser irradiations at 6-h intervals were performed using a continuous-wave InGaAlP diode laser. Viability (MTT), migration (scratch), and histone acetylation H3 (H3K9ac immunofluorescence) were evaluated immediately after the last irradiation. PBMT significantly increased the viability (P = 0.004). Also, PBMT group showed significantly increased migration of cells in the wound compared to the control in 6 h (P = 0.002), 12 h (P = 0.014) and 18 h (P = 0.083) being faster than the control, which only finished the process at 24 h. PBMT induced epigenetic modifications in hDPSC due to increased histone acetylation (P = 0.001). PBMT increased viability and migration of hDPSCs, which are related with the upregulation of histone acetylation and could be considered a promising adjuvant therapy for regenerative endodontic treatment.
Collapse
Affiliation(s)
- Ivana M Zaccara
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Letícia B Mestieri
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Emily F S Pilar
- Department of Experimental Pathology, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria S Moreira
- Department of Dentistry, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil.,Ibirapuera University, Sao Paulo, Brazil
| | - Fabiana S Grecca
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Manoela D Martins
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Patrícia Maria Poli Kopper
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| |
Collapse
|
15
|
Ahrabi B, Rezaei Tavirani M, Khoramgah MS, Noroozian M, Darabi S, Khoshsirat S, Abbaszadeh HA. The Effect of Photobiomodulation Therapy on the Differentiation, Proliferation, and Migration of the Mesenchymal Stem Cell: A Review. J Lasers Med Sci 2019; 10:S96-S103. [PMID: 32021681 DOI: 10.15171/jlms.2019.s17] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The purpose of this study is to investigate the effect of a low-power laser on the proliferation, migration, differentiation of different types of mesenchymal stem cells (MSCs) in different studies. Methods: The relevant articles that were published from 2004 to 2019 were collected from the sources of PubMed, Scopus, and only the articles specifically examining the effect of a lowpower laser on the proliferation, differentiation, and migration of the MSCs were investigated. Results: After reviewing the literature, only 42 articles were found relevant. Generally, most of the studies demonstrated that different laser parameters increased the proliferation, migration, and differentiation of the MSCs, except the results of two studies which were contradictory. In fact, changing the parameters of a low-power laser would affect the results. On the other hand, the source of the stem cells was reported as a key factor. In addition, the combination of lasers with other therapeutic approaches was found to be more effective. Conclusion: The different parameters of lasers has been found to be effective in the proliferation, differentiation, and migration of the MSCs and in general, a low-power laser has a positive effect on the MSCs, helping to improve different disease models.
Collapse
Affiliation(s)
- Behnaz Ahrabi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Khoramgah
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Noroozian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Diniz IMA, Souto GR, Freitas IDP, de Arruda JAA, da Silva JM, Silva TA, Mesquita RA. Photobiomodulation Enhances Cisplatin Cytotoxicity in a Culture Model with Oral Cell Lineages. Photochem Photobiol 2019; 96:182-190. [PMID: 31424557 DOI: 10.1111/php.13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
Cisplatin plays a central role in cancer chemotherapy, but resistance to this drug remains a major obstacle in treatment. Drawbacks related to cisplatin failure may be associated with cell energy metabolism. This study investigated whether photobiomodulation (PBM) can potentiate the effects of cisplatin on keratinocytes (HaCat) and cancer cells (SCC25 and HN12). Cells were treated with laser (GaAlAs; 660 nm; 60 mW; 0.33 J; 2.14 W cm-2 ; 11.7 J cm-2 and 6 s) and cisplatin (7.8 μg mL-1 ) to evaluate cell viability, Ki-67, VEGF, TGF-β1, EGF expression and ROS production. Observations were validated in the SCC25 cell lineage, where the type of cell death (necrosis/apoptosis) and the amount of ATP were assessed. Cell lineages showed increased sensitivity to cisplatin associated with PBM (Cis-PBM). Ki-67 was augmented in all cell lineages treated with Cis-PBM when compared to cisplatin alone (Cis). Cis or Cis-PBM significantly decreased VEGF expression in cancer cells, while no changes were seen in the expression of TGF-β1 or EGF compared to control. ROS levels were similar in the Cis and Cis-PBM groups. Cells treated with Cis-PBM died by apoptosis, leading to greater consumption of ATP. These observations suggest that PBM may potentiate the effects of cisplatin, leading to increased drug cytotoxicity and enhanced cell death.
Collapse
Affiliation(s)
- Ivana M A Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanna R Souto
- Department of Dentistry, School of Dentistry, Pontifícia Universidade Católica, Belo Horizonte, MG, Brazil
| | - Iuri D P Freitas
- Department of Dentistry, School of Dentistry, Faculdade de SeteLagoas, SeteLagoas, MG, Brazil
| | - José Alcides A de Arruda
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janine M da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcília A Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo A Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR. Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 2019; 34:115-126. [PMID: 30264177 PMCID: PMC6344244 DOI: 10.1007/s10103-018-2620-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Tissue engineering aims to take advantage of the ability of undifferentiated stem cells to differentiate into multiple cell types to repair damaged tissue. Photobiomodulation uses either lasers or light-emitting diodes to promote stem cell proliferation and differentiation. The present study aimed to investigate single and dual combinations of laser wavelengths on mesenchymal stem cells (MSCs). MSCs were derived from rabbit iliac bone marrow. One control and eight laser irradiated groups were designated as Infrared (IR, 810 nm), Red (R, 660 nm), Green (G, 532 nm), Blue (B, 485 nm), IR-R, IR-B, R-G, and B-G. Irradiation was repeated daily for 21 days and cell proliferation, osseous, or cartilaginous differentiation was then measured. RT-PCR biomarkers were SOX9, aggrecan, COL 2, and COL 10 expression for cartilage and ALP, COL 1, and osteocalcin expression for bone. Cellular proliferation was increased in all irradiated groups except G. All cartilage markers were significantly increased by IR and IR-B except COL 10 which was suppressed by IR-B combination. ALP expression was highest in R and IR groups during osseous differentiation. ALP was decreased by combinations of IR with B and with R, and also by G alone. R and B-G groups showed stimulated COL 1 expression; however, COL 1 was suppressed in IR-B, IR-R, and G groups. IR significantly increased osteocalcin expression, but in B, B-G, and G groups it was reduced. Cartilage differentiation was stimulated by IR and IR-B laser irradiation. The effects of single or combined laser irradiation were not clear-cut on osseous differentiation. Stimulatory effects on osteogenesis were seen for R and IR lasers, while G laser had inhibitory effects.
Collapse
Affiliation(s)
- Reza Fekrazad
- Periodontics Department, Dentistry School, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and ResearchNetwork (USERN), Tehran, Iran.
| | - Sohrab Asefi
- Orthodontic Department, Dentistry School, International Campus of Tehran University of Medical Sciences, Tehran, Iran
| | | | - Leila Taghiar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sima Bordbar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
18
|
de Andrade ALM, Luna GF, Brassolatti P, Leite MN, Parisi JR, de Oliveira Leal ÂM, Frade MAC, de Freitas Anibal F, Parizotto NA. Photobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Lasers Med Sci 2018; 34:677-683. [PMID: 30284088 DOI: 10.1007/s10103-018-2642-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/14/2018] [Indexed: 12/01/2022]
Abstract
The use of mesenchymal stem cells (MSCs) in tissue engineering has been extensively investigated. The greater the proliferation of this cellular group, the greater the regenerative and healing capacity of the tissue to which they belong. In this context, photobiomodulation (PBM) is an efficient technique in proliferation of distinct cell types. However, its parameters and mode of action are still unclear and require further investigation. This study aimed to evaluate the PBM action with different energies in MSCs of adipose tissue (hASCs). We used hASCs, seeded in 24-well plates, with 3 × 104 cells per well, in culture media. We used a total of four experimental groups, one with hASCs and simulated PBM and three other groups, which received PBM irradiation at 24, 48, and 72 h, with a 660-nm laser and power of 40 mW and energy of 0.56, 1.96, and 5.04 J. We performed analyses of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor) and trypan blue to evaluate cell proliferation and viability, 1 h after PBM irradiation. Software Graph PadPrism 7.0 was used. Intergroup comparisons were performed with ANOVA two-way and we used the Tukey post hoc test. Mitochondrial activity evaluated by MTT revealed the statistical difference in the first 24 h for group with more high energy when compared to control group; and in the 72 h for two irradiated groups when compared to the control group. The trypan blue test showed significant differences at the end of the experiment for two irradiated groups LG1 (4.52 × 104 ± 0.2) and LG2 (4.85 × 104 ± 0.8), when compared to the control group (1.87 × 104 ± 0.7). Both tests failed to be statistically different at the end of the experiment for groups LG1 and LG2 and observed a reduction in cellular mitochondrial growth and activity for group LG3. We conclude that PBM with energy close to 0.56 and 1.96 J promote proliferation of hASCs, and higher energy, such as 5.04 J, can be harmful.
Collapse
Affiliation(s)
| | - Genoveva Flores Luna
- Department of Medicine, Post-Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Patrícia Brassolatti
- Department of Morphology and Pathology, Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Marcel Nani Leite
- Dermatology Division of Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, 4049-900, Brazil
| | - Julia Risso Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Ângela Merice de Oliveira Leal
- Department of Medicine, Post-Graduate Program in Biotechnology, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Marco Andrey Cipriani Frade
- Dermatology Division of Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, 4049-900, Brazil
| | - Fernanda de Freitas Anibal
- Department of Morphology and Pathology, Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Nivaldo Antonio Parizotto
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
19
|
Babaee A, Nematollahi-Mahani SN, Shojaei M, Dehghani-Soltani S, Ezzatabadipour M. Effects of polarized and non-polarized red-light irradiation on proliferation of human Wharton's jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2018; 504:871-877. [PMID: 30219226 DOI: 10.1016/j.bbrc.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023]
Abstract
Light emitting diode (LED) irradiation has recently been introduced as an encouraging strategy for promotion of cell proliferation. Human umbilical cord Wharton's jelly-derived mesenchymal (hUCM) cells are among the most available mesenchymal cells with a promising application in regenerative medicine. The aim of the present study was to examine the effect of polarized (PL) and non-polarized (NPL) red-light emitted by LED on various proliferation properties of hUCM cells. Cell proliferation was assessed 48 h after irradiation of hUCM cells by different energy densities. Cell density increased to a significant level both in PL and NPL irradiation at 0.954 J/cm2 following WST-1 assay. Staining of irradiated and non-irradiated cells with Hoechst after 3 and 6 days revealed an increased proliferation rate in irradiated cells, but the non-irradiated cells proliferated more than irradiated cells at day 9 of cultivation. Similar results were obtained in trypan blue assay. Scratch repair test for 18 h with an interval of 6 h did not reveal a significant difference between irradiated and non-irradiated cells. In addition, CFU-F assay in PL irradiated cells was higher than control when 500 cells/plate was cultivated. Totally, this study revealed that hUCM cells could be induced to achieve higher number of cells by PL and NPL red-light irradiation after 48 h.
Collapse
Affiliation(s)
- Abdolreza Babaee
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Samereh Dehghani-Soltani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Peat FJ, Colbath AC, Bentsen LM, Goodrich LR, King MR. In Vitro Effects of High-Intensity Laser Photobiomodulation on Equine Bone Marrow-Derived Mesenchymal Stem Cell Viability and Cytokine Expression. Photomed Laser Surg 2017; 36:83-91. [PMID: 29131717 DOI: 10.1089/pho.2017.4344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE This study aimed to examine the influence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on equine bone marrow-derived mesenchymal stem cell (MSC) viability, proliferation, and cytokine expression in vitro. BACKGROUND Photobiomodulation of cells using monochromatic light is a technique designed to influence cellular processes. Previous studies have shown dose-dependent effects of low-level laser irradiation on cell proliferation and cytokine expression in a range of cell types and species. Evidence for the influence of 1064 nm wavelength near-infrared irradiation on MSCs is sparse, and high-energy doses have shown inhibitory effects. METHODS MSC cultures from six horses were exposed to 1064 nm irradiation with an energy density of 9.77 J/cm2 and a mean output power of 13.0 W for 10 sec. MSC viability and proliferation were evaluated through flow cytometry and real-time live cell analysis. Gene expression and cytokine production in the first 24 h after irradiation were analyzed through polymerase chain reaction (PCR), multiplex assay, and enzyme-linked immunosorbent assay. RESULTS No difference in viability was detected between irradiated and control MSCs. Irradiated cells demonstrated slightly lower proliferation rates, but remained within 3.5% confluence of control cells. Twenty-four hours after irradiation, irradiated MSCs demonstrated a significant increase in expression of interleukin (IL)-10 and vascular endothelial growth factor (VEGF) compared with control MSCs. CONCLUSIONS Under these irradiation parameters, equine MSCs remained viable and expressed increased concentrations of IL-10 and VEGF. IL-10 has an anti-inflammatory action by inhibiting the synthesis of proinflammatory cytokines at the transcriptional level. This response to 1064 nm irradiation shows promise in the photobiomodulation of MSCs to enhance their therapeutic properties.
Collapse
Affiliation(s)
- Frances J Peat
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| | - Aimee C Colbath
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| | - Lori M Bentsen
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| | - Laurie R Goodrich
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| | - Melissa R King
- Orthopaedic Research Center, Colorado State University Veterinary Teaching Hospital , Fort Collins, Colorado
| |
Collapse
|
21
|
Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci 2017; 33:95-102. [DOI: 10.1007/s10103-017-2355-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023]
|
22
|
Enhanced survival of ischemic skin flap by combined treatment with bone marrow-derived stem cells and low-level light irradiation. Lasers Med Sci 2017; 33:1-9. [DOI: 10.1007/s10103-017-2312-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
23
|
Liu Y, Zhang H. Low-Level Laser Irradiation Precondition for Cardiac Regenerative Therapy. Photomed Laser Surg 2016; 34:572-579. [PMID: 27627137 DOI: 10.1089/pho.2015.4058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The purpose of this article was to review the molecular mechanisms of low-level laser irradiation (LLLI) preconditioning for heart cell therapy. BACKGROUND DATA Stem cell transplantation appears to offer a better alternative to cardiac regenerative therapy. Previous studies have confirmed that the application of LLLI plays a positive role in regulating stem cell proliferation and in remodeling the hostile milieu of infarcted myocardium. Greater understanding of LLLI's underlying mechanisms would be helpful in translating cell transplantation therapy into the clinic. METHODS Studies investigating LLLI preconditioning for cardiac regenerative therapy published up to 2015 were retrieved from library sources and Pubmed databases. RESULTS LLLI preconditioning stimulates proliferation and differentiation of stem cells through activation of cell proliferation signaling pathways and alteration of microRNA expression. It also could stimulate paracrine secretion of stem cells and alter cardiac cytokine expression in infarcted myocardium. CONCLUSIONS LLLI preconditioning provides a promising approach to maximize the efficacy of cardiac cell-based therapy. Although many studies have reported possible molecular mechanisms involved in LLLI preconditioning, the exact mechanisms are still not clearly understood.
Collapse
Affiliation(s)
- Yiwei Liu
- State Key Laboratory of Cardiovascular Disease and Key laboratory of Cardiac Regenerative Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease and Key laboratory of Cardiac Regenerative Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| |
Collapse
|
24
|
Moskvin SV, Klyuchnikov DY, Antipov EV, Gorina AI, Kiseleva ON. [The influence of continuous low-intensity laser radiation at the red (635 nm) and green (525 nm) wavelengths on the human mesenchymal stem cells in vitro: a review of the literature and original investigations]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2016; 93:32-42. [PMID: 27213947 DOI: 10.17116/kurort2016232-42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED Low-intensity laser radiation can be used as one of the methods for the non-specific regulation of the human mesenchymal stem cell (MSC) activity at the preliminary stage of their in vitro cultivation. The objective of the present study was to estimate the influence of the limiting regimes of continuous low-intensity laser radiation (CLIR) of red (635 nm) and green (525 nm) spectra. MATERIAL AND METHODS The adhesive culture of human mesenchymal stem cells obtained from a donor's umbilical cord tissue was used in the experiments (following 4 passages). They were irradiated using a Lazmik-VLOK laser therapeutic device equipped with the KLO-635-40 (635 nm, 4,9 mW/cm(2)) and KLO-525-50 (525 nm, 5,4 mW/cm(2)) laser diode emitting heads operating in a continuous mode. A special nozzle (jar) for laser and vacuum massage (KB-5, 35 cm in diameter) was employed to fix the heads. The exposure time in all the irradiation regimes was 5 minutes. CONCLUSION The study has demonstrated that neither the morphological features nor the viability of mesenchymal stem cells was altered under the influence of laser irradiation at the aforementioned energy and time parameters. The data obtained indicate that laser irradiation with the limiting levels of the chosen energy parameters produces no positive effect on the cell proliferative activity; more than that, it may cause its inhibition.
Collapse
Affiliation(s)
- S V Moskvin
- Federal state budgetary institution 'State Research Centre of Laser Medicine', Russian Federal Medico-Biological Agency, Moscow, Russia
| | - D Yu Klyuchnikov
- State budgetary healthcare facility 'Samara Regional Centre for Family Planning and Reproduction', Samara, Russia
| | - E V Antipov
- Non-government educational facility of higher professional education 'REAVIZ', Samara, Russia
| | - A I Gorina
- State budgetary healthcare facility 'Samara Regional Centre for Family Planning and Reproduction', Samara, Russia
| | - O N Kiseleva
- Non-government educational facility of higher professional education 'REAVIZ', Samara, Russia
| |
Collapse
|
25
|
Fekrazad R, Asefi S, Allahdadi M, Kalhori KAM. Effect of Photobiomodulation on Mesenchymal Stem Cells. Photomed Laser Surg 2016; 34:533-542. [PMID: 27070113 DOI: 10.1089/pho.2015.4029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this study was to review available literature about the effect of photobiomodulation (PBM) on mesenchymal stem cells (MSCs). BACKGROUND DATA The effects of coherent and noncoherent light sources such as low-level lasers and light-emitting diodes (LEDs) on cells and tissues, known as PBM, form the basis of photomedicine. This treatment technique effects cell function, proliferation, and migration, and plays an important role in tissue regeneration. Stem cells have been found to be helpful elements in tissue regeneration, and the combination of stem cell therapy and laser therapy appears to positively affect treatment results. MATERIALS AND METHODS An electronic search in PubMed was conducted of publications from the previous 12 years. English language articles related to the subject were found using selected key words. The full texts of potentially suitable articles were assessed according to inclusion and exclusion criteria. RESULTS After evaluation, 30 articles were deemed relevant according to the inclusion criteria. The energy density of the laser was 0.7-9 J/cm2. The power used for visible light was 30-110 mW and that used for infrared light was 50-800 mW. Nearly all studies showed that low-level laser therapy had a positive effect on cell proliferation. Similar outcomes were found for LED; however, some studies suggest that the laser alone is not effective, and should be used as an adjunct tool. CONCLUSIONS PBM has positive effects on MSCs. This review concluded that doses of 0.7-4 J/cm2 and wavelengths of 600-700 nm are appropriate for light therapy. The results were dependent upon different parameters; therefore, optimization of parameters used in light therapy to obtain favorable results is required to provide more accurate comparison.
Collapse
Affiliation(s)
- Reza Fekrazad
- 1 Dental Faculty, Periodontology Department, AJA University of Medical sciences , Tehran, Iran
| | - Sohrab Asefi
- 2 Postgraduate of Orthodontics, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | | | | |
Collapse
|
26
|
Peng F. The Effect of 635 nm Red Laser Irradiation on Proliferation of Bone Marrow Stem Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/opj.2016.68b034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Cavalcanti MFXB, Maria DA, de Isla N, Leal-Junior ECP, Joensen J, Bjordal JM, Lopes-Martins RAMB, Diomede F, Trubiani O, Frigo L. Evaluation of the Proliferative Effects Induced by Low-Level Laser Therapy in Bone Marrow Stem Cell Culture. Photomed Laser Surg 2015; 33:610-6. [PMID: 26580583 DOI: 10.1089/pho.2014.3864] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the effect of laser irradiation on dog bone marrow stem cells. BACKGROUND DATA Low doses of low-level red laser positively affect the viability of mesenchymal stem cells, and also increase proliferation. METHODS Low-level laser (wavelength, 660 nm; power output, 50 mW), was applied to dog bone marrow stem cell cultures (DBMSC). The energy densities delivered varied from 1 to 12J/cm(2). The effect of the laser irradiation was evaluated on cell proliferation measured with the MTT colorimetric test, cell cycle phase, and on lipidic peroxidation (free radical production). RESULTS The results indicate that laser irradiation to DBMSC did not change the morphology of the cells, but significantly increased their viability and the number of cells at the G2/M phase with 6, 10, and 12 J/cm(2). On the other hand, malonaldehyde production was significantly enhanced with 8 J/cm(2). CONCLUSIONS The parameters used to irradiate DBMSC increased significantly proliferation without producing high levels of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Marcos Fernando Xisto Braga Cavalcanti
- 1 Postgraduate Department, Cruzeiro do Sul University São Paulo , SP, Brasil .,2 UMR-7365, Faculté de Médecine, CNRS-Université de Lorraine , Vandoeuvre-lés-Nancy, France
| | - Durvanei A Maria
- 3 Biochemistry and Biophysics Laboratory of Institute Butantan São Paulo , SP, Brasil
| | - Natalia de Isla
- 2 UMR-7365, Faculté de Médecine, CNRS-Université de Lorraine , Vandoeuvre-lés-Nancy, France
| | | | - Jon Joensen
- 5 Institute for Physiotherapy, Bergen University College , Bergen Norway
| | - Jan Magnus Bjordal
- 6 Phisiotherapy Research Group, Department of Global and Public Health, University of Bergen , Bergen Norway
| | | | - Francesca Diomede
- 8 Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University , Chieti, Italy
| | - Oriana Trubiani
- 8 Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University , Chieti, Italy
| | - Lucio Frigo
- 1 Postgraduate Department, Cruzeiro do Sul University São Paulo , SP, Brasil
| |
Collapse
|
28
|
Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁCG, Barboza CAG. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 2015; 30:2259-64. [DOI: 10.1007/s10103-015-1803-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/27/2015] [Indexed: 01/09/2023]
|
29
|
Emel'yanov AN, Kir'yanova VV. [The application of stem cells, visible and infrared light in regenerative medicine. Part 1]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2015; 92:51-62. [PMID: 25876436 DOI: 10.17116/kurort2015151-62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The present article was designed to overview the experimental studies of visible and infrared light irradiation of human and animal stem cells (SC) in vitro and in vivo for the evaluation of its photobiomodulatory effects. The results will be used to elaborate substantiation for the choice of the parameters of SC light irradiation and to develop recommendations for the application of this method in regenerative medicine (RM). BACKGROUND The clinical application of light irradiation is a matter of contrsy, in the first place due to the difficulties encountered in the rational choice of irradiation parameters. The theoretical substantiation of such choice remains a stumbling block too despite the long history of photoghromotherapy. There is thus far no reliable theoretical basis for the adequate choice of such irradiation parameters as power density, radiation dose, and exposure time. The experiences with the light application for the purpose of regenerative medicine have never been summarized. RESULTS The present review encompasses 78 articles selected for the basic analysis that report the studies with the use of a variety of SC types. The analysis has demonstrated that clinical investigations into the influence of light on the stem cells are still in their infancy. It was shown that the irradiation parameters need to be chosen taking into consideration the type of the stem cells. Different authors report the achievement of the maximum SC proliferation and differentiation rates at energy densities as high as 50 mW/sq.cm, small radiation doses (around 1 J/sq.cm) and exposure time (on the order of seconds). CONCLUSION The general conclusion for Parts 1 and II of this communication will be presented in the next issue of this journal (number 2, 2015).
Collapse
Affiliation(s)
- A N Emel'yanov
- GBOU VPO 'Severo-Zapadnyj gosudarstvennyj meditsinskij universitet im. I.I. Mechnikova' Minzdrava Rossii, ul. Kirochnaja, 41, Sankt-Peterburg, Rossijskaja Federatsija, 191015
| | - V V Kir'yanova
- GBOU VPO 'Severo-Zapadnyj gosudarstvennyj meditsinskij universitet im. I.I. Mechnikova' Minzdrava Rossii, ul. Kirochnaja, 41, Sankt-Peterburg, Rossijskaja Federatsija, 191015
| |
Collapse
|
30
|
Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 2015; 30:2189-94. [DOI: 10.1007/s10103-015-1730-9] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
|
31
|
Emelyanov AN, Kiryanova VV. Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed Laser Surg 2015; 33:164-74. [PMID: 25692649 DOI: 10.1089/pho.2014.3830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The aim of this article is to review experimental studies of visible and infrared light irradiation of human and animal stem cells (SCs) in vitro and in vivo to assess photobiomodulation effects on their proliferation and differentiation. BACKGROUND DATA The clinical application of light irradiation remains controversial, primarily because of the complexity of the rational choice of irradiation parameters. In laboratories, the theoretical justification underlying the choice of irradiation parameters also remains a challenge. METHODS A systematic review was completed of original research articles that investigated the effects of light irradiation on human and animal SCs in vitro and in vivo (to June 2014). Relevant articles were sourced from PubMed and MEDLINE(®). The search terms were laser (light) therapy (irradiation), stem cells, and phototherapy, stem cells. RESULTS The analysis revealed the importance of cell type when choosing the cell irradiation parameters. The influence of wavelength on the SC proliferation rate seemed to be nonsignificant. The high values of increased proliferation or differentiation were obtained using high power density, low energy density, and short exposure time. SC exposure to light without inducers did not lead to their differentiation. The maximum differentiation was achieved using irradiation parameters different from the ones needed to achieve the maximum proliferation of the same cells. CONCLUSIONS Increased power density and reduced energy density were needed to increase the SC response. Based on the analysis, we have presented a graph of the cell response to generalized photostimulus, and introduced the concepts of "photostress" and "photoshock" to describe the stages of this response.
Collapse
Affiliation(s)
- Artem Nikolaevich Emelyanov
- 1 Laboratory of High Laser and Magnetic Technology, North-Western State Medical University , St. Petersburg, Russia
| | | |
Collapse
|
32
|
Barboza CAG, Ginani F, Soares DM, Henriques ACG, Freitas RDA. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells. EINSTEIN-SAO PAULO 2014; 12:75-81. [PMID: 24728250 PMCID: PMC4898243 DOI: 10.1590/s1679-45082014ao2824] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 12/23/2013] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To evaluate the effect of low-level laser irradiation on the proliferation and possible nuclear morphological changes of mouse mesenchymal stem cells. METHODS Mesenchymal stem cells derived from bone marrow and adipose tissue were submitted to two applications (T0 and T48 hours) of low-level laser irradiation (660 nm; doses of 0.5 and 1.0 J/cm2). The trypan blue assay was used to evaluate cell viability, and growth curves were used to analyze proliferation at zero, 24, 48, and 72 hours. Nuclear alterations were evaluated by staining with DAPI (4'-6-diamidino-2-phenylindole) at 72 hours. RESULTS Bone marrow-derived mesenchymal stem cells responded to laser therapy in a dose-dependent manner. Higher cell growth was observed when the cells were irradiated with a dose of 1.0 J/cm2, especially after 24 hours (p<0.01). Adipose-derived mesenchymal stem cells responded better to a dose of 1.0 J/cm2, but higher cell proliferation was observed after 48 hours (p<0.05) and 72 hours (p<0.01). Neither nuclear alterations nor a significant change in cell viability was detected in the studied groups. CONCLUSION Low-level laser irradiation stimulated the proliferation of mouse mesenchymal stem cells without causing nuclear alterations. The biostimulation of mesenchymal stem cells using laser therapy might be an important tool for regenerative therapy and tissue engineering.
Collapse
Affiliation(s)
| | - Fernanda Ginani
- Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | | | | | | |
Collapse
|
33
|
Pacheco PS, de Oliveira FA, Oliveira RC, Sant'ana ACP, de Rezende MLR, Greghi SLA, Damante CA. Laser phototherapy at high energy densities do not stimulate pre-osteoblast growth and differentiation. Photomed Laser Surg 2014; 31:225-9. [PMID: 23639292 DOI: 10.1089/pho.2012.3434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE The aim of this study is to evaluate the effects of red and infrared lasers at high energy densities on pre-osteoblast MC3T3 proliferation and differentiation. BACKGROUND DATA The acceleration of bone regeneration by low intensity laser irradiation may hold potential benefits in clinical therapy in orthopedics and dentistry. MATERIALS AND METHODS Cells were irradiated with red (660 nm) and infrared (780 nm) lasers (90 and 150 J/cm2, 40 mW). The control group did not receive irradiation. Cell growth was assessed by a colorimetric test (MTT) (24, 48, 72, 96 h) and cell differentiation was evaluated by alkaline phosphatase (ALP) quantification after growth in osteogenic medium (72, 96 h; 7, 14 days). RESULTS None of the irradiation groups had an enhancement in cell growth (p<0.05). The production of ALP was not influenced by irradiation at any period of time (p>0.05). CONCLUSIONS The low intensity laser stimulated neither cell growth nor the production of alkaline phosphatase.
Collapse
|
34
|
Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci 2013; 30:1171-4. [DOI: 10.1007/s10103-013-1436-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022]
|
35
|
Pagin MT, de Oliveira FA, Oliveira RC, Sant'Ana ACP, de Rezende MLR, Greghi SLA, Damante CA. Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 2012. [PMID: 23179312 DOI: 10.1007/s10103-012-1238-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The acceleration of bone regeneration by low-intensity laser irradiation may hold potential benefits in clinical therapy in orthopedics and dentistry. The purpose of this study is to compare the effects of light-emitting diode (LED) and laser on pre-osteoblast MC3T3 proliferation and differentiation. Cells were irradiated with red, infrared, and LED (3 and 5 J/cm(2)). Lasers had a power density of 1 W/cm(2) and irradiation time of 2 and 5 s. LED had a power density of 60 mW/cm(2) and irradiation time of 50 and 83 s. Control group did not receive irradiation. Cell growth was assessed by a colorimetric test (MTT) (24, 48, 72, and 96 h), and cell differentiation was evaluated by alkaline phosphatase (ALP) quantification after growth in osteogenic medium (72 and 96 h and 7 and 14 days). At 24 h, the cell growth was enhanced 3.6 times by LED (5 J/cm(2)), 6.8 times by red laser (3 J/cm(2)), and 10.1 times by red laser (5 J/cm(2)) in relation to control group (p < 0.05). At the other periods, there was no influence of irradiation on cell growth (p > 0.05). The production of ALP was not influenced by irradiation at any period of time (p > 0.05). Low-intensity laser and LED have similar effects on stimulation of cell growth, but no effect on cell differentiation.
Collapse
|
36
|
Wu JY, Wang YH, Wang GJ, Ho ML, Wang CZ, Yeh ML, Chen CH. Low-power GaAlAs laser irradiation promotes the proliferation and osteogenic differentiation of stem cells via IGF1 and BMP2. PLoS One 2012; 7:e44027. [PMID: 22962596 PMCID: PMC3433487 DOI: 10.1371/journal.pone.0044027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/01/2012] [Indexed: 11/18/2022] Open
Abstract
Low-power laser irradiation (LPLI) has been found to induce various biological effects and cellular processes. Also, LPLI has been shown to promote fracture repair. Until now, it has been unclear how LPLI promotes bone formation and fracture healing. The aim of this study was to investigate the potential mechanism of LPLI-mediated enhancement of bone formation using mouse bone marrow mesenchymal stem cells (D1 cells). D1 cells were irradiated daily with a gallium-aluminum-arsenide (GaAlAs) laser at dose of 0, 1, 2, or 4 J/cm(2). The lactate dehydrogenase (LDH) assay showed no cytotoxic effects of LPLI on D1 cells, and instead, LPLI at 4 J/cm(2) significantly promoted D1 cell proliferation. LPLI also enhanced osteogenic differentiation in a dose-dependent manner and moderately increased expression of osteogenic markers. The neutralization experiments indicated that LPLI regulated insulin-like growth factor 1 (IGF1) and bone morphogenetic protein 2 (BMP2) signaling to promote cell proliferation and/or osteogenic differentiation. In conclusion, our study suggests that LPLI may induce IGF1 expression to promote both the proliferation and osteogenic differentiation of D1 cells, whereas it may induce BMP2 expression primarily to enhance osteogenic differentiation.
Collapse
Affiliation(s)
- Jyun-Yi Wu
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Gwo-Jaw Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Chau-Zen Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Ming-Long Yeh
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
- * E-mail: (MY); (CC)
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Physical Medicine and Rehabilitation, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan, Republic of China
- * E-mail: (MY); (CC)
| |
Collapse
|
37
|
Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts--an in vitro study. Lasers Med Sci 2012; 27:423-430. [PMID: 21597948 DOI: 10.1007/s10103-011-0930-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 04/18/2011] [Indexed: 12/12/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for use in regenerative medicine. Several studies have shown that low-level laser irradiation (LLLI) could affect the differentiation and proliferation of MSCs. The aim of this study was to examine the influence of LLLI at different energy densities on BMSCs differentiation into neuron and osteoblast. Human BMSCs were cultured and induced to differentiate to either neuron or osteoblast in the absence or presence of LLLI. Gallium aluminum arsenide (GaAlAs) laser irradiation (810 nm) was applied at days 1, 3, and 5 of differentiation process at energy densities of 3 or 6 J/cm(2) for BMSCs being induced to neurons, and 2 or 4 J/cm(2) for BMSCs being induced to osteoblasts. BMSCs proliferation was evaluated by MTT assay on the seventh day of differentiation. BMSCs differentiation to neurons was assessed by immunocytochemical analysis of neuron-specific enolase on the seventh day of differentiation. BMSCs differentiation to osteoblast was tested on the second, fifth, seventh, and tenth day of differentiation via analysis of alkaline phosphatase (ALP) activity. LLLI promoted BMSCs proliferation significantly at all energy densities except for 6 J/cm(2) in comparison to control groups on the seventh day of differentiation. LLLI at energy densities of 3 and 6 J/cm(2) dramatically facilitated the differentiation of BMSCs into neurons (p < 0.001). Also, ALP activity was significantly enhanced in irradiated BMSCs differentiated to osteoblast on the second, fifth, seventh, and tenth day of differentiation (p < 0.001 except for the second day). Using LLLI at 810 nm wavelength enhances BMSCs differentiation into neuron and osteoblast in the range of 2-6 J/cm(2), and at the same time increases BMSCs proliferation (except for 6 J/cm(2)). The effect of LLLI on differentiation and proliferation of BMSCs is dose-dependent. Considering these findings, LLLI could improve current in vitro methods of differentiating BMSCs prior to transplantation.
Collapse
Affiliation(s)
- Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
38
|
Peng F, Wu H, Zheng Y, Xu X, Yu J. The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 2011; 27:645-53. [PMID: 22016038 DOI: 10.1007/s10103-011-1005-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 09/23/2011] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are promising for use in regenerative medicine. Low-level light irradiation (LLLI) has been shown to modulate various processes in different biological systems. The aim of our study was to investigate the effect of red light emitted from a light-emitting diode (LED) on bone marrow MSCs with or without osteogenic supplements. MSCs both with and without osteogenic supplements were divided into four groups, and each group was irradiated at doses of 0, 1, 2 and 4 J/cm(2). Cellular proliferation was evaluated using WST-8 and 5-ethynyl-2'-deoxyuridine (EdU) fluorescence staining. The alkaline phosphatase activity, mineralization, and expression of osteoblast master genes (Col1α1, Alpl, Bglap and Runx2) were monitored as indicators of MSC differentiation towards osteoblasts. In groups without osteogenic supplements, red light at all doses significantly stimulated cellular proliferation, whereas the osteogenic phenotype of the MSCs was not enhanced. In groups with osteogenic supplements, red light increased alkaline phosphatase activity and mineralized nodule formation, and stimulated the expression of Bglap and Runx2, but decreased cellular proliferation. In conclusion, nonconherent red light can promote proliferation but cannot induce osteogenic differentiation of MSCs in normal media, while it enhances osteogenic differentiation and decreases proliferation of MSCs in media with osteogenic supplements.
Collapse
Affiliation(s)
- Fei Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | | | | | | | | |
Collapse
|
39
|
Carrancio S, Blanco B, Romo C, Muntion S, Lopez-Holgado N, Blanco JF, Briñon JG, San Miguel JF, Sanchez-Guijo FM, del Cañizo MC. Bone marrow mesenchymal stem cells for improving hematopoietic function: an in vitro and in vivo model. Part 2: Effect on bone marrow microenvironment. PLoS One 2011; 6:e26241. [PMID: 22028841 PMCID: PMC3197625 DOI: 10.1371/journal.pone.0026241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/22/2011] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine how mesenchymal stem cells (MSC) could improve bone marrow (BM) stroma function after damage, both in vitro and in vivo. Human MSC from 20 healthy donors were isolated and expanded. Mobilized selected CD34+ progenitor cells were obtained from 20 HSCT donors. For in vitro study, long-term bone marrow cultures (LTBMC) were performed using a etoposide damaged stromal model to test MSC effect in stromal confluence, capability of MSC to lodge in stromal layer as well as some molecules (SDF1, osteopontin,) involved in hematopoietic niche maintenance were analyzed. For the in vivo model, 64 NOD/SCID recipients were transplanted with CD34+ cells administered either by intravenous (IV) or intrabone (IB) route, with or without BM derived MSC. MSC lodgement within the BM niche was assessed by FISH analysis and the expression of SDF1 and osteopontin by immunohistochemistry. In vivo study showed that when the stromal damage was severe, TP-MSC could lodge in the etoposide-treated BM stroma, as shown by FISH analysis. Osteopontin and SDF1 were differently expressed in damaged stroma and their expression restored after TP-MSC addition. Human in vivo MSC lodgement was observed within BM niche by FISH, but MSC only were detected and not in the contralateral femurs. Human MSC were located around blood vessels in the subendoestal region of femurs and expressed SDF1 and osteopontin. In summary, our data show that MSC can restore BM stromal function and also engraft when a higher stromal damage was done. Interestingly, MSC were detected locally where they were administered but not in the contralateral femur.
Collapse
Affiliation(s)
- Soraya Carrancio
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Belen Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Carlos Romo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Sandra Muntion
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - Natalia Lopez-Holgado
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - Juan F. Blanco
- Servicio de Traumatología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jesus G. Briñon
- Departamento de Biologia Celular y Patologia, Universidad de Salamanca, Spain
| | - Jesus F. San Miguel
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Fermin M. Sanchez-Guijo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - M. Consuelo del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
- * E-mail:
| |
Collapse
|
40
|
Wu YH, Wang J, Gong DX, Gu HY, Hu SS, Zhang H. Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 2011; 27:509-19. [PMID: 21956279 DOI: 10.1007/s10103-011-0995-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/12/2011] [Indexed: 12/19/2022]
Abstract
Increased proliferation after low-level laser irradiation (LLLI) has been well demonstrated in many cell types including mesenchymal stem cells (MSCs), but the exact molecular mechanisms involved remain poorly understood. The aim of this study was to investigate the change in mRNA expression in rat MSCs after LLLI and to reveal the associated molecular mechanisms. MSCs were exposed to a diode laser (635 nm) as the irradiated group. Cells undergoing the same procedure without LLLI served as the control group. Proliferation was evaluated using the MTS assay. Differences in the gene expression profiles between irradiated and control MSCs at 4 days after LLLI were analyzed using a cDNA microarray. Gene ontology and pathway analysis were used to find the key regulating genes followed by real-time PCR to validate seven representative genes from the microarray assays. This procedure identified 119 differentially expressed genes. Real-time PCR confirmed that the expression levels of v-akt murine thymoma viral oncogene homolog 1 (Akt1), the cyclin D1 gene (Ccnd1) and the phosphatidylinositol 3-kinase, catalytic alpha polypeptide gene (Pik3ca) were upregulated after LLLI, whereas those of protein tyrosine phosphatase non-receptor type 6 (Ptpn6) and serine/threonine kinase 17b (Stk17b) were downregulated. cDNA microarray analysis revealed that after LLLI the expression levels of various genes involved in cell proliferation, apoptosis and the cell cycle were affected. Five genes, including Akt1, Ptpn6, Stk17b, Ccnd1 and Pik3ca, were confirmed and the PI3K/Akt/mTOR/eIF4E pathway was identified as possibly playing an important role in mediating the effects of LLLI on the proliferation of MSCs.
Collapse
Affiliation(s)
- Yi-he Wu
- Department of Surgery, Cardiovascular Institute & Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China
| | | | | | | | | | | |
Collapse
|
41
|
Murayama H, Sadakane K, Yamanoha B, Kogure S. Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro. Lasers Med Sci 2011; 27:87-93. [DOI: 10.1007/s10103-011-0924-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
42
|
Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 2011; 27:237-49. [DOI: 10.1007/s10103-011-0885-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 01/05/2011] [Indexed: 12/16/2022]
|
43
|
Sommer AP, Zhu D, Mester AR, Försterling HD. Pulsed laser light forces cancer cells to absorb anticancer drugs--the role of water in nanomedicine. ACTA ACUST UNITED AC 2010; 39:169-73. [PMID: 20849242 DOI: 10.3109/10731199.2010.516262] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anticancer drugs executing their function intracellularly enter cancer cells via diffusive processes. Complementary to these slow processes, cells can be forced to incorporate drugs by convection - a more efficient transport process. Transmembrane convection is induced by moderately intense pulsed laser light (or light emitting diodes) changing the structure of nanoscopic water layers in cells. This is a fundamental difference with the method of photodynamic therapy. In a model system we demonstrate that a total irradiation time of one minute is sufficient to completely inhibit proliferation of cancer cells. Transmembrane convection protects healthy cells from extended chemotherapy exposure, could be exploited to overcome multidrug resistance, and is a promising new tool in a variety of therapies as well as in skin rejuvenation.
Collapse
Affiliation(s)
- Andrei P Sommer
- Institute of Micro and Nanomaterials, University of Ulm, Ulm, Germany.
| | | | | | | |
Collapse
|
44
|
|