1
|
Lv B, Wang Z, Wang Q, Xu Z, Tang J, Pei Y, Bian Y, Sun H, Chen Y. Dual inhibitors of butyrylcholinesterase and histone deacetylase 6 for the treatment of Alzheimer's disease: design, synthesis, and biological evaluation. Bioorg Med Chem 2025; 127:118219. [PMID: 40347723 DOI: 10.1016/j.bmc.2025.118219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
To address the multifactorial pathology of Alzheimer's disease (AD), eighteen butyrylcholinesterase (BChE) and histone deacetylase 6 (HDAC6) dual inhibitors were designed, synthesized, and biologically evaluated. Through structure-activity relationship studies, compound 17 emerged as the most potent candidate, with IC50 value of 0.3 nM for human BChE and 56.7 nM for HDAC6. This compound demonstrated favorable safety profiles, drug-like properties, and significant neuroprotective effects in vitro. In a mouse model of scopolamine-induced cognitive impairment, 17 (10 mg/kg) exhibited excellent safety and markedly improved cognitive deficits. These findings highlight compound 17 as a promising BChE/HDAC6 dual inhibitor, supporting its further development as a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Zhenqi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Zhaoxin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jixiong Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China.
| |
Collapse
|
2
|
Marinaccio L, Gentile G, Llorent-Martínez EJ, Zengin G, Masci D, Flamminii F, Stefanucci A, Mollica A. Valorization of grape pomace extracts against cranberry, elderberry, rose hip berry, goji berry and raisin extracts: Phytochemical profile and in vitro biological activity. Food Chem 2025; 463:141323. [PMID: 39305664 DOI: 10.1016/j.foodchem.2024.141323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 11/06/2024]
Abstract
The circular economy is gaining attention around the world as a sustainable approach to tackling environmental problems, promoting more responsible management of resources. The aim of this work is the valorization of grape pomace as a waste product of agrifood chain. We prepared decoction (DC), ultrasound-assisted and microwave-assisted extracts (UAE and MAE respectively) of grape pomace, determining their phytochemical profile (using HPLC-ESI-Q-TOF-MS), antioxidant activity and enzyme inhibitory effects. Then, the results were compared with those of raisins and several edible berries already present in the market. Grape pomace extracts presented the highest total phenolic content (62-68 mg gallic acid equivalents/g; mg GAE/g), whereas the concentrations in the other berries were 4-43 mg GAE/g. These results were in agreement with the higher antioxidant activity and tyrosinase inhibition observed in grape pomace compared with the other berries, except for the metal chelating activity. The main compounds in grape pomace extracts were flavonoids (particularly quercetin glycosides), followed by organic acids (citric, isocitric and gallic acids). These results open new perspectives in the development of food supplements and nutraceuticals based on grape pomace extracts.
Collapse
Affiliation(s)
- Lorenza Marinaccio
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Gentile
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Eulogio J Llorent-Martínez
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, E-23071 Jaén, Spain
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, Rome 00168, Italy
| | - Federica Flamminii
- Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University of Chieti-Pescara, 65100 Chieti, Italy
| | - Azzurra Stefanucci
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Adriano Mollica
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Qi B, Guan L, Tan J, Li G, Sun Y, Zhang Q, Zou Y. Identification of novel tau positron emission tomography tracers for chronic traumatic encephalopathy by comprehensive in silico screening and molecular dynamics simulation. Phys Chem Chem Phys 2025; 27:754-767. [PMID: 39655528 DOI: 10.1039/d4cp03207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Chronic traumatic encephalopathy (CTE), a neurodegenerative disease associated with repetitive mild traumatic brain injury, is characterized neuropathologically by abnormal hyperphosphorylated tau accumulation. Early detection of tau deposition in the brain is crucial for the prevention and evaluation of CTE. Positron emission tomography (PET) tracers can image specific proteins, while the optimal PET tracer for CTE tau fibrils remains unidentified. In this study, structure-based virtual screening and CNS PET MPO algorithms were utilized to identify candidates for novel tau PET tracers from 23 000 compounds in the ChemDiv CNS BBB library. A total of 8 μs molecular dynamics simulations were then employed to evaluate their binding affinity and atomic-level interaction with CTE tau protofibrils. The results indicate that V017-7820 (CNS-4), S776-0061 (CNS-12), S567-0465 (CNS-18), and T828-0465 (CNS-25) exhibit higher docking scores and binding free energies with CTE tau protofibrils while also satisfying the fundamental physicochemical properties of PET tracers. Further simulation analyses reveal that CNS-4 has the strongest binding affinity to tau protofibrils among the four compounds. Hydrophobic, π-π stacking, and hydrogen bonding interactions are the primary driving forces for the binding of these compounds to CTE tau protofibrils. In particular, CNS-12 and CNS-25 exhibit more intense hydrophobic and π-π stacking interactions, whereas CNS-4 and CNS-25 exhibit stronger hydrogen bonding interactions. This study identifies promising lead compounds for tau PET tracers and highlights their mechanism of binding to CTE tau protofibrils, which provides new insights for further screening and development of novel PET tracers for CTE diagnosis.
Collapse
Affiliation(s)
- Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Gengchen Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Tan LJ, Lei WJ, Liu MM, Cai ZD, Jiang HL, Liu R, Li ZR. Discovery of cinnamamide/ester triazole hybrids as potential treatment for Alzheimer's disease. Bioorg Chem 2024; 150:107584. [PMID: 38964146 DOI: 10.1016/j.bioorg.2024.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Developing multitargeted ligands as promising therapeutics for Alzheimer's disease (AD) has been considered important. Herein, a novel class of cinnamamide/ester-triazole hybrids with multifaceted effects on AD was developed based on the multitarget-directed ligands strategy. Thirty-seven cinnamamide/ester-triazole hybrids were synthesized, with most exhibiting significant inhibitory activity against Aβ-induced toxicity at a single concentration in vitro. The most optimal hybrid compound 4j inhibited copper-induced Aβ toxicity in AD cells. its action was superior to that of donepezil and memantine. It also moderately inhibited intracellular AChE activity and presented favorable bioavailability and blood-brain barrier penetration with low toxicity in vivo. Of note, it ameliorated cognitive impairment, neuronal degeneration, and Aβ deposition in Aβ1-42-injured mice. Mechanistically, the compound regulated APP processing by promoting the ADAM10-associated nonamyloidogenic signaling and inhibiting the BACE1-mediated amyloidogenic pathway. Moreover, it suppressed intracellular AChE activity and tau phosphorylation. Therefore, compound 4j may be a promising multitargeted active molecule against AD.
Collapse
Affiliation(s)
- Lin-Jie Tan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Ju Lei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mi-Min Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhong-Di Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai-Lun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Piekarz J, Picheta N, Burdan O, Kurek M, Chrościńska-Krawczyk M. Phytotherapy in Alzheimer's Disease-A Narrative Review. Biomedicines 2024; 12:1812. [PMID: 39200276 PMCID: PMC11351709 DOI: 10.3390/biomedicines12081812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) affects 50-70% of patients with dementia, making it the leading cause of dementia. The condition is classified as a neurodegenerative, progressive and incurable disease. The disease is affecting more and more people around the world. AD has a multifactorial nature, spreading from beta-amyloid deposition to inflammation in patients' brains. Patients experience cognitive impairment and functional decline. Although it is a disease that occurs mainly in the elderly, it is increasingly being diagnosed in young people between the ages of 30 and 40. It not only affects the patient themself but also reduces the quality of life of their closest caregivers. According to the WHO, the treatment of AD consumes USD 1.3 trillion globally, but it is only symptomatic, as there are no drugs to prevent the onset of AD or treat the cause of its onset. Due to the numerous side effects of therapy and the lack of proactive drugs that act on the pathomechanism of AD, alternative therapies are being sought. One possible option that has many studies confirming its effect is phytotherapy. Many herbs have pharmacological properties, such as antioxidant, anti-inflammatory, or neuroprotective effects, making them the future of cognitive disorders and AD treatment. This review focuses on some of the most promising herbs that have potentially potent properties and effects in AD therapy. These include Curcuma longa, Panax ginseng, Berberis and Crocus sativus. These herbs may perhaps be key in the future to make functioning and life easier for patients struggling with AD.
Collapse
Affiliation(s)
- Julia Piekarz
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Natalia Picheta
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Oliwia Burdan
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Marcelina Kurek
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | | |
Collapse
|
6
|
Evren AE, Nuha D, Özkan BNS, Kahraman Ç, Gönülalan EM, Yurttaş L. Design and synthesis of phenoxy methyl-oxadiazole compounds against Alzheimer's disease. Arch Pharm (Weinheim) 2024; 357:e2400115. [PMID: 38657203 DOI: 10.1002/ardp.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
This study examines the synthesis and evaluation of 11 newly developed compounds as potential anti-Alzheimer's agents that occur via cholinesterase and β-secretase inhibition. The compounds were tested for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using the modified Ellman method. The results showed that several compounds exhibited significant inhibition of AChE, particularly compounds 6d, 7a, and 7e, which demonstrated high inhibitory activity at lower concentrations, with IC50 values of 0.120, 0.039, and 0.063 µM, respectively. However, the compounds showed limited effectiveness against BChE, with only a few compounds exhibiting moderate inhibition. Compound 7e showed an inhibitory effect against BACE-1 close to that of the standard drug. Structural analysis revealed that the compounds with substituted benzothiazole and thiazole moieties exhibited the most promising inhibitory activity. This study provides valuable insights into the potential of these synthesized derivatives as a treatment against Alzheimer's disease. Moreover, the structure, stability, and properties of the active compounds were further investigated using density functional theory calculations. As a final note, the utilization of molecular docking and molecular dynamics simulation studies allowed us to elucidate the action mechanism of the active compounds and gain insights into the structure-activity relationship against AChE and β-secretase proteins. These computational techniques provide valuable information on the binding modes, interactions with target enzymes, dynamic behavior, and conformational changes of the compounds, enabling a comprehensive understanding of their biological activity.
Collapse
Affiliation(s)
- Asaf E Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Department of Pharmacy Services, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Faculty of Pharmacy, University for Business and Technology, Prishtina, Kosovo
| | - Begüm N S Özkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Çiğdem Kahraman
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ekrem M Gönülalan
- Department of Pharmacognosy, Faculty of Pharmacy, Afyonkarahisar Sağlık Bilimleri University, Afyon, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
7
|
Sheikh M, Ammar M. Efficacy of 5 and 10 mg donepezil in improving cognitive function in patients with dementia: a systematic review and meta-analysis. Front Neurosci 2024; 18:1398952. [PMID: 39104606 PMCID: PMC11298496 DOI: 10.3389/fnins.2024.1398952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Objective The purpose of this study was to compare donepezil at 5 mg and 10 mg/day against a placebo to systematically evaluate its effectiveness in improving cognitive function among patients suffering from dementia at any stage. Method For this systematic review and meta-analysis, we looked up Medline, Scopus, Embase, Web of Science, and The Cochrane Library for articles on the efficacy of donepezil in dementia published in the past 20 years and summarized the placebo and intervention data. Initially, a total of 2,272 articles were extracted using our search query and after the inclusion and exclusion criteria set for extraction of data, 18 studies were included in this review using PRISMA flowchart. The ADAS-cog and MMSE assessment scales were used for measuring the outcomes using IBM SPSS 29.0 for the meta-analysis. Result The meta-analysis comprised a total of 18 RCTs (randomized controlled trials) that were randomized to receive either donepezil 5 mg/day (n = 1,556), 10 mg/day (n = 2050) or placebo (n = 2,342). Meta-analysis concerning efficacy showed that donepezil at 10 mg/day significantly improved the MMSE score (g: 2.27, 95%CI: 1.25-3.29) but could not substantially reduce the ADAS-cog. At 5 mg/day donepezil, an overall slight improvement in MMSE score (Hedges' g: 2.09, 95%CI: 0.88-3.30) was observed. Conclusion Both donepezil 5 mg/day and 10 mg/day doses demonstrated improved cognitive functions for patients with dementia, however results indicated that the 10 mg/day dose was more efficacious.
Collapse
Affiliation(s)
- Mehak Sheikh
- Faculty of Pharmaceutical Sciences (FOP), University of Central Punjab, Lahore, Pakistan
| | - Mohammad Ammar
- Qatar University Young Scientists Center (QUYSC), Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Bai Y, Qiao Y, Li M, Yang W, Chen H, Wu Y, Zhang H. RIPK1 inhibitors: A key to unlocking the potential of necroptosis in drug development. Eur J Med Chem 2024; 265:116123. [PMID: 38199165 DOI: 10.1016/j.ejmech.2024.116123] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Within the field of medical science, there is a great deal of interest in investigating cell death pathways in the hopes of discovering new drugs. Over the past two decades, pharmacological research has focused on necroptosis, a cell death process that has just been discovered. Receptor-interacting protein kinase 1 (RIPK1), an essential regulator in the cell death receptor signalling pathway, has been shown to be involved in the regulation of important events, including necrosis, inflammation, and apoptosis. Therefore, researching necroptosis inhibitors offers novel ways to treat a variety of disorders that are not well-treated by the therapeutic medications now on the market. The research and medicinal potential of RIPK1 inhibitors, a promising class of drugs, are thoroughly examined in this study. The journey from the discovery of Necrostatin-1 (Nec-1) to the recent advancements in RIPK1 inhibitors is marked by significant progress, highlighting the integration of traditional medicinal chemistry approaches with modern technologies like high-throughput screening and DNA-encoded library technology. This review presents a thorough exploration of the development and therapeutic potential of RIPK1 inhibitors, a promising class of compounds. Simultaneously, this review highlights the complex roles of RIPK1 in various pathological conditions and discusses potential inhibitors discovered through diverse pathways, emphasizing their efficacy against multiple disease models, providing significant guidance for the expansion of knowledge about RIPK1 and its inhibitors to develop more selective, potent, and safe therapeutic agents.
Collapse
Affiliation(s)
- Yinliang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Qiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenzhen Yang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Haile Chen
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanqing Wu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Honghua Zhang
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore.
| |
Collapse
|
9
|
Gao C, Liu Y, Zhang TL, Luo Y, Gao J, Chu JJ, Gong BF, Chen XH, Yin T, Zhang J, Yin Y. Biomembrane-Derived Nanoparticles in Alzheimer's Disease Therapy: A Comprehensive Review of Synthetic Lipid Nanoparticles and Natural Cell-Derived Vesicles. Int J Nanomedicine 2023; 18:7441-7468. [PMID: 38090364 PMCID: PMC10712251 DOI: 10.2147/ijn.s436774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Current therapies for Alzheimer's disease used in the clinic predominantly focus on reducing symptoms with limited capability to control disease progression; thus, novel drugs are urgently needed. While nanoparticles (liposomes, high-density lipoprotein-based nanoparticles) constructed with synthetic biomembranes have shown great potential in AD therapy due to their excellent biocompatibility, multifunctionality and ability to penetrate the BBB, nanoparticles derived from natural biomembranes (extracellular vesicles, cell membrane-based nanoparticles) display inherent biocompatibility, stability, homing ability and ability to penetrate the BBB, which may present a safer and more effective treatment for AD. In this paper, we reviewed the synthetic and natural biomembrane-derived nanoparticles that are used in AD therapy. The challenges associated with the clinical translation of biomembrane-derived nanoparticles and future perspectives are also discussed.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Liu
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - Ting-Lin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Luo
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian-Jian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Bao-Feng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Xiao-Han Chen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian Zhang
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Richmond V, Falcone BN, Maier MS, Arroyo Máñez P. Putting the Puzzle Together To Get the Whole Picture: Molecular Basis of the Affinity of Two Steroid Derivatives to Acetylcholinesterase. ACS OMEGA 2023; 8:25610-25622. [PMID: 37483177 PMCID: PMC10357547 DOI: 10.1021/acsomega.3c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has no cure because its etiology is still unknown, and its main treatment is the administration of acetylcholinesterase (AChE) inhibitors. The study of the mechanism of action of this family of compounds is critical for the design of new more potent and specific inhibitors. In this work, we study the molecular basis of an uncompetitive inhibitor (compound 1, 2β, 3α-dihydroxy-5α-cholestan-6-one disulfate), which we have proved to be a peripheral anionic site (PAS)-binding AChE inhibitor. The pipeline designed in this work is key to the development of other PAS inhibitors that not only inhibit the esterase action of the enzyme but could also modulate the non-cholinergic functions of AChE linked to the process of amylogenesis. Our studies showed that 1 inhibits the enzyme not simply by blocking the main gate but by an allosteric mechanism. A detailed and careful analysis of the ligand binding position and the protein dynamics, particularly regarding their secondary gates and active site, was necessary to conclude this. The same analysis was executed with an inactive analogue (compound 2, 2β, 3α-dihydroxy-5α-cholestan-6-one). Our first computational results showed no differences in affinity to AChE between both steroids, making further analysis necessary. This work highlights the variables to be considered and develops a refined methodology, for the successful design of new potent dual-action drugs for AD, particularly PAS inhibitors, an attractive strategy to combat AD.
Collapse
Affiliation(s)
- Victoria Richmond
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Bruno N. Falcone
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Marta S. Maier
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Pau Arroyo Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
- Departamento
de Química Orgánica, Universitat
de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| |
Collapse
|
11
|
Whey Protein Hydrolysate Renovates Age-Related and Scopolamine-Induced Cognitive Impairment. Nutrients 2023; 15:nu15051228. [PMID: 36904228 PMCID: PMC10005054 DOI: 10.3390/nu15051228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Whey protein and its hydrolysates are ubiquitously applied in the food system. However, their effect on cognitive impairment remains unclear. This study aimed to investigate the potential ability of whey protein hydrolysate (WPH) to ameliorate cognitive degeneration. WPH intervention in Crl:CD1 (ICR, Institute for cancer research) mice and aged C57BL/6J mice in a scopolamine-induced cognitive impairment model for 10 days were evaluated. Behavioral tests indicated that WPH intervention improved the cognitive abilities in ICR and aged C57BL/6J mice (p < 0.05). Scopolamine enhanced the Aβ1-42 level in the brain tissue, and the WPH intervention exhibited a similar therapeutic effect to donepezil in ICR mice. A noticeable reduction occurred in serum Aβ1-42 level of aged mice treated with WPH. The histopathological study of the hippocampus showed that WPH intervention alleviates neuronal damage. Hippocampus proteomic analysis suggested possible mechanisms of WPH action. The relative abundance of Christensenellaceae, a gut microbe related to Alzheimer's disease, was altered by WPH intervention. This study demonstrated that short-term WPH intake protected against memory impairment induced by scopolamine and aging.
Collapse
|
12
|
Novel neuroprotective pyromeconic acid derivatives with concurrent anti-Aβ deposition, anti-inflammatory, and anti-oxidation properties for treatment of Alzheimer's disease. Eur J Med Chem 2023; 248:115120. [PMID: 36682173 DOI: 10.1016/j.ejmech.2023.115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
We synthesized a series of novel pyromeconic acid-styrene hybrid compounds and measured their activities in inhibiting Aβ1-42 self-aggregation and promoting disaggregation, and their anti-inflammatory and antioxidant properties. The most potent compound, compound 30, had IC50 values of 11.15 μM and 6.87 μM for inhibition of fibril aggregation and promotion of fibril disaggregation, respectively. Because of its redox metal chelating property, 30 also inhibited Cu2+-induced Aβ1-42 fibril aggregation and promoted fibril disaggregation with IC50 of 3.69 μM and 3.35 μM, respectively. Molecular docking demonstrated that 30 interacted with key amino acids of Aβ1-42, and the reliability of the complex was confirmed by molecular dynamics. In addition, 30 displayed excellent antioxidative activity (oxygen radical absorbance capacity = 2.65 Trolox equivalents) and moderate anti-inflammatory activity and neuroprotection in cell culture assays. Compound 30 was safe in acute toxicity test in mice, and it exhibited favorable pharmacokinetic properties, particularly, accumulation in the hippocampus (maximum ratio of hippocampus to plasma = 7.12). Compound 30 alleviated cognitive deficits in scopolamine-induced amnesia mice; this property may have been attributed to reducing neuroinflammation by inhibiting ionized calcium binding adapter molecule 1 and glial fibrillary acidic protein expression and reducing oxidative stress by activating the Nrf2/HO-1 signaling pathway. In view of its many properties, we envision that 30 is a promising lead for the treatment of Alzheimer's disease.
Collapse
|
13
|
Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032285. [PMID: 36768608 PMCID: PMC9916969 DOI: 10.3390/ijms24032285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced β-amyloid aggregation. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aβ42 self-aggregation, which was corroborated by molecular docking to Aβ42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
Collapse
|
14
|
Malik S, Miana G, Ata A, Kanwal M, Maqsood S, Malik I, Kazmi Z. SYNTHESIS, CHARACTERIZATION, IN-SILICO, AND PHARMACOLOGICAL EVALUATION OF NEW 2-AMINO-6-TRIFLUOROMETHOXY BENZOTHIAZOLE DERIVATIVES. Bioorg Chem 2022; 130:106175. [PMID: 36410112 DOI: 10.1016/j.bioorg.2022.106175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), a relentless neurodegenerative disorder, is still waiting for safer profile drugs, risk factors affecting AD's pathogenesis include aβ accumulation, tau protein hyperphosphorylation, and neuroinflammation. This research aimed to synthesize 2-amino-6‑trifluoromethoxy benzothiazole schiff bases. Synthesis was straightforward, combining the riluzole skeleton with compounds containing the azomethine group. Schiff bases synthesized were characterized spectroscopically using proton NMR (1H NMR), and FTIR. In-vivo biological evaluation against scopolamine-induced neuronal damage revealed that these newly synthesized schiff bases were effective in protecting neurons against neuroinflammatory mediators. In-vitro results revealed that these compounds had remarkable potential in improving the anti-oxidant levels. It downregulated glutathione (GSH), glutathione S-transferase (GST), catalase levels, and upregulated lipid peroxidation (LPO) levels. Immunohistochemical studies revealed that groups treated with the newly synthesized schiff bases had reduced expression of inflammatory mediators such as cyclooxygenase 2 (COX-2), JNK, tumor necrosis factor (TNF-α), nuclear factor kappa B (NF-kB) in contrast to the disease group. Moreover, molecular docking studies on these compounds also showed that they possessed a better binding affinity for above mentioned inflammatory mediators. The results of these studies showed that 2-amino-6-trifluoromethoxy benzothiazole schiff bases are remarkably effective against oxidative stress-mediated neuroinflammation.
Collapse
|