1
|
Ma J, Yan X, Wang Y, Zhang W, Ma K, Li X, Shen F, Han Y. Insights into the effects of haze pollution on airborne bacterial communities and antibiotic resistance genes in fine particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 378:126494. [PMID: 40409396 DOI: 10.1016/j.envpol.2025.126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 04/24/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Fine particulate matter (PM2.5) is a key component of haze pollution and poses a substantial threat to human health. However, airborne bacteria and antibiotic-resistance genes (ARGs), which are important biological components of PM2.5, have received less attention. In this study, we investigated the combined effects of haze on airborne bacteria and ARGs in PM2.5. Overall, during haze days, high concentrations of airborne bacteria (haze: 4782.24 ± 2689.85 cells/m3; non-haze: 2866.00 ± 1753.95 cells/m3) were observed with unique bacterial community structures. At the genus level, Microvirga, Arthrobacter, and JG30-KF-CM45 were identified as the bacterial biomarkers of haze days. Neutral processes contributed more to the establishment of airborne bacterial communities on haze days (R2 = 0.724) than that on non-hazy days (R2 = 0.338). The pathogenicity of bacterial communities per unit volume of air was significantly higher during haze days (169.36 ± 8.36 cell/m3) than that during non-haze days (112.66 ± 5.92 cell/m3) (p < 0.05). Redundancy analysis indicated that relatively stable atmospheric conditions and high concentrations of water-soluble ions (Na+, Mg2+, Ca2+, and F-), metals (Cd, As, Mn, and Cr), and carbonaceous fractions (elemental carbon) in PM2.5 play critical roles in shaping the bacterial community during haze days. On haze days, airborne ARGs exhibited unique distribution characteristics and network structures with dominant bacteria. This study highlighted the impact of haze days on airborne bacteria and ARGs on PM2.5 and provides a reference for managing the risks of bioaerosols.
Collapse
Affiliation(s)
- Jiahui Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China; School of Energy and Power Engineering, Beihang University, Beijing, 102206, China
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Yi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Wenbo Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Kaili Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xiaopin Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing, 102206, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Liu Q, Wang H, Li X, Tian S, Wu C, Chen Y, Qian S, Zhao S, Zhang W, Cheng F, Yang G, Wang T. A highly thermostable ethyl carbamate-degrading urethanase from Thermoflavimicrobium dichotomicum. Int J Biol Macromol 2025; 307:142245. [PMID: 40112972 DOI: 10.1016/j.ijbiomac.2025.142245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/18/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The carcinogen ethyl carbamate (EC) in food is a potential threat to health. Available urethanases cannot efficiently degrade EC because of their instability or low activity under acidic conditions. Here, a novel thermostable urethanase was identified in Thermoflavimicrobium dichotomicum using a database-mining approach. The enzyme displayed exceptional thermotolerance, with an optimum temperature of 75 °C, and exhibited 58.6 % of its maximum activity at 90 °C. After incubation at temperatures below 70 °C for 30 min, 100 % activity was maintained. Following treatment at 4 °C for 6 h, it retained 59-87 % of its activity at pH 4.0-5.0, demonstrating the highest acid stability reported so far. This enzyme showed good ethanol tolerance. 80.4 % of its activity was retained after incubation in 10 % (v/v) ethanol solution at 37 °C for 1 h. The enzyme exhibited the highest EC affinity (Km, 3.545 mM), and catalytic efficiency (kcat/Km, 46.75 ± 2.34 s-1·mM-1) at pH 4.5. After reacting with 200 U/L purified enzyme at 30 °C for 5 h, 62.4 % and 9.7 % of EC were degraded from rice wine samples with pH 6.0 and 4.5, respectively. Furthermore, the enzyme exhibited significant hydrolytic activity against the 2A carcinogen acrylamide. These findings suggest that this urethanase is a promising industrial enzyme.
Collapse
Affiliation(s)
- Qingtao Liu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China
| | - Han Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xu Li
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China.
| | - Shufang Tian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Chuanchao Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yu Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Senhe Qian
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Shiguang Zhao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenqing Zhang
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Fan Cheng
- Research Center of Xuanjiu Group Co., Ltd., Xuancheng 242000, China
| | - Guoqiang Yang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tianwen Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; Wuhu Green Food Industry Research Institute Co., Ltd., Wuhu 241000, China.
| |
Collapse
|
3
|
Xing S, Shi G, Lu J, Fang C, Li C, Yuan S, Shi F, Lin L, Zhang C. The discrepancy in amino acids within high-temperature Daqu: A novel metabolic marker for the quality evaluation of Daqu. Food Chem 2025; 470:142645. [PMID: 39752740 DOI: 10.1016/j.foodchem.2024.142645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025]
Abstract
Mechanical pressing in Daqu production has introduced quality-affecting variations. Up to now, clear elucidation has not yet been applied to the mechanisms behind this phenomenon, and the determinants of Daqu quality are not yet completely excavated. For this reason, the physicochemical factors, enzyme activity, metabolites, and microbial communities were compared between the mechanical Daqu (MDQ) and traditional Daqu (TDQ) in this paper. The results showed significant differences in amino acids between MDQ and TDQ, with arginine being the key differentiator. High temperature, high moisture, and low acidity were crucial to Daqu's amino acid richness. Additionally, mechanical pressing affected core community stability. Bacillus was the primary biological factor for the discrepancy in amino acids. Further investigation indicated that arginine contributed to the reduction of lactic acid and higher alcohols in Jiupei, confirming that amino acids were potential novel markers affecting the quality of Daqu.
Collapse
Affiliation(s)
- Shuang Xing
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Gailing Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jun Lu
- Guizhou Guotai Digital-Intelligence Liquor Group Co., Ltd. Renhuai, 564500, China
| | - Chao Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changwen Li
- Guizhou Guotai Digital-Intelligence Liquor Group Co., Ltd. Renhuai, 564500, China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feng Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liangcai Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Ren C, Zhao M, Xue T, Geng T, Nie X, Han C, Wen Y, Jia L. Metagenomic and Physicochemical Analyses Reveal Microbial Community and Functional Differences Between Three Different Grades of Hongxin Low-Temperature Daqu. Foods 2025; 14:1104. [PMID: 40238191 PMCID: PMC11988444 DOI: 10.3390/foods14071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Hongxin (HX) is an indispensable Daqu in the production of light-flavor Baijiu (LFB). However, the classification method of HX is highly subjective, and the classification and functional differences in microorganisms in different grades of HX are still unclear. In this study, metagenomics and physiochemical analysis were used to compare three grades of HX (top, first, second) and clarify their brewing functions in LFB. The results showed that a total of 1556 genera and 5367 species were detected in all samples. Bacteria and fungi are the main microorganisms in HX, and the relative abundance of bacteria and fungi is above 4.5:1. Kroppenstedtia (11.43%), Leuconostoc (10.52%), Fructilactobacillus (9.00%) were the top three genera in HX. Although the microbial community composition of the three grades of HX is highly similar, each HX has a specific microbial community structure and macrogene functional characteristics, indicating that they have different brewing functions. The dominant microorganisms in top-grade HX and first-grade HX were mainly positively correlated with energy metabolism and lipid metabolism, while the dominant microorganisms in second-grade HX were mainly positively correlated with carbohydrate metabolism and amino acid metabolism. This study revealed the different fermentation effects of different grades of HX in LFB and provided suggestions for the scientific classification and quality control of HX.
Collapse
Affiliation(s)
- Chao Ren
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Mengke Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Tinghui Xue
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Tianpei Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Xiao Nie
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Chaoyue Han
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Yuge Wen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (C.R.); (M.Z.); (T.X.); (T.G.); (X.N.); (C.H.); (Y.W.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Jinzhong 030801, China
| |
Collapse
|
5
|
Tang Q, Zhang Y, Huang J, Zhou R. Unraveling the unique microbiota and metabolites in three different colors Jiangqu through multidimensional analysis. Food Chem 2025; 466:142256. [PMID: 39612831 DOI: 10.1016/j.foodchem.2024.142256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Tri-colored Jiangqu, including white (WQ), yellow (YQ), and black (BQ)-color Daqu, significantly influence fresh Baijiu yield and quality. The differences in attributes of these Jiangqu types, sourced from two renowned Baijiu enterprises, were investigated using multi-omics approaches. Color intensity negatively correlated with ammonia nitrogen content, but positively with pyroglutamic acid content. 182 volatiles and 291 non-volatiles were identified, with each types exhibiting unique metabolites. Esters, pyrazines, ketones and phenols were predominant in WQ, YQ, and BQ, respectively. The content of peptides, amines, and amino acids with derivatives also showcased the differences of microbiota and metabolic pathways among tri-colored Jiangqu. BQ's characteristic components of L-Tyrosine and acetyl tributyl citrate were closely associated with melanin formation. In YQ, Scopulibacillus and Rhizopus correlated positively with tetramethylpyrazine. Moreover, the bacterial community significantly influenced the metabolic profiles, and synergistic interactions between fungal and bacterial communities were crucial in determining metabolite abundance.
Collapse
Affiliation(s)
- Qiuxiang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Zhao M, Han C, Xue T, Ren C, Nie X, Jing X, Hao H, Liu Q, Jia L. Establishment of a Daqu Grade Classification Model Based on Computer Vision and Machine Learning. Foods 2025; 14:668. [PMID: 40002112 PMCID: PMC11854463 DOI: 10.3390/foods14040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The grade of Daqu significantly influences the quality of Baijiu. To address the issues of high subjectivity, substantial labor costs, and low detection efficiency in Daqu grade evaluation, this study focused on light-flavor Daqu and proposed a two-layer classification structure model based on computer vision and machine learning. Target images were extracted using three image segmentation methods: threshold segmentation, morphological fusion, and K-means clustering. Feature factors were selected through methods including mean decrease accuracy based on random forest (RF-MDA), recursive feature elimination (RFE), LASSO regression, and ridge regression. The Daqu grade evaluation model was constructed using support vector machine (SVM), logistic regression (LR), random forest (RF), k-nearest neighbor (KNN), and a stacking model. The results indicated the following: (1) In terms of image segmentation performance, the morphological fusion method achieved an accuracy, precision, recall, F1-score, and AUC of 96.67%, 95.00%, 95.00%, 0.95, and 0.96, respectively. (2) For the classification of Daqu-P, Daqu-F, and Daqu-S, RF models performed best, achieving an accuracy, precision, recall, F1-score, and AUC of 96.67%, 97.50%, 97.50%, 0.97, and 0.99, respectively. (3) In distinguishing Daqu-P from Daqu-F, the combination of the RF-MDA method and the stacking model demonstrated the best performance, with an accuracy, precision, recall, F1-score, and AUC of 90.00%, 94.44%, 85.00%, 0.89, and 0.95, respectively. This study provides theoretical and technical support for efficient and objective Daqu grade evaluation.
Collapse
Affiliation(s)
- Mengke Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (M.Z.); (C.H.); (T.X.); (C.R.); (X.N.); (X.J.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China
| | - Chaoyue Han
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (M.Z.); (C.H.); (T.X.); (C.R.); (X.N.); (X.J.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China
| | - Tinghui Xue
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (M.Z.); (C.H.); (T.X.); (C.R.); (X.N.); (X.J.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China
| | - Chao Ren
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (M.Z.); (C.H.); (T.X.); (C.R.); (X.N.); (X.J.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China
| | - Xiao Nie
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (M.Z.); (C.H.); (T.X.); (C.R.); (X.N.); (X.J.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (M.Z.); (C.H.); (T.X.); (C.R.); (X.N.); (X.J.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China
| | - Haiyong Hao
- Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Fenyang 032200, China;
| | - Qifang Liu
- College of Information Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Liyan Jia
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (M.Z.); (C.H.); (T.X.); (C.R.); (X.N.); (X.J.)
- Graduate Education Innovation Center on Baijiu Bioengineering in Shanxi Province, Taigu, Jinzhong 030801, China
- Industry Technology Innovation Strategic Alliance on Huangjiu in Shanxi Province, Taigu, Jinzhong 030801, China
| |
Collapse
|
7
|
Yan C, Huang Z, Tu R, Zhang L, Wu C, Wang S, Huang P, Zeng Y, Shi B. Revealing the Differences in Microbial Community and Quality of High-Temperature Daqu in the Southern Sichuan-Northern Guizhou Region. Foods 2025; 14:570. [PMID: 40002014 PMCID: PMC11853950 DOI: 10.3390/foods14040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
High-temperature Daqu is crucial to Jiang-flavor Baijiu production in the Southern Sichuan-Northern Guizhou region of China. However, the complex interplay among microorganisms, enzymes, and metabolites in the Daqu from this region requires further investigation. This study compared four high-temperature Daqu samples from this region, analyzing their physicochemical properties, enzyme activities, volatile compounds, and microbial community composition and function, and exploring the influence of microorganisms on the saccharification and aroma-formation function of Daqu in combination with correlation analysis. The microbial communities in the Daqu samples exhibited functional redundancy, with Desmospora sp. 8437 being consistently dominant (3.6-7.3%). Members of the family Bacillaceae were the principal factors contributing to the differences in starch degradation capacity, protein degradation capacity, and pyrazine content among the Daqu samples, mainly through the amylases and proteases they produce. Kroppenstedtia spp. were principal factors causing the differences in aldehyde and ketone contents, primarily via the lipid degradation enzymes they synthesize. Overall, the bacterial community composition of Daqu greatly influenced its characteristics. This study provided a theoretical basis for understanding the diversity of high-temperature Daqu in the Southern Sichuan-Northern Guizhou region.
Collapse
Affiliation(s)
- Cheng Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (C.Y.); (C.W.); (P.H.); (B.S.)
| | - Zhangjun Huang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; (Z.H.); (R.T.); (L.Z.); (S.W.)
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Rongkun Tu
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; (Z.H.); (R.T.); (L.Z.); (S.W.)
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Liqiang Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; (Z.H.); (R.T.); (L.Z.); (S.W.)
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (C.Y.); (C.W.); (P.H.); (B.S.)
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China; (Z.H.); (R.T.); (L.Z.); (S.W.)
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Ping Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (C.Y.); (C.W.); (P.H.); (B.S.)
| | - Yunhang Zeng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (C.Y.); (C.W.); (P.H.); (B.S.)
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (C.Y.); (C.W.); (P.H.); (B.S.)
| |
Collapse
|
8
|
Chen C, Ni D, Yang Y, Tian J, Yang F, Ye X. Characterizing the microbial community constructure and the metabolites among different colour Moutai Daqu. Food Chem X 2025; 26:102223. [PMID: 40027113 PMCID: PMC11872403 DOI: 10.1016/j.fochx.2025.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
There are three types of Daqu produced during the fermentation of Moutai Daqu, which are named as white, yellow and black Daqu. However, in-depth studies for them are lacking. Herein, the high-throughput sequencing and metabolomics techniques were used to analyze the differences in Moutai Daqu. The findings indicated that the predominant microorganisms in yellow and white Daqu were Kroppenstedtia and Bacillus, while Oceanbacillus and Scopulibacillus emerged as the primary microorganisms in black Daqu. Further exploration revealed that white and black Daqu played important roles in the liquefaction and saccharification processes. Besides, the results of metabolomics reveals that yellow and black Daqu exhibit a higher abundance of up-regulated amino acids and fatty acids, which exert a more significant effect on Moutai Baijiu flavor and bioactivity. This study reveals the differences among the three types of Moutai Daqu through comprehensive analysis, which provides technical support for improving the quality of Moutai Daqu.
Collapse
Affiliation(s)
- Chao Chen
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, Zunyi, China
| | - Derang Ni
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, Zunyi, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Yubo Yang
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, Zunyi, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, Zunyi, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Zhejiang University Zhongyuan Institute, Zhengzhou, China
| |
Collapse
|
9
|
Han X, Ma T, Wu Y, Liu Q, Marie-Colette AK, Mi L, Wang J. Assessment of wheat Qu fermented at medium and high temperatures: Effects of Bupleurum addition on fermentation characteristics, volatile profiles, and microbial communities. Food Res Int 2025; 203:115814. [PMID: 40022341 DOI: 10.1016/j.foodres.2025.115814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 03/03/2025]
Abstract
The quality of wheat Qu significantly influences rice wine production. However, quality control is often challenging due to variations in raw materials, preparation methods, and climatic conditions. Nevertheless, the impact of traditional northern Chinese craftsmanship techniques on the quality of wheat Qu remains largely unexplored, and addressing this gap is crucial for standardizing fermentation processes and optimizing rice wine production. In this study, we investigated the impact of traditional northern Chinese wheat Qu craftsmanship techniques on product quality by comparing the fermentation characteristics, volatile profiles, and microbiomes of three types of wheat Qu (medium-temperature wheat Qu without Bupleurum; medium-temperature wheat Qu with Bupleurum; and high-temperature wheat Qu with Bupleurum). We found that Bupleurum addition and thermal treatment can alter the microbial communities enriched in starters, enhancing fermentation performance and aroma characteristics. Additionally, we identified key aroma compounds and microbial biomarkers that could distinguish among different types of wheat Qu. Finally, statistical analyses and functional prediction assessments suggested that fungi likely drive microbial succession and metabolism in wheat Qu. These findings enable the development of strategies for optimizing wheat Qu production.
Collapse
Affiliation(s)
- Xingquan Han
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tongwei Ma
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yutong Wu
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qinqin Liu
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Akumawah Kyen Marie-Colette
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lan Mi
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing Wang
- Gansu Province Wine Industry Technology Research and Development Center, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
10
|
Zhao L, Zhang W, Niu Y, Chen X, Guo J, Wu Y, Li X, Gu S. Deciphering the fungal symphony: unveiling the fungal dynamics during the fermentation of traditional Chinese strong-flavor Daqu. Front Microbiol 2025; 16:1540118. [PMID: 39927264 PMCID: PMC11802508 DOI: 10.3389/fmicb.2025.1540118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
Daqu, a starter culture rich in microorganisms like bacteria and fungi, is central to vinification and liquor brewing, yet fungal contributions are often understudied. In this study, we used Illumina MiSeq sequencing to investigate the succession of fungal community during Chinese strong-flavor liquor fermentation. The results showed that the alpha and beta diversity of fungal community were significantly different during Daqu fermentation. The dominant phyla and genera are Ascomycota and Saccharomycopsis, respectively. Co-occurrence network analysis identified 10 keystone species during Daqu fermentation, displaying that the positive correlations (99.64%) dominated the fungal network. The redundancy analysis showed that moisture has the most significant influence on the Daqu fungal community. Concurrently, a robust association was observed between 10 keystone fungal genera and environmental parameters such as acidity and moisture. These findings not only elucidated the intricate dynamics of the fungal community succession and the interplays among fungi but also pinpointed the primary drivers of the fungal community and its keystone species during the Daqu fermentation process. Ultimately, this research presented novel perspectives for enhancing the quality and precision of liquor production by shedding light on the central role of keystone species in maintaining community stability and their adaptive responses to environmental stimuli.
Collapse
Affiliation(s)
- Lina Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Wenjing Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yuting Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xiaohan Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Jiuyang Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Henan Engineering Research Center of Food Microbiology, Luoyang, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| |
Collapse
|
11
|
Wang D, Wu C, Hu J, Hu F, Liu L, Huang H, Yang J, Zhao W, Xie D, Zhang J, Zhu A. Exploring the impact mechanisms on different mechanized airing approaches during second round heap fermentation of sauce-flavor Baijiu: From physicochemical parameters, microbial diversity to volatile flavor compounds. Food Res Int 2025; 199:115359. [PMID: 39658161 DOI: 10.1016/j.foodres.2024.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The airing process of sauce-flavor Baijiu is a critical operation that serves the functions of cooling, homogenizing, and facilitating microbial proliferation and metabolism. Comprehensive analysis of physicochemical parameters, bacterial and fungal community of fermented grains, and volatile flavor compounds of soy-sauce (Jiangxiang) and mellow-sweet (Chuntian) typical base liquors among traditional (CT) and two different mechanized (JXA and JXB) airing operations were investigated. The results indicated that the dynamic variation patterns of moisture content, total titratable acidity, starch content, lactic acid, acetic acid, pH, and dominated microbial composition among CT, JXA, and JXB were similar, while minor bacterial genera with relative abundance including unclassified Micrococcineae, unclassified Rhizobiales, etc, and dominated fungi such as Torulaspora, Hyphopichia, Candida, Pichia, and Penicillium were profoundly influenced by mechanized airing operations, especially by JXB. A total of 100 and 101 volatile flavor compounds were qualitatively and quantitatively detected from soy-sauce (Jiangxiang) and mellow-sweet (Chuntian) typical base liquors. Mechanized airing operations were more consistent with CT for mellow-sweet (Chuntian) typical base liquors, but 2,3-dimethyl-5-ethylpyrazine, 2,3-dimethylpyrazine, tetramethylpyrazine and ethyl benzoate etc. were more abundant in soy-sauce (Jiangxiang) typical base liquors by mechanized airing operations, which were mainly associated with Leuconostoc, Acetoanaerobium, Limnohabitans and Bradyhizobium etc. This study provides a theoretical evidence for understanding the relationships among physicochemical parameters, microbial communities and volatile flavor compounds during second round heap fermentation of sauce-flavor Baijiu, laying a foundation for further elucidating the mechanized brewing mechanisms.
Collapse
Affiliation(s)
- Diqiang Wang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Cheng Wu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Jianfeng Hu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Feng Hu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China
| | - Liping Liu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Heou Huang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Junlin Yang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Wenyu Zhao
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Dan Xie
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Jian Zhang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Anran Zhu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| |
Collapse
|
12
|
Wu X, Zhao X, Wang L, Chen B, Li F, Tang Z, Wu F. Unraveling the regional environmental ecology dominated baijiu fermentation microbial community succession and associated unique flavor. Front Microbiol 2024; 15:1487359. [PMID: 39545237 PMCID: PMC11560788 DOI: 10.3389/fmicb.2024.1487359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Chinese baijiu as one of the famous distilled liquor in which fermented in open environments, with various microorganisms (i.e., bacteria, fungi, and yeast) involved in their brewing process, and created corresponding unique flavor. However, the sources of environmentally enriched microbial communities associated with liquor fermentation are still being characterized yet. Given the dependence of microbial growth and reproduction on environmental ecology, it is important to understand the correlation between baijiu fermentation microbial community and surrounding environmental ecology (i.e., temperature, humidity, wind, and precipitation). This study systematically overviewed the sources of microorganisms in the Jiang-flavor-Baijiu fermentation system. The results showed that microorganisms in baijiu brewing (i.e., mold, lactic acid bacteria, and yeast) mainly originated from surrounding environmental matrices, including the air (i.e., Yeast, Streptomyces and Bacillus), soil (i.e., Xanthomonas, Methanococcus and Comamonas) and water (i.e., Flavobacterium, Acinetobacter, and Pseudomonas) via atmospheric transport, raw material transfer and surface runoff. In addition, the unique baijiu fermentation microbial community diversity depends on local geology and meteorological conditions, highlighting that the structural stability and diversity of the microorganisms in the Baijiu brewing process dominated by local environmental ecology. We also explored the regional environmental conditions on the microbial community and found that the unique Jiang-flavor-Baijiu fermentation microbial community diversity depends on local geology and meteorological conditions. The Jiang-flavor-Baijiu workshop is located in the basin of the middle-and low latitude mountainous areas, with sufficient solar irradiation and rainfall, high air humidity, and low wind speed that favor the growth and propagation of Baijiu fermentation microorganisms. Therefore, the obtained conclusions provide new insights unraveling the key factor controlling the unique flavor of Chinese Baijiu, where protecting the ecology of baijiu brewing-regions is fundamental for maintaining the long-term quality of baijiu.
Collapse
Affiliation(s)
- Xiaowei Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Li Wang
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
- Chishui River Middle Basin, Watershed Ecosystem, Observation and Research Station of Guizhou Province, Guiyang, China
| | - Bi Chen
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
- Chishui River Middle Basin, Watershed Ecosystem, Observation and Research Station of Guizhou Province, Guiyang, China
| | - Fangzhou Li
- Kweichow Moutai Distillery Co., Ltd., Renhuai, China
- Chishui River Middle Basin, Watershed Ecosystem, Observation and Research Station of Guizhou Province, Guiyang, China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
13
|
Nie X, Jia X, Zhu K, Ling Z, Chen H, Xie J, Ao Z, Song C, Shen C, Zhu C, Yan W, Wang J, Wang Y, Zhao Z. Dynamic Changes and Potential Correlations between Microbial Diversity and Volatile Flavor Compounds in Chinese Medium-Temperature Daqu during Manufacturing. Molecules 2024; 29:4851. [PMID: 39459219 PMCID: PMC11509951 DOI: 10.3390/molecules29204851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
To investigate the dynamic changes and potential correlations between microbial diversity and volatile organic compounds (VOCs) during Chinese medium-temperature Daqu (MTD) manufacturing at different key stages, in this study, high-throughput sequencing (HTS) and gas chromatography-ion mobility spectrometry (GC-IMS) were employed to analyze the microbial diversity and VOCs of MTD, respectively. The results showed that Weissella, Staphylococcus, Thermoactinomyces, Kroppenstedtia, and Lactobacillus were the dominant bacterial genera, while Aspergillus, Alternaria, Thermoascus, Thermomyces, Wickerhamomyces, and Saccharomyces were the dominant fungal genera. A total of 61 VOCs were detected by GC-IMS, among which, 13 differential VOCs (VIP > 1) were identified, that could be used as potential biomarkers to judge the fermentation stage of MTD. Kroppenstedtia and Saccharopolyspora were positively correlated with 3-methyl-2-butenal and 2,2,4,6,6-pentamethylheptane-D, respectively, and both of these were positively correlated with butanal-D. Acetobacter, Streptomyces, and lactic acid bacteria (LAB) including Leuconostoc, Pediococcus, Weissella, and Lactobacillus were negatively correlated with their associated VOCs, while fungi were generally positively correlated with VOCs. Wickerhamomyces, Saccharomyces, and Candida were positively correlated with butan-2-one-M. This study provides a theoretical basis for explaining the mechanisms of MTD flavor formation and screening functional microorganisms to improve the quality of MTD.
Collapse
Affiliation(s)
- Xin Nie
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Xiaohan Jia
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Kaixian Zhu
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Ziqing Ling
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Hongfan Chen
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Jing Xie
- Culinary Science Key Laboratory of Sichuan Provincial Universities, College of Culinary and Food Science Engineering, Sichuan Tourism University, Chengdu 610100, China
| | - Zonghua Ao
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | | | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Wei Yan
- Inner Mongolia Hetao Liquor Group Co., Ltd., Bayan Nur 015400, China
| | - Jiabin Wang
- Inner Mongolia Hetao Liquor Group Co., Ltd., Bayan Nur 015400, China
| | - Yijing Wang
- School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China
| | - Zhiping Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
14
|
Han PJ, Song L, Wen Z, Zhu HY, Wei YH, Wang JW, Bai M, Luo LJ, Wang JW, Chen SX, You XL, Han DY, Bai FY. Species-level understanding of the bacterial community in Daqu based on full-length 16S rRNA gene sequences. Food Microbiol 2024; 123:104566. [PMID: 39038883 DOI: 10.1016/j.fm.2024.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 07/24/2024]
Abstract
Daqu is used as the fermentation starter of Baijiu and contributes diversified functional microbes for saccharifying grains and converting sugars into ethanol and aroma components in Baijiu products. Daqu is mainly classified into three types, namely low (LTD), medium (MTD) and high (HTD) temperature Daqu, according to the highest temperatures reached in their fermentation processes. In this study, we used the PacBio small-molecule real-time (SMRT) sequencing technology to determine the full-length 16 S rRNA gene sequences from the metagenomes of 296 samples of different types of Daqu collected from ten provinces in China, and revealed the bacterial diversity at the species level in the Daqu samples. We totally identified 310 bacteria species, including 78 highly abundant species (with a relative abundance >0.1% each) which accounted for 91.90% of the reads from all the Daqu samples. We also recognized the differentially enriched bacterial species in different types of Daqu, and in the Daqu samples with the same type but from different provinces. Specifically, Lactobacillales, Enterobacterales and Bacillaceae were significantly enriched in the LTD, MTD and HTD groups, respectively. The potential co-existence and exclusion relationships among the bacteria species involved in all the Daqu samples and in the LTD, MTD and HTD samples from a specific region were also identified. These results provide a better understanding of the bacterial diversity in different types of Daqu at the species level.
Collapse
Affiliation(s)
- Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Zhang Wen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jian-Wei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Hebei, Baoding, 071002, PR China
| | - Mei Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Hebei, Baoding, 071002, PR China
| | - Lu-Jun Luo
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, 032205, PR China
| | - Ju-Wei Wang
- Jiangsu King's Luck Brewery Joint-Stock Co. Ltd., Lianshui, 223400, PR China
| | - Shen-Xi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co. Ltd., Huangshi, 435100, PR China
| | | | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
15
|
Xu S, Zhou H, Xu B, Liu W, Hu W, Xu Q, Hong J, Liu Y, Li X. Deciphering layer formation in Red Heart Qu: A comprehensive study of metabolite profile and microbial community influenced by raw materials and environmental factors. Food Chem 2024; 451:139377. [PMID: 38703722 DOI: 10.1016/j.foodchem.2024.139377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 04/13/2024] [Indexed: 05/06/2024]
Abstract
Environmental-origin microbiota significantly influences Red Heart Qu (RH_Qu) stratification, but their microbial migration and metabolic mechanisms remain unclear. Using high-throughput sequencing and metabolomics, we divided the stratification of RH_Qu into three temperature-based stages. Phase I features rising temperatures, causing microbial proliferation and a two-layer division. Phase II, characterized by peak temperatures, sees the establishment of thermotolerant species like Bacillus, Thermoactinomyces, Rhodococcus, and Thermoascus, forming four distinct layers and markedly altering metabolite profiles. The Huo Quan (HQ), developing from the Pi Zhang (PZ), is driven by the tyrosine-melanin pathway and increased MRPs (Maillard reaction products). The Hong Xin evolves from the Rang, associated with the phenylalanine-coumarin pathway and QCs (Quinone Compounds) production. Phase III involves the stabilization of the microbial and metabolic profile as temperatures decline. These findings enhance our understanding of RH_Qu stratification and offer guidance for quality control in its fermentation process.
Collapse
Affiliation(s)
- Shanshan Xu
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Hao Zhou
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Boyang Xu
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Wuyang Liu
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Weiqi Hu
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China
| | - Qinxiang Xu
- Anhui Kouzi Brewery Co., Ltd., No.9 South Xiangshan Road, Huaibei City 235199, Anhui Province, People's Republic of China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, No.443 Huangshan Road, Hefei 230026, Anhui Province, People's Republic of China
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No.7 Pengfei Road, Shenzhen city 518120, Guangdong province, People's Republic of China.
| | - Xingjiang Li
- School of Food and Biological Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City 230009, Anhui Province, People's Republic of China.
| |
Collapse
|
16
|
Ren H, Sun Y, Yang Y, Li Y, Guo X, Zhang B, Zhao H, Ma D, Zhang Z. Unraveling the correlations between microbial communities and metabolic profiles of strong-flavor Jinhui Daqu with different storage periods. Food Microbiol 2024; 121:104497. [PMID: 38637068 DOI: 10.1016/j.fm.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Daqu is a saccharification agent required for fermenting Baijiu, a popular Chinese liquor. Our objective was to investigate the relationships between physicochemical indices, microbial community diversity, and metabolite profiles of strong-flavor Jinhui Daqu during different storage periods. During different storage periods of Jinhui Daqu, we combined Illumina MiSeq sequencing and non-target sequencing techniques to analyze dynamic changes of the microbial community and metabolite composition, established a symbiotic network and explored the correlation between dominant microorganisms and differential metabolites in Daqu. Fungal community diversity in 8d_Daqu was higher than that in 45d_Daqu and 90d_Daqu, whereas bacterial community diversity was higher in 90d_Daqu. Twelve bacterial and four fungal genera were dominant during storage of Daqu. Bacillus, Leuconostoc, Kroppenstedtia, Lactococcus, Thermomyces and Wickerhamomyces decreased as the storage period increased. Differences of microbiota structure led to various metabolic pathways, and 993 differential metabolites were found in all Daqu samples. Differential microorganisms were significantly related to key metabolites. Major metabolic pathways involved in the formation of amino acids and lipids, such as l-arogenate and hydroxyproline, were identified. Interactions between moisture, acidity, and microbes may drive the succession of the microbial community, which further affects the formation of metabolites.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China; China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China
| | - Yifan Sun
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China; China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China
| | - Yefei Yang
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China
| | - Yunfan Li
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China.
| | - Bingyun Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China
| | - Hongyuan Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China; China Northwest Collaborative Innovation Center of Low-carbon Urbanization Technologies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province, 730050, PR China
| | - Donglin Ma
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, Guangdong Province, 524088, PR China.
| | - Zhiliang Zhang
- Jinhui Liquor Co. Ltd., Longnan, Gansu Province, 742300, PR China
| |
Collapse
|
17
|
Ge D, Cai W, Guo Z, Wang B, Liu M, Shan C, Wang Y. Comparative analysis of bacterial community structure and physicochemical quality in high-temperature Daqu of different colors in Qingzhou production area. Heliyon 2024; 10:e31718. [PMID: 38828313 PMCID: PMC11140805 DOI: 10.1016/j.heliyon.2024.e31718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
To compare the effects of differences in Daqu making technology and production regions on the bacterial composition and physicochemical properties of high-temperature Daqu (HTD), this study analyzed the bacterial community structure of three colors of HTD in the Qingzhou production area and measured their physicochemical quality. At the same time, a comparative analysis was conducted on the bacterial composition of Qingzhou and Xiangyang regions. The results revealed that the HTD in the Qingzhou area exhibited a diverse bacterial community dominated by Lentibacillus, Scopulibacillus, and Staphylococcus. The black HTD displayed the lowest bacterial richness (P < 0.05) and a relatively unique microbial structure. Significant variations were observed in the physicochemical qualities of the three colors of HTD. Notably, white HTD demonstrated higher moisture and ash content, saccharification and liquor-producing power. Yellow HTD exhibited higher amino nitrogen and protein content, and black HTD displayed higher water activity, acidity, and starch content. The variation in Bacillus, Limosilactobacillus, and Weissella distributions across different colors of HTD primarily contributed to these findings. From the HTD samples in the Qingzhou area, Bacillus (61.90 %) and lactic acid bacteria (17.46 %) being the predominant cultivable communities. Cluster analysis identified significant differences in bacterial communities among HTD samples from various production areas. It can enhance the understanding of HTD quality in the Qingzhou area and offer insights for optimizing HTD and Maotai-flavor Baijiu quality.
Collapse
Affiliation(s)
- Dongying Ge
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenchao Cai
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Bangkun Wang
- Shandong Qingzhou Yunmen Wine Industry (Group) Co., Ltd, Qingzhou, Shandong, China
| | - Minwan Liu
- Shandong Qingzhou Yunmen Wine Industry (Group) Co., Ltd, Qingzhou, Shandong, China
| | - Chunhui Shan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
18
|
Hou Q, Wang Y, Qu D, Zhao H, Tian L, Zhou J, Liu J, Guo Z. Microbial communities, functional, and flavor differences among three different-colored high-temperature Daqu: A comprehensive metagenomic, physicochemical, and electronic sensory analysis. Food Res Int 2024; 184:114257. [PMID: 38609235 DOI: 10.1016/j.foodres.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
High-temperature Daqu (HTD) is the starter for producing sauce-flavor Baijiu, with different-colored Daqu (white, yellow, and black) reflecting variations in fermentation chamber conditions, chemical reactions, and associated microbiota. Understanding the relationship between Daqu characteristics and flavor/taste is challenging yet vital for improving Baijiu fermentation. This study utilized metagenomic sequencing, physicochemical analysis, and electronic sensory evaluation to compare three different-colored HTD and their roles in fermentation. Fungi and bacteria dominated the HTD-associated microbiota, with fungi increasing as the fermentation temperature rose. The major fungal genera were Aspergillus (40.17%) and Kroppenstedtia (21.16%), with Aspergillus chevalieri (25.65%) and Kroppenstedtia eburnean (21.07%) as prevalent species. Microbial communities, functionality, and physicochemical properties, particularly taste and flavor, were color-specific in HTD. Interestingly, the microbial communities in different-colored HTDs demonstrated robust functional complementarity. White Daqu exhibited non-significantly higher α-diversity compared to the other two Daqu. It played a crucial role in breaking down substrates such as starch, proteins, hyaluronic acid, and glucan, contributing to flavor precursor synthesis. Yellow Daqu, which experienced intermediate temperature and humidity, demonstrated good esterification capacity and a milder taste profile. Black Daqu efficiently broke down raw materials, especially complex polysaccharides, but had inferior flavor and taste. Notably, large within-group variations in physicochemical quality and microbial composition were observed, highlighting limitations in color-based HTD quality assessment. Water content in HTD was associated with Daqu flavor, implicating its crucial role. This study revealed the complementary roles of the three HTD types in sauce-flavor Baijiu fermentation, providing valuable insights for product enhancement.
Collapse
Affiliation(s)
- Qiangchuan Hou
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China
| | - Yurong Wang
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China
| | - Dingwu Qu
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China
| | - Huijun Zhao
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China
| | - Longxin Tian
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China; Xiangyang Key Laboratory of Solid State Fermentation of Jiangxiang Baijiu, Xiangyang, Hubei Province, PR China
| | - Jiaping Zhou
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China; Xiangyang Key Laboratory of Solid State Fermentation of Jiangxiang Baijiu, Xiangyang, Hubei Province, PR China
| | - Juzhen Liu
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China; Xiangyang Key Laboratory of Solid State Fermentation of Jiangxiang Baijiu, Xiangyang, Hubei Province, PR China
| | - Zhuang Guo
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Xiangyang, Hubei Province, PR China; Xiangyang Jiangxiang Baijiu Solid State Fermentation Enterprise-School Joint Innovation Center, Xiangyang, Hubei Province, PR China.
| |
Collapse
|
19
|
Hu P, Wang J, Ali U, Aziz T, Sameeh MY, Feng C. Comparative study on physicochemical properties, microbial composition, and the volatile component of different light flavor Daqu. Food Sci Nutr 2023; 11:5174-5187. [PMID: 37701186 PMCID: PMC10494650 DOI: 10.1002/fsn3.3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Baijiu, a type of liquor, is known for its pure fragrance and softness. Its unique style is attributed to the complex microbial flora and flavor precursors found in Daqu. In order to elaborate the nature of light flavor Daqu to guide the baijiu production, four Daqu samples (DQ1, DQ2, DQ3, and DQ4) from Shanxi province were analyzed to determine their microbial structure, physicochemical properties, and volatile flavors using high-throughout put seqencing and headspace solid-phase microextraction/gas chromatography-mass spectrometry method in this study. The findings indicated that there were no noticeable variations in the water content and esterase activity of the four Daqu. However, the DQ2 sample had a higher acidity value and saccharifying enzyme activity, whereas DQ3 had the highest protease activity. The microbial community structure of the four Daqu was similar, with Lactobacillus and Streptophyta as the dominant bacteria, but the abundance of bacteria was different among the four Daqu. Issachenkia was a common dominant fungus genus in all samples. Rhizopus and Lichtemia were higher in DQ1 and DQ2, while Torulaspora, Aspergillus, and Candida were more prevalent in DQ4. A total of 27 volatile components were detected in the four Daqu, including esters, alcohols, ketones, aldehydes, and acids. DQ2 had the most volatile components and ethyl lactate and ethyl acetate were the most significant esters in the four samples. In conclusion, the physicochemical indicators of the four light flavor Daqu had distinct differences. There were significant variations in the abundance of bacteria and fungi, leading to differences in the volatile component content. These research findings can serve as a theoretical foundation for blending different light flavors Daqu and hold great significance in enhancing the quality of baijiu.
Collapse
Affiliation(s)
- Panpan Hu
- Department of Life ScienceLyuliang UniversityLyuliangShanxiChina
| | - Ji Wang
- College of Food Science and EngineeringShanxi Agricultural UniversityJinzhongShanxiChina
| | - Urooj Ali
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Tariq Aziz
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangJiangsuChina
| | - Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Sciences, Al‐Leith University CollegeUmm Al‐Qura UniversityMeccaSaudi Arabia
| | - Caiping Feng
- Department of Life ScienceLyuliang UniversityLyuliangShanxiChina
| |
Collapse
|
20
|
Ruan M, Hu Z, Zhu Q, Li Y, Nie X. 16S rDNA Sequencing-Based Insights into the Bacterial Community Structure and Function in Co-Existing Soil and Coal Gangue. Microorganisms 2023; 11:2151. [PMID: 37763995 PMCID: PMC10536285 DOI: 10.3390/microorganisms11092151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Coal gangue is a solid waste emitted during coal production. Coal gangue is deployed adjacent to mining land and has characteristics similar to those of the soils of these areas. Coal gangue-soil ecosystems provide habitats for a rich and active bacterial community. However, co-existence networks and the functionality of soil and coal gangue bacterial communities have not been studied. Here, we performed Illumina MiSeq high-throughput sequencing, symbiotic network and statistical analyses, and microbial phenotype prediction to study the microbial community in coal gangue and soil samples from Shanxi Province, China. In general, the structural difference between the bacterial communities in coal gangue and soil was large, indicating that interactions between soil and coal gangue are limited but not absent. The bacterial community exhibited a significant symbiosis network in soil and coal gangue. The co-occurrence network was primarily formed by Proteobacteria, Firmicutes, and Actinobacteria. In addition, BugBase microbiome phenotype predictions and PICRUSt bacterial functional potential predictions showed that transcription regulators represented the highest functional category of symbiotic bacteria in soil and coal gangue. Proteobacteria played an important role in various processes such as mobile element pathogenicity, oxidative stress tolerance, and biofilm formation. In general, this work provides a theoretical basis and data support for the in situ remediation of acidified coal gangue hills based on microbiological methods.
Collapse
Affiliation(s)
- Mengying Ruan
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China; (M.R.); (X.N.)
| | - Zhenqi Hu
- China University of Mining and Technology, Xuzhou 221116, China;
| | - Qi Zhu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Yuanyuan Li
- China University of Mining and Technology, Xuzhou 221116, China;
| | - Xinran Nie
- Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology-Beijing, Beijing 100083, China; (M.R.); (X.N.)
| |
Collapse
|
21
|
Zhao J, Yang Y, Teng M, Zheng J, Wang B, Mallawaarachchi V, Lin Y, Fang Z, Shen C, Yu S, Yang F, Qiao L, Wang L. Metaproteomics profiling of the microbial communities in fermentation starters ( Daqu) during multi-round production of Chinese liquor. Front Nutr 2023; 10:1139836. [PMID: 37324728 PMCID: PMC10267310 DOI: 10.3389/fnut.2023.1139836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The special flavor and fragrance of Chinese liquor are closely related to microorganisms in the fermentation starter Daqu. The changes of microbial community can affect the stability of liquor yield and quality. Methods In this study, we used data-independent acquisition mass spectrometry (DIA-MS) for cohort study of the microbial communities of a total of 42 Daqu samples in six production cycles at different times of a year. The DIA MS data were searched against a protein database constructed by metagenomic sequencing. Results The microbial composition and its changes across production cycles were revealed. Functional analysis of the differential proteins was carried out and the metabolic pathways related to the differential proteins were explored. These metabolic pathways were related to the saccharification process in liquor fermentation and the synthesis of secondary metabolites to form the unique flavor and aroma in the Chinese liquor. Discussion We expect that the metaproteome profiling of Daqu from different production cycles will serve as a guide for the control of fermentation process of Chinese liquor in the future.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Kweichow Moutai Group, Renhuai, Guizhou, China
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Chemistry, Fudan University, Shanghai, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | | | | | - Bing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Vijini Mallawaarachchi
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
- Flinders Accelerator for Microbiome Exploration, Flinders University, Bedford Park, SA, Australia
| | - Yu Lin
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Ziyu Fang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| |
Collapse
|
22
|
Xie X, Chen L, Chen T, Yang F, Wang Z, Hu Y, Lu J, Lu X, Li Q, Zhang X, Ma M, Wang L, Hu C, Xu G. Profiling and annotation of carbonyl compounds in Baijiu Daqu by chlorine isotope labeling-assisted ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2023; 1703:464110. [PMID: 37262933 DOI: 10.1016/j.chroma.2023.464110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Carbonyl compounds are among the most important flavor substances that affect the taste of Baijiu. However, high coverage analysis of carbonyl compounds is obstructed due to the poor ionization efficiency of these compounds. Here we report a chlorine isotope labeling-assisted ultrahigh-performance liquid chromatography-high resolution mass spectrometry-based method (CIL-UHPLCHRMS) for profiling and annotation of carbonyl compounds in sauce flavored-Baijiu Daqu. 4-Chloro-2-hydrazinylpyridine was demonstrated to be a good labeling reagent that could achieve highly sensitive profiling and high-coverage screening of carbonyl compounds in the absence of heavy isotope labeling reagents. In the analysis of eight carbonyl standards representing different carbonyl categories, l-(-)-fucose, 2-carboxybenzaldehyde, 2-hydroxyacetophenone and heptan-2-one could be ionized only after labeling and MS signals were significantly increased for other 4 standards with an enhancement factor ranging from 181-fold for 3-methoxysalicylaldehyde to 3141-fold for tridecan-2-one. The annotation was achieved based on multidimensional information including MS1, predicted tR, in silico MS/MS and manually annotated fragments. In total, 487 carbonyl compounds were detected in Baijiu Daqu, among which, 314 (64.5%) of them were positively or putatively identified. The outcome of the linearity (with a linear range of 2, 3 orders of magnitude), precision (less than 10%), and limit of detection (varied from 0.07 to 0.10 nM) indicated that the method was adequate for profiling carbonyl compounds in complex biological samples. The established method was successfully applied to study carbonyl compounds in Baijiu Daqu with different colors and different seasons. Taken collectively, the present work provides an effective, simple and economic strategy for comprehensive analysis of carbonyl compounds in complex matrix samples.
Collapse
Affiliation(s)
- Xiaoyu Xie
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Liangqiang Chen
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fan Yang
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Zixuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Hu
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Jianjun Lu
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Li Wang
- Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China; Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
23
|
Fan Z, Jia W. Extracellular proteolytic enzyme-mediated amino exposure and β-oxidation drive the raspberry aroma and creamy flavor formation. Food Chem 2023; 424:136442. [PMID: 37236078 DOI: 10.1016/j.foodchem.2023.136442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The fermentation-driving ability of Daqu has been widely reported, while the potential influence of substances in Daqu on Baijiu flavor formation has attracted increasing interest. Pseudo-targeted metabolomics integrated proteomics combined with sensory evaluation strategy was applied to investigate the correlation between flavor characteristics and metabolic profiling of Daqu, and the mechanism of flavor formation was also elucidated. The 4-hydroxy-2,5-dimethylfuran-3-one (3.5 mg kg-1) and 2,3-dihydro-1 h-inden-5-ol (894.3 μg kg-1) were identified as the unique substances in qingcha qu, which were vital for raspberry flavor formation and associated with the up-regulation of amino acid metabolism. The dec-9-enoic acid (37.4 mg kg-1) was screened out as the substance related to the formation of cream flavor in hongxin qu produced through the shortening of fatty acid carbon chains and unsaturated modification of long chain fatty and acceleration of carbon metabolism in hongxin qu mediated by filamentous Aspergillus spp. was related to the smoky aroma enhancement.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
24
|
Liu WH, Chai LJ, Wang HM, Lu ZM, Zhang XJ, Xiao C, Wang ST, Shen CH, Shi JS, Xu ZH. Bacteria and filamentous fungi running a relay race in Daqu fermentation enable macromolecular degradation and flavor substance formation. Int J Food Microbiol 2023; 390:110118. [PMID: 36796164 DOI: 10.1016/j.ijfoodmicro.2023.110118] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
As the saccharifying and fermentative agent, medium-temperature Daqu (MT-Daqu) plays an irreplaceable role in the production of strong-flavor Baijiu. Numerous studies have focused on the microbial community structure and potential functional microorganisms, however, little is known about the succession of active microbial community and the formation mechanism of community function during MT-Daqu fermentation. In this study, we presented an integrated analysis of metagenomics, metatranscriptomics, and metabonomics covering the whole fermentation process of MT-Daqu to reveal the active microorganisms and their participations in metabolic networks. The results showed that dynamic of metabolites were time-specific, and the metabolites and co-expressed active unigenes were further classified into four clusters according to their accumulation patterns, with members within each cluster displaying a uniform and clear pattern of abundance across fermentation. Based on KEGG enrichment analysis in co-expression clusters and succession of active microbial community, we revealed that Limosilactobacillus, Staphylococcus, Pichia, Rhizopus, and Lichtheimia were metabolically active members at the early stage, and their metabolic activities were conducive to releasing abundant energy to drive multiple basal metabolisms such as carbohydrates and amino acids. Thereafter, during the high temperature period and at the end of fermentation, multiple heat-resistant filamentous fungi were transcriptionally active populations, and they acted as both the saccharifying agents and flavor compound producers, especially aromatic compounds, suggesting their crucial contribution to enzymatic activity and aroma of mature MT-Daqu. Our findings revealed the succession and metabolic functions of the active microbial community, providing a deeper understanding of their contribution to MT-Daqu ecosystem.
Collapse
Affiliation(s)
- Wen-Hu Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Li-Juan Chai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Hong-Mei Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Zhen-Ming Lu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Chen Xiao
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, PR China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Jin-Song Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China.
| |
Collapse
|
25
|
Jiang X, Peng Z, Zhu Q, Zheng T, Liu X, Yang J, Zhang J, Li J. Exploration of seasonal fermentation differences and the possibility of flavor substances as regulatory factors in Daqu. Food Res Int 2023; 168:112686. [PMID: 37120185 DOI: 10.1016/j.foodres.2023.112686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Medium-high temperature Daqu is a characteristic starter for Chinese strong-flavor Baijiu fermentation, and its final quality determines the character and type of Baijiu. Nonetheless, its formation is affected by the interaction of physical and chemical, environmental and microbial interaction, and the differences in seasonal fermentation performance emerge. Here, the differences in the two seasons' Daqu fermentation properties were revealed by the detection of the enzyme activity. The respective dominant enzyme in summer Daqu (SUD) was protease and amylase, while cellulase and glucoamylase in spring Daqu (SPD). The underlying causes of this phenomenon were then investigated through an evaluation of nonbiological variables and microbial community structure. A greater absolute number of microorganisms, particularly Thermoactinomyces, were created in the SPD as a result of the superior growth environment (higher water activity). Additionally, the correlation network and discriminant analysis hypothesized that the volatile organic compound (VOC) guaiacol, which had a different content between SUD and SPD, may be a contributing element to the microbial composition. In contrast to SUD, the enzyme system activity related to guaiacol production in SPD was significantly higher. To support this notion that the volatile flavor chemicals mediate microbial interactions in Daqu, the growth effect of guaiacol on several bacteria isolated from the Daqu was examined in both a contact and non-contact manner. This study emphasized that VOCs not only have the basic characteristics of flavor compounds but also have ecological significance. Because the strains' varied structures and enzyme activities affected how the microorganisms interacted, the VOCs produced in this way ultimately had a synergistic effect on the various effects of Daqu fermentation.
Collapse
|
26
|
Fang S, Wang C, Yan J. Comparing the differences of prokaryotic microbial community between pit walls and bottom from Chinese liquor revealed by 16S rRNA gene sequencing. Open Life Sci 2023; 18:20220571. [PMID: 36852403 PMCID: PMC9962418 DOI: 10.1515/biol-2022-0571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/25/2022] [Accepted: 01/14/2023] [Indexed: 02/25/2023] Open
Abstract
This study aims to explore the prokaryotic microbial community structures and diversity in pit mud from different depths, and provide a theoretical basis for the liquor production and further study of pit mud. The fermented pit muds of strong-flavor liquor from Yun distillery were taken as samples. The high-throughput sequencing approach, followed by bioinformatics analyses, was used to compare the differences in the prokaryotic microbial community between pit walls and bottom represented by samples. A total of 31 bacteria phyla and 2 archaea phyla were detected. The dominant phyla in YJ-S, YJ-Z, and YJ-X (sample name) were Proteobacteria and Firmicutes, while the dominant genera in them were Acinetobacter, Aminobacterium, and Lactobacillus. YJ-Z and YJ-X were the closest in species diversity. In species richness analysis, YJ-X was the highest, followed by YJ-Z, and YJ-S was the lowest; in species uniformity analysis, YJ-S was the highest, followed by YJ-Z, and YJ-X was the lowest. The function predicted by 16S rRNA genome showed that prokaryotic microbial function in pit mud was mainly concentrated in "Carbohydrate transport and metabolism" and "Amino acid transport and metabolism." Significant differences in prokaryotic microbial community and gene function prediction between pit walls and bottom were found in YJ-S, YJ-Z, and YJ-X (p < 0.05).
Collapse
Affiliation(s)
- Shu Fang
- School of Biological and Environmental Engineering, Chaohu University, Hefei 230000, China
| | - Chuanxiang Wang
- Quality and Technology Department, Anhui Yun Distillery Group Co., Ltd, Ma’anshan 243000, China
| | - Juan Yan
- School of Biological and Environmental Engineering, Chaohu University, Hefei 230000, China
| |
Collapse
|
27
|
Yang G, Xu J, Xu Y, Li R, Wang S. Analysis of Dynamics and Diversity of Microbial Community during Production of Germinated Brown Rice. Foods 2023; 12:foods12040755. [PMID: 36832830 PMCID: PMC9956166 DOI: 10.3390/foods12040755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Sprouts may be contaminated with different pathogenic and spoilage microorganisms, which lead far too easily to foodborne outbreaks. The elucidations of microbial profiles in germinated brown rice (BR) are important, but the changes in the microbial composition during germination are unknown. This study aimed to investigate the microbiota composition and to monitor the dominant microbial dynamics in BR during germination using both culture-independent and -dependent methods. BR samples (HLJ2 and HN) were collected from each stage of the germination processing. The populations of microbes (total viable counts, yeast/mold counts, Bacillus cereus, and Enterobacteriaceae) of two BR cultivars increased markedly with the prolongation of the germination time. High-throughput sequencing (HTS) showed that the germination process significantly influenced the microbial composition and reduced the microbial diversity. Similar microbial communities were observed between the HLJ2 and the HN samples, but with different microbial richness. The bacterial and fungal alpha diversity achieved the maximum for ungerminated samples and declined significantly after soaking and germination. During germination, Pantoea, Bacillus, and Cronobacter were the dominant bacterial genera, but Aspergillus, Rhizopus, and Coniothyrium dominated for the fungi in the BR samples. The predominance of harmful and spoilage microorganisms in BR during germination is mainly from contaminated seeds, which highlights the potential risk of foodborne illness from sprouted BR products. The results provide new insight into the microbiome dynamics of BR and may help to establish effective decontamination measures against pathogenic microorganisms during sprout production.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Xianyang 712100, China
- Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA
- Correspondence: ; Tel.: +86-29-87092391; Fax: +86-29-87091737
| |
Collapse
|
28
|
Xia Y, Zhou W, Du Y, Wang Y, Zhu M, Zhao Y, Wu Z, Zhang W. Difference of microbial community and gene composition with saccharification function between Chinese nongxiangxing daqu and jiangxiangxing daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:637-647. [PMID: 36053854 DOI: 10.1002/jsfa.12175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The saccharification function of daqu is usually characterized by two indicators: saccharification power and liquefaction power. Daqu provides diverse microbial saccharifying enzymes for hydrolyzing carbohydrate in Baijiu fermenting grain. Obviously, the composition of microbial communities and enzymatic genes in different types of daqu cultured at varied temperatures is different. However, these differences in saccharification function are not fully understood. RESULTS The findings suggested that the saccharification power and liquefaction power of jiangxiangxing daqu were lower than those of nongxiangxing daqu throughout the production process. We employed metagenomics to find evidence that a mode of multiple saccharifying enzymes involving amylase, cellulase and hemicellulase originating from various microbes exists in daqu. Moreover, a totality of 541 related differential genes were obtained, some of which, annotated to genera of Aspergillus, Lactobacillus and Weissella, were significantly enriched (P < 0.05) in nongxiangxing daqu, while others, annotated to thermophilic genera of Virgibacillus, Bacillus, Kroppenstedtia and Saccharopolyspora, showed a higher relative abundance in jiangxiangxing daqu (P < 0.05). CONCLUSION Various microbial communities of daqu showed diverse saccharification capacity during cultivation of different parameters. These findings are helpful in comprehending the saccharification functional genes of daqu. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wen Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yake Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Min Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yajiao Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan, China
| |
Collapse
|
29
|
Zhang Y, Shen Y, Niu J, Ding F, Ren Y, Chen X, Han BZ. Bacteria-induced amino acid metabolism involved in appearance characteristics of high-temperature Daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:243-254. [PMID: 35857424 DOI: 10.1002/jsfa.12136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Significant changes occurd in Daqu bricks on the 15th day of incubation, and brick color (yellow, brown, or dark) is generally used as a standard for quality evaluation by experienced workers. This study aimed to explore the basis behind the phenomenon through multi-omics studies. The physicochemical properties of different high-temperature Daqu were compared. Furthermore, PacBio sequencing and the ultra-high-performance liquid chromatographic-Q-exactive-mass spectrometric approach were employed to analyze the differences in the microbiome and metabolome among different Daqu samples. RESULTS Bacillus was the biomarker of yellow Daqu, Thermoactinomyces and Thermoascus were the key genera in brown Daqu, and Burkholderiales, Sphingomonas, and Ralstonia were biomarkers in dark Daqu. The physicochemical characteristics (especially the color values) of different high-temperature Daqu showed strong correlations with the bacterial alpha diversity and the relative abundance of dominant bacterial genera. Amino acid metabolism pathways including tryptophan metabolism, β-alanine metabolism, and arginine biosynthesis were the key factors resulting in the characteristic differences where Bacillus, Burkholderia, Ralstonia, and Sphingomonas were pivotal bacterial genera. The relative abundance of Bacillus had a positive correlation with the content of 3-hydroxykynurenamine, l-glutamic acid, and pantothenic acid, while it showed a negative correlation with indoleacetic acid, l-tryptophan, N-acetylserotonin, l-histidine, l-aspartic acid, phosphatidylserine, 5-methoxyindoleacetate, and L-serine. Burkholderia, Ralstonia, and Sphingomonas had the opposite effects. CONCLUSION Microbes play different roles in amino acid metabolism pathways, producing different metabolites, contributing to the differences in Daqu appearance and quality. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yi Shen
- Sichuan Langjiu Co. Ltd, Luzhou, China
| | - Jiao Niu
- Sichuan Langjiu Co. Ltd, Luzhou, China
| | - Fang Ding
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Ren
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxue Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Pang Z, Li W, Hao J, Xu Y, Du B, Zhang C, Wang K, Zhu H, Wang H, Li X, Guo C. Correlational Analysis of the Physicochemical Indexes, Volatile Flavor Components, and Microbial Communities of High-Temperature Daqu in the Northern Region of China. Foods 2023; 12:326. [PMID: 36673417 PMCID: PMC9857448 DOI: 10.3390/foods12020326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Daqu is a microbial-rich baijiu fermentation starter. The high-temperature Daqu plays an essential role in the manufacturing of sauce-flavored baijiu. However, few studies have focused on three kinds of high-temperature Daqu (white, yellow, and black Daqu) in northern China. In this study, the physicochemical indexes, volatile flavor compounds, and microbial characteristics of the three different colors of high-temperature Daqu in northern China were comparatively analyzed to reveal their potential functions. White Daqu (WQ) exhibited the highest liquefying power and starch, and black Daqu (BQ) showed the highest saccharifying and esterifying powers. A total of 96 volatile components were identified in the three types of Daqu, and the contents of the volatile components of yellow Daqu (YQ) were the highest. The microbial community structure analysis showed that Bacillus and Byssochlamys were dominant in BQ, Kroppenstedtia and Thermoascus were dominant in WQ, and Virgibacillus and Thermomyces dominated the YQ. The RDA analysis revealed the correlation between the dominant microorganisms and different physicochemical indexes. The Spearman correlation analysis indicated that Oceanobacillus, Saccharopolyspora, Staphylococcus, Pseudogracilibacillus, Byssochlamys, and Thermomyces showed positive correlations with part of the majority of the key volatile flavor compounds. This work provides a scientific basis for the actual production of different colors of high-temperature Daqu in the northern region of China for sauce-flavored baijiu.
Collapse
Affiliation(s)
- Zemin Pang
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Hao
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Binghao Du
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kun Wang
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Hua Zhu
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Hongan Wang
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
31
|
Zhao J, Yang Y, Chen L, Zheng J, Lv X, Li D, Fang Z, Shen C, Mallawaarachchi V, Lin Y, Yu S, Yang F, Wang L, Qiao L. Quantitative metaproteomics reveals composition and metabolism characteristics of microbial communities in Chinese liquor fermentation starters. Front Microbiol 2023; 13:1098268. [PMID: 36699582 PMCID: PMC9868298 DOI: 10.3389/fmicb.2022.1098268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Daqu, the Chinese liquor fermentation starter, contains complex microbial communities that are important for the yield, quality, and unique flavor of produced liquor. However, the composition and metabolism of microbial communities in the different types of high-temperature Daqu (i.e., white, yellow, and black Daqu) have not been well understood. Methods Herein, we used quantitative metaproteomics based on data-independent acquisition (DIA) mass spectrometry to analyze a total of 90 samples of white, yellow, and black Daqu collected in spring, summer, and autumn, revealing the taxonomic and metabolic profiles of different types of Daqu across seasons. Results Taxonomic composition differences were explored across types of Daqu and seasons, where the under-fermented white Daqu showed the higher microbial diversity and seasonal stability. It was demonstrated that yellow Daqu had higher abundance of saccharifying enzymes for raw material degradation. In addition, considerable seasonal variation of microbial protein abundance was discovered in the over-fermented black Daqu, suggesting elevated carbohydrate and amino acid metabolism in autumn black Daqu. Discussion We expect that this study will facilitate the understanding of the key microbes and their metabolism in the traditional fermentation process of Chinese liquor production.
Collapse
Affiliation(s)
- Jinzhi Zhao
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | | | - Jianxujie Zheng
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Xibin Lv
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Dandan Li
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Ziyu Fang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Vijini Mallawaarachchi
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Yu Lin
- College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
| | - Shaoning Yu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou, China
| | - Liang Qiao
- Department of Chemistry and Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Li Y, Qiao H, Zhang R, Zhang W, Wen P. Microbial Diversity and Volatile Flavor Compounds in Tibetan Flavor Daqu. Foods 2023; 12:foods12020324. [PMID: 36673416 PMCID: PMC9858000 DOI: 10.3390/foods12020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, the microbial diversity in Tibetan flavor Daqu was analyzed based on single molecule real-time sequencing (SMRT). The volatile flavor compounds in Daqu were detected using the headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). In addition, the correlation between various microbes and volatile flavor compounds was explored. Our studies indicated that the dominant bacterial genera in Tibetan flavor Daqu were Oceanobacillus, Kroppenstedtia, Virgibacillus, Enterococcus, Pediococcus, Streptomyces, Saccharopolyspora, Leuconostoc, uncultured_bacterium_f_Lachnospiraceae and Lactobacillus. The dominant fungal genera were Wickerhamomyces, Monascus, Aspergillus and Rhizomucor. 101 volatile compounds were detected in the Daqu samples, including alcohols, acids, esters, aldehydes, hydrocarbons, ketones, ethers, aromatics and pyrazines, and 10 key flavor compounds were identified using the relative odor activity value (ROAV). The results of our correlation analysis showed that Enterococcus was mainly associated with the synthesis of aldehydes such as trans-2-octenal, and uncultured_bacterium_f_lachnospiraceae was associated with the synthesis of most aldehydes. This paper has systematically investigated the physicochemical indices, microbial community structure and flavor compounds of Tibetan flavor Daqu, which is helpful in gaining a deeper understanding of the characteristics of Tibetan flavor Daqu.
Collapse
Affiliation(s)
- Yaping Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Haijun Qiao
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Rui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (W.Z.); (P.W.)
| | - Pengcheng Wen
- Functional Dairy Product Engineering Lab of Gansu Province, Yingmen Village, Anning, Lanzhou 730070, China
- Correspondence: (W.Z.); (P.W.)
| |
Collapse
|
33
|
Wang L, Cheng Y, Hu X, Huang Y. Analysis of bacterial diversity and functional differences of Jiang-flavored Daqu produced in different seasons. Front Nutr 2023; 9:1078132. [PMID: 36687670 PMCID: PMC9845603 DOI: 10.3389/fnut.2022.1078132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
High-temperature Daqu is an important saccharifying fermenting starter for brewing Jiang-flavored Baijiu. This paper analyzed the diversity characteristics of bacterial communities of Jiang-flavored Daqu (JFDQ) with seasonal changes through Illumina HiSeq sequencing and multivariate statistical methods. Results showed that 21 phyla, 529 genera, and 47 core bacterial genera were identified from the 48 composite samples. Among them, eight functional genera were only found in the summer-produced Daqu (Propionigenium, etc.). Pantoea, Bacillus, Lentibacillus, and Oceanobacillus, respectively, served as the representative functional bacterial genera of the four seasons. Functional prediction analysis showed that Amino acid metabolism Carbohydrate metabolism, Lipid metabolism, Metabolism of cofactors and vitamins, and Nucleotide metabolism (relative abundance > 1%) were the most critical microbial functions in JFDQ, and these key enzymes involved in acetoin biosynthesis, and acetyl-CoA biosynthesis were more abundant in the summer than in the winter. The functional microorganisms community in this paper would provide valuable suggestions about the seasonal production of JFDQ, guiding the Baijiu brewing processes.
Collapse
Affiliation(s)
- Lamei Wang
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Yuxin Cheng
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Xiaoxia Hu
- Guizhou Moutai Brewery (Group) Xijiu Co., Ltd., Xishui, Guizhou, China
| | - Yongguang Huang
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
34
|
The differences in carbohydrate utilization ability between six rounds of Sauce-flavor Daqu. Food Res Int 2023; 163:112184. [PMID: 36596124 DOI: 10.1016/j.foodres.2022.112184] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Sauce-flavor Daqu is an important source of fermentation power in baijiu brewing. Revealing carbohydrate metabolism will help to explore the underlying reasons for the difference in fermentation performance of Daqu. In this study, metagenomic and metaproteomic technologies were performed to explore the carbohydrate metabolism network and its active functional microorganisms of Sauce-flavor Daqu. The sugar profile was analyzed using LC-MS to confirm the metabolic network. The results showed that 23 fungi and 5 bacteria were involved in carbohydrate metabolism. Starch metabolism, cellulose metabolism, and glucan metabolism were the main metabolic pathways, in which fungi especially Aspergillus were more involved than bacteria. Among these active microorganisms, Saccharomycopsis fibuligera, Aspergillus oryzae, Monascus purpureus, Byssochlamys spectabilis, Lichtheimia ramosa, Thermomyces lanuginosus, and Thermoascus aurantiacus were significant functional microorganisms with the ability to produce multiple enzymes. Lichtheimia ramosa, Lichtheimia corymbifera and Kroppenstedtia eburnea were biomarkers of Daqu in the first round, granting it a better liquefaction ability. β-amylase derived from wheat also played an important role in starch degradation, and the synergistic effect with α-amylase endowed Daqu with higher liquefaction power in the first two rounds. The results of this study are of great significance for the analysis of the mechanism of Daqu fermentation and provide a reliable theoretical basis for strengthening the fermentation performance of Daqu.
Collapse
|
35
|
Ren T, Su W, Mu Y, Qi Q, Zhang D. Study on the correlation between microbial communities with physicochemical properties and flavor substances in the Xiasha round of cave-brewed sauce-flavor Baijiu. Front Microbiol 2023; 14:1124817. [PMID: 36937267 PMCID: PMC10014610 DOI: 10.3389/fmicb.2023.1124817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 03/05/2023] Open
Abstract
The Chishui River basin is the main production area of the sauce-flavor Baijiu. Due to the particularity of sauce-flavor Baijiu technology, a large site of workshops needs to be built for brewing and storage. Therefore, used the natural karst caves of Guizhou province to manufacture the sauce-flavor Baijiu, which has enriched the connotation of sauce-flavor Baijiu and saved valuable land resources. In this study, the fermentation grains in the seven stages during the Xiasha round of the cave-brewed sauce-flavor Baijiu (CBSB) were detected using a combination of physicochemical analysis, Headspace solid-phase microextraction gas chromatography-mass detection, and Illumina HiSeq sequencing methods. The results showed Unspecified_Leuconostocaceae, Weissella, Unspecified_Bacillaceae, Saccharomycopsis, Thermomyces, and Unspecified_Phaffomycetaceae were the main bacterial and fungal genera in the stacking fermentation (SF). In the cellar fermentation (CF), the Lactobacillus, Unspecified_Lactobacillaceae, Thermoactinomyces, Saccharomycopsis, Unspecified_Phaffomycetaceae, and Wickerhamomyces were the main bacterial and fungal genera. A total of 72 volatiles were detected in the fermented grains. Linear discriminant analysis Effect Size (LEfSe) identified 23 significantly different volatile metabolites in the fermentation process, including 7 esters, 6 alcohols, 4 acids, 3 phenols, 1 hydrocarbon, and 2 other compounds. Redundancy analysis was used to explore the correlation between dominant microbial genera and physicochemical properties. Starch was the main physicochemical property affecting microbial succession in the SF. Acidity, moisture, and reducing sugar were the main driving factors of microbial succession in the CF. The Pearson correlation coefficient revealed the correlation between dominant microbial genera and significantly different volatile flavor substances. A total of 18 dominant microbial genera were associated with significantly different volatile metabolites, Lactobacillus, Weissella, Wickerhamomyces, and Aspergillus were shown to play crucial roles in metabolite synthesis. On this basis, a metabolic map of the dominant microbial genera was established. This study provides a theoretical basis for the production and quality control of sauce-flavor Baijiu brewed in natural karst caves and lays a foundation for studying the link between flavor formation and microorganisms.
Collapse
Affiliation(s)
- Tingting Ren
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
- *Correspondence: Wei Su
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Qi Qi
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Dangwei Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
36
|
Xia Y, Luo H, Wu Z, Zhang W. Microbial diversity in jiuqu and its fermentation features: saccharification, alcohol fermentation and flavors generation. Appl Microbiol Biotechnol 2022; 107:25-41. [DOI: 10.1007/s00253-022-12291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
|
37
|
Chen C, Yang H, Liu J, Luo H, Zou W. Systematic Review of Actinomycetes in the Baijiu Fermentation Microbiome. Foods 2022; 11:3551. [PMID: 36429142 PMCID: PMC9689711 DOI: 10.3390/foods11223551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Actinomycetes (a group of filamentous bacteria) are the dominant microbial order in the Daqu (DQ) fermentation starter and in the pit mud (PM) of the Baijiu fermentation microbiome. Actinomycetes produce many of the key enzymes and flavor components, and supply important precursors, which have a major influence on its characteristic aroma components, to other microorganisms during fermentation. This paper reviews the current progress on actinomycete research related to Baijiu fermentation, including the isolation and identification, distribution, interspecies interactions, systems biology, and main metabolites. The main metabolites and applications of the actinomycetes during Baijiu fermentation are also discussed.
Collapse
Affiliation(s)
- Cong Chen
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Anhui Linshui Liquor Co., Ltd., Lu’an 237471, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644005, China
| |
Collapse
|
38
|
What Are the Main Factors That Affect the Flavor of Sauce-Aroma Baijiu. Foods 2022; 11:foods11213534. [PMID: 36360147 PMCID: PMC9657106 DOI: 10.3390/foods11213534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
Sauce-aroma Baijiu is a distilled Baijiu well-known in China, and features a unique sauce-aroma style formed by a complex producing process in a specific geographical environment. However, there are few comprehensive reviews of the factors influencing the formation of its flavor. To this end, reviews are hereby carried out over factors including different components in brewing raw materials, geographical environment of Baijiu production, brewing technology including the production of high-temperature Daqu and the brewing process, storage technology including the type of storage containers, storage time and storage temperature involved in the production of Sauce-aroma Baijiu. In addition, the effects of these factors on the flavor formation of Sauce-aroma Baijiu are also revealed, providing references and forging a foundation for stabilizing and improving the quality of Sauce-aroma Baijiu.
Collapse
|
39
|
Zhang Y, Xu J, Jiang Y, Niu J, Chen X, Han BZ. Microbial characteristics and metabolite profiles of high-temperature Daqu in different maturation stages. World J Microbiol Biotechnol 2022; 38:234. [PMID: 36222911 DOI: 10.1007/s11274-022-03428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022]
Abstract
The maturation period of high-temperature Daqu (HTD) is usually 3-6 months, and the characteristics of HTD at different maturation stages were different. In this study, the microbial characteristics and metabolite profiles of HTD at different maturation stages were revealed with the combination of physicochemical detection, the third generation Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology, gas chromatography-mass spectrometry (GC-MS), and gas chromatography-ion mobility spectrometry (GC-IMS). Results showed that HTD matured for 6 months (Mix_m6) had higher saccharification power but less culturable thermotolerant bacteria and fungi than HTD matured for 3 months (Mix_m3). The average relative abundances of Thermoactinomyces, Paenibacillus, and Rasamsonia in Mix_m3 were higher than that in Mix_m6, while the average relative abundances of Bacillus, Pseudomonas, Thermoascus increased obviously with the prolongation of the maturation period. Streptomyces and Thermoactinomyces were biomarkers in Mix_m3, while Burkholderia and Pseudomonas were regarded as biomarkers in Mix_m6. Differences in microbiota structure led to different enrichment of metabolic pathways in HTD at different maturation stages, resulting in different flavor profiles, especially in ethyl acetate, 1-octen-3-one, (E)-3-Hexen-1, 2,3,5-trimethy-6-ethylpyrazine, pyrazine, tetramethyl content. The microbiota and metabolite characteristics of HTD comprehensively reflected the HTD quality in different maturation stages, which provided a reference for determining the optimal maturation time.
Collapse
Affiliation(s)
- Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | - Jingguo Xu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China
| | | | - Jiao Niu
- Sichuan Langjiu Co., Ltd., Luzhou, China
| | - Xiaoxue Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing, 100083, China.
| |
Collapse
|
40
|
Wu Y, Hou Y, Chen H, Wang J, Zhang C, Zhao Z, Ao R, Huang H, Hong J, Zhao D, Sun B. “Key Factor” for Baijiu Quality: Research Progress on Acid Substances in Baijiu. Foods 2022; 11:foods11192959. [PMID: 36230035 PMCID: PMC9562207 DOI: 10.3390/foods11192959] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Baijiu is the national liquor of China, which has lasted in China for more than 2000 years. Abundant raw materials, multi-strain co-fermentation, and complex processes make the secrets of baijiu flavor and taste still not fully explored. Acid substances not only have a great influence on the flavor and taste of baijiu, but also have certain functions. Therefore, this paper provides a systematic review for the reported acid substances, especially for their contribution to the flavor and functional quality of baijiu. Based on previous studies, this paper puts forward a conjecture, a suggestion, and a point of view, namely: the conjecture of “whether acid substances can be used as ‘key factor’ for baijiu quality “; the suggestion of “the focus of research on acid substances in baijiu should be transferred to evaluating their contribution to the taste of baijiu”; and the view of “acid substances are ‘regulators’ in the fermentation process of baijiu”. It is worth thinking about whether acid substances can be used as the key factors of baijiu to be studied and confirmed by practice in the future. It is hoped that the systematic review of acid substances in baijiu in this paper can contribute to further in-depth and systematic research on baijiu by researchers in the future.
Collapse
Affiliation(s)
- Yashuai Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Yaxin Hou
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Hao Chen
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Junshan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Chunsheng Zhang
- Chengde Qianlongzui Distillery Company, Chengde 067400, China
| | - Zhigang Zhao
- Chengde Qianlongzui Distillery Company, Chengde 067400, China
| | - Ran Ao
- Chengde Qianlongzui Distillery Company, Chengde 067400, China
| | - He Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxin Hong
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Department of Nutrition and Health, China Agriculture University, Beijing 100193, China
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-68988715
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
41
|
Cai W, Wang Y, Liu Z, Liu J, Zhong J, Hou Q, Yang X, Shan C, Guo Z. Depth-depended quality comparison of light-flavor fermented grains from two fermentation rounds. Food Res Int 2022; 159:111587. [DOI: 10.1016/j.foodres.2022.111587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022]
|
42
|
Tang J, Chen J, Chen D, Li Z, Huang D, Luo H. Structural Characteristics and Formation Mechanism of Microbiota Related to Fermentation Ability and Alcohol Production Ability in Nongxiang Daqu. Foods 2022; 11:foods11172602. [PMID: 36076788 PMCID: PMC9455232 DOI: 10.3390/foods11172602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Fermentation ability and alcohol production ability are important quality indicators of Chinese liquor Daqu, reflecting microbial growth and metabolic capacity and ethanol production capacity of Daqu microbiota, respectively. However, information on the microbial community related to the fermentation ability and alcohol production ability is unclear. In this study, fermentation functional microbiota (FFM) and alcohol functional microbiota (AFM) were obtained by correlating fermentation ability and alcohol production ability with Daqu microbiota. FFM and AFM consisted of 50 and 49 genera, respectively, which were basically the same at the phylum level but differed at the genus level. Correlation analysis showed that FFM and AFM were mainly affected by moisture, acidity, and humidity in the early stage of Daqu fermentation, and oxygen content was a critical factor for microbial succession in the middle stage of fermentation. FFM and AFM had commensal or synergistic interactions with multiple microbes. Function predictions indicated that fermentation functional bacterial microbiota was active in product synthesis and transport-related metabolic functions, and alcohol functional bacterial microbiota was very active in raw material utilization and its own metabolic synthesis. This study reveals the structural characteristics and formation mechanism of FFM and AFM, which is important for control of Daqu quality.
Collapse
Affiliation(s)
- Jie Tang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Jie Chen
- Yibin Nanxi Wine Co., Ltd., Yibin 644000, China
| | - Deming Chen
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zijian Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin 644000, China
| | - Dan Huang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin 644000, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin 644000, China
- Correspondence: or
| |
Collapse
|
43
|
Xi X, Yang F, Chen L, Lu J, Wang L. Dynamic changes of bacteria communities in Moutai-flavor Daqu during storage analyzed by next generation sequencing. Lett Appl Microbiol 2022; 75:1486-1496. [PMID: 36000249 DOI: 10.1111/lam.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/06/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
The quality of Moutai-flavor Baijiu is highly dependent on Moutai-flavor Daqu (MTDQ), which needs to be stored for six months before using. It brings abundant bacterium, which can metabolize various enzymes and favor compounds. But the reasonable storage time of MTDQ prepared in different seasons is still uncertain. To this end, the study revealed a detailed bacterial profile of storage MTDQ prepared in three different seasons (specifically, they were stored start from spring, summer and autumn) by using high-throughput sequencing approach (next generation sequencing). Results showed that major phyla of storage MTDQ were Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria. The advantages of Firmicutes were Thermoactinomyces and Bacillaceae. Significant differences in bacterial community structures of MTDQ from different seasons and storage time were observed. Compared with summer and autumn MTDQ, the decrease of Thermoactinomyces and increase of Desmospora in spring MTDQ were the main differences and bacterial community structures of summer and autumn MTDQ were more similar. The variation trends of the bacteria community indicated the effective time of storage period were appropriately six months for spring MTDQ, two months for summer MTDQ and more than six months for autumn MTDQ. These results showed that the length of storage time was associated with the season, it's reasonable to adjust the storage time of MTDQ with the season.
Collapse
Affiliation(s)
- Xiaoli Xi
- Kweichow Moutai Co., Ltd., Renhuai, Guizhou, 564501, China
| | - Fan Yang
- Kweichow Moutai Co., Ltd., Renhuai, Guizhou, 564501, China
| | | | - Jianjun Lu
- Kweichow Moutai Co., Ltd., Renhuai, Guizhou, 564501, China
| | - Li Wang
- Kweichow Moutai Co., Ltd., Renhuai, Guizhou, 564501, China
| |
Collapse
|
44
|
Hou X, Hui M, Sun Z, Li X, Shi X, Xiao R, Wang J, Pan C, Li R. Comparative analysis of the microbiotas and physicochemical properties inside and outside medium-temperature Daqu during the fermentation and storage. Front Microbiol 2022; 13:934696. [PMID: 35966713 PMCID: PMC9363831 DOI: 10.3389/fmicb.2022.934696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Medium-temperature Daqu (MT-Daqu), a saccharification-fermentation agent and aroma-producing agent, is used to produce Chinese strong-flavor Baijiu. Many related studies have been published; however, less is known about microbial community and quality properties inside and outside the MT-Daqu from fermentation to storage. Here, along with determining the physicochemical index, the microbial community of MT-Daqu was investigated using both culture-dependent and culture-independent methods during 31 days of fermentation and 4 months of storage. Volatile compounds of mature MT-Daqu were analyzed using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC–MS). The results indicated obvious variation in the microbial community due to the changes in environmental conditions, and the physicochemical indices shifted from fluctuations in the fermentation period to relative stability after storage for 3 months. Moreover, the microbial counts and physicochemical indices of the inner layers of MT-Daqu differed from those of the outer layers. The dominant communities, including the bacterial phyla Firmicutes, Proteobacteria, and Actinobacteria and the fungal phyla Ascomycota and Mucoromycota, showed different abundances in the two parts of the mature MT-Daqu, and different microbial communities were enriched in both parts. Additionally, pyrazines and alcohols were the most abundant volatile aroma compounds in the mature MT-Daqu.
Collapse
Affiliation(s)
- Xiaoge Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ming Hui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xuesi Li
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xin Shi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ran Xiao
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Junfei Wang
- College of Science, Henan University of Technology, Zhengzhou, China
| | - Chunmei Pan
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Ruifang Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, Zhengzhou, China
- *Correspondence: Ruifang Li,
| |
Collapse
|
45
|
Masocha VF, Liu H, Zhan P, Wang K, Zeng A, Shen S, Schneider H. Bacterial Microbiome in the Phyllo-Endosphere of Highly Specialized Rock Spleenwort. FRONTIERS IN PLANT SCIENCE 2022; 13:891155. [PMID: 35874023 PMCID: PMC9302946 DOI: 10.3389/fpls.2022.891155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Bacteria communities associated with plants have been given increasing consideration because they are arguably beneficial to their host plants. To understand the ecological and evolutionary impact of these mutualistic associations, it is important to explore the vast unknown territory of bacterial genomic diversity and their functional contributions associated with the major branches of the tree-of-life. Arguably, this aim can be achieved by profiling bacterial communities by applying high throughput sequencing approaches, besides establishing model plant organisms to test key predictions. This study utilized the Illumina Miseq reads of bacterial 16S rRNA sequences to determine the bacterial diversity associated with the endosphere of the leaves of the highly specialized rock spleenwort Asplenium delavayi (Aspleniaceae). By documenting the bacterial communities associated with ferns collected in natural occurrence and cultivation, this study discovered the most species-rich bacterial communities associated with terrestrial ferns reported until now. Despite the substantial variations of species diversity and composition among accessions, a set of 28 bacterial OTUs was found to be shared among all accessions. Functional analyses recovered evidence to support the predictions that changes in bacterial community compositions correspond to functional differentiation. Given the ease of cultivating this species, Asplenium delavayi is introduced here as a model organism to explore the ecological and evolutionary benefits created by mutualistic associations between bacteria and ferns.
Collapse
Affiliation(s)
- Valerie F. Masocha
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
| | - Hongmei Liu
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
| | - Pingshan Zhan
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
| | - Kaikai Wang
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ao Zeng
- School of Biological and Chemical Sciences, Pu’er University, Pu’er, China
| | - Sike Shen
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Harald Schneider
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Shang C, Li Y, Zhang J, Gan S. Analysis of Bacterial Diversity in Different Types of Daqu and Fermented Grains From Danquan Distillery. Front Microbiol 2022; 13:883122. [PMID: 35865918 PMCID: PMC9295720 DOI: 10.3389/fmicb.2022.883122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities in high-temperature Daqu and fermented grains are important for brewing Jiang-flavor Baijiu such as Danquan Baijiu. Daqu is a saccharifying and fermenting agent, which has a significant impact on the flavor of Baijiu. However, bacterial communities in three different types of samples from the Danquan distillery (dqjq_ck, dqjqcp, and dqjp3) were still unclear, which limited further development of Danquan Baijiu. “dqjq_ck” and “dqjqcp” indicate high-temperature Daqu at days 45 and 135, respectively. “dqjp3” indicates fermented grains. In this study, the bacterial communities of three samples were analyzed by Illumina Miseq high-throughput sequencing. The bacterial communities of three samples primarily composed of thermophilic bacteria and bacteria with stress resistance. The most abundant species in dqjq_ck, dqjqcp, and dqjp3 were Comamonas, Bacillus, and unclassified Lactobacillales, respectively. The main bacteria included Bacillus, Comamonas, Myroides, Paenibacillus, Acetobacter, Kroppenstedtia, Staphylococcus, Saccharopolyspora, Planifilum, Lactobacillus, Acinetobacter, Oceanobacillus, Enterococcus, Thermoactinomyces, Lactococcus, Streptomyces, Saccharomonospora, Tepidimicrobium, Anaerosalibacter, unclassified_Lactobacillales, unclassified_Thermoactinomycetaceae_1, unclassified_Bacillaceae_2, unclassified_Bacillales, unclassified_Microbacteriaceae, unclassified_Rhodobacteraceae, unclassified_Actinopolysporineae, and unclassified_Flavobacteriaceae in three samples (percentage was more than 1% in one of three samples). In our study, the succession of microbiota in three samples representing three important stages of Danquan Baijiu brewing was revealed. This article lays a good foundation for understanding the fermentation mechanism and screening some excellent indigenous bacteria to improve the quality of Danquan Baijiu in future.
Collapse
Affiliation(s)
- Changhua Shang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Changhua Shang
| | - Yujia Li
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Jin Zhang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Shanling Gan
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| |
Collapse
|
47
|
Characteristics of the microbiota and metabolic profile of high-temperature Daqu with different grades. World J Microbiol Biotechnol 2022; 38:137. [PMID: 35699790 DOI: 10.1007/s11274-022-03303-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
The superior grade Daqu (S_Daqu) and normal grade Daqu (N_Daqu) have obvious differences in flavor, fracture surface, appearance, etc., which can be accurately grouped by well-trained panel based on their sensory properties. However, the differences in microbial community diversity and metabolites between the S_Daqu and N_Daqu were still unclear. The culture-dependent method, the third generation Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) sequencing technology, and nuclear magnetic resonance (NMR) were combined to show the characteristics in microorganisms and metabolites. Results showed that the fungal counts were higher in N_Daqu while the richness of bacterial communities was higher in S_Daqu (P < 0.05). Lentibacillus, Burkholderia, Saccharopolyspora, Thermoascus, and Rasamsonia were the dominant genera of S_Daqu while Staphylococcus, Scopulibacillus, and Chromocleista were the dominant genera in N_Daqu. The content of differential acids, amino acids, and alcohols including fumarate, glucuronate, glycine, 4-carboxyglutamate, and myo-inositol in S_Daqu was higher than that in N_Daqu by 1H NMR coupled with multivariate statistical analysis. The network analysis regarding microbes and metabolites suggested that Saccharopolyspora showed a strong positive correlation with 4-carboxyglutamate while Thermoascus and Chromocleista were highly negatively correlated with alanine and isobutyrate, respectively. Linear Discriminant Analysis (LDA) Effect Size (LEfSe) revealed that Macrococcus and Caulobacter were regarded as bacterial biomarkers in the S_Daqu while Chromocleista was the key fungal genera in N_Daqu. Functionality prediction indicated that the bacteria in S_Daqu were largely involved in more metabolic activities including biosynthesis, degradation, detoxification, and generation of precursor metabolite and energy.
Collapse
|
48
|
Zhu C, Cheng Y, Zuo Q, Huang Y, Wang L. Exploring the impacts of traditional crafts on microbial community succession in Jiang-flavored Daqu. Food Res Int 2022; 158:111568. [DOI: 10.1016/j.foodres.2022.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/04/2022]
|
49
|
Spatial heterogeneity of the microbiome and metabolome profiles of high-temperature Daqu in the same workshop. Food Res Int 2022; 156:111298. [DOI: 10.1016/j.foodres.2022.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
|
50
|
Nguyen NTH, Wang WY, Huang WL, Huang CL, Chiang TY. Metagenomics analyses of microbial dynamics associated with putative flavor development in mash fermentation of sake. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|