1
|
Jiang Y, Hu X, Wen P. Improving children's alertness and neuromuscular response by using a blue-enriched white light in the kindergarten playroom. Sci Rep 2025; 15:15464. [PMID: 40316541 PMCID: PMC12048621 DOI: 10.1038/s41598-025-00072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025] Open
Abstract
Preschool children, who spend most of their time indoors, and the effects of artificial light on children's health and performance are important. Previous studies show that blue-enriched white light (BWL) has significant effects on human bodies, but only a few studies have specifically examined its effects in young children. Moreover, due to the significant physiological differences between children and adults, findings from BWL studies in adults cannot be directly applied to children. Therefore, investigating the effects of BWL on young children living in indoor environments is crucial. We recruited 24 preschool children (age: 5 ± 0.8 years; 12 girls and 12 boys) to participate in a within-subject, randomized crossover study involving common white light (CWL) (450 lx, Melanopic EDI: 354.04 lx) and BWL (450 lx, Melanopic EDI: 746.05 lx) in a kindergarten playroom. Under different light conditions, the children underwent tests for cardiac activity and critical flicker fusion frequency (CFF), as well as psychomotor vigilance task (PVT) and ruler drop test (RDT). The results indicated that BWL had significant effects on preschool children. Compared to CWL exposure, BWL exposure significantly improved cardiac activity, alertness, and neuromuscular response but slightly increased visual fatigue. Our study reveals that BWL has significant potential to improve children's physiological and cognitive functions, particularly to improve cardiac activity, alertness, and neuromuscular response. This study broadens the understanding of the effects of indoor lighting on children and provides a theoretical basis for designing a healthy indoor environment for children.
Collapse
Affiliation(s)
- Yankang Jiang
- Department of Sports Science, School of Physical Education, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou, 510641, China
| | - Xiaodong Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Peijun Wen
- Department of Sports Science, School of Physical Education, South China University of Technology, No. 381, Wushan Road, Tianhe District, Guangzhou, 510641, China.
| |
Collapse
|
2
|
Urrutia-Moldes A. Light behind bars: how light impacts mental health in prisons. INTERNATIONAL JOURNAL OF PRISON HEALTH 2025. [PMID: 40302149 DOI: 10.1108/ijoph-11-2024-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
PURPOSE This paper synthesises literature on non-visual effects of light in prison environments, drawing attention to disconnect between research evidence and current practices. This paper aims to guide prison designers and decision-makers towards lighting strategies that better support inmates' mental health and rehabilitation. DESIGN/METHODOLOGY/APPROACH A focused literature search was conducted from June to October 2024 using Google Scholar and PubMed, targeting peer-reviewed studies published between 1985 and 2024. Included studies addressed the non-visual effects of light related to circadian rhythm, mental health, artificial and natural lighting, stress, aggression and hormonal regulation. Only English-language studies providing empirical or theoretical insights relevant to confinement settings were considered. Studies focused solely on visual performance, non-human subjects or lacking health implications were excluded. Keyword combinations were refined iteratively, although some relevant interdisciplinary work may have been missed due to indexing or terminological variations. FINDINGS Neglecting the role of lighting in prison design contributes to poor psychological outcomes. Limited access to daylight and the overuse of artificial lighting with high blue light content disrupt circadian regulation, worsening sleep, mood and mental health. Conversely, designs that maximise daylight exposure and use adjustable artificial lighting with appropriate spectral qualities can promote emotional stability, reduce aggression and support rehabilitation. RESEARCH LIMITATIONS/IMPLICATIONS Relevant interdisciplinary studies may still have been missed due to database indexing limitations or terminological variations across fields. ORIGINALITY/VALUE This paper bridges the gap between lighting design, environmental psychology and prison reform. By focusing on how light affects inmates' psychological health and rehabilitation, it offers insights into how prison design can be improved to foster well-being.
Collapse
|
3
|
Korf HW. Photoneuroendocrine, circadian and seasonal systems: from photoneuroendocrinology to circadian biology and medicine. Cell Tissue Res 2025; 400:217-240. [PMID: 39264444 DOI: 10.1007/s00441-024-03913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024]
Abstract
This contribution highlights the scientific development of two intertwined disciplines, photoneuroendocrinology and circadian biology. Photoneuroendocrinology has focused on nonvisual photoreceptors that translate light stimuli into neuroendocrine signals and serve rhythm entrainment. Nonvisual photoreceptors first described in the pineal complex and brain of nonmammalian species are luminance detectors. In the pineal, they control the formation of melatonin, the highly conserved hormone of darkness which is synthesized night by night. Pinealocytes endowed with both photoreceptive and neuroendocrine capacities function as "photoneuroendocrine cells." In adult mammals, nonvisual photoreceptors controlling pineal melatonin biosynthesis and pupillary reflexes are absent from the pineal and brain and occur only in the inner layer of the retina. Encephalic photoreceptors regulate seasonal rhythms, such as the reproductive cycle. They are concentrated in circumventricular organs, the lateral septal organ and the paraventricular organ, and represent cerebrospinal fluid contacting neurons. Nonvisual photoreceptors employ different photopigments such as melanopsin, pinopsin, parapinopsin, neuropsin, and vertebrate ancient opsin. After identification of clock genes and molecular clockwork, circadian biology became cutting-edge research with a focus on rhythm generation. Molecular clockworks tick in every nucleated cell and, as shown in mammals, they drive the expression of more than 3000 genes and are of overall importance for regulation of cell proliferation and metabolism. The mammalian circadian system is hierarchically organized; the central rhythm generator is located in the suprachiasmatic nuclei which entrain peripheral circadian oscillators via multiple neuronal and neuroendocrine pathways. Disrupted molecular clockworks may cause various diseases, and investigations of this interplay will establish a new discipline: circadian medicine.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Institute Anatomy I, Medical Faculty, Heinrich Heine University, Duesseldorf, Federal Republic of Germany.
| |
Collapse
|
4
|
Giuranna J, Zheng Y, Brandt M, Jall S, Mukherjee A, Shankhwar S, Renner S, Kurapati NK, May C, Peters T, Herpertz-Dahlmann B, Seitz J, de Zwaan M, Herzog W, Ehrlich S, Zipfel S, Giel K, Egberts K, Burghardt R, Föcker M, Marcus K, Keyvani K, Müller TD, Schmitz F, Rajcsanyi LS, Hinney A. Genetic and functional analyses of CTBP2 in anorexia nervosa and body weight regulation. Mol Psychiatry 2025; 30:1836-1846. [PMID: 39511451 PMCID: PMC12014503 DOI: 10.1038/s41380-024-02791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
The C-terminal binding protein 2 (CTBP2) gene (translational isoforms: CTBP2-L/S, RIBEYE) had been identified by a cross-trait analysis of genome-wide association studies for anorexia nervosa (AN) and body mass index (BMI). Here, we did a mutation analysis in CTBP2 by performing polymerase chain reactions with subsequent Sanger-sequencing to identify variants relevant for AN and body weight regulation and ensued functional studies. Analysis of the coding regions of CTBP2 in 462 female patients with AN (acute or recovered), 490 children and adolescents with severe obesity, 445 healthy-lean adult individuals and 168 healthy adult individuals with normal body weight detected 24 variants located in the specific exon of RIBEYE. In the initial analysis, three of these were rare non-synonymous variants (NSVs) detected heterozygously in patients with AN (p.Arg72Trp - rs146900874; p.Val289Met -rs375685611 and p.Gly362Arg - rs202010294). Four NSVs and one heterozygous frameshift variant were exclusively detected in children and adolescents with severe obesity (p.Pro53Ser - rs150867595; p.Gln175ArgfsTer45 - rs141864737; p.Leu310Val - rs769811964; p.Pro397Ala - rs76134089 and p.Pro402Ser - rs113477585). Ribeye mRNA was detected in mouse hypothalamus. No effect of fasting or overfeeding on murine hypothalamic Ribeye expression was determined. Yet, increased Ribeye expression was detected in hypothalami of leptin-treated Lepob/ob mice. This increase was not related to reduced food intake and leptin-induced weight loss. We detected rare and frequent variants in the RIBEYE specific exon in both patients with AN and in children and adolescents with severe obesity. Our data suggest RIBEYE as a relevant gene for weight regulation.
Collapse
Affiliation(s)
- Johanna Giuranna
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Yiran Zheng
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Munich, Germany
| | | | - Sigrid Jall
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Amrita Mukherjee
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Soni Shankhwar
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University Munich (LMU), Munich, Germany
| | - Nirup Kumar Kurapati
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Triinu Peters
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, Essen, Germany
- Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Wolfgang Herzog
- Department of Internal Medicine II, General Internal and Psychosomatic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stefan Ehrlich
- Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence in Eating Disorders KOMET, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Katrin Giel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence in Eating Disorders KOMET, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Karin Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Roland Burghardt
- Child and Adolescent Psychiatry Clinic, Oberberg Fachklinik Fasanenkiez Berlin, Berlin, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Münster, Münster, Germany
- LWL-University Hospital Hamm for Child and Adolescent Psychiatry, Ruhr-University Bochum, Hamm, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Kathy Keyvani
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub-Insitute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Frank Schmitz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Luisa Sophie Rajcsanyi
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany.
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, Essen, Germany.
- Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany.
| | - Anke Hinney
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, Essen, Germany
- Institute of Sex and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
5
|
Panza GA, Johnson MAL, Kuruvilla DE. A post hoc analysis of migraine-associated symptoms from the phase 3 randomized, double-blind, sham-controlled Trial of External trigeminal nerve stimulation for the Acute treatment of Migraine (TEAM) study. Headache 2025; 65:779-790. [PMID: 39601100 PMCID: PMC12005609 DOI: 10.1111/head.14860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The Trial of External trigeminal nerve stimulation (eTNS) for the Acute treatment of Migraine (TEAM) study demonstrated that eTNS use during active migraine resulted in significantly higher rates of resolution of migraine-associated most bothersome symptom (MBS) compared to sham. However, no previous studies have examined the association between pretreatment MBS subtype and efficacy of eTNS treatment for active migraine. OBJECTIVE We conducted a post hoc analysis examining efficacy of eTNS for different pretreatment MBS subtypes using TEAM study data. METHODS Pretreatment MBS subtypes included photophobia (n = 345), nausea (n = 109), phonophobia (n = 73), and vomiting (n = 11). We examined MBS sub-group × treatment group (verum n = 259; sham n = 279) interaction for each post-treatment outcome to explore differential effects conditional on the total sample. We further explored direct, between treatment group comparisons for each MBS subtype, as well as compared treatment outcomes among all MBS subtypes within the sham, verum, and total sample. Finally, clinical heterogeneity of treatment effect (HTE) was assessed using a 1% absolute treatment effect difference as the clinically important threshold. RESULTS Significant sub-group × treatment interactions were found for resolution of MBS at 2 h (p = 0.008), pain relief at 2 h (p = 0.001), rescue medication between 2 and 24 h (p = 0.012), sustained pain freedom at 24 h (p = 0.033), and sustained pain relief at 24 h (p = 0.003). Significant sub-group × treatment interactions were not found for pain freedom at 2 h (p = 0.054) or absence of all symptoms at 2 h (p = 0.265). Between treatment group comparisons indicated that pain freedom after 2 h of eTNS was not significantly different between the verum and sham groups for any pretreatment MBS. The verum group had a significantly greater proportion of participants who had resolution of nausea MBS after 2 h of treatment compared to sham (37/55 [67.3%] vs. 25/54 [46.3%], respectively; p = 0.028) and resolution of photophobia MBS compared to sham (85/162 [52.5] vs. 71/183 [38.8%], respectively; p = 0.011). There were no significant differences between treatment groups for phonophobia or vomiting. Pain freedom after 2 h of eTNS was not significantly different among pretreatment MBS groups. Within the sham group and total sample, a greater proportion of participants who had vomiting MBS had resolution of their MBS compared to any other pretreatment MBS (p < 0.05 after Bonferroni adjustment). A greater proportion of participants with nausea MBS used rescue medications between 2 and 24 h after eTNS compared to participants with photophobia or phonophobia MBS within the verum and total sample (p < 0.05 after Bonferroni adjustment). No statistical differences were found among MBS groups for any other treatment outcomes. Clinically important HTE was present in vomiting MBS for resolution of MBS and present in nausea MBS for pain freedom and pain relief after 2 h, need for rescue medication, and sustained pain freedom at 24 h post-treatment. There was no clinically relevant HTE in the nausea MBS group for resolution of MBS at 2 h, absence of all migraine-associated symptoms and sustained pain relief at 24 h, or for any endpoint for other MBS subtypes. CONCLUSION Our results suggest the presence of both statistically significant HTE as well as clinically meaningful HTE. Statistical differences were primarily found for photophobia MBS, while clinically meaningful HTE was primarily found for nausea MBS. These findings may be clinically relevant for patients and clinicians when developing a treatment plan for acute treatment of migraine. Further studies are needed to elucidate the underlying pathophysiological differences between MBS subtypes and treatment optimization, particularly for patients with nausea MBS subtypes.
Collapse
|
6
|
Bartölke R, Nießner C, Reinhard K, Wolfrum U, Meimann S, Bolte P, Feederle R, Mouritsen H, Dedek K, Peichl L, Winklhofer M. Full-Length Cryptochrome 1 in the Outer Segments of the Retinal Blue Cone Photoreceptors in Humans and Great Apes Suggests a Role Beyond Transcriptional Repression. FASEB J 2025; 39:e70523. [PMID: 40277221 PMCID: PMC12023722 DOI: 10.1096/fj.202402614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Mammalian cryptochrome 1 (CRY1) is a central player in the circadian transcription-translation feedback loop, crucial for maintaining a roughly 24-h rhythm. CRY1 was suggested to also function as a blue-light photoreceptor in humans and has been found to be expressed at the mRNA level in various cell types of the inner retina. However, attempts to detect CRY1 at the protein level in the human retina have remained unsuccessful so far. Using various C-terminal specific antibodies recognizing full-length CRY1 protein, we consistently detected selective labeling in the outer segments of short wavelength-sensitive (SWS1, "blue") cone photoreceptor cells across human, bonobo, and gorilla retinae. No other retinal cell types were stained, which is in contrast to what would be expected of a ubiquitous clock protein. Subcellular fractionation experiments in transfected HEK cells using a C-terminal specific antibody located full-length CRY1 in the cytosol and membrane fractions. Our findings indicate that human CRY1 has several different functions including at least one nonclock function. Our results also raise the likely possibility that several different versions of CRY1 exist in humans. We suggest that truncation of the C-terminal tail, maybe to different degrees, may affect the localization and function of human CRY1.
Collapse
Affiliation(s)
- Rabea Bartölke
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Christine Nießner
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- Ernst Strüngmann Institute for NeuroscienceFrankfurt am MainGermany
| | - Katja Reinhard
- Retinal Circuits and Optogenetics, Centre for Integrative Neuroscience and Bernstein Center for Computational NeuroscienceUniversity of TübingenTübingenGermany
- Neuroscience Graduate SchoolUniversity of TübingenTübingenGermany
- Scuola Internazionale Superiore di Studi Avanzati (SISSA)TriesteItaly
| | - Uwe Wolfrum
- Institute of Molecular PhysiologyJohannes Gutenberg UniversityMainzGermany
| | - Sonja Meimann
- Institute of Cellular and Molecular AnatomyDr. Senckenberg Anatomy, Goethe UniversityFrankfurt am MainGermany
| | - Petra Bolte
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
- Forschungszentrum Neurosensorik, Carl von Ossietzky Universität OldenburgOldenburgGermany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
- Forschungszentrum Neurosensorik, Carl von Ossietzky Universität OldenburgOldenburgGermany
| | - Leo Peichl
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- Ernst Strüngmann Institute for NeuroscienceFrankfurt am MainGermany
- Institute of Cellular and Molecular AnatomyDr. Senckenberg Anatomy, Goethe UniversityFrankfurt am MainGermany
- Institute of Clinical NeuroanatomyDr. Senckenberg Anatomy, Goethe UniversityFrankfurt am MainGermany
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences (IBU)Carl von Ossietzky University of OldenburgOldenburgGermany
- Forschungszentrum Neurosensorik, Carl von Ossietzky Universität OldenburgOldenburgGermany
| |
Collapse
|
7
|
Lander AC, Burge MT, Thomas BG, Phillips AJK, McGlashan EM, Cain SW. Circadian photoreception influences loss aversion. Sci Rep 2025; 15:13051. [PMID: 40240563 PMCID: PMC12003914 DOI: 10.1038/s41598-025-97370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Gambling behaviour is a persistent and growing societal problem. An unexplored factor that may encourage gambling behaviour is the impact of circadian photoreception on cognitive processes underlying the behaviour. We investigated the influence of circadian photoreception on loss aversion in gambling by altering the blue content of light while maintaining the same visual brightness. Fifteen participants (age 18-27 years, M = 20.40, SD = 2.03) completed an economic decision-making task under blue-enriched and blue-depleted light, of equivalent visual brightness, on separate occasions in a randomised order. The task required participants to choose between taking a risky gamble of a positive and negative outcome, or a less risky guaranteed outcome. Hierarchical Bayesian Modelling was conducted to derive individual parameter estimates for loss aversion, and trial-by-trial performance was analysed using linear mixed models. The findings demonstrated that individuals were significantly less loss averse under blue-enriched light compared to blue-depleted light (β = - .43, 95% CI [- .82, - .04], p = .03). This study shows that exposure to light that preferentially targets circadian photoreception reduces loss aversion, which may encourage gambling behaviour.
Collapse
Affiliation(s)
- Alicia C Lander
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Bedford Park, SA, 5042, Australia
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Malisa T Burge
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Brianna G Thomas
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew J K Phillips
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Bedford Park, SA, 5042, Australia
| | - Elise M McGlashan
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
- School of Psychological Sciences, University of Melbourne, Melbourne, VIC, 3800, Australia
| | - Sean W Cain
- Flinders Health and Medical Research Institute (Sleep Health), Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
8
|
Yeh PT, Jhan KC, Chua EP, Chen WC, Chu SW, Wu SC, Chen SK. Discrete photoentrainment of mammalian central clock is regulated by bi-stable dynamic network in the suprachiasmatic nucleus. Nat Commun 2025; 16:3331. [PMID: 40199869 PMCID: PMC11978930 DOI: 10.1038/s41467-025-58661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
The biological clock synchronizes with the environmental light-dark cycle through circadian photoentrainment. While intracellular pathways regulating clock gene expression after light exposure in the suprachiasmatic nucleus are well studied in mammals, the neuronal circuits driving phase shifts remain unclear. Here, using a mouse model, we show that chemogenetic activation of early-night light-responsive neurons induces phase delays at any circadian time, potentially breaking the photoentrainment dead zone. In contrast, activating late-night light-responsive neurons mimics light-induced phase shifts. Using in vivo two-photon microscopy, we found that most neurons in the suprachiasmatic nucleus exhibit stochastic light responses, while a small subset is consistently activated in the early subjective night and another is inhibited in the late subjective night. Our findings suggest a dynamic bi-stable network model for circadian photoentrainment, where phase shifts arise from a functional circuit integrating signals to groups of outcome neurons, rather than a labeled-line principle seen in sensory systems.
Collapse
Affiliation(s)
- Po-Ting Yeh
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, 11529, Taiwan
| | - Kai-Chun Jhan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ern-Pei Chua
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Wun-Ci Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
9
|
Palomar-Cros A, Espinosa A, Bará S, Sánchez A, Valentín A, Cirach M, Castaño-Vinyals G, Papantoniou K, Blay N, de Cid R, Romaguera D, Kogevinas M, Harding BN. Outdoor artificial light-at-night and cardiometabolic disease risk: an urban perspective from the Catalan GCAT cohort study. Am J Epidemiol 2025; 194:963-974. [PMID: 39160449 PMCID: PMC11978616 DOI: 10.1093/aje/kwae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/24/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
We investigated the association between outdoor artificial light-at-night (ALAN) exposure and cardiometabolic risk in the GCAT study. We included 9752 participants from Barcelona (59% women) and used satellite images (30 m resolution) and estimated photopic illuminance and the circadian regulation-relevant melanopic equivalent daylight illuminance (melanopic EDI). We explored the association between ALAN exposure and prevalent obesity, hypertension, and diabetes with logistic regressions and assessed the relationship with incident cardiometabolic diseases ascertained through electronic health records (mean follow-up 6.5 years) with Cox proportional hazards regressions. We observed an association between photopic illuminance and melanopic EDI and prevalent hypertension, odds ratio (OR) = 1.09 (95% CI, 1.01-1.16) and 1.08 (1.01-1.14) per interquartile range increase (0.59 and 0.16 lux, respectively). Both ALAN indicators were linked to incident obesity (hazard ratio [HR] = 1.29, 1.11-1.48 and 1.19, 1.05-1.34) and hemorrhagic stroke (HR = 1.73, 1.00-3.02 and 1.51, 0.99-2.29). Photopic illuminance was associated with incident hypercholesterolemia in all participants (HR = 1.17, 1.05-1.31) and with angina pectoris only in women (HR = 1.55, 1.03-2.33). Further research in this area and increased awareness on the health impacts of light pollution are needed. Results should be interpreted carefully since satellite-based ALAN data do not estimate total individual exposure. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Anna Palomar-Cros
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Research Group of Real-World Epidemiology, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Ana Espinosa
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Salva Bará
- Independent scholar, Corredoira das Fraguas, Santiago de Compostela, Galicia, Spain
| | - Alejandro Sánchez
- Environment and Sustainability Institute University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom
- Departamento Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonia Valentín
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marta Cirach
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Gemma Castaño-Vinyals
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Kyriaki Papantoniou
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Epidemiology, Centre of Public Health, Medical University of Vienna, Vienna, Austria
| | - Natàlia Blay
- Genomes for Life-GCAT Lab, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Dora Romaguera
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Manolis Kogevinas
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Barbara N Harding
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- College of Population Health, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
10
|
Shanmugam DAS, Balaraman AD, Kar A, Franco A, Balaji BAC, Meenakumari S, Praveenkumar PK, Gayathri R, Ganesan VK, Kumar MV, Senthilkumar K, Shanthi B. Mini review: Bidirectional Regulation of Circadian Rhythm by Suprachiasmatic Nucleus and Nuclear Receptors in Female Mammals. J Circadian Rhythms 2025; 23:4. [PMID: 40225034 PMCID: PMC11987856 DOI: 10.5334/jcr.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
The anterior region of the hypothalamus accommodates a bilateral structure called the suprachiasmatic nucleus (SCN), which controls, modulates, and perpetuates the homeostasis of circadian rhythm and sleep hormone release. These SCN have a predominance over multitudinous peripheral tissues like the uterus, liver, intestine, pancreas, endocrine system, immune system, reproductive system, and cardiovascular system. This peripheral clock acts as a pacemaker for circadian rhythm timing, which regulates crucial metabolic pathways and organizes numerous activities in the female reproductive network of mammals. The circadian CLOCK genes are expressed in various reproductive organs. The CLOCK, BMAL1, CRY, and PER genes harmonize the balance and manifestation of nuclear receptors (NRs) expression, and the other way round, NRs regulate these circadian genes. Several NRs, in particular estrogen, progesterone, androgen, and PPARs, nurture the ovary and uterus. Bidirectional coordination between SCN and NRs maintains the circadian rhythm of the hypothalamic-pituitary-gonadal (HPG) axis of the female reproductive organs.
Collapse
Affiliation(s)
- Dharani Abirama Sundari Shanmugam
- Department of Endocrinology, Dr. ALM. PG. Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai – 600113, Tamil Nadu, India
| | - Ashwini Devi Balaraman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur – 603202, Tamil Nadu, India
| | - Abhijit Kar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur – 603202, Tamil Nadu, India
| | - Abishek Franco
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur – 603202, Tamil Nadu, India
| | | | - S. Meenakumari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur – 603202, Tamil Nadu, India
| | - P. K. Praveenkumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk – 602117, Tamil Nadu, India
| | - R. Gayathri
- Department of Biotechnology, St Joseph’s College of Engineering, Old Mahabalipuram Road, Kamaraj Nagar, Semmancheri, Chennai – 600119, Tamil Nadu, India
| | - Vinoth Kumar Ganesan
- Department of Health Research (DHR-ICMR), Multi-Disciplinary Research Unit (MRU), Rangaraya Medical College, Kakinada – 533003, Andhra Pradesh, India
| | - Merugumolu Vijay Kumar
- Department of Pharmacology, Dayananda Sagar University, Bengaluru – 560078, Karnataka, India
| | - K. Senthilkumar
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - B. Shanthi
- Department of Biotechnology, JAASB Institute and Research Academia, Valasaravakkam, Chennai – 600087, Tamil Nadu, India
| |
Collapse
|
11
|
Gonzalez LS, Fisher AA, Grover KE, Robinson JE. Examining the role of the photopigment melanopsin in the striatal dopamine response to light. Front Syst Neurosci 2025; 19:1568878. [PMID: 40242043 PMCID: PMC12000111 DOI: 10.3389/fnsys.2025.1568878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
The mesolimbic dopamine system is a set of subcortical brain circuits that plays a key role in reward processing, reinforcement, associative learning, and behavioral responses to salient environmental events. In our previous studies of the dopaminergic response to salient visual stimuli, we observed that dopamine release in the lateral nucleus accumbens (LNAc) of mice encoded information about the rate and magnitude of rapid environmental luminance changes from darkness. Light-evoked dopamine responses were rate-dependent, robust to the time of testing or stimulus novelty, and required phototransduction by rod and cone opsins. However, it is unknown if these dopaminergic responses also involve non-visual opsins, such as melanopsin, the primary photopigment expressed by intrinsically photosensitive retinal ganglion cells (ipRGCs). In the current study, we evaluated the role of melanopsin in the dopaminergic response to light in the LNAc using the genetically encoded dopamine sensor dLight1 and fiber photometry. By measuring light-evoked dopamine responses across a broad irradiance and wavelength range in constitutive melanopsin (Opn4) knockout mice, we were able to provide new insights into the ability of non-visual opsins to regulate the mesolimbic dopamine response to visual stimuli.
Collapse
Affiliation(s)
- L. Sofia Gonzalez
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Austen A. Fisher
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kassidy E. Grover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - J. Elliott Robinson
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Hartstein LE, Wright KP, Behn CD, Stowe S, LeBourgeois MK. The Circadian Response to Evening Light Spectra in Early Childhood: Preliminary Insights. J Biol Rhythms 2025; 40:181-193. [PMID: 39773135 PMCID: PMC11922671 DOI: 10.1177/07487304241311652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Although the sensitivity of the circadian system to the characteristics of light (e.g., biological timing, intensity, duration, spectrum) has been well studied in adults, data in early childhood remain limited. Utilizing a crossover, within-subjects design, we examined differences in the circadian response to evening light exposure at two different correlated color temperatures (CCT) in preschool-aged children. Healthy, good sleeping children (n = 10, 3.0-5.9 years) completed two 10-day protocols. In each protocol, after maintaining a stable sleep schedule for 7 days, a 3-day in-home dim-light circadian assessment was performed. On the first and third evenings of the in-home protocol, dim-light melatonin onset (DLMO) was assessed. On the second evening, children received a 1-h light exposure of 20 lux from either 2700 K (low CCT) or 5000 K (high CCT) (~9 and ~16 melanopic equivalent daylight illuminance (mEDI lux), respectively) centered around their habitual bedtime. Children received the remaining light condition during their second protocol, with the order counterbalanced across participants. Salivary melatonin was collected to compute melatonin suppression and circadian phase shift resulting from each experimental light condition. Melatonin suppression across the 1-h light stimulus was significantly greater during exposure to the high CCT light (M = 56.3%, SD = 19.25%) than during the low CCT light (M = 23.90%, SD = 41.06%). Both light conditions resulted in marked delays of circadian timing, but only a small difference (d = -0.25) was observed in the delay between the 5000 K (M = 35.3 min, SD = 34.3 min) and 2700 K (M = 26.7 min, SD = 15.9 min) conditions. Together, these findings add to a growing literature demonstrating high responsivity of the circadian clock to evening light exposure in early childhood and provide preliminary evidence of melatonin suppression sensitivity to differences in light spectrum in preschool-aged children.
Collapse
Affiliation(s)
- Lauren E. Hartstein
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychiatry, The University of Arizona College of Medicine Tucson, Tucson, AZ, USA
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
- Division of Endocrinology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Shelby Stowe
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
| | | |
Collapse
|
13
|
Charif SE, Inserra PIF, Villarreal FM, Schmidt AR, Cortasa SA, Proietto S, Corso MC, Llanos Dumont MI, Di Giorgio NP, Halperin J, Vitullo AD, Dorfman VB. Light/darkness modulation of the hypothalamic-pituitary-ovarian axis in the plains vizcacha, Lagostomus maximus, a seasonal breeding species. Gen Comp Endocrinol 2025; 366:114714. [PMID: 40139328 DOI: 10.1016/j.ygcen.2025.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Photoperiod is the main environmental signal that affects animal behavior and reproduction. Light stimulus is traduced by a neural pathway that modulates pineal gland melatonin release, which synchronizes physiologic functions with day duration, highly influencing seasonal reproduction. The plains vizcacha (Lagostomus maximus) is a Hystricomorph rodent with seasonal reproduction that inhabits the Neotropic in South America. The aim of this work was to elucidate the effect of light/darkness exposition on the reproductive hypothalamic-pituitary-ovarian (HPO) axis in the female plains vizcacha. During 15 days, animals were subjected to different light/darkness regimens (Control group, CTL: 12:12 h dark:light; Darkness group, DARK: continuous darkness; Light group, LIGHT: continuous light). The melatoninergic system and reproductive hormones were evaluated. Plasma melatonin levels significantly decreased in DARK whereas both melatonin receptors (MT1 and MT2) expression significantly increased in the hypothalamus and decreased in the pituitary gland, and only MT1 expression increased in the ovaries. Continuous light did not induce significant variations in melatonin levels related to CTL, however, MTs expression changed at pituitary and ovary levels. Strikingly, both light/darkness regimens increased reproductive hormone expression. While darkness induced hypothalamic gonadotropin-releasing hormone (GnRH) expression and estradiol (E2) secretion, light increased LH and progesterone (P4) secretion. In conclusion, light availability may impact the reproductive axis of plains vizcacha inducing hormonal changes, with an organ-specific response, and sustaining HPO axis activity, thus ensuring reproduction. Environmental light and darkness, their availability and exposure length, could synchronize the reproductive axis in seasonal breeding species like the plains vizcacha. New & Noteworthy: Hypothalamic, pituitary, and ovarian variations were induced by continuous light or darkness in the plains vizcacha. Plasma melatonin decreased by continuous darkness-inducing hypothalamic, pituitary, and ovarian melatonin receptors variations. Fifteen days of continuous darkness induced GnRH, LH, and estradiol secretion, while 15 days of continuous light induced LH and P4 secretion. Environmental light/darkness would synchronize the reproductive axis in seasonal breeding species like the plains vizcacha.
Collapse
Affiliation(s)
- Santiago Elías Charif
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Technology Institute (INTEC), Universidad Argentina de la Empresa (UADE), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Federico Martín Villarreal
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Micaela Inés Llanos Dumont
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia Paula Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
14
|
Kachi E, Kazama K, Murakami M, Onda K. Opsin 3, encoding a non-visual photoreceptor, is a pseudogene in cattle. Res Vet Sci 2025; 186:105586. [PMID: 39985965 DOI: 10.1016/j.rvsc.2025.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
The non-visual photoreceptor opsin 3 (OPN3) performs various functions by directly accepting light and activating G protein-coupled receptor signalling in non-visual tissues. OPN3, which is expressed in brown adipocytes, induces the expression of uncoupling protein 1 to generate heat upon exposure to blue light. There have been few reports on OPN3 expression in ruminants, and the mRNA sequence registered in a database as bovine OPN3 is the only predicted sequence. Therefore, we examined OPN3 expression in cattle. In the bovine retina, amplified fragments of the visual opsins, rhodopsin and opsin 1 and the non-visual opsins, opsin 4 and opsin 5, were detected using reverse transcription PCR, whereas no amplified PCR products of OPN3 were detected. Eleven tissues were used to analyse OPN3 expression in the entire body of bovines, including the testis and placenta, where OPN3 is highly expressed in humans and mice. No amplified PCR products were detected in any of the tissues. In a comparison among animal species, OPN3 was found to be expressed in mouse and horse testes, whereas no expression was observed in cattle and goat tissues. RNA sequencing revealed no OPN3 transcripts in the bovine placenta. Direct genomic DNA sequencing revealed a stop codon in the middle of the bovine OPN3 sequence. These results suggest that bovine OPN3 is pseudogenic as it does not encode a complete receptor protein. They also indicated that OPN3 is pseudogenic not only in cattle but also in other Cetartiodactyla, including goats.
Collapse
Affiliation(s)
- Erina Kachi
- Azabu University, Graduate School of Veterinary Medicine, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Kei Kazama
- Azabu University, Graduate School of Veterinary Medicine, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Masaru Murakami
- Azabu University, Graduate School of Veterinary Medicine, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Ken Onda
- Azabu University, Graduate School of Veterinary Medicine, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
15
|
Renteria CA, Kahng J, Tibble B, Iyer RR, Shi J, Algrain H, Chaney EJ, Aksamitiene E, Liu YZ, Robinson P, Schmidt T, Boppart SA. Two-photon activation, deactivation, and coherent control of melanopsin in live cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645437. [PMID: 40196647 PMCID: PMC11974792 DOI: 10.1101/2025.03.26.645437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Intrinsically photosensitive retinal ganglion cells are photoreceptors discovered in the last 20 years. These cells project to the suprachiasmatic nucleus of the brain to drive circadian rhythms, regulated by ambient light levels. The photopigment responsible for photoactivation in these cells, melanopsin, has been shown to exhibit many unique activation features among opsins. Notably, the photopigment can exist in three states dependent on the intensity and spectrum of ambient light, which affects its function. Despite increasing knowledge about these cells and melanopsin, tools that can manipulate their three states, and do so with single-cell precision, are limited. This reduces the extent to which circuit-level phenomena, and studying the implications of melanopsin tri-stability in living systems, can be pursued. In this report, we evoke and modulate calcium transients in live cells and intrinsically photosensitive retinal ganglion cells from isolated retinal tissues following two-photon excitation using near-infrared light pulses. We demonstrate that two-photon activation of melanopsin can successfully stimulate melanopsin-expressing cells with high spatio-temporal precision. Moreover, we demonstrate that the functional tri-stability of the photopigment can be interrogated by multiphoton excitation using spectral-temporal modulation of a broadband, ultrafast laser source.
Collapse
Affiliation(s)
- Carlos A. Renteria
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL
| | - Jiho Kahng
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
- Department of Engineering Physics, University of Illinois Urbana-Champaign, Urbana, IL
| | - Brian Tibble
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
- Department of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL
| | - Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL
| | - Jindou Shi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL
| | - Haya Algrain
- College of Natural and Mathematical Sciences, University of Maryland, Baltimore County, Baltimore, MD
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
| | - Phyllis Robinson
- College of Natural and Mathematical Sciences, University of Maryland, Baltimore County, Baltimore, MD
| | - Tiffany Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL
| |
Collapse
|
16
|
Hsieh MC, Liu Y, Wang PC. Effect of heart rate, correlated colour temperature and illuminance on human visual perception under LED lighting environments. ERGONOMICS 2025:1-14. [PMID: 40116529 DOI: 10.1080/00140139.2025.2477622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/27/2025] [Indexed: 03/23/2025]
Abstract
Lighting environments with different correlated colour temperatures (CCTs) and illuminance levels not only give different subjective perceptions but also affect physiological parameters. However, previous studies have rarely considered the interaction between participants' physiological state and psychological feelings under different lighting environments. To address this gap, this study aimed to investigate the impact of different CCTs (6500 K and 3000 K) and illuminances (300 lx and 900 lx) on participants' visual perception, considering heart rate changes as a key variable. Through physiological and psychological questionnaire assessments, it was found that changes in heart rate significantly influenced participants' subjective evaluations. Heart rate variations affected participants' physiological perception of the lighting environment, such as respiration and thermal sensation. The results of this study can be used as a reference for future indoor lighting design, providing a scientific basis for creating a more comfortable and efficient lighting environment.
Collapse
Affiliation(s)
- Min-Chih Hsieh
- Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taoyuan, ROC
| | - Yi Liu
- Department of Industrial Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Pei-Chia Wang
- Department of Industrial and Systems Engineering, Chung Yuan Christian University, Taoyuan, ROC
| |
Collapse
|
17
|
Zheng Z, Su Z, Zhang W. Melatonin's Role in Hair Follicle Growth and Development: A Cashmere Goat Perspective. Int J Mol Sci 2025; 26:2844. [PMID: 40243438 PMCID: PMC11988770 DOI: 10.3390/ijms26072844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Hair follicles, unique skin appendages, undergo cyclic phases (anagen, catagen, telogen) governed by melatonin and associated molecular pathways. Melatonin, synthesized in the pineal gland, skin, and gut, orchestrates these cycles through antioxidant activity and signaling cascades (e.g., Wnt, BMP). This review examines melatonin's biosynthesis across tissues, its regulation of cashmere growth patterns, and its interplay with non-coding RNAs and the gut-skin axis. Recent advances highlight melatonin's dual role in enhancing antioxidant capacity (via Keap1-Nrf2) and modulating gene expression (e.g., Wnt10b, CTNNB1) to promote hair follicle proliferation. By integrating multi-omics insights, we construct a molecular network of melatonin's regulatory mechanisms, offering strategies to improve cashmere yield and quality while advancing therapies for human alopecia.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.Z.); (Z.S.)
| |
Collapse
|
18
|
Stevenson TJ, Liddle TA, Meddle SL, Pérez JH, Peirson SN, Foster RG, Majumdar G. Hypotheses in light detection by vertebrate ancient opsin in the bird brain. J Neuroendocrinol 2025:e70020. [PMID: 40090886 DOI: 10.1111/jne.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
Extra-retinal photoreception is common across fish and avian species. In birds, the hypothalamus contains non-visual photoreceptors that detect light and regulate multiple endocrine systems. To date, light-dependent control of seasonal reproduction is one of the most well-studied systems that require deep brain photoreception. However, the precise photoreceptor(s) that detect light and the neuroendocrine connection between opsin-expressing cells and the gonadotropin-releasing hormone-1 (GnRH1) system remain poorly defined. In the past couple of decades, two opsin molecules have been proposed to link light detection with seasonal reproduction in birds: neuropsin (Opn5) and vertebrate ancient opsin (VA opsin). Only VA opsin is expressed in GnRH1 cells and has an absorption spectrum that matches the action spectrum of the avian photoperiodic reproductive response. This perspective describes how the annual change in daylength, referred to as photoperiod, regulates the neuroendocrine control of seasonal reproduction. The opsin genes are then outlined, and the cellular phototransduction cascade is described, highlighting the common feature of hyperpolarization in response to light stimulation. We then discuss the latest evidence using short-hairpin RNA to temporarily knock down VA opsin and Opn5 on transcripts involved in the neuroendocrine regulation of reproduction. Based on emerging data, we outline three theoretical scenarios in which VA opsin might regulate GnRH1 synthesis and release in birds. The models proposed provide a series of testable hypotheses that can be used to improve our understanding of avian light detection by VA opsin or other opsin-expressing cells in the brain.
Collapse
Affiliation(s)
- Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Timothy A Liddle
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Simone L Meddle
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Jonathan H Pérez
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | - Gaurav Majumdar
- Department of Zoology, University of Allahabad, Prayagraj, India
| |
Collapse
|
19
|
Wallace DA, Evenson KR, Isasi CR, Patel SR, Sotres-Alvarez D, Zee PC, Redline S, Scheer FAJL, Sofer T. Characteristics of objectively-measured naturalistic light exposure patterns in U.S. adults: A cross-sectional analysis of two cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178839. [PMID: 39999702 PMCID: PMC11939000 DOI: 10.1016/j.scitotenv.2025.178839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Light is an environmental feature important for human physiology. Investigation of how light affects population health requires exposure assessment and personal biomonitoring efforts. Here, we derived measures of amount, duration, regularity, and timing from objective personal light (lux) measurement in >4000 participants across two United States (US)-based cohort studies, the Multi-Ethnic Study of Atherosclerosis (MESA) and the Hispanic Community Health Study / Study of Latinos (HCHS/SOL), encompassing eight geographic regions. Objective light and actigraphy data were collected over a week using wrist-worn devices (Actiwatch Spectrum). Cohort-stratified light exposure metrics were analyzed in relation to sex, season, time-of-day, location, and demographic and sleep health characteristics using Spearman correlation and linear and logistic regressions (separately by cohort) adjusted for age, sex (where applicable), and exam site. Light exposure showed sex-specific patterns and had seasonal, diurnal, geographic, and demographic and sleep health-related correlates. Results between independent cohorts were strongly consistent, supporting the utility and feasibility of light biomonitoring. These findings provide a fundamental first characterization of light exposure patterns in a large US sample and will inform future work to incorporate light as a biologically relevant exposure in environmental public health and key component of the human exposome.
Collapse
Affiliation(s)
- Danielle A Wallace
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Kelly R Evenson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanjay R Patel
- Center for Sleep and Cardiovascular Outcomes Research, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela Sotres-Alvarez
- Department of Biostatistics and the Collaborative Studies Coordinating Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Phyllis C Zee
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University, Evanston, IL, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Tamar Sofer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
20
|
Stewart D, Albrecht U. Beyond vision: effects of light on the circadian clock and mood-related behaviours. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:12. [PMID: 40092590 PMCID: PMC11906358 DOI: 10.1038/s44323-025-00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Light is a crucial environmental factor that influences various aspects of life, including physiological and psychological processes. While light is well-known for its role in enabling humans and other animals to perceive their surroundings, its influence extends beyond vision. Importantly, light affects our internal time-keeping system, the circadian clock, which regulates daily rhythms of biochemical and physiological processes, ultimately impacting mood and behaviour. The 24-h availability of light can have profound effects on our well-being, both physically and mentally, as seen in cases of jet lag and shift work. This review summarizes the intricate relationships between light, the circadian clock, and mood-related behaviours, exploring the underlying mechanisms and its implications for health.
Collapse
Affiliation(s)
- Dean Stewart
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Suematsu N, Sato AY, Kimura A, Shimegi S, Soma S. Perceptual Visual Acuity Declines With Age in a Rat Model of Retinitis Pigmentosa While Light Perception is Maintained. Invest Ophthalmol Vis Sci 2025; 66:31. [PMID: 40094656 PMCID: PMC11925224 DOI: 10.1167/iovs.66.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a leading cause of blindness and genetically induces impairment of the retinal epithelium and photoreceptors. In this study, we investigated the decline in the visual response and visual ability during disease progression. This understanding is crucial for disease staging in patients, establishing therapeutic plans in advance, and evaluating the effects of interventional treatments. Methods We used a rat model of inherited RP (Royal College of Surgeons [RCS] rats) and evaluated form visual acuity and light perception using behavioral tests and electrophysiological recordings in the dorsal lateral geniculate nucleus, superior colliculus, and primary visual cortex. Results The perceptual form vision (detection of grating stimulus) was attenuated by 9 weeks old. The neural responses in the three early visual areas to flashing grating stimuli with various contrasts and spatial frequencies showed similar degeneration progress as the behavioral evaluations. Light perception (detection of a bright uniform light source) was maintained until at least 11 weeks old. The neural responses to the uniform flashlight stimulus in the three early visual areas were maintained during the same period. Conclusions Our findings suggest that form vision is primarily affected by the progression of RP, whereas non-form vision is potentially robust to retinal degeneration. This maintenance of light perception is likely due to the preserved function of intrinsically photosensitive retinal ganglion cells. These results provide useful and fundamental knowledge for evaluating the protective or restorative effects of experimental treatments for RP.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Akinori Y. Sato
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya University, Aichi, Japan
| | - Akihiro Kimura
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Healthcare, Osaka Health Science University, Osaka, Japan
| | - Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Center for Education in Liberal Arts and Sciences, Osaka University, Osaka, Japan
| | - Shogo Soma
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Ohnishi K, Sokabe T. Thermosensory Roles of G Protein-Coupled Receptors and Other Cellular Factors in Animals. Bioessays 2025; 47:e202400233. [PMID: 39723698 PMCID: PMC11848117 DOI: 10.1002/bies.202400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
In this review, we introduce the concept of "dual thermosensing mechanisms," highlighting the functional collaboration between G protein-coupled receptors (GPCRs) and transient receptor potential (TRP) channels that enable sophisticated cellular thermal responsiveness. GPCRs have been implicated in thermosensory processes, with recent findings identifying several candidates across species, including mammals, fruit flies, and nematodes. In many cases, these GPCRs work in conjunction with another class of thermosensors, TRP channels, offering insights into the complex mechanisms underlying thermosensory signaling. We examine how GPCRs function as thermosensors and how their signaling regulates cellular thermosensation, illustrating the complexity of thermosensory systems. Understanding these dual thermosensory mechanisms would advance our comprehension of cellular thermosensation and its regulatory pathways.
Collapse
Affiliation(s)
- Kohei Ohnishi
- Physiology and Biophysics, Graduate School of Biomedical and Health Sciences (Medical)Hiroshima UniversityHiroshimaJapan
| | - Takaaki Sokabe
- Section of Sensory Physiology, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiAichiJapan
- Thermal Biology Group, Exploratory Research Center on Life and Living SystemsNational Institutes of Natural SciencesOkazakiAichiJapan
- Graduate Institute for Advanced Studies, SOKENDAIHayamaKanagawaJapan
- AMED‐PRIMEJapan Agency for Medical Research and DevelopmentTokyoJapan
| |
Collapse
|
23
|
Duda S, Block CT, Pradhan DR, Arzhangnia Y, Klaiber A, Greschner M, Puller C. Spatial distribution and functional integration of displaced retinal ganglion cells. Sci Rep 2025; 15:7123. [PMID: 40016499 PMCID: PMC11868576 DOI: 10.1038/s41598-025-91045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
The retina contains distinct types of ganglion cells, which form mosaics with cells of each type at each position of the visual field. Displaced retinal ganglion cells (dRGCs) occur with cell bodies in the inner nuclear layer (INL), and regularly placed RGCs with cell bodies in the ganglion cell layer. An example of mammalian dRGCs are M1-type intrinsically photosensitive ganglion cells (ipRGCs). Little is known, however, about their relationship with regularly placed ipRGCs. We identified mouse ipRGC types M1, M2, and M4/sONɑ by immunohistochemistry and light microscopy. Reconstruction of immunolabeled mosaics from M1 and sONɑ RGCs indicated that dRGCs tiled the retina with their regular RGC partners. Multi-electrode array recordings revealed conventional receptive fields of displaced sONɑ RGCs which fit into the mosaic of their regular counterparts. An RGC distribution analysis showed type-specific dRGC patterns which followed neither the global density distribution of all RGCs nor the local densities of corresponding cell types. The displacement of RGC bodies into the INL occurs in a type-dependent manner, where dRGCs are positioned to form complete mosaics with their regular partners. Our data suggest that dRGCs and regular RGCs serve the same functional role within their corresponding population of RGCs.
Collapse
Affiliation(s)
- Sabrina Duda
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Christoph T Block
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Dipti R Pradhan
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Yousef Arzhangnia
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Alina Klaiber
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Martin Greschner
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany
| | - Christian Puller
- Visual Neuroscience, Department of Neuroscience, Carl von Ossietzky University, 26111, Oldenburg, Germany.
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany.
| |
Collapse
|
24
|
Korkmaz H, Anstötz M, Wellinghof T, Fazari B, Hallenberger A, Bergmann AK, Niggetiedt E, Güven FD, Tundo-Lavalle F, Purath FFA, Bochinsky K, Gremer L, Willbold D, von Gall C, Ali AAH. Loss of Bmal1 impairs the glutamatergic light input to the SCN in mice. Front Cell Neurosci 2025; 19:1538985. [PMID: 40083633 PMCID: PMC11903712 DOI: 10.3389/fncel.2025.1538985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Glutamate represents the dominant neurotransmitter that conveys the light information to the brain, including the suprachiasmatic nucleus (SCN), the central pacemaker for the circadian system. The neuronal and astrocytic glutamate transporters are crucial for maintaining efficient glutamatergic signaling. In the SCN, glutamatergic nerve terminals from the retina terminate on vasoactive intestinal polypeptide (VIP) neurons, which are essential for circadian functions. To date, little is known about the role of the core circadian clock gene, Bmal1, in glutamatergic neurotransmission of light signal to various brain regions. Methods The aim of this study was to further elucidate the role of Bmal1 in glutamatergic neurotransmission from the retina to the SCN. We therefore examined the spontaneous rhythmic locomotor activity, neuronal and glial glutamate transporters, as well as the ultrastructure of the synapse between the retinal ganglion cells (RGCs) and the SCN in adult male Bmal1-/- mice. Results We found that the deletion of Bmal1 affects the light-mediated behavior in mice, decreases the retinal thickness and affects the vesicular glutamate transporters (vGLUT1, 2) in the retina. Within the SCN, the immunoreaction of vGLUT1, 2, glial glutamate transporters (GLAST) and VIP was decreased while the glutamate concentration was elevated. At the ultrastructure level, the presynaptic terminals were enlarged and the distance between the synaptic vesicles and the synaptic cleft was increased, indicative of a decrease in the readily releasable pool at the excitatory synapses in Bmal1-/-. Conclusion Our data suggests that Bmal1 deletion affects the glutamate transmission in the retina and the SCN and affects the behavioral responses to light.
Collapse
Affiliation(s)
- Hüseyin Korkmaz
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Max Anstötz
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Tim Wellinghof
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Benedetta Fazari
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Angelika Hallenberger
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Niggetiedt
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Fatma Delâl Güven
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Fathima Faiba A. Purath
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Kevin Bochinsky
- Jülich Research Center, Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Jülich, Germany
| | - Lothar Gremer
- Jülich Research Center, Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Jülich Research Center, Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Charlotte von Gall
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Amira A. H. Ali
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
25
|
Haddad HK, Mercado-Reyes JI, Mustafá ER, D’Souza SP, Chung CS, Nestor RRM, Olinski LE, Martinez Damonte V, Saskin J, Vemaraju S, Raingo J, Kauer JA, Lang RA, Oancea E. Hypothalamic opsin 3 suppresses MC4R signaling and potentiates Kir7.1 to promote food consumption. Proc Natl Acad Sci U S A 2025; 122:e2403891122. [PMID: 39951488 PMCID: PMC11874419 DOI: 10.1073/pnas.2403891122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/02/2024] [Indexed: 02/16/2025] Open
Abstract
Mammalian opsin 3 (OPN3) is a member of the opsin family of G-protein-coupled receptors with ambiguous light sensitivity. OPN3 was first identified in the brain (and named encephalopsin) and subsequently found to be expressed in other tissues. In adipocytes, OPN3 is necessary for light responses that modulate lipolysis and glucose uptake, while OPN3 in human skin melanocytes regulates pigmentation in a light-independent manner. Despite its initial discovery in the brain, OPN3 functional mechanisms in the brain remain elusive. Here, we investigated the molecular mechanism of OPN3 function in the paraventricular nucleus (PVN) of the hypothalamus. We show that Opn3 is coexpressed with the melanocortin 4 receptor (Mc4r) in a population of PVN neurons, where it negatively regulates MC4R-mediated cAMP signaling in a specific and Gαi/o-dependent manner. Under baseline conditions, OPN3 via Gαi/o potentiates the activity of the inward rectifying Kir7.1 channel, previously shown to be closed in response to agonist-mediated activation of MC4R in a Gαs-independent manner. In mice, we found that Opn3 in Mc4r-expressing neurons regulates food consumption. Our results reveal the first mechanistic insight into OPN3 function in the hypothalamus, uncovering a unique mechanism by which OPN3 functions to potentiate Kir7.1 activity and negatively regulate MC4R-mediated cAMP signaling, thereby promoting food intake.
Collapse
Affiliation(s)
- Hala K. Haddad
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Jonathan I. Mercado-Reyes
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - E. Román Mustafá
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Shane P. D’Souza
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - C. Sean Chung
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Ramses R. M. Nestor
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Lauren E. Olinski
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Joshua Saskin
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| | - Shruti Vemaraju
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
| | - Jesica Raingo
- Electrophysiology Lab, Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires1900, Argentina
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, and Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH45229
| | - Elena Oancea
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI02912
| |
Collapse
|
26
|
Nakamaru E, Seki K, Shirahata Y, Adachi M, Sakabe N, Matsuo T, Tsukamoto D, Takamatsu N. Periodic expression of Per1 gene is restored in chipmunk liver during interbout arousal in mammalian hibernation. Sci Rep 2025; 15:4403. [PMID: 39948130 PMCID: PMC11825846 DOI: 10.1038/s41598-025-87299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Circadian rhythms play an important role in many physiological processes. We have previously reported that no periodic fluctuation in the Bmal1 mRNA is observed in the liver of the chipmunk, a mammalian hibernator, in the hibernation season, suggesting that peripheral circadian clocks are not functional during hibernation. In contrast, the Per2 mRNA levels are transiently increased by elevated body temperature during interbout arousal and showed periodic fluctuations in the hibernation season, suggesting that periodic expression of the Per2 mRNA may be restored during interbout arousal. In the present study, we analyzed Per1 gene expression in the chipmunk liver. The Per1 mRNA showed circadian fluctuations with a peak during the late sleep period in the non-hibernation season and periodic fluctuations with a peak during the early interbout arousal in the hibernation season. In both the non-hibernation and hibernation seasons, Per1 gene expression was phase-advanced relative to Per2 gene expression, and the phase relationship between the two genes was maintained, suggesting that for some genes, periodic gene expression, similar to circadian expression in the non-hibernation season, may be restored during interbout arousal. Interestingly, Per1 gene transcription was differentially activated by BMAL1 in the non-hibernation season and possibly by CREB1 in the hibernation season.
Collapse
Affiliation(s)
- Erina Nakamaru
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Kota Seki
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Yuiho Shirahata
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Megumi Adachi
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Nene Sakabe
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Takuya Matsuo
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Daisuke Tsukamoto
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan.
| | - Nobuhiko Takamatsu
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| |
Collapse
|
27
|
Bohl JM, Hassan AR, Sharpe ZJ, Kola M, Shehu A, Beaudoin DL, Ichinose T. Pivotal roles of melanopsin containing retinal ganglion cells in pupillary light reflex in photopic conditions. Front Cell Neurosci 2025; 19:1547066. [PMID: 39990971 PMCID: PMC11842327 DOI: 10.3389/fncel.2025.1547066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
The pupillary light reflex (PLR) is crucial for protecting the retina from excess light. The intrinsically photosensitive retinal ganglion cells (ipRGCs) in the retina are neurons that are critical to generating the PLR, receiving rod/cone photoreceptor signals and directly sensing light through melanopsin. Previous studies have investigated the roles of photoreceptors and ipRGCs in PLR using genetically-modified mouse models. Herein, we acutely ablated photoreceptors using N-nitroso-N-methylurea (MNU) to examine the roles of ipRGCs in the PLR. We conducted PLR and multiple electrode array (MEA) recordings evoked by three levels of light stimuli before and 5 days after MNU intraperitoneal (i.p..) injection using C57BL6/J wildtype (WT) mice. We also conducted these measurements using the rod & cone dysfunctional mice (Gnat1-/- & Cnga3-/-:dKO) to compare the results to published studies in which mutant mice were used to show the role of photoreceptors and ipRGCs in PLR. PLR pupil constriction increased as the light stimulus intensified in WT mice. In MNU mice, PLR was not induced by the low light stimulus, suggesting that photoreceptors induced the PLR at this light intensity. By contrast, the high light stimulus fully induced PLR, similar to the response in WT mice. In dKO mice, no PLR was evoked by the low-light stimulus and a slow-onset PLR was evoked by the high-light stimulus, consistent with previous reports. Ex vivo MEA recording in the MNU tissue revealed a population of ipRGCs with a fast onset and peak time, suggesting that they drove the fast PLR response. These results suggest that ipRGCs primarily contribute to the PLR at a high light intensity, which does not agree with the previous results shown by mutant mouse models. Our results indicate that the melanopsin response in ipRGCs generate fast and robust PLR when induced by high light.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
28
|
Shi Y, Zhang J, Li X, Han Y, Guan J, Li Y, Shen J, Tzvetanov T, Yang D, Luo X, Yao Y, Chu Z, Wu T, Chen Z, Miao Y, Li Y, Wang Q, Hu J, Meng J, Liao X, Zhou Y, Tao L, Ma Y, Chen J, Zhang M, Liu R, Mi Y, Bao J, Li Z, Chen X, Xue T. Non-image-forming photoreceptors improve visual orientation selectivity and image perception. Neuron 2025; 113:486-500.e13. [PMID: 39694031 DOI: 10.1016/j.neuron.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
It has long been a decades-old dogma that image perception is mediated solely by rods and cones, while intrinsically photosensitive retinal ganglion cells (ipRGCs) are responsible only for non-image-forming vision, such as circadian photoentrainment and pupillary light reflexes. Surprisingly, we discovered that ipRGC activation enhances the orientation selectivity of layer 2/3 neurons in the primary visual cortex (V1) of mice by both increasing preferred-orientation responses and narrowing tuning bandwidth. Mechanistically, we found that the tuning properties of V1 excitatory and inhibitory neurons are differentially influenced by ipRGC activation, leading to a reshaping of the excitatory/inhibitory balance that enhances visual cortical orientation selectivity. Furthermore, light activation of ipRGCs improves behavioral orientation discrimination in mice. Importantly, we found that specific activation of ipRGCs in human participants through visual spectrum manipulation significantly enhances visual orientation discriminability. Our study reveals a visual channel originating from "non-image-forming photoreceptors" that facilitates visual orientation feature perception.
Collapse
Affiliation(s)
- Yiming Shi
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiaming Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xingyi Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yuchong Han
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiangheng Guan
- Brain Research Center, Third Military Medical University, and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400038, China
| | - Yilin Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Jiawei Shen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tzvetomir Tzvetanov
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Dongyu Yang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xinyi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yichuan Yao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhikun Chu
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Tianyi Wu
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhiping Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Ying Miao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yufei Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qian Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiaxi Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jianjun Meng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiang Liao
- Brain Research Center, Third Military Medical University, and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400038, China
| | - Yifeng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Louis Tao
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuqian Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jutao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Rong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Yuanyuan Mi
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
| | - Jin Bao
- Shenzhen Neher Neural Plasticity Laboratory, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, the Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhong Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaowei Chen
- Brain Research Center, Third Military Medical University, and Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400038, China.
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
29
|
Kinder L, Lindner M. Expression of Osteopontin in M2 and M4 Intrinsically Photosensitive Retinal Ganglion Cells in the Mouse Retina. Invest Ophthalmol Vis Sci 2025; 66:14. [PMID: 39908128 PMCID: PMC11804889 DOI: 10.1167/iovs.66.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose Melanopsin-expressing intrinsically photosensitive (ip) retinal ganglion cells (RGCs) can be divided into six different subtypes (M1 - M6). Yet, specific markers exist for only some of these subtypes that could be employed to study the function of individual subtypes. Osteopontin (Spp1) marks αRGC, suggesting that, across ipRGCs, it would only mark the M4-ipRGC subtype (synonymous to ON-sustained αRGCs). Recent evidence suggests that osteopontin expression could spread to other ipRGC subtypes. Therefore, this study aims to characterize the expression pattern of osteopontin across ipRGC subtypes in mice. Methods Single-cell RNA (scRNA-seq) sequencing data from murine RGCs were analyzed to identify expression patterns of Spp1 across ipRGCs. Immunohistochemistry (IHC) was performed on retinal cryosections and flatmounts from C57BL/6J mice to characterize the localization of osteopontin across ipRGCs. Neurite tracing was employed to study dendritic morphology and identify individual ipRGC subtypes. Results scRNA-seq analysis revealed Spp1 expression in two distinct clusters of ipRGCs. IHC confirmed osteopontin colocalization with neurofilament heavy chain, an established marker for αRGCs, including M4-ipRGCs. Spp1 immunoreactivity was moreover identified in one additional group of ipRGCs. By dendritic morphology and stratification, those cells were clearly identified as M2-ipRGCs. Conclusions Our findings demonstrate that osteopontin is expressed in both M2- and M4-ipRGCs, challenging the notion of osteopontin as a marker exclusively for αRGCs. IHC double-labeling for osteopontin and melanopsin provides a novel method to identify and differentiate M2 ipRGCs from other subtypes. This will support the study of ipRGC physiology in a subtype -specific manner and may, for instance, foster research in the field of optic nerve injury.
Collapse
Affiliation(s)
- Leonie Kinder
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University, Marburg, Germany
| | - Moritz Lindner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps-University, Marburg, Germany
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Ophthalmology, Philipps-University, University Hospital of Giessen and Marburg GmbH, Marburg Campus, Marburg, Germany
| |
Collapse
|
30
|
Wang YQ, Ma WX, Kong LX, Zhang H, Yuan PC, Qu WM, Liu CF, Huang ZL. Ambient chemical and physical approaches for the modulation of sleep and wakefulness. Sleep Med Rev 2025; 79:102015. [PMID: 39447526 DOI: 10.1016/j.smrv.2024.102015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Humans spend a third of their lives asleep. While the sleep-wake behaviors are primarily modulated by homeostasis and circadian rhythm, several ambient chemical and physical factors, including light, sound, odor, vibration, temperature, electromagnetic radiation, and ultrasound, also affect sleep and wakefulness. Light at different wavelengths has different effects on sleep and wakefulness. Sound not only promotes but also suppresses sleep; this effect is mediated by certain nuclei, including the pedunculopontine nucleus and inferior colliculus. Certain sleep-promoting odorants regulate sleep through the involvement of the olfactory bulb and olfactory tubercle. In addition, vibrations may induce sleep through the vestibular system. A modest increase in ambient temperature leads to an increase in sleep duration through the involvement of the preoptic area. Electromagnetic radiation has a dual effect on sleep-wake behaviors. The stimulation produced by the ambient chemical and physical factors activates the peripheral sensory system, which converts the chemical and physical stimuli into nerve impulses. This signal is then transmitted to the central nervous system, including several nuclei associated with the modulation of sleep-wake behaviors. This review summarizes the effects of ambient chemical and physical factors on the regulation of sleep and wakefulness, as well as the underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Joint International Research Laboratory of Sleep and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Qadir SH, Iversen HK, Jørgensen NR, Jennum PJ, Sennels HP, West AS. Circadian rhythm and the influence of light on parameters related to calcium metabolism in stroke patients admitted for rehabilitation. Scand J Clin Lab Invest 2025; 85:41-50. [PMID: 39912742 DOI: 10.1080/00365513.2025.2460026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/15/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Hospitalized stroke patients are at high risk of developing circadian disruption due to lack of natural sunlight. This may affect the circadian rhythm of the calcium metabolism. This study is a secondary explorative analysis from a Randomized Controlled Trial. Acute stroke patients requiring a minimum of two weeks of rehabilitation were randomized to an Intervention unit (IU) equipped with naturalistic light or a Control unit (CU) with standard indoor lighting. Blood was drawn across 24 h at inclusion and discharge in 45 patients, 25 from the IU and 20 from the CU. Calcium showed significant rhythmicity at inclusion and discharge in both groups. Alkaline phosphatase, parathyroid hormone (PTH), and Vitamin D exhibited no significant rhythmicity at inclusion or discharge in either group while phosphate exhibited rhythmicity at discharge in the CU. PTH levels were elevated in the CU group compared to the IU group at time of discharge. Of the measured parameters, only calcium exhibited circadian rhythmicity after stroke. Naturalistic light did not have any influence on the rhythmicity, indicating that light may not be the main circadian regulator of the circadian oscillations that regulate calcium metabolism. PTH seems to be decreased by naturalistic light.
Collapse
Affiliation(s)
- Shanga Hassan Qadir
- Clinical Stroke Research Unit, Department of Neurology, University Hospital Rigshospitalet, Glostrup, Denmark
| | - Helle Klingenberg Iversen
- Clinical Stroke Research Unit, Department of Neurology, University Hospital Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, University Hospital Rigshospitalet, Glostrup, Denmark
- Translational Research Centre, University Hospital Rigshospitalet, Glostrup, Denmark
| | - Poul Jørgen Jennum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neurophysiology, Danish Center for Sleep Medicine, University Hospital Rigshospitalet, Glostrup, Denmark
| | - Henriette Pia Sennels
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Anders Sode West
- Clinical Stroke Research Unit, Department of Neurology, University Hospital Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
32
|
Ren H, Yuan Y, Zhang D, Xing Y, Chen Z. The impact of circadian rhythms on retinal immunity. Chronobiol Int 2025; 42:198-212. [PMID: 39917826 DOI: 10.1080/07420528.2025.2460675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025]
Abstract
The eye is an immune-protected organ, which is driven by factors such as cytokines, chemicals, light, and mechanical stimuli. The circadian clock is an intrinsic timing mechanism that influences the immune activities, such as immune cell count and activity, as well as inflammatory responses. Recent studies have demonstrated that the eye also possesses an intrinsic circadian rhythm, and this rhythmic regulation participates in ocular immune modulation. In this review, we discuss the immunoregulatory mechanisms of the circadian clock within the eye, and reveal new perspectives for the prevention and treatment of ocular diseases.
Collapse
Affiliation(s)
- He Ren
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yilin Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danlei Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Ji Z, Wang B, Chandra R, Liu J, Yang S, Long Y, Egan M, L’Etoile N, Ma DK. Non-Visual Light Sensing Enhances Behavioral Memory and Drives Gene Expression in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634647. [PMID: 39975403 PMCID: PMC11838244 DOI: 10.1101/2025.01.27.634647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Visible light influences a range of physiological processes, yet how animals respond to it independently of the visual system remains largely unknown. Here, we uncover a previously undescribed light-induced transcriptional pathway that modulates behavioral plasticity in C. elegans, a roundworm without eyes. We demonstrate that ambient visible light or controlled-intensity visible-spectrum LED activates an effector gene cyp-14A5 in non-neuronal tissues through the bZIP transcription factors ZIP-2 and CEBP-2. Light induction of cyp-14A5 is more prominent at shorter wavelengths but is independent of the known blue light receptors LITE-1 and GUR-3 in C. elegans. This bZIP-dependent genetic pathway in non-neuronal tissues enhances behavioral adaptability and olfactory memory, suggesting a body-brain communication axis. Furthermore, we use the light-responsive cyp-14A5 promoter to drive ectopic gene expression, causing synthetic light-induced sleep and rapid aging phenotypes in C. elegans. These findings advance our understanding of light-responsive mechanisms outside the visual system and offer a new genetic tool for visible light-inducible gene expression in non-neuronal tissues.
Collapse
Affiliation(s)
- Zhijian Ji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rashmi Chandra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Junqiang Liu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Supeng Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yong Long
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Michael Egan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noelle L’Etoile
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Stalder T, Oster H, Abelson JL, Huthsteiner K, Klucken T, Clow A. The Cortisol Awakening Response: Regulation and Functional Significance. Endocr Rev 2025; 46:43-59. [PMID: 39177247 DOI: 10.1210/endrev/bnae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
In healthy individuals, the majority of cortisol secretion occurs within several hours surrounding morning awakening. A highly studied component of this secretory period is the cortisol awakening response (CAR), the rapid increase in cortisol levels across the first 30 to 45 minutes after morning awakening. This strong cortisol burst at the start of the active phase has been proposed to be functional in preparing the organism for the challenges of the upcoming day. Here, we review evidence on key regulatory and functional processes of the CAR and develop an integrative model of its functional role. Specifically, we propose that, in healthy individuals, the CAR is closely regulated by an intricate dual-control system, which draws upon key circadian, environmental, and neurocognitive processes to best predict the daily need for cortisol-related action. Fine-tuned CAR expression, in turn, is then assumed to induce potent glucocorticoid action via rapid nongenomic and slower genomic pathways (eg, affecting circadian clock gene expression) to support and modulate daily activity through relevant metabolic, immunological, and neurocognitive systems. We propose that this concerted action is adaptive in mediating two main functions: a primary process to mobilize resources to meet activity-related demands and a secondary process to help the organism counterregulate adverse prior-day emotional experiences.
Collapse
Affiliation(s)
- Tobias Stalder
- Department of Psychology, University of Siegen, 57076 Siegen, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany
| | - James L Abelson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Tim Klucken
- Department of Psychology, University of Siegen, 57076 Siegen, Germany
| | - Angela Clow
- Department of Psychology, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
35
|
Niepokny TD, Frey-Burkart H, Mintz EM. Temporal and spatial layout of endocannabinoid system components in the mouse suprachiasmatic nucleus. Neuroscience 2025; 564:179-193. [PMID: 39571963 DOI: 10.1016/j.neuroscience.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Environmental light serves as the main entraining signal for the central circadian pacemaker, the suprachiasmatic nucleus of the hypothalamus (SCN). To shift clock timing with the changing environment, minute adjustments are necessary and the endocannabinoid system (ECS) acts as a neuromodulatory signaling mechanism in the SCN. These systems exert bidirectional effects on one another, still, limited knowledge exists about the role of endocannabinoids in circadian rhythm regulation. Therefore, we investigated the temporal and spatial molecular layouts of the ECS in the SCN of male and female C57BL/6J mice. We utilized laser capture microdissection and quantitative RT-PCR to investigate the ECS temporal layout in the SCN, detected 13 of 19 examined ECS components, and followed up with two 24-hour time course experiments, one under 12:12 light/dark and one under constant dark conditions. All enzymatic machinery related to endocannabinoid synthesis and degradation investigated were found present; however, only cannabinoid receptor 1 (Cnr1) was detected from the 6 ECS related receptors investigated. Cosinor analysis revealed circadian rhythms in many components in both sexes and lighting conditions. Next, we investigated the spatial localization of ECS components in the SCN with RNAscope in situ hybridization. Some genes, such as Cnr1, were more highly expressed in neurons with others, such as Fabp7, were elevated in astrocytes. Cnr1 levels were highest in neurons that do not express the neuropeptides Avp or Vip, and lowest in Vip neurons. Our results support the idea that locally regulated ECS signaling through neuronal CB1 modulates circadian clock function.
Collapse
Affiliation(s)
- Timothy D Niepokny
- School of Biomedical Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; Brain Health Research Institute, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA
| | - Hunter Frey-Burkart
- Department of Biological Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; Brain Health Research Institute, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA
| | - Eric M Mintz
- Department of Biological Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; School of Biomedical Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; Brain Health Research Institute, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA.
| |
Collapse
|
36
|
Aten S, Ramirez-Plascencia O, Blake C, Holder G, Fishbein E, Vieth A, Zarghani-Shiraz A, Keister E, Howe S, Appo A, Palmer B, Mahoney CE. A time for sex: circadian regulation of mammalian sexual and reproductive function. Front Neurosci 2025; 18:1516767. [PMID: 39834701 PMCID: PMC11743455 DOI: 10.3389/fnins.2024.1516767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The circadian clock regulates physiological and biochemical processes in nearly every species. Sexual and reproductive behaviors are two processes controlled by the circadian timing system. Evidence supporting the importance of proper clock function on fertility comes from several lines of work demonstrating that misalignment of biological rhythms or disrupted function of the body's master clock, such as occurs from repeated shift work or chronic jet lag, negatively impacts reproduction by interfering with both male and female fertility. Along these lines, dysregulation of clock genes leads to impairments in fertility within mammals, and disruption of circadian clock timing negatively impacts sex hormone levels and semen quality in males, and it leads to ovulatory deficiencies in females. Here, we review the current understanding of the circadian modulation of both male and female reproductive hormones-from animal models to humans. Further, we discuss neural circuits within the hypothalamus that may regulate circadian changes in mammalian sexual behavior and reproduction, and we explore how knowledge of such circuits in animal models may help to improve human sexual function, fertility, and reproduction.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Oscar Ramirez-Plascencia
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chiara Blake
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Gabriel Holder
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Emma Fishbein
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Adam Vieth
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Arman Zarghani-Shiraz
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Evan Keister
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Shivani Howe
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Ashley Appo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Beatrice Palmer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Carrie E. Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
Wu W, Zhao Y, Cheng X, Xie X, Zeng Y, Tao Q, Yang Y, Xiao C, Zhang Z, Pang J, Jin J, He H, Lin Y, Li B, Ma J, Ye X, Lin WJ. Modulation of glymphatic system by visual circuit activation alleviates memory impairment and apathy in a mouse model of Alzheimer's disease. Nat Commun 2025; 16:63. [PMID: 39747869 PMCID: PMC11696061 DOI: 10.1038/s41467-024-55678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease is characterized by progressive amyloid deposition and cognitive decline, yet the pathological mechanisms and treatments remain elusive. Here we report the therapeutic potential of low-intensity 40 hertz blue light exposure in a 5xFAD mouse model of Alzheimer's disease. Our findings reveal that light treatment prevents memory decline in 4-month-old 5xFAD mice and motivation loss in 14-month-old 5xFAD mice, accompanied by restoration of glial water channel aquaporin-4 polarity, improved brain drainage efficiency, and a reduction in hippocampal lipid accumulation. We further demonstrate the beneficial effects of 40 hertz blue light are mediated through the activation of the vLGN/IGL-Re visual circuit. Notably, concomitant use of anti-Aβ antibody with 40 hertz blue light demonstrates improved soluble Aβ clearance and cognitive performance in 5xFAD mice. These findings offer functional evidence on the therapeutic effects of 40 hertz blue light in Aβ-related pathologies and suggest its potential as a supplementary strategy to augment the efficacy of antibody-based therapy.
Collapse
Affiliation(s)
- Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yubai Zhao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical and Rehabilitation Medicine, Guiyang Healthcare Vocational University, Guizhou, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoru Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Yixiu Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quan Tao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yishuai Yang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuan Xiao
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Zhan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Jiahui Pang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo He
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Junxian Ma
- Tianfu Xinglong Lake Laboratory, Chengdu, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China.
| |
Collapse
|
38
|
Quera-Salva MA, Hartley S, Uscamaita K. Circadian rhythm disorders in the blind. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:113-123. [PMID: 39864921 DOI: 10.1016/b978-0-323-90918-1.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Non-24-h sleep-wake disorder in blind patients without light perception is an orphan circadian rhythm sleep-wake disorder and is extremely rare in sighted people. Non-24-h sleep-wake disorder is characterized by insomnia and daytime sleepiness alternating with asymptomatic episodes. The frequency of symptomatic periods depends on the daily desynchronization of endogenous circadian pattern of each patient. Diagnosis requires anamnesis, a sleep diary, and actigraphy, if possible; in addition, repeated 24-h measures of circadian markers such as melatonin secretion are also required. Treatment consists of sleep hygiene, behavioral therapy, and melatonin/melatonin agonist administration. Melatonin treatment should start when the circadian rhythm of the patient is in phase with the solar cycle. Efficacy of treatment may be evident after weeks even months from the beginning. There is often a relapse when the medication is stopped.
Collapse
Affiliation(s)
- Maria Antonia Quera-Salva
- Neurology Department, Adsalutem Institute Sleep Medicine, Barcelona, Spain; Upnos Sleep Center, Garches, France.
| | - Sarah Hartley
- APHP Sleep Unit, Physiology Department, Raymond Poincaré Hospital, Paris-Saclay University, Garches, France
| | - Karol Uscamaita
- Neurology Department, Adsalutem Institute Sleep Medicine, Barcelona, Spain; Neurology Service, Sleep Disorders Unit, Hospital Universitari Sagrat Cor, Grupo Quirónsalud, Barcelona, Spain
| |
Collapse
|
39
|
Zhang Z, Xue P, Bendlin BB, Zetterberg H, De Felice F, Tan X, Benedict C. Melatonin: A potential nighttime guardian against Alzheimer's. Mol Psychiatry 2025; 30:237-250. [PMID: 39128995 PMCID: PMC11649572 DOI: 10.1038/s41380-024-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
In the context of the escalating global health challenge posed by Alzheimer's disease (AD), this comprehensive review considers the potential of melatonin in both preventive and therapeutic capacities. As a naturally occurring hormone and robust antioxidant, accumulating evidence suggests melatonin is a compelling candidate to consider in the context of AD-related pathologies. The review considers several mechanisms, including potential effects on amyloid-beta and pathologic tau burden, antioxidant defense, immune modulation, and regulation of circadian rhythms. Despite its promise, several gaps need to be addressed prior to clinical translation. These include conducting additional randomized clinical trials in patients with or at risk for AD dementia, determining optimal dosage and timing, and further determining potential side effects, particularly of long-term use. This review consolidates existing knowledge, identifies gaps, and suggests directions for future research to better understand the potential of melatonin for neuroprotection and disease mitigation within the landscape of AD.
Collapse
Affiliation(s)
- Zefan Zhang
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Barbara B Bendlin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Fernanda De Felice
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen's University, Kingston, ON, K7L 3N6, Canada
- D'Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Qi X, Xu Z, Liu X, Ren Y, Jin Y, Sun W, Li J, Liu D, Liu S, Liu Q, Li X. Near-infrared light induces neurogenesis and modulates anxiety-like behavior. Stem Cell Res Ther 2024; 15:494. [PMID: 39707549 DOI: 10.1186/s13287-024-04114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The hippocampus is associated with mood disorders, and the activation of quiescent neurogenesis has been linked to anxiolytic effects. Near-infrared (NIR) light has shown potential to improve learning and memory in human and animal models. Despite the vast amount of information regarding the effect of visible light, there is a significant gap in our understanding regarding the response of neural stem cells (NSCs) to NIR stimulation, particularly in anxiety-like behavior. The present study aimed to develop a new optical manipulation approach to stimulate hippocampal neurogenesis and understand the mechanisms underlying its anxiolytic effects. METHODS We used 940 nm NIR (40 Hz) light exposure to stimulate hippocampal stem cells in C57BL/6 mice. The enhanced proliferation and astrocyte differentiation of NIR-treated NSCs were assessed using 5-ethynyl-2'-deoxyuridine (EdU) incorporation and immunofluorescence assays. Additionally, we evaluated calcium activity of NIR light-treated astrocytes using GCaMP6f recording through fluorescence fiber photometry. The effects of NIR illumination of the hippocampus on anxiety-like behaviors were evaluated using elevated plus maze and open-field test. RESULTS NIR light effectively promoted NSC proliferation and astrocyte differentiation via the OPN4 photoreceptor. Furthermore, NIR stimulation significantly enhanced neurogenesis and calcium-dependent astrocytic activity. Moreover, activating hippocampal astrocytes with 40-Hz NIR light substantially improved anxiety-like behaviors in mice. CONCLUSIONS We found that flickering NIR (940 nm/40Hz) light illumination improved neurogenesis in the hippocampus with anxiolytic effects. This innovative approach holds promise as a novel preventive treatment for depression.
Collapse
Affiliation(s)
- Xing Qi
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Shandong University, Jinan, Shandong, 250012, China
| | - Zhiliang Xu
- School of Sports Leisure, Shandong Sport University, Jinan, Shandong, 250102, China
| | - Xingchen Liu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yanan Ren
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yecheng Jin
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenjie Sun
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiangxia Li
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Duo Liu
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China.
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Shandong University, Jinan, Shandong, 250012, China.
| | - Qiji Liu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Xi Li
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
41
|
Delpech C, Schaeffer J, Vilallongue N, Delaunay A, Benadjal A, Blot B, Excoffier B, Plissonnier E, Gascon E, Albert F, Paccard A, Saintpierre A, Gasnier C, Zagar Y, Castellani V, Belin S, Chédotal A, Nawabi H. Axon guidance during mouse central nervous system regeneration is required for specific brain innervation. Dev Cell 2024; 59:3213-3228.e8. [PMID: 39353435 DOI: 10.1016/j.devcel.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/11/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Reconstructing functional neuronal circuits is one major challenge of central nervous system repair. Through activation of pro-growth signaling pathways, some neurons achieve long-distance axon regrowth. Yet, functional reconnection has hardly been obtained, as these regenerating axons fail to resume their initial trajectory and reinnervate their proper target. Axon guidance is considered to be active only during development. Here, using the mouse visual system, we show that axon guidance is still active in the adult brain in regenerative conditions. We highlight that regenerating retinal ganglion cell axons avoid one of their primary targets, the suprachiasmatic nucleus (SCN), due to Slit/Robo repulsive signaling. Together with promoting regeneration, silencing Slit/Robo in vivo enables regenerating axons to enter the SCN and form active synapses. The newly formed circuit is associated with neuronal activation and functional recovery. Our results provide evidence that axon guidance mechanisms are required to reconnect regenerating axons to specific brain nuclei.
Collapse
Affiliation(s)
- Céline Delpech
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julia Schaeffer
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Noemie Vilallongue
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Apolline Delaunay
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Amin Benadjal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Beatrice Blot
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Blandine Excoffier
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Elise Plissonnier
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Eduardo Gascon
- Aix Marseille University, CNRS, INT, Institute of Neurosci Timone, Marseille, France
| | - Floriane Albert
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Antoine Paccard
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Ana Saintpierre
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Celestin Gasnier
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Valérie Castellani
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | - Stephane Belin
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France; Institut de pathologie, groupe hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Homaira Nawabi
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
42
|
Chen X, Lin E, Haghighatian MM, Shepard LW, Hattar S, Kuruvilla R, Zhao H. Light modulates glucose and lipid homeostasis via the sympathetic nervous system. SCIENCE ADVANCES 2024; 10:eadp3284. [PMID: 39661675 PMCID: PMC11633741 DOI: 10.1126/sciadv.adp3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Light is an important environmental factor for vision and for diverse physiological and psychological functions. Light can also modulate glucose metabolism. Here, we show that in mice, light is critical for glucose and lipid homeostasis by regulating the sympathetic nervous system, independent of circadian disruption. Light deprivation from birth elicits insulin hypersecretion, glucagon hyposecretion, lower gluconeogenesis, and reduced lipolysis by 6 to 8 weeks in male, but not female, mice. These metabolic defects are consistent with blunted sympathetic activity, and indeed, sympathetic responses to a cold stimulus are substantially attenuated in dark-reared mice. Further, long-term dark rearing leads to body weight gain, insulin resistance, and glucose intolerance. Notably, metabolic dysfunction can be partially alleviated by 5 weeks exposure to a regular light-dark cycle. These studies provide insight into circadian-independent mechanisms by which light directly influences whole-body physiology and better understanding of metabolic disorders linked to aberrant environmental light conditions.
Collapse
Affiliation(s)
- Xiangning Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eugene Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
43
|
Gubin D, Malishevskaya T, Weinert D, Zakharova E, Astakhov S, Cornelissen G. Circadian Disruption in Glaucoma: Causes, Consequences, and Countermeasures. FRONT BIOSCI-LANDMRK 2024; 29:410. [PMID: 39735989 DOI: 10.31083/j.fbl2912410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 12/31/2024]
Abstract
This review explores the intricate relationship between glaucoma and circadian rhythm disturbances. As a principal organ for photic signal reception and transduction, the eye plays a pivotal role in coordinating the body's circadian rhythms through specialized retinal ganglion cells (RGCs), particularly intrinsically photosensitive RGCs (ipRGCs). These cells are critical in transmitting light signals to the suprachiasmatic nucleus (SCN), the central circadian clock that synchronizes physiological processes to the 24-hour light-dark cycle. The review delves into the central circadian body clock, highlighting the importance of the retino-hypothalamic tract in conveying light information from the eyes to the SCN. It underscores the role of melanopsin in ipRGCs in absorbing light and initiating biochemical reactions that culminate in the synchronization of the SCN's firing patterns with the external environment. Furthermore, the review discusses local circadian rhythms within the eye, such as those affecting photoreceptor sensitivity, corneal thickness, and intraocular fluid outflow. It emphasizes the potential of optical coherence tomography (OCT) in studying structural losses of RGCs in glaucoma and the associated circadian rhythm disruption. Glaucomatous retinal damage is identified as a cause of circadian disruption, with mechanisms including oxidative stress, neuroinflammation, and direct damage to RGCs. The consequences of such disruption are complex, affecting systemic and local circadian rhythms, sleep patterns, mood, and metabolism. Countermeasures, with implications for glaucoma management, are proposed that focus on strategies to improve circadian health through balanced melatonin timing, daylight exposure, and potential chronotherapeutic approaches. The review calls for further research to elucidate the mechanisms linking glaucoma and circadian disruption and to develop effective interventions to address this critical aspect of the disease.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | | | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany
| | - Ekaterina Zakharova
- Yakutsk Republican Ophthalmological Clinical Hospital, 677005 Yakutsk, Russia
| | - Sergey Astakhov
- Department of Ophthalmolgy, Pavlov First State Medical University of St Petersburg, 197022 St Petersburg, Russia
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
44
|
Spitschan M. Selecting, implementing and evaluating control and placebo conditions in light therapy and light-based interventions. Ann Med 2024; 56:2298875. [PMID: 38329797 PMCID: PMC10854444 DOI: 10.1080/07853890.2023.2298875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction: Light profoundly influences human physiology, behaviour and cognition by affecting various functions through light-sensitive cells in the retina. Light therapy has proven effective in treating seasonal depression and other disorders. However, designing appropriate control conditions for light-based interventions remains a challenge.Materials and methods: This article presents a novel framework for selecting, implementing and evaluating control conditions in light studies, offering theoretical foundations and practical guidance. It reviews the fundamentals of photoreception and discusses control strategies such as dim light, darkness, different wavelengths, spectral composition and metameric conditions. Special cases like dynamic lighting, simulated dawn and dusk, complex interventions and studies involving blind or visually impaired patients are also considered.Results: The practical guide outlines steps for selection, implementation, evaluation and reporting, emphasizing the importance of α-opic calculations and physiological validation.Conclusion: In conclusion, constructing effective control conditions is crucial for demonstrating the efficacy of light interventions in various research scenarios.
Collapse
Affiliation(s)
- Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Translational Sensory & Circadian Neuroscience, Tübingen, Germany
- Technical University of Munich, TUM School of Medicine and Health, Chronobiology & Health, Munich, Germany
- Technical University of Munich, TUM Institute for Advanced Study (TUM-IAS), Garching, Germany
| |
Collapse
|
45
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
46
|
Stefani O, Schöllhorn I, Münch M. Towards an evidence-based integrative lighting score: a proposed multi-level approach. Ann Med 2024; 56:2381220. [PMID: 39049780 PMCID: PMC11275531 DOI: 10.1080/07853890.2024.2381220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Human circadian clocks are synchronized daily with the external light-dark cycle and entrained to the 24-hour day. There is increasing evidence that a lack of synchronization and circadian entrainment can lead to adverse health effects. Beyond vision, light plays a critical role in modulating many so-called non-visual functions, including sleep-wake cycles, alertness, mood and endocrine functions. To assess (and potentially optimize) the impact of light on non-visual functions, it is necessary to know the exact 'dose' (i.e. spectral irradiance and exposure duration at eye level) of 24-hour light exposures, but also to include metadata about the lighting environment, individual needs and resources. Problem statement: To address this problem, a new assessment tool is needed that uses existing metrics to provide metadata and information about light quality and quantity from all sources. In this commentary, we discuss the need to develop an evidence-based integrative lighting score that is tailored to specific audiences and lighting environments. We will summarize the most compelling evidence from the literature and outline a future plan for developing such a lighting score using internationally accepted metrics, stakeholder and user feedback. Conclusion: We propose a weighting system that combines light qualities with physiological and behavioral effects, and the use of mathematical modelling for an output score. Such a scoring system will facilitate a holistic assessment of a lighting environment, integrating all available light sources.
Collapse
Affiliation(s)
- Oliver Stefani
- Lucerne School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| | - Isabel Schöllhorn
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Mirjam Münch
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Cluster Molecular Cognitive Neuroscience, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
47
|
Volf C, Petersen PM, Thorseth A, Vestergaard S, Martiny K. Daylight quality: high-transmittance glass versus low transmittance glass - effects on daylight quality, health, comfort and energy consumption. Ann Med 2024; 56:2297273. [PMID: 38316028 PMCID: PMC10846434 DOI: 10.1080/07853890.2023.2297273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024] Open
Abstract
Introduction: This study investigated the health effects of two different architectural glass types: A two-layered low-iron high transmittance glass and a three-layered low energy glass with lower transmittance. The study investigated how these glass types affected daylight conditions in 72 residential apartments, as well as health and satisfaction of the residents.Methods: The study installed high transmittance glass (light transmittance LT:0.82) in 36 apartments and low transmittance (LT:0.74) in 36 identical apartments. The study then analyzed the light transmittance of each glass type in the laboratory and analyzed the indoor environmental quality (IEQ) in eight representative apartments before and after renovation. Self-reported questionnaires were handed out and collected before and after renovation.Results: The results showed that the glass types differed significantly in measured daylight transmittance. The two-layered high transmittance glass transmitted 15% more visual light (380-750 nm) and 20% more light in the spectral range (460-480 nm), stimulating ipRGCs and circadian rhythm, when compared to three-layered low energy glass. In addition, significant differences were observed in the UV-B spectrum (280-315 nm). While two-layered high transmittance glass transmitted UV-B, three-layered low transmittance glass did not. During the 12-month study period, residents in apartments with three-layered low energy glass reported more difficulties sleeping (p = 0.05), higher satisfaction with daylight (p = 0.03) and higher satisfaction with ventilation (p = 0.04). Residents in apartments with three-layered low energy glass experienced fewer days with too cold indoor temperatures (p = 0.02), compared to residents with two-layered low-iron glass. The results of energy consumption for heating showed that two-layered low-iron glass reduced the energy consumption by 11.0%, while three-layered low energy glass reduced the energy consumption by 9.4%, compared to the year prior to renovation.Conclusion: The results contribute to a discussion about potential energy savings on one hand and potential non-energy benefits, such as daylight quality, overall health, and total economy/life cycle assessment of the built environment on the other hand. The results suggest further research performed in randomized large-scale studies.
Collapse
Affiliation(s)
- Carlo Volf
- New Interventions in Depression (NID) Group, Mental Health Center Copenhagen, Copenhagen, Denmark
| | | | - Anders Thorseth
- DTU Electro, Technical University of Denmark, Roskilde, Denmark
| | | | - Klaus Martiny
- New Interventions in Depression (NID) Group, Mental Health Center Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Biller AM, Balakrishnan P, Spitschan M. Behavioural determinants of physiologically-relevant light exposure. COMMUNICATIONS PSYCHOLOGY 2024; 2:114. [PMID: 39614105 DOI: 10.1038/s44271-024-00159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024]
Abstract
Light exposure triggers a range of physiological and behavioural responses that can improve and challenge health and well-being. Insights from laboratory studies have recently culminated in standards and guidelines for measuring and assessing healthy light exposure, and recommendations for healthy light levels. Implicit to laboratory paradigms is a simplistic input-output relationship between light and its effects on physiology. This simplified approach ignores that humans actively shape their light exposure through behaviour. This article presents a novel framework that conceptualises light exposure as an individual behaviour to meet specific, person-based needs. Key to healthy light exposure is shaping behaviour, beyond shaping technology.
Collapse
Affiliation(s)
- Anna M Biller
- Department Health and Sport Sciences, Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Priji Balakrishnan
- Laboratory of Architecture and Intelligent Living (AIL), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Chair of Lighting Technology, Technische Universität Berlin, Berlin, Germany
| | - Manuel Spitschan
- Department Health and Sport Sciences, Chronobiology & Health, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Translational Sensory & Circadian Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| |
Collapse
|
49
|
Liu S, Wang J, Tian X, Zhang Z, Wang L, Xiong Y, Liu X, Xie Y, Wu X, Xu C. An integrated multi-omics analysis identifies novel regulators of circadian rhythm and sleep disruptions under unique light environment in Antarctica. Mol Psychiatry 2024:10.1038/s41380-024-02844-7. [PMID: 39587296 DOI: 10.1038/s41380-024-02844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Light is the dominant zeitgeber for biological clocks, and its regulatory mechanism for sleep-wake activity has been extensively studied. However, the molecular pathways through which the unique Antarctic light environment, with polar days in summer and polar nights in winter, affects human sleep and circadian rhythm remain largely unidentified, although previous studies have observed delayed circadian rhythm and sleep disruptions among expeditioners during polar nights. In this study, we conducted comprehensive dynamic research on the expeditioners residing in Antarctica for over one year. By integrating the phenotypic changes with multi-omics data, we tried to identify the novel candidate regulators and their correlation networks involved in circadian and sleep disorders under abnormal light exposure. We found that during the austral winter, expeditioners exhibited delayed bedtime and getting up time, reduced sleep efficiency, and increased sleep fragmentation. Meanwhile, serum dopamine metabolite levels significantly increased, while serotonin metabolites and antioxidants decreased. These changes were accompanied by altered expression of genes and proteins associated with neural functions, cellular activities, transcriptional regulation, and so on. Through the correlation and causal mediation analysis, we identified several potential pathways modulating human sleep-wake activity, involving genes and proteins related to neural function, glucose metabolism, extracellular matrix homeostasis, and some uncharacterized lncRNAs. Based on the identified causal mediators, LASSO regression analysis further revealed a novel candidate gene, Shisa Family Member 8 (SHISA8), as a potential key regulatory hub in this process. These findings shed light on the probable molecular mechanisms of sleep disorders in Antarctica and suggest SHISA8 as a novel candidate target for medical intervention in sleep disorders under unique light environments.
Collapse
Affiliation(s)
- Shiying Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Jianan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Tian
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Zhigang Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liping Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Yanlei Xiong
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyuan Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Yalei Xie
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaopei Wu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Chengli Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
50
|
Jiang Y, Shi J, Tai J, Yan L. Circadian Regulation in Diurnal Mammals: Neural Mechanisms and Implications in Translational Research. BIOLOGY 2024; 13:958. [PMID: 39765625 PMCID: PMC11727363 DOI: 10.3390/biology13120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/15/2025]
Abstract
Diurnal and nocturnal mammals have evolved unique behavioral and physiological adaptations to optimize survival for their day- or night-active lifestyle. The mechanisms underlying the opposite activity patterns are not fully understood but likely involve the interplay between the circadian time-keeping system and various arousal- or sleep-promoting factors, e.g., light or melatonin. Although the circadian systems between the two chronotypes share considerable similarities, the phase relationships between the principal and subordinate oscillators are chronotype-specific. While light promotes arousal and wakefulness in diurnal species like us, it induces sleep in nocturnal ones. Similarly, melatonin, the hormone of darkness, is commonly used as a hypnotic in humans but is secreted in the active phase of nocturnal animals. Thus, the difference between the two chronotypes is more complex than a simple reversal, as the physiological and neurological processes in diurnal mammals during the day are not equivalent to that of nocturnal ones at night. Such chronotype differences could present a significant translational gap when applying research findings obtained from nocturnal rodents to diurnal humans. The potential advantages of diurnal models are being discussed in a few sleep-related conditions including familial natural short sleep (FNSS), obstructive sleep apnea (OSA), and Smith-Magenis syndrome (SMS). Considering the difference in chronotype, a diurnal model will be more adequate for revealing the physiology and physiopathology pertaining to human health and disease, especially in conditions in which circadian rhythm disruption, altered photic response, or melatonin secretion is involved. We hope the recent advances in gene editing in diurnal rodents will promote greater utility of the diurnal models in basic and translational research.
Collapse
Affiliation(s)
- Yirun Jiang
- Department of Otolaryngology, Head and Neck Surgery, Capital Institute of Pediatrics, Beijing 100020, China; (Y.J.); (J.T.)
| | - Jiaming Shi
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Capital Institute of Pediatrics, Beijing 100020, China; (Y.J.); (J.T.)
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Interdisciplinary Science & Technology Building (ISTB), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|