1
|
Dai J, Chen H, Fang J, Wu S, Jia Z. Vascular Remodeling: The Multicellular Mechanisms of Pulmonary Hypertension. Int J Mol Sci 2025; 26:4265. [PMID: 40362501 PMCID: PMC12072204 DOI: 10.3390/ijms26094265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Pulmonary hypertension (PH) is a serious cardiovascular disease caused by a variety of pathogenic factors, which is characterized by increased pulmonary vascular resistance (PVR) and progressive elevation of mean pulmonary artery pressure (mPAP). This disease can lead to right ventricular hypertrophy and, in severe cases, right heart failure and even death. Vascular remodeling-a pathological modification involving aberrant vasoconstriction, cell proliferation, apoptosis resistance, and inflammation in the pulmonary vascular system-is a significant pathological hallmark of PH and a critical process in its progression. Recent studies have found that vascular remodeling involves the participation of a diversity of cellular pathological alterations, such as the dysfunction of pulmonary artery endothelial cells (PAECs), the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), the phenotypic differentiation of pulmonary artery fibroblasts, the inflammatory response of immune cells, and pericyte proliferation. This review focuses on the mechanisms and the intercellular crosstalk of these cells in the PH process, emphasizing recent advances in knowledge regarding cellular signaling pathways, inflammatory responses, apoptosis, and proliferation. To develop better treatments, a list of possible therapeutic approaches meant to slow down certain biological functions is provided, with the aim of providing new insights into the treatment of PH by simplifying the intricacies of these complex connections. In this review, comprehensive academic databases such as PubMed, Embase, Web of Science, and Google Scholar were systematically searched to discuss studies relevant to human and animal PH, with a focus on vascular remodeling in PH.
Collapse
Affiliation(s)
- Jinjin Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Hongyang Chen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Jindong Fang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Shiguo Wu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
2
|
Lin D, Hu L, Wei D, Li Y, Yu Y, Wang Q, Sun X, Shen Y, Yu Y, Li K, Zhang Z, Cao Y, Li J, Li Y, Fulton D, Chen J, Wang J, Huang H, Chen F. Peli1 Deficiency in Macrophages Attenuates Pulmonary Hypertension by Enhancing Foxp1-Mediated Transcriptional Inhibition of IL-6. Hypertension 2025; 82:445-459. [PMID: 39618410 DOI: 10.1161/hypertensionaha.124.23542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND The infiltration of macrophages into the lungs is a common characteristic of perivascular inflammation, contributing to vascular remodeling in pulmonary hypertension (PH). Peli1 (pellino E3 ubiquitin-protein ligase 1) plays a critical role in regulating the production of proinflammatory cytokines and the polarization of macrophages in various diseases. However, the role of Peli1 in PH remains to be investigated. METHODS The expression and biological function of Peli1 were investigated in both human and experimental models of PH. Peli1-deficient mice and bone marrow transplant mice were utilized to explore the roles of Peli1 in macrophages in vivo. Proteomic analysis and molecular biology techniques were used to uncover the underlying mechanisms. RESULTS The upregulation of Peli1 in the lungs and alveolar macrophages was observed in hypoxia-treated mice. Peli1 knockout mice and myeloid Peli1-deficient mice significantly ameliorated hypoxia-induced right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling. Mechanistically, Peli1 facilitated the ubiquitination and subsequent proteasomal degradation of Foxp1 (forkhead box p1), thereby alleviating its suppression of IL (interleukin)-6 transcription and contributing to macrophage activation. Furthermore, myeloid Foxp1 deficiency partially eliminates the protective effect of myeloid Peli1 deficiency in hypoxia-induced PH mice. CONCLUSIONS Our findings demonstrate that the Peli1-Foxp1-IL-6 pathway plays a crucial role in macrophage activation and recruitment during the development of PH, underscoring the potential of Peli1 as a therapeutic target for PH.
Collapse
Affiliation(s)
- Donghai Lin
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Li Hu
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
| | - Dong Wei
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center (D.W., J.C., F.C.), Nanjing Medical University, China
| | - Yan Li
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Yanfang Yu
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Qiang Wang
- Department of Rheumatology, First Affiliated Hospital of Nanjing Medical University, China (Q.W., X.S.)
| | - Xiaoxuan Sun
- Department of Rheumatology, First Affiliated Hospital of Nanjing Medical University, China (Q.W., X.S.)
| | - Yueyao Shen
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Youjia Yu
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Kai Li
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Zhiwei Zhang
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Yue Cao
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, GA (D.F., F.C.)
| | - Jingyu Chen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center (D.W., J.C., F.C.), Nanjing Medical University, China
| | - Jie Wang
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
| | - Huijie Huang
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
| | - Feng Chen
- Department of Forensic Medicine (D.L., L.H., Yan Li, Yanfang Yu, Y.S., Youjia Yu, K.L., Z.Z., Y.C., J.W., H.H., F.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine (L.H., J.L., Yuehua Li, J.W., F.C.), Nanjing Medical University, China
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center (D.W., J.C., F.C.), Nanjing Medical University, China
- Vascular Biology Center, Medical College of Georgia at Augusta University, GA (D.F., F.C.)
| |
Collapse
|
3
|
Piattini F, Sidiropoulos ND, Berest I, Kopf M. IL-6 mediates defense against influenza virus by promoting protective antibody responses but not innate inflammation. Mucosal Immunol 2025:S1933-0219(25)00019-4. [PMID: 39978550 DOI: 10.1016/j.mucimm.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Influenza virus infection is a leading cause of morbidity and mortality worldwide, posing a significant public health problem. The pro-inflammatory cytokine interleukin-6 (IL-6) has been shown to promote defense against respiratory viral infection, while excessive IL-6 responses have been associated with severe pneumonia. Heterogenous expression of IL-6R and the IL-6-signal transducer subunit (gp130) across many cell types and different signaling modalities have made it difficult to define the precise role of the IL-6/IL-6R pathway in vivo. We generated multiple cell lineage-specific Il6ra-deficient mice and compared them to global Il6ra-/- and Il-6-/- mice to dissect the systemic and cell-intrinsic mechanisms for pneumonitis and control of influenza A virus (IAV) infection. Delayed viral clearance and severe morbidity in the global IL-6 knockouts were associated with reduced antibody responses, complement C3 and C5 production, and impaired T follicular helper (Tfh) cell generation. Mice lacking IL-6R exclusively in T cells phenocopied a defect in Tfh cell differentiation and antibody production, although susceptibility to IAV was only mildly affected. Mice lacking IL-6R specifically in B cells mounted normal antibody responses. Moreover, innate pro-inflammatory cytokine responses, myeloid cell infiltration, and adaptive immunity in the lung remained unaffected in Il6rafl/flLysMCre mice. Our results suggest that IL-6 mediates defense against IAV mainly by generating Tfh cells and promoting local C3 production, which together are required for eliciting protective antibody responses by B cells.
Collapse
Affiliation(s)
- F Piattini
- Institute of Molecular Health Science, ETH Zurich, Zurich, Switzerland
| | - N D Sidiropoulos
- Institute of Molecular Health Science, ETH Zurich, Zurich, Switzerland
| | - I Berest
- Institute of Molecular Health Science, ETH Zurich, Zurich, Switzerland
| | - M Kopf
- Institute of Molecular Health Science, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Harvey LD, Alotaibi M, Tai YY, Tang Y, Kim HJJ, Kelly NJ, Sun W, Woodcock CSC, Arshad S, Culley MK, El Khoury W, Xie R, Al Aaraj Y, Zhao J, Hafeez N, Rao RJ, Jiang S, Negi V, Kirillova A, Perk D, Watson AM, St. Croix CM, Stolz DB, Lee JY, Cheng MH, Zhang M, Detmer S, Guzman E, Manan RS, Saggar R, Haley KJ, Waxman AB, Okawa S, Schwantes-An TH, Pauciulo MW, Wang B, Webb A, Chauvet C, Anderson DG, Nichols WC, Desai AA, Lafyatis R, Nouraie SM, Wu H, McDonald JG, Cheng S, Bahar I, Bertero T, Benza RL, Jain M, Chan SY. Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension. Science 2025; 387:eadn7277. [PMID: 39847635 PMCID: PMC12087357 DOI: 10.1126/science.adn7277] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 (NCOA7) deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes. This oxysterol signature overlapped with a plasma metabolite signature associated with human PAH mortality. Mice deficient for endothelial Ncoa7 or exposed to an inflammatory bile acid developed worsened PAH. Genetic predisposition to NCOA7 deficiency was driven by single-nucleotide polymorphism rs11154337, which alters endothelial immunoactivation and is associated with human PAH mortality. An NCOA7-activating agent reversed endothelial immunoactivation and rodent PAH. Thus, we established a genetic and metabolic paradigm that links lysosomal biology and oxysterol processes to endothelial inflammation and PAH.
Collapse
Affiliation(s)
- Lloyd D. Harvey
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mona Alotaibi
- Division of Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hee-Jung J. Kim
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neil J. Kelly
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chen-Shan C. Woodcock
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sanya Arshad
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Miranda K. Culley
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rong Xie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rashmi J. Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siyi Jiang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anna Kirillova
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dror Perk
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Annie M. Watson
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Manling Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Samuel Detmer
- Department of Chemistry, Massachusetts Institute of Technology, Boston, MA, USA
| | - Edward Guzman
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Rajith S. Manan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Rajan Saggar
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kathleen J. Haley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron B. Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bing Wang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amy Webb
- Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Caroline Chauvet
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Daniel G. Anderson
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ankit A. Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - S. Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haodi Wu
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Thomas Bertero
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Sophia-Antipolis, Valbonne, France
| | - Raymond L. Benza
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Gillan JL, Jaeschke L, Kuebler WM, Grune J. Immune mediators in heart-lung communication. Pflugers Arch 2025; 477:17-30. [PMID: 39256247 PMCID: PMC11711577 DOI: 10.1007/s00424-024-03013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
It is often the case that serious, end-stage manifestations of disease result from secondary complications in organs distinct from the initial site of injury or infection. This is particularly true of diseases of the heart-lung axis, given the tight anatomical connections of the two organs within a common cavity in which they collectively orchestrate the two major, intertwined circulatory pathways. Immune cells and the soluble mediators they secrete serve as effective, and targetable, messengers of signals between different regions of the body but can also contribute to the spread of pathology. In this review, we discuss the immunological basis of interorgan communication between the heart and lung in various common diseases, and in the context of organ crosstalk more generally. Gaining a greater understanding of how the heart and lung communicate in health and disease, and viewing disease progression generally from a more holistic, whole-body viewpoint have the potential to inform new diagnostic approaches and strategies for better prevention and treatment of comorbidities.
Collapse
Affiliation(s)
- Jonathan L Gillan
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Lara Jaeschke
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany.
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Rao RJ, Yang J, Jiang S, El-Khoury W, Hafeez N, Okawa S, Tai YY, Tang Y, Aaraj YA, Sembrat JC, Chan SY. Post-transcriptional regulation of IFI16 promotes inflammatory endothelial pathophenotypes observed in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2025; 328:L148-L158. [PMID: 39657959 PMCID: PMC11905863 DOI: 10.1152/ajplung.00048.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease driven by endothelial cell inflammation and dysfunction, resulting in the pathological remodeling of the pulmonary vasculature. Innate immune activation has been linked to PAH development; however, the regulation, propagation, and reversibility of the induction of inflammation in PAH are poorly understood. Here, we demonstrate the role of interferon-inducible protein 16 (IFI16), an innate immune sensor, as a modulator of endothelial inflammation in pulmonary hypertension, using human pulmonary artery endothelial cells (PAECs). Inflammatory stimulus of PAECs with IL-1β upregulates IFI16 expression, inducing proinflammatory cytokine upregulation and cellular apoptosis. IFI16 mRNA stability is regulated by post-transcriptional m6A modification, mediated by Wilms' tumor 1-associated protein (WTAP), a structural stabilizer of the methyltransferase complex, via regulation of m6A methylation of IFI16. In addition, m6A levels are increased in the peripheral blood mononuclear cells of patients with PAH compared with control, indicating that quantifying this epigenetic change in patients may hold potential as a biomarker for disease identification. In summary, our study demonstrates that IFI16 mediates inflammatory endothelial pathophenotypes seen in pulmonary arterial hypertension.NEW & NOTEWORTHY Our work establishes a paradigm of the regulatory role of the Wilms' tumor 1-associated protein (WTAP)-interferon inducible protein 16 (IFI16) axis that uses m6A RNA methylation to drive endothelial inflammatory activation in pulmonary hypertension. Consequently, because m6A epigenetic modifications are both reversible and dynamic, this axis is an attractive diagnostic and therapeutic target in pulmonary hypertension and more broadly in endothelial immune activation.
Collapse
Affiliation(s)
- Rashmi J Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Jimin Yang
- Department of Molecular Biology, Jeonbuk National University, Jeonju, South Korea
| | - Siyi Jiang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Wadih El-Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Yi Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - John C Sembrat
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
7
|
Castillo-Galán S, Parra V, Cuenca J. Unraveling the pathogenesis of viral-induced pulmonary arterial hypertension: Possible new therapeutic avenues with mesenchymal stromal cells and their derivatives. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167519. [PMID: 39332781 DOI: 10.1016/j.bbadis.2024.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe condition characterized by elevated pressure in the pulmonary artery, where metabolic and mitochondrial dysfunction may contribute to its progression. Within the PH spectrum, pulmonary arterial hypertension (PAH) stands out with its primary pulmonary vasculopathy. PAH's prevalence varies from 0.4 to 1.4 per 100,000 individuals and is associated with diverse conditions, including viral infections such as HIV. Notably, recent observations highlight an increased occurrence of PAH among COVID-19 patients, even in the absence of pre-existing cardiopulmonary disorders. While current treatments offer partial relief, there's a pressing need for innovative therapeutic strategies, among which mesenchymal stromal cells (MSCs) and their derivatives hold promise. This review critically evaluates recent investigations into viral-induced PAH, encompassing pathogens like human immunodeficiency virus, herpesvirus, Cytomegalovirus, Hepatitis B and C viruses, SARS-CoV-2, and Human endogenous retrovirus K (HERKV), with a specific emphasis on mitochondrial dysfunction. Furthermore, we explore the underlying rationale driving novel therapeutic modalities, including MSCs, extracellular vesicles, and mitochondrial interventions, within the framework of PAH management.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Valentina Parra
- Laboratory of Differentiation and Cell Metabolism (D&M), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile.
| |
Collapse
|
8
|
Fujiwara T, Ishii S, Minatsuki S, Hatano M, Takeda N. Exploring Novel Therapeutics for Pulmonary Arterial Hypertension. Int Heart J 2025; 66:3-12. [PMID: 39894550 DOI: 10.1536/ihj.24-615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive obliteration of pulmonary arteries. Dysregulated bone morphogenetic protein (BMP) signaling pathway contributes to the development of PAH, and pulmonary vasodilators including endothelin receptor antagonists, phosphodiesterase 5 inhibitors, prostaglandins and soluble guanylate cyclase stimulators, dramatically improve the long-term prognosis. However, there still exist refractory patients who require continuous catecholamine support or lung transplantation, and the development of new treatment strategies targeting molecular mechanisms of PAH is highly anticipated. Sotatercept, a first-in-class activin signaling inhibitor, has recently been approved for the treatment of PAH, and it targets and restores an imbalance in activin-growth differentiation factor and BMP pathway signaling. In addition, treatment strategies targeting peroxisome proliferator-activated receptor-γ signaling, inflammatory and immune systems, DNA damage response and cellular senescence, and growth factor receptors including vascular endothelial growth factor and platelet-derived growth factor receptors, are being devised. In this review, we briefly summarize the recent advances in basic research paving the way for the development of more effective treatments for PAH and their potential in clinical therapeutic applications.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
- Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo
- Center for Molecular Medicine, Jichi Medical University
| | - Satoshi Ishii
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Shun Minatsuki
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Masaru Hatano
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
- Advanced Medical Center for Heart Failure, The University of Tokyo Hospital
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| |
Collapse
|
9
|
Vonk Noordegraaf A, Bogaard HJ. The lung that rules the heart. Eur Respir J 2024; 64:2401922. [PMID: 39667781 DOI: 10.1183/13993003.01922-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Anton Vonk Noordegraaf
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Wang X, Wang Y, Yuan T, Wang H, Zeng Z, Tian L, Cui L, Guo J, Chen Y. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156062. [PMID: 39305743 DOI: 10.1016/j.phymed.2024.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/31/2024] [Accepted: 09/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a rare cardiovascular disease with high morbidity and mortality rates. It is characterized by increased pulmonary arterial pressure. Current research into relevant therapeutic drugs and targets for PH, however, is insufficient still. Traditional Chinese medicine (TCM) and natural products have a long history as therapeutics for PH. Network pharmacology is an approach that integrates drug-target interactions and signaling pathways based on biomarkers information obtained from drug and disease databases. The concept of network pharmacology shows many similarities with the TCM philosophy. Network pharmacology help elucidate the mechanisms of TCM in PH. This review presents representative applications of network pharmacology in the study of the mechanisms of TCM and natural products for the treatment of PH. METHODS In this review, we used ("pulmonary hypertension" OR "pulmonary arterial hypertension" OR "chronic thromboembolic pulmonary hypertension") AND ("network pharmacology" OR "systematic pharmacology") as keywords to search for reports from PubMed, Web of Science, and Google Scholar databases from ten years ago. The studies were screened and those chosen are summarized here. The TCM and natural products inPH and their corresponding targets and signaling pathways are described. Additionally, we discuss the application of network pharmacology in the study of TCM in PH to provide insights for future application strategies. RESULTS Network pharmacology have shown that AKT-related pathways, HIF-1 signaling pathway, MAPK signaling pathway, TGF-β-Smad pathway, cell cycle-related pathways and inflammation-related pathways are the main signaling pathways enriched in the PH targets of TCM. Reservatrol, curcumol, genistin, formononetin, wogonin, luteolin, baicalein, berberine, triptolide and tanshinone llA are active ingredients specific for PH treatment. A number of databases and tools specific for the treatment of PH are used in network pharmacology and natural product research. CONCLUSION Through the reasonable combination of molecular docking, omics technology and bioinformatics technology, the mechanism of multi-targets can be explained more comprehensively. Analyzing the complex mechanism of TCM from the clinical perspective may be a potential development trend of network pharmacology. Combination of predicted targets and traditional pharmacology improves efficiency of drug development.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yichen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
11
|
Chen L, Chen X, Huang Y, Ma Z, Zeng X, Wang T. Establishment of mouse models for severe pulmonary hypertension through 'double-hit' strategies. Exp Physiol 2024; 109:2026-2030. [PMID: 39327866 DOI: 10.1113/ep091833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Mouse models are crucial for understanding pulmonary hypertension (PH) mechanisms and developing therapies, but existing mouse models under hypoxia only exhibit mild PH. To address this, we established a double-hit model combining unilateral pneumonectomy (LPx) or left pulmonary artery ligation (LPAL) with hypoxia exposure in C57BL/6 mice. Our detailed haemodynamic and histological evaluations post-surgery demonstrated pronounced elevations in right ventricular systolic pressure (RVSP) (LPAL: 41.1 ± 4.63 mmHg, P = 0.005; LPx: 38.4 ± 2.95 mmHg, P = 0.002; Sham: 32.1 ± 2.21 mmHg) and pulmonary vascular wall thickness (LPAL: 56.9 ± 3.34%, P = 0.02; LPx: 54.3 ± 4.65%, P = 0.04; Sham: 44.8 ± 3.76%) compared to hypoxia-exposed sham-operated controls, reflecting a more severe PH phenotype. These novel models, which exhibit haemodynamic alterations akin to the established hypoxia with SU5416-induced PH model as per published data, could offer a substantial contribution to future PH research and therapeutic development.
Collapse
Affiliation(s)
- Lingdan Chen
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Chen
- Department of Respiratory Medicine, Zhujiang Hosptial, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhang Huang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuoji Ma
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Zeng
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Mondoni M, Rinaldo R, Ryerson CJ, Albrici C, Baccelli A, Tirelli C, Marchetti F, Cefalo J, Nalesso G, Ferranti G, Alfano F, Sotgiu G, Guazzi M, Centanni S. Vascular involvement in idiopathic pulmonary fibrosis. ERJ Open Res 2024; 10:00550-2024. [PMID: 39588083 PMCID: PMC11587140 DOI: 10.1183/23120541.00550-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 11/27/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic, fibrosing and progressive interstitial lung disease of unknown aetiology with a pathogenesis still partly unknown. Several microvascular and macrovascular abnormalities have been demonstrated in the pathogenesis of IPF and related pulmonary hypertension (PH), a complication of the disease. Methods We carried out a non-systematic, narrative literature review aimed at describing the role of the vasculature in the natural history of IPF. Results The main molecular pathogenetic mechanisms involving vasculature (i.e. endothelial-to-mesenchymal transition, vascular remodelling, endothelial permeability, occult alveolar haemorrhage, vasoconstriction and hypoxia) and the genetic basis of vascular remodelling are described. The prevalence and clinical relevance of associated PH are highlighted with focus on the vasculature as a prognostic marker. The vascular effects of current antifibrotic therapies, the role of pulmonary vasodilators in the treatment of disease, and new pharmacological options with vascular-targeted activity are described. Conclusions The vasculature plays a key role in the natural history of IPF from the early phases of disease until development of PH in a subgroup of patients, a complication related to a worse prognosis. Pulmonary vascular volume has emerged as a novel computed tomography finding and a predictor of mortality, independent of PH. New pharmacological options with concomitant vascular-directed activity might be promising in the treatment of IPF.
Collapse
Affiliation(s)
- Michele Mondoni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Rocco Rinaldo
- Department of Medical Sciences, Respiratory Diseases Unit, AOU Città della Salute e della Scienza di Torino, Molinette Hospital, University of Turin, Turin, Italy
| | - Christopher J. Ryerson
- Department of Medicine and Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Cristina Albrici
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Andrea Baccelli
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas’ NHS Foundation Trust, London, UK
| | - Claudio Tirelli
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Francesca Marchetti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Jacopo Cefalo
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Nalesso
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giulia Ferranti
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Fausta Alfano
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Sotgiu
- Dept of Medical, Clinical Epidemiology and Medical Statistics Unit, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Marco Guazzi
- Department of Cardiology, University of Milano School of Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Stefano Centanni
- Department of Health Sciences, Respiratory Unit, ASST Santi Paolo e Carlo, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Massaro M, Quarta S, Calabriso N, Carluccio MA, Scoditti E, Mancuso P, De Caterina R, Madonna R. Omega-3 polyunsaturated fatty acids and pulmonary arterial hypertension: Insights and perspectives. Eur J Clin Invest 2024; 54:e14277. [PMID: 38940236 PMCID: PMC11490397 DOI: 10.1111/eci.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disorder that affects the pulmonary vasculature. Although recent developments in pharmacotherapy have extended the life expectancy of PAH patients, their 5-year survival remains unacceptably low, underscoring the need for multitarget and more comprehensive approaches to managing the disease. This should incorporate not only medical, but also lifestyle interventions, including dietary changes and the use of nutraceutical support. Among these strategies, n-3 polyunsaturated fatty acids (n-3 PUFAs) are emerging as promising agents able to counteract the inflammatory component of PAH. In this narrative review, we aim at analysing the preclinical evidence for the impact of n-3 PUFAs on the pathogenesis and the course of PAH. Although evidence for the role of n-3 PUFAs deficiencies in the development and progression of PAH in humans is limited, preclinical studies suggest that these dietary components may influence several aspects of the pathobiology of PAH. Further clinical research should test the efficacy of n-3 PUFAs on top of approved clinical management. These studies will provide evidence on whether n-3 PUFAs can genuinely serve as a valuable tool to enhance the efficacy of pharmacotherapy in the treatment of PAH.
Collapse
Affiliation(s)
- Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | | | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy
| | - Peter Mancuso
- Department of Nutritional Sciences and the Program in Immunology, School of Public Health, University of Michigan, 1415 Washington Hts., Ann Arbor, Michigan 481009
| | | | | |
Collapse
|
14
|
Tsai J, Malik S, Tjen-A-Looi SC. Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies. Life (Basel) 2024; 14:1265. [PMID: 39459565 PMCID: PMC11509317 DOI: 10.3390/life14101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pulmonary hypertension (PH) is a severe and chronic disease characterized by increased pulmonary vascular resistance and remodeling, often precipitating right-sided heart dysfunction and death. Although the condition is progressive and incurable, current therapies for the disease focus on multiple different drugs and general supportive therapies to manage symptoms and prolong survival, ranging from medications more specific to pulmonary arterial hypertension (PAH) to exercise training. Moreover, there are multiple studies exploring novel experimental drugs and therapies including unique neurostimulation, to help better manage the disease. Here, we provide a narrative review focusing on current PH treatments that target multiple underlying biochemical mechanisms, including imbalances in vasoconstrictor-vasodilator and autonomic nervous system function, inflammation, and bone morphogenic protein (BMP) signaling. We also focus on the potential of novel therapies for managing PH, focusing on multiple types of neurostimulation including acupuncture. Lastly, we also touch upon the disease's different subgroups, clinical presentations and prognosis, diagnostics, demographics, and cost.
Collapse
Affiliation(s)
- Jason Tsai
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| | | | - Stephanie C. Tjen-A-Looi
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| |
Collapse
|
15
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
16
|
Rao RJ, Yang J, Jiang S, El-Khoury W, Hafeez N, Okawa S, Tai YY, Tang Y, Al Aaraj Y, Sembrat J, Chan SY. Post-transcriptional regulation of IFI16 promotes inflammatory endothelial pathophenotypes observed in pulmonary arterial hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613988. [PMID: 39345560 PMCID: PMC11429958 DOI: 10.1101/2024.09.19.613988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease driven by endothelial cell inflammation and dysfunction, resulting in the pathological remodeling of the pulmonary vasculature. Innate immune activation has been linked to PAH development; however, the regulation, propagation, and reversibility of the induction of inflammation in PAH is poorly understood. Here, we demonstrate a role for interferon inducible protein 16 (IFI16), an innate immune sensor, as a modulator of endothelial inflammation in pulmonary hypertension, utilizing human pulmonary artery endothelial cells (PAECs). Inflammatory stimulus of PAECs with IL-1β up-regulates IFI16 expression, inducing proinflammatory cytokine up-regulation and cellular apoptosis. IFI16 mRNA stability is regulated by post-transcriptional m6A modification, mediated by Wilms' tumor 1-associated protein (WTAP), a structural stabilizer of the methyltransferase complex, via regulation of m6A methylation of IFI16. Additionally, m6A levels are increased in the peripheral blood mononuclear cells of PAH patients compared to control, indicating that quantifying this epigenetic change in patients may hold potential as a biomarker for disease identification. In summary, our study demonstrates IFI16 mediates inflammatory endothelial pathophenotypes seen in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Rashmi J. Rao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jimin Yang
- Department of Molecular Biology, Jeonbuk National University, Jeonju, South Korea
| | - Siyi Jiang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wadih El-Khoury
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Neha Hafeez
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Satoshi Okawa
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yi Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Li Z, Ma J, Wang X, Zhu L, Gan Y, Dai B. The role of immune cells in the pathogenesis of connective tissue diseases-associated pulmonary arterial hypertension. Front Immunol 2024; 15:1464762. [PMID: 39355239 PMCID: PMC11442293 DOI: 10.3389/fimmu.2024.1464762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH) is a disease characterized by an elevated pulmonary artery pressure that arises as a complication of connective tissue diseases. The number of patients with CTD-PAH accounts for 25.3% of all PAH patients. The main pathological features of CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles, increased pulmonary vascular resistance, autoimmune activation and inflammatory reaction. It is worth noting that abnormal immune activation will produce autoantibodies and release cytokines, and abnormal immune cell recruitment will promote inflammatory environment and vascular remodeling. Therefore, almost all forms of connective tissue diseases are related to PAH. In addition to general therapy and targeted drug therapy for PAH, high-dose glucocorticoid combined with immunosuppressant can quickly alleviate and stabilize the basic CTD-PAH disease. Given this, the development of therapeutic approaches targeting immune dysregulation and heightened inflammation is recognized as a promising strategy to prevent or reverse the progression of CTD-PAH. This review explores the potential mechanisms by which immune cells contribute to the development of CTD-PAH and examines the clinical application of immunosuppressive therapies in managing CTD-PAH.
Collapse
Affiliation(s)
- Zhe Li
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Juan Ma
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Xuejing Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, China
| | - Liquan Zhu
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yu Gan
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Baoquan Dai
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
18
|
Blanco I, Torres-Castro R, Barberà JA. Pulmonary vascular disease in chronic lung diseases: cause or comorbidity? Curr Opin Pulm Med 2024; 30:437-443. [PMID: 38958570 DOI: 10.1097/mcp.0000000000001091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW To provide timely and relevant insights into the complex relationship between pulmonary vascular disease (PVD) and chronic lung disease (CLD), focusing on the causative and consequential dynamics between these conditions. RECENT FINDINGS There are shared pathogenic mechanisms between pulmonary arterial hypertension (PAH) and group 3 pulmonary hypertension, including altered expression of mediators and growth factors implicated in both conditions. Factors such as hypoxia, hypoxemia, and hypercapnia also contribute to pulmonary vascular remodelling and endothelial dysfunction. However, the role of hypoxia as the sole driver of pulmonary hypertension in CLD is being reconsidered, particularly in chronic obstructive pulmonary disease (COPD), with evidence suggesting a potential role for cigarette smoke products in initiating pulmonary vascular impairment. On the other hand, interstitial lung disease (ILD) encompasses a group of heterogeneous lung disorders characterized by inflammation and fibrosis of the interstitium, leading to impaired gas exchange and progressive respiratory decline, which could also play a role as a cause of pulmonary hypertension. SUMMARY Understanding the intricate interplay between the pulmonary vascular compartment and the parenchymal and airway compartments in respiratory disease is crucial for developing effective diagnostic and therapeutic strategies for patients with PVD and CLD, with implications for both clinical practice and research.
Collapse
Affiliation(s)
- Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES); Madrid, Spain
| | - Rodrigo Torres-Castro
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clínic, University of Barcelona
- Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES); Madrid, Spain
| |
Collapse
|
19
|
Suraya R, Nagano T, Yumura M, Hara T, Akashi M, Yamamoto M, Tachihara M, Nishimura Y, Kobayashi K. Loss of JCAD/KIAA1462 Protects the Lung from Acute and Chronic Consequences of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:9492. [PMID: 39273437 PMCID: PMC11394678 DOI: 10.3390/ijms25179492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Even with recent advances in pathobiology and treatment options, chronic obstructive pulmonary disease (COPD) remains a major contributor to morbidity and mortality. To develop new ways of combating this disease, breakthroughs in our understanding of its mechanisms are sorely needed. Investigating the involvement of underanalyzed lung cell types, such as endothelial cells (ECs), is one way to further our understanding of COPD. JCAD is a junctional protein in endothelial cells (ECs) arising from the KIAA1462 gene, and a mutation in this gene has been implicated in the risk of developing COPD. In our study, we induced inflammation and emphysema in mice via the global knockout of KIAA1462/JCAD (JCAD-KO) and confirmed it in HPMECs and A549 to examine how the loss of JCAD could affect COPD development. We found that KIAA1462/JCAD loss reduced acute lung inflammation after elastase treatment. Even after 3 weeks of elastase, JCAD-KO mice demonstrated a preserved lung parenchymal structure and vasculature. In vitro, after KIAA1462 expression is silenced, both endothelial and epithelial cells showed alterations in pro-inflammatory gene expression after TNF-α treatment. We concluded that JCAD loss could ameliorate COPD through its anti-inflammatory and anti-angiogenic effects, and that KIAA1462/JCAD could be a novel target for COPD therapy.
Collapse
Affiliation(s)
- Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Masako Yumura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Tetsuya Hara
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan;
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| |
Collapse
|
20
|
Chen D, Jin Q, Yang L, Zhang X, Li M, Zhang L, Pan W, Zhou D, Ge J, Guan L. Mendelian randomization study on causal association of TEF and circadian rhythm with pulmonary arterial hypertension. Respir Res 2024; 25:301. [PMID: 39113039 PMCID: PMC11308427 DOI: 10.1186/s12931-024-02934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Previous research has revealed the potential impact of circadian rhythms on pulmonary diseases; however, the connection between circadian rhythm-associated Thyrotroph Embryonic Factor (TEF) and Pulmonary Arterial Hypertension (PAH) remains unclear. We aim to assess the genetic causal relationship between TEF and PAH by utilizing two sets of genetic instrumental variables (IV) and publicly available Pulmonary Arterial Hypertension Genome-Wide Association Studies (GWAS). METHODS Total of 23 independent TEF genetic IVs from recent MR reports and PAH GWAS including 162,962 European individuals were used to perform this two-sample MR study. Gain- and loss-of-function experiments were used to demonstrate the role of TEF in PAH. RESULTS Our analysis revealed that as TEF levels increased genetically, there was a corresponding increase in the risk of PAH, as evidenced by IVW (OR = 1.233, 95% CI: 1.054-1.441; P = 0.00871) and weighted median (OR = 1.292, 95% CI for OR: 1.064-1.568; P = 0.00964) methods. Additionally, the up-regulation of TEF expression was associated with a significantly higher likelihood of abnormal circadian rhythm (IVW: P = 0.0024733, β = 0.05239). However, we did not observe a significant positive correlation between circadian rhythm and PAH (IVW: P = 0.3454942, β = 1.4980398). In addition, our in vitro experiments demonstrated that TEF is significantly overexpressed in pulmonary artery smooth muscle cells (PASMCs). And overexpression of TEF promotes PASMC viability and migratory capacity, as well as upregulates the levels of inflammatory cytokines. CONCLUSION Our analysis suggests a causal relationship between genetically increased TEF levels and an elevated risk of both PAH and abnormal circadian rhythm. Consequently, higher TEF levels may represent a risk factor for individuals with PAH.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Qi Jin
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Lifan Yang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Mingfei Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wenzhi Pan
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Lihua Guan
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
21
|
Zhang L, Ge T, Cui J. FLI-1-driven regulation of endothelial cells in human diseases. J Transl Med 2024; 22:740. [PMID: 39107790 PMCID: PMC11302838 DOI: 10.1186/s12967-024-05546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are widely distributed in the human body and play crucial roles in the circulatory and immune systems. ECs dysfunction contributes to the progression of various chronic cardiovascular, renal, and metabolic diseases. As a key transcription factor in ECs, FLI-1 is involved in the differentiation, migration, proliferation, angiogenesis and blood coagulation of ECs. Imbalanced FLI-1 expression in ECs can lead to various diseases. Low FLI-1 expression leads to systemic sclerosis by promoting fibrosis and vascular lesions, to pulmonary arterial hypertension by promoting a local inflammatory state and vascular lesions, and to tumour metastasis by promoting the EndMT process. High FLI-1 expression leads to lupus nephritis by promoting a local inflammatory state. Therefore, FLI-1 in ECs may be a good target for the treatment of the abovementioned diseases. This comprehensive review provides the first overview of FLI-1-mediated regulation of ECs processes, with a focus on its influence on the abovementioned diseases and existing FLI-1-targeted drugs. A better understanding of the role of FLI-1 in ECs may facilitate the design of more effective targeted therapies for clinical applications, particularly for tumour treatment.
Collapse
Affiliation(s)
- Lili Zhang
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Tingwen Ge
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| |
Collapse
|
22
|
Ejikeme C, Safdar Z. Exploring the pathogenesis of pulmonary vascular disease. Front Med (Lausanne) 2024; 11:1402639. [PMID: 39050536 PMCID: PMC11267418 DOI: 10.3389/fmed.2024.1402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting the lung vasculature, resulting in increased pulmonary vascular resistance that leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), results from alterations that directly affect the pulmonary arteries. Although PAH has a complex pathophysiology that is not completely understood, it is known to be a multifactorial disease that results from a combination of genetic, epigenetic and environmental factors, leading to a varied range of symptoms in PAH patients. PAH does not have a cure, its incidence and prevalence continue to increase every year, resulting in higher morbidity and mortality rates. In this review, we discuss the different pathologic mechanisms with a focus on epigenetic modifications and their roles in the development and progression of PAH. These modifications include DNA methylation, histone modifications, and microRNA dysregulation. Understanding these epigenetic modifications will improve our understanding of PAH and unveil novel therapeutic targets, thus steering research toward innovative treatment strategies.
Collapse
Affiliation(s)
| | - Zeenat Safdar
- Department of Pulmonary-Critical Care Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
23
|
Studley WR, Lamanna E, Martin KA, Nold-Petry CA, Royce SG, Woodman OL, Ritchie RH, Qin CX, Bourke JE. The small-molecule formyl peptide receptor biased agonist, compound 17b, is a vasodilator and anti-inflammatory in mouse precision-cut lung slices. Br J Pharmacol 2024; 181:2287-2301. [PMID: 37658546 DOI: 10.1111/bph.16231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH), a rare fatal disorder characterised by inflammation, vascular remodelling and vasoconstriction. Current vasodilator therapies reduce pulmonary arterial pressure but not mortality. The G-protein coupled formyl peptide receptors (FPRs) mediates vasodilatation and resolution of inflammation, actions possibly beneficial in PAH. We investigated dilator and anti-inflammatory effects of the FPR biased agonist compound 17b in pulmonary vasculature using mouse precision-cut lung slices (PCLS). EXPERIMENTAL APPROACH PCLS from 8-week-old male and female C57BL/6 mice, intrapulmonary arteries were pre-contracted with 5-HT for concentration-response curves to compound 17b and 43, and standard-of-care drugs, sildenafil, iloprost and riociguat. Compound 17b-mediated relaxation was assessed with FPR antagonists or inhibitors and in PCLS treated with TNF-α or LPS. Cytokine release from TNF-α- or LPS-treated PCLS ± compound 17b was measured. KEY RESULTS Compound 17b elicited concentration-dependent vasodilation, with potencies of iloprost > compound 17b = riociguat > compound 43 = sildenafil. Compound 17b was inhibited by the FPR1 antagonist cyclosporin H but not by soluble guanylate cyclase, nitric oxide synthase or cyclooxygenase inhibitors. Under inflammatory conditions, the efficacy and potency of compound 17b were maintained, while iloprost and sildenafil were less effective. Additionally, compound 17b inhibited secretion of PAH-relevant cytokines via FPR2. CONCLUSIONS AND IMPLICATIONS Vasodilation to compound 17b but not standard-of-care vasodilators, is maintained under inflammatory conditions, with additional inhibition of PAH-relevant cytokine release. This provides the first evidence that targeting FPR, with biased agonist, simultaneously targets vascular function and inflammation, supporting the development of FPR-based pharmacotherapy to treat PAH. LINKED ARTICLES This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- William R Studley
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Emma Lamanna
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katherine A Martin
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Simon G Royce
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Owen L Woodman
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca H Ritchie
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Cheng Xue Qin
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Donovan MK, Abdel-Rahman AA. Ethanol-induced lung and cardiac right ventricular inflammation and remodeling underlie progression to pulmonary arterial hypertension. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1250-1260. [PMID: 38710650 PMCID: PMC11236493 DOI: 10.1111/acer.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Current research on ethanol-induced cardiovascular anomalies has focused on left ventricular (LV) function and blood pressure. To extend this area of research, we sought to determine whether ethanol-induced alterations in the structure and function of the right cardiac ventricle (RV) and pulmonary artery (PA) lead to pulmonary arterial hypertension (PAH). METHODS Two groups of male Sprague-Dawley rats received a balanced liquid diet containing 5% ethanol (w/v) or a pair-fed isocaloric liquid diet for 8 weeks. Weekly echocardiography was conducted to evaluate cardiopulmonary function, and lung and RV tissues were collected for ex vivo histological and molecular studies. RESULTS The ethanol-treated rats exhibited: (1) Elevated mean pulmonary arterial pressure and decreased pulmonary artery acceleration time/ejection time; (2) Pulmonary vascular remodeling comprising intrapulmonary artery medial layer thickening; and (3) RV hypertrophy along with increased RV/LV + septum, RV diameter, RV cardiomyocyte cross-sectional area, and LV mass/body weight ratio. These responses were associated with increased lung and RV pro-inflammatory markers, endothelin-1 (ET-1), TNF-α, and IL-6 levels and higher ET-1, ET-1 type A/B receptor ratio, and downregulation of the cytoprotective protein, bone morphogenetic protein receptor 2 (BMPR2), in the lungs. CONCLUSION These findings show that moderate ethanol-induced cardiopulmonary changes underlie progression to PAH via an upregulated proinflammatory ET1-TNFα-IL6 pathway and suppression of the anti-inflammatory BMPR2.
Collapse
Affiliation(s)
- Mary Katherine Donovan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
25
|
Rafikova O, James J, Kudryashova TV. EnFUSiasm for Healing: Ultrasound Neuromodulation in PAH. Circ Res 2024; 135:57-59. [PMID: 38900858 PMCID: PMC11192238 DOI: 10.1161/circresaha.124.324791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Affiliation(s)
- Olga Rafikova
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Joel James
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN
| | - Tatiana V. Kudryashova
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Division of Cardiology, University of Pittsburgh Department of Medicine, Pittsburgh, PA
| |
Collapse
|
26
|
Rachedi NS, Tang Y, Tai YY, Zhao J, Chauvet C, Grynblat J, Akoumia KKF, Estephan L, Torrino S, Sbai C, Ait-Mouffok A, Latoche JD, Al Aaraj Y, Brau F, Abélanet S, Clavel S, Zhang Y, Guillermier C, Kumar NVG, Tavakoli S, Mercier O, Risbano MG, Yao ZK, Yang G, Ouerfelli O, Lewis JS, Montani D, Humbert M, Steinhauser ML, Anderson CJ, Oldham WM, Perros F, Bertero T, Chan SY. Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness. Cell Metab 2024; 36:1335-1350.e8. [PMID: 38701775 PMCID: PMC11152997 DOI: 10.1016/j.cmet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.
Collapse
Affiliation(s)
- Nesrine S Rachedi
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Julien Grynblat
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Pôle Thoracique, Vasculaire et Transplantations, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Kouamé Kan Firmin Akoumia
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Leonard Estephan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Stéphanie Torrino
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Chaima Sbai
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Amel Ait-Mouffok
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Joseph D Latoche
- Hillman Cancer Center, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Frederic Brau
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Sophie Abélanet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Stephan Clavel
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Yingze Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen V G Kumar
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Olaf Mercier
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Michael G Risbano
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Zhong-Ke Yao
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guangli Yang
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ouathek Ouerfelli
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason S Lewis
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Montani
- Pôle Thoracique, Vasculaire et Transplantations, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | | | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédéric Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, 69310 Pierre-Bénite, France
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France.
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Zhang H, Li M, Hu CJ, Stenmark KR. Fibroblasts in Pulmonary Hypertension: Roles and Molecular Mechanisms. Cells 2024; 13:914. [PMID: 38891046 PMCID: PMC11171669 DOI: 10.3390/cells13110914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Fibroblasts, among the most prevalent and widely distributed cell types in the human body, play a crucial role in defining tissue structure. They do this by depositing and remodeling extracellular matrixes and organizing functional tissue networks, which are essential for tissue homeostasis and various human diseases. Pulmonary hypertension (PH) is a devastating syndrome with high mortality, characterized by remodeling of the pulmonary vasculature and significant cellular and structural changes within the intima, media, and adventitia layers. Most research on PH has focused on alterations in the intima (endothelial cells) and media (smooth muscle cells). However, research over the past decade has provided strong evidence of the critical role played by pulmonary artery adventitial fibroblasts in PH. These fibroblasts exhibit the earliest, most dramatic, and most sustained proliferative, apoptosis-resistant, and inflammatory responses to vascular stress. This review examines the aberrant phenotypes of PH fibroblasts and their role in the pathogenesis of PH, discusses potential molecular signaling pathways underlying these activated phenotypes, and highlights areas of research that merit further study to identify promising targets for the prevention and treatment of PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Weinstein N, Carlsen J, Schulz S, Stapleton T, Henriksen HH, Travnik E, Johansson PI. A Lifelike guided journey through the pathophysiology of pulmonary hypertension-from measured metabolites to the mechanism of action of drugs. Front Cardiovasc Med 2024; 11:1341145. [PMID: 38845688 PMCID: PMC11153715 DOI: 10.3389/fcvm.2024.1341145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/12/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Pulmonary hypertension (PH) is a pathological condition that affects approximately 1% of the population. The prognosis for many patients is poor, even after treatment. Our knowledge about the pathophysiological mechanisms that cause or are involved in the progression of PH is incomplete. Additionally, the mechanism of action of many drugs used to treat pulmonary hypertension, including sotatercept, requires elucidation. Methods Using our graph-powered knowledge mining software Lifelike in combination with a very small patient metabolite data set, we demonstrate how we derive detailed mechanistic hypotheses on the mechanisms of PH pathophysiology and clinical drugs. Results In PH patients, the concentration of hypoxanthine, 12(S)-HETE, glutamic acid, and sphingosine 1 phosphate is significantly higher, while the concentration of L-arginine and L-histidine is lower than in healthy controls. Using the graph-based data analysis, gene ontology, and semantic association capabilities of Lifelike, led us to connect the differentially expressed metabolites with G-protein signaling and SRC. Then, we associated SRC with IL6 signaling. Subsequently, we found associations that connect SRC, and IL6 to activin and BMP signaling. Lastly, we analyzed the mechanisms of action of several existing and novel pharmacological treatments for PH. Lifelike elucidated the interplay between G-protein, IL6, activin, and BMP signaling. Those pathways regulate hallmark pathophysiological processes of PH, including vasoconstriction, endothelial barrier function, cell proliferation, and apoptosis. Discussion The results highlight the importance of SRC, ERK1, AKT, and MLC activity in PH. The molecular pathways affected by existing and novel treatments for PH also converge on these molecules. Importantly, sotatercept affects SRC, ERK1, AKT, and MLC simultaneously. The present study shows the power of mining knowledge graphs using Lifelike's diverse set of data analytics functionalities for developing knowledge-driven hypotheses on PH pathophysiological and drug mechanisms and their interactions. We believe that Lifelike and our presented approach will be valuable for future mechanistic studies of PH, other diseases, and drugs.
Collapse
Affiliation(s)
- Nathan Weinstein
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jørn Carlsen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Schulz
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Timothy Stapleton
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hanne H. Henriksen
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Evelyn Travnik
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pär Ingemar Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Bahi M, Li C, Wang G, Korman BD. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int J Mol Sci 2024; 25:4728. [PMID: 38731946 PMCID: PMC11084945 DOI: 10.3390/ijms25094728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, USA; (M.B.)
| |
Collapse
|
30
|
Ishibashi T, Inagaki T, Okazawa M, Yamagishi A, Ohta-Ogo K, Asano R, Masaki T, Kotani Y, Ding X, Chikaishi-Kirino T, Maedera N, Shirai M, Hatakeyama K, Kubota Y, Kishimoto T, Nakaoka Y. IL-6/gp130 signaling in CD4 + T cells drives the pathogenesis of pulmonary hypertension. Proc Natl Acad Sci U S A 2024; 121:e2315123121. [PMID: 38602915 PMCID: PMC11032454 DOI: 10.1073/pnas.2315123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Tomohiko Ishibashi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tadakatsu Inagaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Makoto Okazawa
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Akiko Yamagishi
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Ryotaro Asano
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Takeshi Masaki
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Yui Kotani
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Xin Ding
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Tomomi Chikaishi-Kirino
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Noriko Maedera
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Tadamitsu Kishimoto
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka565-0871, Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka564-8565, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
- Department of Molecular Imaging in Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka565-0871, Japan
| |
Collapse
|
31
|
Penumatsa KC, Sharma Y, Warburton RR, Singhal A, Toksoz D, Bhedi CD, Qi G, Preston IR, Anderlind C, Hill NS, Fanburg BL. Lung-specific interleukin 6 mediated transglutaminase 2 activation and cardiopulmonary fibrogenesis. Front Immunol 2024; 15:1371706. [PMID: 38650935 PMCID: PMC11033445 DOI: 10.3389/fimmu.2024.1371706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Pulmonary hypertension (PH) pathogenesis is driven by inflammatory and metabolic derangements as well as glycolytic reprogramming. Induction of both interleukin 6 (IL6) and transglutaminase 2 (TG2) expression participates in human and experimental cardiovascular diseases. However, little is known about the role of TG2 in these pathologic processes. The current study aimed to investigate the molecular interactions between TG2 and IL6 in mediation of tissue remodeling in PH. A lung-specific IL6 over-expressing transgenic mouse strain showed elevated right ventricular (RV) systolic pressure as well as increased wet and dry tissue weights and tissue fibrosis in both lungs and RVs compared to age-matched wild-type littermates. In addition, IL6 over-expression induced the glycolytic and fibrogenic markers, hypoxia-inducible factor 1α, pyruvate kinase M2 (PKM2), and TG2. Consistent with these findings, IL6 induced the expression of both glycolytic and pro-fibrogenic markers in cultured lung fibroblasts. IL6 also induced TG2 activation and the accumulation of TG2 in the extracellular matrix. Pharmacologic inhibition of the glycolytic enzyme, PKM2 significantly attenuated IL6-induced TG2 activity and fibrogenesis. Thus, we conclude that IL6-induced TG2 activity and cardiopulmonary remodeling associated with tissue fibrosis are under regulatory control of the glycolytic enzyme, PKM2.
Collapse
Affiliation(s)
- Krishna C. Penumatsa
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Tufts Medical Center, Boston, MA, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Woolf B, Perry JA, Hong CC, Wilkins MR, Toshner M, Gill D, Burgess S, Rhodes CJ. Multi-biobank summary data Mendelian randomisation does not support a causal effect of IL-6 signalling on risk of pulmonary arterial hypertension. Eur Respir J 2024; 63:2302031. [PMID: 38453257 PMCID: PMC10991834 DOI: 10.1183/13993003.02031-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Interleukin (IL)-6 has been linked with the pathobiology of pulmonary arterial hypertension (PAH). IL-6 plasma levels are elevated in PAH patients and closely linked to survival [1]. Both increased IL-6 activity and gene knockout influence the development of, and resistance to, pulmonary hypertension in animal models [2–4]. IL-6 can repress expression of BMPR2, a gene key in PAH risk [5]. In the most comprehensive analysis to date, this study failed to detect an association of genetically predicted CRP-weighted IL-6 signalling or CRP-weighted IL-6R signalling with PAH risk using all available PAH GWAS data https://bit.ly/3T5h5uj
Collapse
Affiliation(s)
- Benjamin Woolf
- The MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
- The MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - James A Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark Toshner
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Stephen Burgess
- The MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
33
|
Wu O, Wu Y, Zhang X, Liu W, Zhang H, Khederzadeh S, Lu X, Zhu XW. Causal effect of interleukin (IL)-6 on blood pressure and hypertension: A mendelian randomization study. Immunogenetics 2024; 76:123-135. [PMID: 38427105 DOI: 10.1007/s00251-024-01332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
To examine whether circulating interleukin-6 (IL-6) levels (CirIL6) have a causal effect on blood pressure using Mendelian randomization (MR) methods. We used data from genome-wide association studies (GWAS) of European ancestry to obtain genetic instruments for circulating IL-6 levels and blood pressure measurements. We applied several robust MR methods to estimate the causal effects and to test for heterogeneity and pleiotropy. We found that circulating IL-6 had a significant positive causal effect on systolic blood pressure (SBP) and pulmonary arterial hypertension (PAH), but not on diastolic blood pressure (DBP) or hypertension. We found that as CirIL6 genetically increased, SBP increased using Inverse Variance Weighted (IVW) method (for ukb-b-20175, β = 0.082 with SE = 0.032, P = 0.011; for ukb-a-360, β = 0.075 with SE = 0.031, P = 0.014) and weighted median (WM) method (for ukb-b-20175, β = 0.061 with SE = 0.022, P = 0.006; for ukb-a-360, β = 0.065 with SE = 0.027, P = 0.014). Moreover, CirIL6 may be associated with an increased risk of PAH using WM method (odds ratio (OR) = 15.503, 95% CI, 1.025-234.525, P = 0.048), but not with IVW method. Our study provides novel evidence that circulating IL-6 has a causal role in the development of SBP and PAH, but not DBP or hypertension. These findings suggest that IL-6 may be a potential therapeutic target for preventing or treating cardiovascular diseases and metabolic disorders. However, more studies are needed to confirm the causal effects of IL-6 on blood pressure and to elucidate the underlying mechanisms and pathways.
Collapse
Affiliation(s)
- Ou Wu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China.
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China.
| | - Ya Wu
- Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Liu
- JFIntelligent Healthcare Technology Co., Ltd Building No.5-7, No.699 Tianxiang Avenue, Hi-Tech Zone, Nanchang, Jiangxi Province, People's Republic of China
| | - Hu Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital Affiliated with Medical College of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Saber Khederzadeh
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, People's Republic of China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, People's Republic of China
| | - Xi Lu
- Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiao-Wei Zhu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, People's Republic of China.
| |
Collapse
|
34
|
Aravamudhan A, Dieffenbach PB, Choi KM, Link PA, Meridew JA, Haak AJ, Fredenburgh LE, Tschumperlin DJ. Non-canonical IKB kinases regulate YAP/TAZ and pathological vascular remodeling behaviors in pulmonary artery smooth muscle cells. Physiol Rep 2024; 12:e15999. [PMID: 38610069 PMCID: PMC11014870 DOI: 10.14814/phy2.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) causes pulmonary vascular remodeling, increasing pulmonary vascular resistance (PVR) and leading to right heart failure and death. Matrix stiffening early in the disease promotes remodeling in pulmonary artery smooth muscle cells (PASMCs), contributing to PAH pathogenesis. Our research identified YAP and TAZ as key drivers of the mechanobiological feedback loop in PASMCs, suggesting targeting them could mitigate remodeling. However, YAP/TAZ are ubiquitously expressed and carry out diverse functions, necessitating a cell-specific approach. Our previous work demonstrated that targeting non-canonical IKB kinase TBK1 reduced YAP/TAZ activation in human lung fibroblasts. Here, we investigate non-canonical IKB kinases TBK1 and IKKε in pulmonary hypertension (PH) and their potential to modulate PASMC pathogenic remodeling by regulating YAP/TAZ. We show that TBK1 and IKKε are activated in PASMCs in a rat PH model. Inflammatory cytokines, elevated in PAH, activate these kinases in human PASMCs. Inhibiting TBK1/IKKε expression/activity significantly reduces PAH-associated PASMC remodeling, with longer-lasting effects on YAP/TAZ than treprostinil, an approved PAH therapy. These results show that non-canonical IKB kinases regulate YAP/TAZ in PASMCs and may offer a novel approach for reducing vascular remodeling in PAH.
Collapse
Affiliation(s)
- Aja Aravamudhan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Paul B. Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Patrick A. Link
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Andrew J. Haak
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | | |
Collapse
|
35
|
Wang J, Chen J, Shu L, Zhang R, Dai M, Fang X, Hu Z, Xiao L, Xi Z, Zhang J, Bao M. Carotid Baroreceptor Stimulation Improves Pulmonary Arterial Remodeling and Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2024; 9:475-492. [PMID: 38680958 PMCID: PMC11055206 DOI: 10.1016/j.jacbts.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 05/01/2024]
Abstract
Autonomic nervous system imbalance is intricately associated with the severity and prognosis of pulmonary arterial hypertension (PAH). Carotid baroreceptor stimulation (CBS) is a nonpharmaceutical intervention for autonomic neuromodulation. The effects of CBS on monocrotaline-induced PAH were investigated in this study, and its underlying mechanisms were elucidated. The results indicated that CBS improved pulmonary hemodynamic status and alleviated right ventricular dysfunction, improving pulmonary arterial remodeling and right ventricular remodeling, thus enhancing the survival rate of monocrotaline-induced PAH rats. The beneficial effects of CBS treatment on PAH might be mediated through the inhibition of sympathetic overactivation and inflammatory immune signaling pathways.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Shu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ruoliu Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xuesheng Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhiling Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lingling Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhaoqing Xi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junxia Zhang
- Department of Endocrinology, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
36
|
Megied MAAE, Abouelhassan MA, Hadwa ESAES. Prognostic and diagnostic utility of interleukin-6 in pediatric pulmonary arterial hypertension - a case-control study. Eur J Pediatr 2024; 183:1637-1643. [PMID: 38193997 PMCID: PMC11001729 DOI: 10.1007/s00431-023-05413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Pulmonary arterial hypertension (PAH) in pediatrics is a progressive disease with significant vascular remodeling, right sided heart failure, and death if left untreated. Elevated interleukin-6 (IL-6) level in PAH patients is taken as an independent predictor of adverse outcome including mortality. The aim of this study was to investigate and compare serum levels of IL-6 in children with PAH and healthy matched controls, and correlate between IL-6 and degree of PAH, as well as mortality. IL-6 was measured by ELISA in serum samples in 40 children with PAH (age 1-12 years) and 40 age and sex-matched healthy controls. There was a statistically significant increase in IL-6 level among PAH cases compared with the controls (1.85 ng/L vs 1.30 ng/L, p-value = 0.004). IL-6 at cut off point 1.45 ng/L significantly predict pulmonary hypertension in children (AUC = 0.685, 75% sensitivity, and 65% specificity with p = 0.002). There was no statistically significant association between IL-6 level and degree of PAH (p = 0.218). There was no statistically significant association between IL-6 level and mortality (p = 0.662). Conclusion: IL-6 significantly predict PAH in pediatrics but there is no association between IL-6 level and degree of PAH or mortality. IL-6 may provide a less costly and less invasive method for disease detection. What is Known: • Definitive diagnosis of PAH is made by right heart catheterization, while echocardiography is the gold standard for tracking the course of the disease. What is New: • It was assumed that children with a diagnosis of PAH would have higher serum IL-6 levels than controls. Furthermore, an adverse relationship between the blood IL-6 level and PPAH was predicted.
Collapse
|
37
|
Zhao H, Song J, Li X, Xia Z, Wang Q, Fu J, Miao Y, Wang D, Wang X. The role of immune cells and inflammation in pulmonary hypertension: mechanisms and implications. Front Immunol 2024; 15:1374506. [PMID: 38529271 PMCID: PMC10962924 DOI: 10.3389/fimmu.2024.1374506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Pulmonary hypertension (PH) is a malignant disease with progressive increase of pulmonary vascular pressure, which eventually leads to right heart failure. More and more evidences show that immune cells and inflammation play an important role in the occurrence and development of PH. In the context of pulmonary vascular diseases, immune cells migrate into the walls of the pulmonary vascular system. This leads to an increase in the levels of cytokines and chemokines in both the bloodstream and the surrounding tissues of the pulmonary vessels. As a result, new approaches such as immunotherapy and anti-inflammatory treatments are being considered as potential strategies to halt or potentially reverse the progression of PH. We reviewed the potential mechanisms of immune cells, cytokines and chemokines in PH development. The potential relationship of vascular cells or bone morphogenetic protein receptor 2 (BMPR2) in immune regulation was also expounded. The clinical application and future prospect of immunotherapy were further discussed.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Jialin Song
- Department of Limb Trauma, Wendeng Orthopaedic Hospital of Shandong Province, Weihai, Shandong, China
| | - Xiujun Li
- Department of Medicine, Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Library, Jinan Children's Hospital, Shandong, Jinan, Shandong, China
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiaqi Fu
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Dapeng Wang
- Department of Intensive Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xuguang Wang
- Department of Limb Trauma, Wendeng Orthopaedic Hospital of Shandong Province, Weihai, Shandong, China
| |
Collapse
|
38
|
Lewis MI, Shapiro S, Oudiz RJ, Nakamura M, Geft D, Matusov Y, Hage A, Tapson VF, Henry TD, Azizad P, Saggar R, Mirocha J, Karpov OA, Van Eyk JE, Marbán E. The ALPHA phase 1 study: pulmonary ArteriaL hypertension treated with CardiosPHere-Derived allogeneic stem cells. EBioMedicine 2024; 100:104900. [PMID: 38092579 PMCID: PMC10879003 DOI: 10.1016/j.ebiom.2023.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Pulmonary Arterial Hypertension (PAH) is a progressive condition with no cure. Even with pharmacologic advances, survival remains poor. Lung pathology on PAH therapies still shows impressive occlusive arteriolar remodelling and plexiform lesions. Cardiosphere-derived cells (CDCs) are heart-derived progenitor cells exhibiting anti-inflammatory and immunomodulatory effects, are anti -fibrotic, anti-oxidative and anti-apoptotic to potentially impact several aspects of PAH pathobiology. In preclinical trials CDCs reduced right ventricular (RV) systolic pressure, RV hypertrophy, pulmonary arteriolar wall thickness and inflammation. METHODS The ALPHA study was a Phase 1a/b study in which CDCs were infused into patients with Idiopathic (I)PAH, Heritable (H) HPAH, PAH-connective tissue disease (CTD) and PAH-human immunodeficiency virus (HIV). The study was IRB approved and DSMB monitored. Phase 1a, was an open label study (n = 6). Phase 1b was a double-blind placebo-controlled study (n = 20) in which half received 100 million CDCs (the maximum feasible dose from manufacturing perspective) and half placebo (PLAC) infusions. Right heart catheterization (RHC) and cardiac MR imaging (cMR) were performed at baseline and at 4 months post infusion. Patients were followed over a year. FINDINGS No short-term clinical safety adverse events (AE) were related to the IP, the primary outcome measure. There were no adverse hemodynamic, gas exchange, rhythm or other clinical events following infusion and in the 1st 23 h monitored in hospital. There were no long-term AEs over 12 months noted, including unrelated limited hospitalizations. No immunologic short or long-term AEs were noted. We examined exploratory outcomes across multiple domains to determine encouraging signals to motivate future advanced phase testing. Phase 1a data showed encouraging observations for both 50 and 100 million CDC doses. Several encouraging findings favouring CDCs (n = 16) compared to placebo (n = 10) were noted. On cMR, the RV end diastolic volume (RVEDV) and index (RVEDVI) decreased with CDCs with a rise in the PLAC group. The 6-min walk distance was increased 2 months post infusion in the CDC group compared with PLAC. With PLAC, diffusing capacity (DLCO) decreased at 4 months but was unchanged with CDCs. Serum creatinine decreased with CDCs at 4 months. Encouraging observations favouring CDCs were also noted for RV fractional area change on echo and RV ejection fraction (RVEF) on cMR at 4 months. No differences were observed for mean pulmonary artery pressures or pulmonary vascular resistance. Review of long-term data to 12 months showed continued decline in DLCO for the PLAC cohort at 6 months with no change through 12 months. By contrast, CDC subjects showed an unchanged DLCO over 12-months. For parameters exhibiting early encouraging exploratory findings in CDC subjects, no further improvement was noted in long-term follow up through 12 months. INTERPRETATION Intravenous CDCs were safe in both the short and long term in PAH subjects and thus may be safe in larger cohorts, in line with our extensive track record of safety in clinical trials for other conditions. Further, CDCs exhibited encouraging exploratory findings across several domains. Repeat dosing (quarterly, over one year) of intravenous CDCs has been reported to yield highly significant sustained disease-modifying bioactivity in subjects with advanced Duchenne muscular dystrophy. Because only single CDC doses were used here, the findings represent a lower limit estimate of CDC's potential in PAH. Upcoming phase 2 studies would logically use a repeat dosing paradigm. FUNDING California Institute for Regenerative Medicine (CIRM). Project Number: CLIN2-09444.
Collapse
Affiliation(s)
- Michael I Lewis
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Pulmonary/Critical Care Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Shelley Shapiro
- Division of Cardiology, VA Greater Los Angeles Healthcare System and Division of Pulmonary/Critical Care, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Ronald J Oudiz
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mamoo Nakamura
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dael Geft
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yuri Matusov
- Pulmonary/Critical Care Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Antoine Hage
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Victor F Tapson
- Pulmonary/Critical Care Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education and Interventional Cardiology, The Christ Hospital, Cincinnati, OH, USA
| | - Parisa Azizad
- Pulmonary/Critical Care Division, Kaiser Sunset Medical Center, Los Angeles, CA, USA
| | - Rajan Saggar
- Pulmonary/Critical Care Division, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - James Mirocha
- Biostatistics and Cancer Institute Shared Services, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Oleg A Karpov
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
39
|
Tai YY, Yu Q, Tang Y, Sun W, Kelly NJ, Okawa S, Zhao J, Schwantes-An TH, Lacoux C, Torrino S, Aaraj YA, Khoury WE, Negi V, Liu M, Corey CG, Belmonte F, Vargas SO, Schwartz B, Bhat B, Chau BN, Karnes JH, Satoh T, Barndt RJ, Wu H, Parikh VN, Wang J, Zhang Y, McNamara D, Li G, Speyer G, Wang B, Shiva S, Kaufman B, Kim S, Gomez D, Mari B, Cho MH, Boueiz A, Pauciulo MW, Southgate L, Trembath RC, Sitbon O, Humbert M, Graf S, Morrell NW, Rhodes CJ, Wilkins MR, Nouraie M, Nichols WC, Desai AA, Bertero T, Chan SY. Allele-specific control of rodent and human lncRNA KMT2E-AS1 promotes hypoxic endothelial pathology in pulmonary hypertension. Sci Transl Med 2024; 16:eadd2029. [PMID: 38198571 PMCID: PMC10947529 DOI: 10.1126/scitranslmed.add2029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Qiujun Yu
- Cardiovascular Division, Department Of Internal Medicine, Washington University School of Medicine, St. louis, Mo 63110, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Neil J. Kelly
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Va Medical Center, Pittsburgh, PA 15240, USA
| | - Satoshi Okawa
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Tae-Hwi Schwantes-An
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, In 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Caroline Lacoux
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Stephanie Torrino
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Wadih El Khoury
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Vinny Negi
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Catherine G. Corey
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Pediatrics, University of Pittsburgh Medical center children’s hospital, Pittsburgh, PA 15224, USA
| | - Frances Belmonte
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sara O. Vargas
- Department of Pathology, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Bal Bhat
- Translate Bio, Lexington, MA 02421, USA
| | | | - Jason H. Karnes
- Division of Pharmacogenomics, College of Pharmacy, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Taijyu Satoh
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980–8575, Japan
| | - Robert J. Barndt
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Haodi Wu
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Victoria N. Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yingze Zhang
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Dennis McNamara
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Gang Li
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, AZ 85281, USA
| | - Bing Wang
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brett Kaufman
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Seungchan Kim
- Center for Computational Systems Biology, Department of Electrical and Computer Engineering, Roy G. Perry college of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Bernard Mari
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Adel Boueiz
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael W. Pauciulo
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Southgate
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, WC2R 2lS, UK
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, SW17 0RE, UK
| | - Richard C. Trembath
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, WC2R 2lS, UK
| | - Olivier Sitbon
- Université Paris–Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Marc Humbert
- Université Paris–Saclay, INSERM, Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin Bicêtre, 94270, France
| | - Stefan Graf
- Department of Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
- NIHR Bioresource for Translational Research, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Haematology, University of Cambridge, NHS Blood and Transplant, Long Road, Cambridge, CB2 2PT, UK
| | - Nicholas W. Morrell
- Department of Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
- Centessa Pharmaceuticals, Altrincham, Cheshire, WA14 2DT, UK
| | | | - Martin R. Wilkins
- National Heart and Lung Institute, Imperial College London, London, SW3 6lY, UK
| | - Mehdi Nouraie
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - William C. Nichols
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ankit A. Desai
- Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, In 46202, USA
| | - Thomas Bertero
- Université côte d’Azur, CNRS, IPMC, IHU RespiERA, Sophia-Antipolis, 06903, France
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Division of cardiology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
40
|
Lee D, Lee H, Jo HN, Yun E, Kwon BS, Kim J, Lee A. Endothelial periostin regulates vascular remodeling by promoting endothelial dysfunction in pulmonary arterial hypertension. Anim Cells Syst (Seoul) 2024; 28:1-14. [PMID: 38186856 PMCID: PMC10769143 DOI: 10.1080/19768354.2023.2300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling associated with extracellular matrix (ECM) deposition, vascular cell hyperproliferation, and neointima formation in the small pulmonary artery. Endothelial dysfunction is considered a key feature in the initiation of vascular remodeling. Although vasodilators have been used for the treatment of PAH, it remains a life-threatening disease. Therefore, it is necessary to identify novel therapeutic targets for PAH treatment. Periostin (POSTN) is a secretory ECM protein involved in physiological and pathological processes, such as tissue remodeling, cell adhesion, migration, and proliferation. Although POSTN has been proposed as a potential target for PAH treatment, its role in endothelial cells has not been fully elucidated. Here, we demonstrated that POSTN upregulation correlates with PAH by analyzing a public microarray conducted on the lung tissues of patients with PAH and biological experimental results from in vivo and in vitro models. Moreover, POSTN overexpression leads to ECM deposition and endothelial abnormalities such as migration. We found that PAH-associated endothelial dysfunction is mediated at least in part by the interaction between POSTN and integrin-linked protein kinase (ILK), followed by activation of nuclear factor-κB signaling. Silencing POSTN or ILK decreases PAH-related stimuli-induced ECM accumulation and attenuates endothelial abnormalities. In conclusion, our study suggests that POSTN serves as a critical regulator of PAH by regulating vascular remodeling, and targeting its role as a potential therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Dawn Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Heeyoung Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Ha-neul Jo
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Eunsik Yun
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Katz MG, Hadas Y, Shtraizent N, Ravvin S, Madjarov JM, Eliyahu E. Unilateral Lung Removal in Combination with Monocrotaline or SU5416 in Rodents: A Reliable Model to Mimic the Pathology of the Human Pulmonary Hypertension. Methods Mol Biol 2024; 2803:173-185. [PMID: 38676893 DOI: 10.1007/978-1-0716-3846-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Pulmonary hypertension (PH) is a chronic and progressive disorder characterized by elevated mean pulmonary arterial pressure, pulmonary vascular remodeling, and the development of concentric laminar intimal fibrosis with plexiform lesions. While rodent models have been developed to study PH, they have certain deficiencies and do not entirely replicate the human disease due to the heterogeneity of PH pathology. Therefore, combined models are necessary to study PH. Recent studies have shown that altered pulmonary blood flow is a significant trigger in the development of vascular remodeling and neointimal lesions. One of the most promising rodent models for increased pulmonary flow is the combination of unilateral left pneumonectomy with a "second hit" of monocrotaline (MCT) or SU5416. The removal of one lung in this model forces blood to circulate only in the other lung and induces increased and turbulent pulmonary blood flow. This increased vascular flow leads to progressive remodeling and occlusion of small pulmonary arteries. The second hit by MCT or SU5416 leads to endothelial cell dysfunction, resulting in severe PH and the development of plexiform arteriopathy.
Collapse
Affiliation(s)
- Michael G Katz
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cardiovascular Surgery and Pediatric Cardiac Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yoav Hadas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Shana Ravvin
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeko M Madjarov
- Atrium Health Sanger Heart and Vascular Institute, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
42
|
Sui C, Lee W. Role of interleukin 6 and its soluble receptor on the diffusion barrier dysfunction of alveolar tissue. Biomed Microdevices 2023; 25:40. [PMID: 37851124 DOI: 10.1007/s10544-023-00680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
During respiratory infection, barrier dysfunction in alveolar tissue can result from "cytokine storm" caused by overly reactive immune response. Particularly, interleukin 6 (IL-6) is implicated as a key biomarker of cytokine storm responsible for and further progression to pulmonary edema. In this study, alveolar-like tissue was reconstructed in a microfluidic device with: (1) human microvascular lung endothelial cells (HULEC-5a) cultured under flow-induced shear stress and (2) human epithelial cells (Calu-3) cultured at air-liquid interface. The effects of IL-6 and the soluble form of its receptor (sIL-6R) on the permeability, electrical resistance, and morphology of the endothelial and epithelial layers were evaluated. The diffusion barrier properties of both the endothelial and epithelial layers were significantly degraded only when IL-6 treatment was combined with sIL-6R. As suggested by recent review and clinical studies, our results provide unequivocal evidence that the barrier dysfunction occurs through trans-signaling in which IL-6 and sIL-6R form a complex and then bind to the surface of endothelial and epithelial cells, but not by classical signaling in which IL-6 binds to membrane-expressed IL-6 receptor. This finding suggests that the role of both IL-6 and sIL-6R should be considered as important biomarkers in developing strategies for treating cytokine storm.
Collapse
Affiliation(s)
- Chao Sui
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point On Hudson, Hoboken, New Jersey, 07030, USA.
| |
Collapse
|
43
|
Norlander AE, Abney M, Cephus JY, Roe CE, Irish JM, Shelburne NJ, Newcomb DC, Hemnes AR, Peebles RS. Prostaglandin I 2 Therapy Promotes Regulatory T Cell Generation in Patients with Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2023; 208:737-739. [PMID: 37413696 PMCID: PMC10515570 DOI: 10.1164/rccm.202304-0716le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Affiliation(s)
- Allison E. Norlander
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Department of Cell Biology, Anatomy, and Physiology and
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Masako Abney
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | | | - Caroline E. Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan M. Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas J. Shelburne
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- United States Department of Veterans Affairs Medical Center, Nashville, Tennessee; and
| |
Collapse
|
44
|
Zhao SS, Liu J, Wu QC, Zhou XL. Role of histone lactylation interference RNA m 6A modification and immune microenvironment homeostasis in pulmonary arterial hypertension. Front Cell Dev Biol 2023; 11:1268646. [PMID: 37771377 PMCID: PMC10522917 DOI: 10.3389/fcell.2023.1268646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease resulting from progressive increases in pulmonary vascular resistance and pulmonary vascular remodeling, ultimately leading to right ventricular failure and even death. Hypoxia, inflammation, immune reactions, and epigenetic modifications all play significant contributory roles in the mechanism of PAH. Increasingly, epigenetic changes and their modifying factors involved in reprogramming through regulation of methylation or the immune microenvironment have been identified. Among them, histone lactylation is a new post-translational modification (PTM), which provides a novel visual angle on the functional mechanism of lactate and provides a promising diagnosis and treatment method for PAH. This review detailed introduces the function of lactate as an important molecule in PAH, and the effects of lactylation on N6-methyladenosine (m6A) and immune cells. It provides a new perspective to further explore the development of lactate regulation of pulmonary hypertension through histone lactylation modification.
Collapse
Affiliation(s)
- Shuai-shuai Zhao
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Qi-cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xue-liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Tomaszewski M, Mertowska P, Janczewska M, Styczeń A, Mertowski S, Jonas K, Grywalska E, Kopeć G. In the Search for Biomarkers of Pulmonary Arterial Hypertension, Are Cytokines IL-2, IL-4, IL-6, IL-10, and IFN-Gamma the Right Indicators to Use? Int J Mol Sci 2023; 24:13694. [PMID: 37761997 PMCID: PMC10530884 DOI: 10.3390/ijms241813694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex disorder characterized by increased pressure in the pulmonary arteries, leading to right heart failure. While the exact mechanisms underlying PAH are not fully understood, cytokines have been implicated in the pathogenesis of the disease. Cytokines play a crucial role in regulating immune responses and inflammation. These small proteins also play a key role in shaping the immunophenotype, which refers to the specific characteristics and functional properties of immune cells, which can have a significant impact on the development of PAH. The aim of this study was to determine the immunophenotype and the concentration of selected cytokines, IL-2, IL-4, IL-6, IL-10, and IFN-gamma, in patients diagnosed with PAH (with particular emphasis on subtypes) in relation to healthy volunteers. Based on the obtained results, we can conclude that in patients with PAH, the functioning of the immune system is deregulated as a result of a decrease in the percentage of selected subpopulations of immune cells in peripheral blood and changes in the concentration of tested cytokines in relation to healthy volunteers. In addition, a detailed analysis showed that there are statistically significant differences between the PAH subtypes and the tested immunological parameters. This may indicate a significant role of the immune system in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Michał Tomaszewski
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.T.); (M.J.); (A.S.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Martyna Janczewska
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.T.); (M.J.); (A.S.)
| | - Agnieszka Styczeń
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.T.); (M.J.); (A.S.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Kamil Jonas
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Centre for Rare Cardiovascular Diseases, John Paul II Hospital, ul. Pradnicka 80, 31-202 Krakow, Poland; (K.J.); (G.K.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Grzegorz Kopeć
- Pulmonary Circulation Centre, Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Centre for Rare Cardiovascular Diseases, John Paul II Hospital, ul. Pradnicka 80, 31-202 Krakow, Poland; (K.J.); (G.K.)
| |
Collapse
|
46
|
Olsson KM, Corte TJ, Kamp JC, Montani D, Nathan SD, Neubert L, Price LC, Kiely DG. Pulmonary hypertension associated with lung disease: new insights into pathomechanisms, diagnosis, and management. THE LANCET. RESPIRATORY MEDICINE 2023; 11:820-835. [PMID: 37591300 DOI: 10.1016/s2213-2600(23)00259-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023]
Abstract
Patients with chronic lung diseases, particularly interstitial lung disease and chronic obstructive pulmonary disease, frequently develop pulmonary hypertension, which results in clinical deterioration, worsening of oxygen uptake, and an increased mortality risk. Pulmonary hypertension can develop and progress independently from the underlying lung disease. The pulmonary vasculopathy is distinct from that of other forms of pulmonary hypertension, with vascular ablation due to loss of small pulmonary vessels being a key feature. Long-term tobacco exposure might contribute to this type of pulmonary vascular remodelling. The distinct pathomechanisms together with the underlying lung disease might explain why treatment options for this condition remain scarce. Most drugs approved for pulmonary arterial hypertension have shown no or sometimes harmful effects in pulmonary hypertension associated with lung disease. An exception is inhaled treprostinil, which improves exercise capacity in patients with interstitial lung disease and pulmonary hypertension. There is a pressing need for safe, effective treatment options and for reliable, non-invasive diagnostic tools to detect and characterise pulmonary hypertension in patients with chronic lung disease.
Collapse
Affiliation(s)
- Karen M Olsson
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany.
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jan C Kamp
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany
| | - David Montani
- Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, INSERM Unité Mixte de Recherche 999, Université Paris-Saclay, Paris, France
| | - Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Laura C Price
- National Heart and Lung Institute, Imperial College London, London, UK; National Pulmonary Hypertension Service, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; NIHR Biomedical Research Centre, Sheffield, UK
| |
Collapse
|
47
|
Rothman A, Mann D, Nunez JA, Tarmidi R, Restrepo H, Sarukhanov V, Williams R, Evans WN. A Bioinformatic Algorithm based on Pulmonary Endoarterial Biopsy for Targeted Pulmonary Arterial Hypertension Therapy. Open Respir Med J 2023; 17:e187430642308160. [PMID: 38655076 PMCID: PMC11037516 DOI: 10.2174/18743064-v17-230927-2023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 04/26/2024] Open
Abstract
Background Optimal pharmacological therapy for pulmonary arterial hypertension (PAH) remains unclear, as pathophysiological heterogeneity may affect therapeutic outcomes. A ranking methodology based on pulmonary vascular genetic expression analysis could assist in medication selection and potentially lead to improved prognosis. Objective To describe a bioinformatics approach for ranking currently approved pulmonary arterial antihypertensive agents based on gene expression data derived from percutaneous endoarterial biopsies in an animal model of pulmonary hypertension. Methods We created a chronic PAH model in Micro Yucatan female swine by surgical anastomosis of the left pulmonary artery to the descending aorta. A baseline catheterization, angiography and pulmonary endoarterial biopsy were performed. We obtained pulmonary vascular biopsy samples by passing a biopsy catheter through a long 8 French sheath, introduced via the carotid artery, into 2- to 3-mm peripheral pulmonary arteries. Serial procedures were performed on days 7, 21, 60, and 180 after surgical anastomosis. RNA microarray studies were performed on the biopsy samples. Results Utilizing the medical literature, we developed a list of PAH therapeutic agents, along with a tabulation of genes affected by these agents. The effect on gene expression from pharmacogenomic interactions was used to rank PAH medications at each time point. The ranking process allowed the identification of a theoretical optimum three-medication regimen. Conclusion We describe a new potential paradigm in the therapy for PAH, which would include endoarterial biopsy, molecular analysis and tailored pharmacological therapy for patients with PAH.
Collapse
Affiliation(s)
- Abraham Rothman
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| | - David Mann
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
| | - Jose A. Nunez
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- College of Engineering, University of California, Santa Barbara, Lagoon Rd, Santa Barbara, CA 93106, USA
| | - Reinhardt Tarmidi
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- College of Engineering, University of California, Santa Barbara, Lagoon Rd, Santa Barbara, CA 93106, USA
| | - Humberto Restrepo
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| | - Valeri Sarukhanov
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
| | - Roy Williams
- Vascular Biosciences, 72 Santa Felicia Drive, Goleta, CA, 93117, USA
- Institute of Genomic Medicine, University of California, San Diego, 9500 Gilman Drive #0761, La Jolla, CA 92093, USA
| | - William N. Evans
- Children’s Heart Center Nevada, 3131 La Canada, Suite 230, Las Vegas, NV 89169, USA
- Department of Pediatrics, Division of Pediatric Cardiology, Kirk Kerkorian School of Medicine at UNLV, 2040 W. Charleston Blvd Ste. 402, Las Vegas, NV 89109, USA
| |
Collapse
|
48
|
Bai Y, Li G, Yung L, Yu PB, Ai X. Intrapulmonary arterial contraction assay reveals region-specific deregulation of vasoreactivity to lung injuries. Am J Physiol Lung Cell Mol Physiol 2023; 325:L114-L124. [PMID: 37278410 PMCID: PMC10393320 DOI: 10.1152/ajplung.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/15/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
Intrapulmonary arteries located in the proximal lung differ from those in the distal lung in size, cellular composition, and the surrounding microenvironment. However, whether these structural variations lead to region-specific regulation of vasoreactivity in homeostasis and following injury is unknown. Herein, we employ a two-step method of precision-cut lung slice (PCLS) preparation, which maintains almost intact intrapulmonary arteries, to assess contractile and relaxation responses of proximal preacinar arteries (PaAs) and distal intraacinar arteries (IaAs) in mice. We found that PaAs exhibited robust vasoconstriction in response to contractile agonists and significant nitric oxide (NO)-induced vasodilation. In comparison, IaAs were less contractile and displayed a greater relaxation response to NO. Furthermore, in a mouse model of pulmonary arterial hypertension (PAH) induced by chronic exposure to ovalbumin (OVA) allergen and hypoxia (OVA-HX), IaAs demonstrated a reduced vasocontraction despite vascular wall thickening with the emergence of new αSMA+ cells coexpressing markers of pericytes. In contrast, PaAs became hypercontractile and less responsive to NO. The reduction in relaxation of PaAs was associated with decreased expression of protein kinase G, a key component of the NO pathway, following chronic OVA-HX exposure. Taken together, the PCLS prepared using the modified preparation method enables functional evaluation of pulmonary arteries in different anatomical locations and reveals region-specific mechanisms underlying the pathophysiology of PAH in a mouse model.NEW & NOTEWORTHY Utilizing mouse precision-cut lung slices with preserved intrapulmonary vessels, we demonstrated a location-dependent structural and contractile regulation of pulmonary arteries in health and on noxious stimulations. For instance, chronic ovalbumin and hypoxic exposure increased pulmonary arterial pressure (PAH) by remodeling intraacinar arterioles to reduce vascular wall compliance while enhancing vasoconstriction in proximal preacinar arteries. These findings suggest region-specific mechanisms and therapeutic targets for pulmonary vascular diseases such as PAH.
Collapse
Affiliation(s)
- Yan Bai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital and Wuhan University, Wuhan, People's Republic of China
| | - Laiming Yung
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Paul B Yu
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Xingbin Ai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
49
|
Huang H, Lin D, Hu L, Wang J, Yu Y, Yu Y, Li K, Chen F. RNA Binding Protein Quaking Promotes Hypoxia-induced Smooth Muscle Reprogramming in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2023; 69:159-171. [PMID: 37146099 DOI: 10.1165/rcmb.2022-0349oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/04/2023] [Indexed: 05/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by progressive increases in pulmonary vascular resistance and remodeling, which eventually leads to right ventricular failure and death. The aim of this study was to identify novel molecular mechanisms involved in the hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) in PH. In this study, we first demonstrated that the mRNA and protein expression amounts of QKI (Quaking), an RNA-binding protein, were elevated in human and rodent PH lung and pulmonary artery tissues and hypoxic human PASMCs. QKI deficiency attenuated PASMC proliferation in vitro and vascular remodeling in vivo. Next, we elucidated that QKI increases STAT3 (signal transducer and activator of transcription 3) mRNA stability by binding to its 3' untranslated region. QKI inhibition reduced STAT3 expression and alleviated PASMC proliferation in vitro. Moreover, we also observed that the upregulated expression of STAT3 promoted PASMC proliferation in vitro and in vivo. In addition, as a transcription factor, STAT3 bound to microRNA (miR)-146b promoter to enhance its expression. We further showed that miR-146b promoted the proliferation of smooth muscle cells by inhibiting STAT1 and TET2 (Tet methylcytosine dioxygenase 2) during pulmonary vascular remodeling. This study has demonstrated new mechanistic insights into hypoxic reprogramming that arouses vascular remodeling, thus providing proof of concept for targeting vascular remodeling by directly modulating the QKI-STAT3-miR-146b pathway in PH.
Collapse
Affiliation(s)
| | | | - Li Hu
- Department of Forensic Medicine and
| | - Jie Wang
- Department of Forensic Medicine and
| | | | | | - Kai Li
- Department of Forensic Medicine and
| | - Feng Chen
- Department of Forensic Medicine and
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Plecitá-Hlavatá L, Brázdová A, Křivonosková M, Hu CJ, Phang T, Tauber J, Li M, Zhang H, Hoetzenecker K, Crnkovic S, Kwapiszewska G, Stenmark KR. Microenvironmental regulation of T-cells in pulmonary hypertension. Front Immunol 2023; 14:1223122. [PMID: 37497214 PMCID: PMC10368362 DOI: 10.3389/fimmu.2023.1223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction In pulmonary hypertension (PH), pulmonary arterial remodeling is often accompanied by perivascular inflammation. The inflammation is characterized by the accumulation of activated macrophages and lymphocytes within the adventitial stroma, which is comprised primarily of fibroblasts. The well-known ability of fibroblasts to secrete interleukins and chemokines has previously been implicated as contributing to this tissue-specific inflammation in PH vessels. We were interested if pulmonary fibroblasts from PH arteries contribute to microenvironmental changes that could activate and polarize T-cells in PH. Methods We used single-cell RNA sequencing of intact bovine distal pulmonary arteries (dPAs) from PH and control animals and flow cytometry, mRNA expression analysis, and respirometry analysis of blood-derived bovine/human T-cells exposed to conditioned media obtained from pulmonary fibroblasts of PH/control animals and IPAH/control patients (CM-(h)PH Fibs vs CM-(h)CO Fibs). Results Single-cell RNA sequencing of intact bovine dPAs from PH and control animals revealed a pro-inflammatory phenotype of CD4+ T-cells and simultaneous absence of regulatory T-cells (FoxP3+ Tregs). By exposing T-cells to CM-(h)PH Fibs we stimulated their proinflammatory differentiation documented by increased IFNγ and decreased IL4, IL10, and TGFβ mRNA and protein expression. Interestingly, we demonstrated a reduction in the number of suppressive T-cell subsets, i.e., human/bovine Tregs and bovine γδ T-cells treated with CM-(h)PH-Fibs. We also noted inhibition of anti-inflammatory cytokine expression (IL10, TGFβ, IL4). Pro-inflammatory polarization of bovine T-cells exposed to CM-PH Fibs correlated with metabolic shift to glycolysis and lactate production with increased prooxidant intracellular status as well as increased proliferation of T-cells. To determine whether metabolic reprogramming of PH-Fibs was directly contributing to the effects of PH-Fibs conditioned media on T-cell polarization, we treated PH-Fibs with the HDAC inhibitor SAHA, which was previously shown to normalize metabolic status and examined the effects of the conditioned media. We observed significant suppression of inflammatory polarization associated with decreased T-cell proliferation and recovery of mitochondrial energy metabolism. Conclusion This study demonstrates how the pulmonary fibroblast-derived microenvironment can activate and differentiate T-cells to trigger local inflammation, which is part of the vascular wall remodeling process in PH.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Andrea Brázdová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czechia
| | - Monika Křivonosková
- Laboratory of Pancreatic Islet Research, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Cheng-Jun Hu
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado, Aurora, CO, United States
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | - Tzu Phang
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | - Jan Tauber
- Laboratory of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Min Li
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | - Hui Zhang
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| | | | - Slaven Crnkovic
- Otto Loewi Research Center, Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center, Giessen, Germany
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center, Giessen, Germany
| | - Kurt R. Stenmark
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|