1
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Monfrini E, Pesini A, Biella F, Sobreira CFR, Emmanuele V, Brescia G, Lopez LC, Tadesse S, Hirano M, Comi GP, Quinzii CM, Di Fonzo A. Whole-Exome Sequencing Study of Fibroblasts Derived From Patients With Cerebellar Ataxia Referred to Investigate CoQ10 Deficiency. NEUROLOGY GENETICS 2023; 9:e200058. [PMID: 37090936 PMCID: PMC10117701 DOI: 10.1212/nxg.0000000000200058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 03/17/2023]
Abstract
Background and ObjectivesCoenzyme Q10(CoQ10)–deficient cerebellar ataxia can be due to pathogenic variants in genes encoding for CoQ10biosynthetic proteins or associated with defects in protein unrelated to its biosynthesis. Diagnosis is crucial because patients may respond favorably to CoQ10supplementation. The aim of this study was to identify through whole-exome sequencing (WES) the pathogenic variants, and assess CoQ10levels, in fibroblasts from patients with undiagnosed cerebellar ataxia referred to investigate CoQ10deficiency.MethodsWES was performed on genomic DNA extracted from 16 patients. Sequencing data were filtered using a virtual panel of genes associated with CoQ10deficiency and/or cerebellar ataxia. CoQ10levels were measured by high-performance liquid chromatography in 14 patient-derived fibroblasts.ResultsA definite genetic etiology was identified in 8 samples of 16 (diagnostic yield = 50%). The identified genetic causes were pathogenic variants of the genesCOQ8A(ADCK3) (n = 3 samples),ATP1A3(n = 2),PLA2G6(n = 1),SPG7(n = 1), andMFSD8(n = 1). Five novel mutations were found (COQ8An = 3,PLA2G6n = 1, andMFSD8n = 1). CoQ10levels were significantly decreased in 3/14 fibroblast samples (21.4%), 1 carrying compound heterozygousCOQ8Apathogenic variants, 1 harboring a homozygous pathogenicSPG7variant, and 1 with an unknown molecular defect.DiscussionThis work confirms the importance ofCOQ8Agene mutations as a frequent genetic cause of cerebellar ataxia and CoQ10deficiency and suggestsSPG7mutations as a novel cause of secondary CoQ10deficiency.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Alba Pesini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Fabio Biella
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Claudia F R Sobreira
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Valentina Emmanuele
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Gloria Brescia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Luis Carlos Lopez
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Saba Tadesse
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Michio Hirano
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Giacomo P Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Catarina Maria Quinzii
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico (E.M., G.B., A.D.F.), Neurology Unit, Milan, Italy; Dino Ferrari Center (E.M., F.B., G.P.C.), Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Neurology (A.P., V.E., S.T., M.H., C.M.Q.), Columbia University Medical Center, New York; Universidade de São Paulo (C.F.R.S.), Ribeirão Preto Medical School, Department of Neurosciences, Brazil; Departamento de Fisiología (L.C.L.), Facultad de Medicina, Universidad de Granada, Spain; and Centro de Investigación Biomédica (L.C.L.), Instituto de Biotecnología, Universidad de Granada, Spain
| |
Collapse
|
3
|
Wu X, Dong N, Liu Z, Tang T, Liu M. Case report: A novel APTX p.Ser168GlufsTer19 mutation in a Chinese family with ataxia with oculomotor apraxia type 1. Front Neurol 2022; 13:873826. [PMID: 36119692 PMCID: PMC9479491 DOI: 10.3389/fneur.2022.873826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ataxia with oculomotor apraxia type 1 (AOA1) is a rare genetic disorder and is inherited in an autosomal recessive manner. It is mainly characterized by childhood-onset progressive cerebellar ataxia, with dysarthria and gait disturbance being the two most common and typical manifestations. Axonal sensorimotor peripheral neuropathy, dystonia, chorea, and cognitive impairment are common associated symptoms, as are hypoalbuminemia and hypercholesterolemia. Oculomotor apraxia (OMA)has been reported to be a feature often, although not exclusively, associated with AOA1. The Aprataxin gene, APTX, is ubiquitously expressed, and numerous APTX mutations are associated with different clinical phenotypes have been found. In the present study, we enrolled a 14-year-old boy who developed ataxia with staggering gait from the age of 4 years. Early-onset cerebellar ataxia, peripheral axonal neuropathy, cognitive impairment and hypoalbuminemia, hypercholesterolemia were presented in this patient, except for OMA. We applied ataxia-related genes filtering strategies and whole-exome sequencing (WES) to discover the genetic factors in a Chinese family. Sanger sequencing was used in the co segregation analysis in the family members. A compound heterozygous mutation in APTX gene (c.739C>T and c.501dupG) was identified. This is the first description of a genetically confirmed patient of AOA1 in a Chinese family in addition to a novel mutation of c.501dupG in APTX.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Nan Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhensheng Liu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Tieyu Tang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Meirong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Discovery of Therapeutics Targeting Oxidative Stress in Autosomal Recessive Cerebellar Ataxia: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15060764. [PMID: 35745683 PMCID: PMC9228961 DOI: 10.3390/ph15060764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.
Collapse
|
5
|
HAVALI C, KUŞKU ZB, AKBAŞ Y. The Diagnostic Evaluation of Patients with Hereditary Ataxia in Children: Thirteen Patients and Comprehensive Approach. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2021. [DOI: 10.17944/mkutfd.919601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
6
|
Inherited Neuromuscular Disorders: Which Role for Serum Biomarkers? Brain Sci 2021; 11:brainsci11030398. [PMID: 33801069 PMCID: PMC8004068 DOI: 10.3390/brainsci11030398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuromuscular disorders (INMD) are a heterogeneous group of rare diseases that involve muscles, motor neurons, peripheral nerves or the neuromuscular junction. Several different lab abnormalities have been linked to INMD: sometimes they are typical of the disorder, but they usually appear to be less specific. Sometimes serum biomarkers can point out abnormalities in presymtomatic or otherwise asymptomatic patients (e.g., carriers). More often a biomarker of INMD is evaluated by multiple clinicians other than expert in NMD before the diagnosis, because of the multisystemic involvement in INMD. The authors performed a literature search on biomarkers in inherited neuromuscular disorders to provide a practical approach to the diagnosis and the correct management of INMD. A considerable number of biomarkers have been reported that support the diagnosis of INMD, but the role of an expert clinician is crucial. Hence, the complete knowledge of such abnormalities can accelerate the diagnostic workup supporting the referral to specialists in neuromuscular disorders.
Collapse
|
7
|
Renaud M, Tranchant C, Koenig M, Anheim M. Autosomal Recessive Cerebellar Ataxias With Elevated Alpha-Fetoprotein: Uncommon Diseases, Common Biomarker. Mov Disord 2020; 35:2139-2149. [PMID: 33044027 DOI: 10.1002/mds.28307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
alpha-Fetoprotein (AFP) is a biomarker of several autosomal recessive cerebellar ataxias (ARCAs), especially ataxia telangiectasia (AT) and ataxia with oculomotor apraxia (AOA) type 2 (AOA2). More recently, slightly elevated AFP has been reported in AOA1 and AOA4. Interestingly, AOA1, AOA2, AOA4, and AT are overlapping ARCAs characterized by oculomotor apraxia, with oculocephalic dissociation, choreo-dystonia, and/or axonal sensorimotor neuropathy, in addition to cerebellar ataxia with cerebellar atrophy. The genetic backgrounds in these disorders play central roles in nuclear maintenance through DNA repair [ATM (AT), APTX (AOA1), or PNKP (AOA4)] or RNA termination [SETX (AOA2)]. Partially discriminating thresholds of AFP have been proposed as a way to distinguish between ARCAs with elevated AFP. In these entities, elevated AFP may be an epiphenomenon as a result of liver transcriptional dysregulation. AFP is a simple and reliable biomarker for the diagnosis of ARCA in performance and interpretation of next-generation sequencing. Here, we evaluated clinical, laboratory, imaging, and molecular data of the group of ARCAs that share elevated AFP serum levels that have been described in the past two decades. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mathilde Renaud
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France.,INSERM-U1256 NGERE, Université de Lorraine, Nancy, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Complex Movement Disorders in Ataxia with Oculomotor Apraxia Type 1: Beyond the Cerebellar Syndrome. Tremor Other Hyperkinet Mov (N Y) 2020; 10:39. [PMID: 33101765 PMCID: PMC7546098 DOI: 10.5334/tohm.557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Ataxia with oculomotor apraxia (AOA1) is characterized by early-onset progressive cerebellar ataxia with peripheral neuropathy, oculomotor apraxia and hypoalbuminemia and hypercholesterolemia. Case Report: A 23-year-old previously healthy woman presented with slowly-progressive gait impairment since the age of six years. Neurological examination revealed profound areflexia, chorea, generalized dystonia and oculomotor apraxia. Brain MRI revealed mild cerebellar atrophy and needle EMG showed axonal sensorimotor neuropathy. Whole exome sequencing revealed a mutation in the aprataxin gene. Discussion: AOA1 can present with choreoathetosis mixed with dystonic features, resembling ataxia-telangiectasia. This case is instructive since mixed and complex movement disorders is not very common in AOA1. Highlights:
Collapse
|
9
|
Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int J Mol Sci 2020; 21:ijms21186695. [PMID: 32933108 PMCID: PMC7555759 DOI: 10.3390/ijms21186695] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extramitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant, plays an important role in fatty acid, pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. In view of the central role of CoQ10 in cellular metabolism, it is unsurprising that a CoQ10 deficiency is linked to the pathogenesis of a range of disorders. CoQ10 deficiency is broadly classified into primary or secondary deficiencies. Primary deficiencies result from genetic defects in the multi-step biochemical pathway of CoQ10 synthesis, whereas secondary deficiencies can occur as result of other diseases or certain pharmacotherapies. In this article we have reviewed the clinical consequences of primary and secondary CoQ10 deficiencies, as well as providing some examples of the successful use of CoQ10 supplementation in the treatment of disease.
Collapse
|
10
|
Ababneh NA, Ali D, Al-Kurdi B, Sallam M, Alzibdeh AM, Salah B, Ryalat AT, Azab B, Sharrack B, Awidi A. Identification of APTX disease-causing mutation in two unrelated Jordanian families with cerebellar ataxia and sensitivity to DNA damaging agents. PLoS One 2020; 15:e0236808. [PMID: 32750061 PMCID: PMC7402469 DOI: 10.1371/journal.pone.0236808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022] Open
Abstract
Background Ataxia with oculomotor apraxia type 1 (AOA1) is a rare autosomal recessive cerebellar ataxia, caused by mutations in the APTX gene. The disease is characterized by early-onset cerebellar ataxia, oculomotor apraxia and severe axonal polyneuropathy. The aim of this study was to detect the disease-causing variants in two unrelated consanguineous Jordanian families with cerebellar ataxia using whole exome sequencing (WES), and to correlate the identified mutation(s) with the clinical and cellular phenotypes. Methods WES was performed in three affected individuals and segregation analysis of p.W279* APTX candidate variant was performed. Expression levels of APTX were measured in patients’ skin fibroblasts and peripheral blood mononuclear cells, followed by western blot analysis in skin fibroblasts. Genotoxicity assay was performed to detect the sensitivity of APTX mutated cells to H2O2, MMC, MMS and etoposide. Results A recurrent homozygous nonsense variant in APTX gene (c.837G>A, p.W279*) was revealed in all affected individuals. qRT-PCR showed normal APTX levels in peripheral blood and lower levels in fibroblast cells. However, western blot showed the absence of APTX protein in patients’ skin fibroblasts. Significant hypersensitivity to H2O2, MMC and etoposide and lack of sensitivity to MMS were noted. Conclusions This is the first study to report the identification of a nonsense variant in the APTX gene (c.837G>A; p.W279*) in AOA1 patients within the Jordanian population. This study confirmed the need of WES to assist in the diagnosis of cerebellar ataxia and it emphasizes the importance of studying the pathophysiology of the APTX gene.
Collapse
Affiliation(s)
- Nidaa A. Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- * E-mail: , (NAA); (AA)
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman, Jordan
- Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | | | - Bareqa Salah
- General Surgery Department/Plastic & Reconstructive, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | | | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Basil Sharrack
- Academic Department of Neuroscience and Sheffield NIHR Neuroscience BRC, Royal Hallamshire Hospital and The University of Sheffield, Sheffield, United Kingdom
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- Hemostasis and Thrombosis Laboratory, School of Medicine, the University of Jordan, Amman, Jordan
- Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
- * E-mail: , (NAA); (AA)
| |
Collapse
|
11
|
Petr MA, Tulika T, Carmona-Marin LM, Scheibye-Knudsen M. Protecting the Aging Genome. Trends Cell Biol 2020; 30:117-132. [DOI: 10.1016/j.tcb.2019.12.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
|
12
|
Mutlu-Albayrak H, Kırat E, Gürbüz G. Childhood-onset autosomal recessive ataxias: a cross-sectional study from Turkey. Neurogenetics 2019; 21:59-66. [PMID: 31741144 DOI: 10.1007/s10048-019-00597-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Autosomal recessive ataxias (ARAs) are a heterogeneous group of inherited neurodegenerative disorders that affect the cerebellum, the spinocerebellar tract, and/or the sensory tracts of the spinal cord. This study is aimed at establishing molecular classification and phenotypic correlation of childhood-onset ARAs in Southeast Anatolia of Turkey. Sixty-five children (aged 0 to 18) from 40 unrelated families who were analyzed through hereditary ataxia NGS panel between the years of 2015-2018 were selected for the study. Seventeen different, clinically significant ARA-related pathogenic variants were detected in 33 of 40 families (82.5%), 12 of which were noted to be unreported variants. Among these 33 families, 24 had ATM-related (72.72%), four had SACS-related (12.12%), three had COQ8A-related (9.09%), and two had APTX-related (6.06%) pathogenic variants. The c.3576G>A (p.K1192=) was the most common homozygous pathogenic ATM variant (33.33%) that was associated with milder phenotype of ataxia telangiectasia (AT) with the onset of age of 3. Patients with SACS variants demonstrated developmental delay and progressive ataxia before the age of 3. Slowly progressive ataxia and intellectual disability were the common clinical manifestations of the patients with homozygous c.1396delG (p. E466Rfs*11) pathogenic variant in COQ8A. Homozygous APTX c.689T>G (p.V230G) pathogenic variant was identified in two patients who had chief complaint of ataxic gait onset after puberty. The most common types of ARAs in this region are AT- and Charlevoix-Saguenay-type spastic ataxia. ATM gene analysis should be performed foremost on children presenting early-onset ataxia from Southeastern Anatolia. If there is a concomitant peripheral neuron involvement, SACS gene analysis should be preferred. This valuable data will be a guide for the first step molecular diagnostic approach before requesting the NGS panel for ARA.
Collapse
Affiliation(s)
- Hatice Mutlu-Albayrak
- Department of Pediatric Genetics, Cengiz Gökcek Maternity & Children's Hospital, 15 Temmuz mh. 62 nolu cd, 27010, Gaziantep, Turkey.
| | - Emre Kırat
- Department of Medical Genetics, Ersin Arslan Education and Research Hospital, Gaziantep, Turkey
| | - Gürkan Gürbüz
- Department of Pediatric Neurology, Cengiz Gökcek Maternity & Children's Hospital, Gaziantep, Turkey
| |
Collapse
|
13
|
Renaud M, Moreira MC, Ben Monga B, Rodriguez D, Debs R, Charles P, Chaouch M, Ferrat F, Laurencin C, Vercueil L, Mallaret M, M'Zahem A, Pacha LA, Tazir M, Tilikete C, Ollagnon E, Ochsner F, Kuntzer T, Jung HH, Beis JM, Netter JC, Djamshidian A, Bower M, Bottani A, Walsh R, Murphy S, Reiley T, Bieth É, Roelens F, Poll-The BT, Lourenço CM, Jardim LB, Straussberg R, Landrieu P, Roze E, Thobois S, Pouget J, Guissart C, Goizet C, Dürr A, Tranchant C, Koenig M, Anheim M. Clinical, Biomarker, and Molecular Delineations and Genotype-Phenotype Correlations of Ataxia With Oculomotor Apraxia Type 1. JAMA Neurol 2019; 75:495-502. [PMID: 29356829 DOI: 10.1001/jamaneurol.2017.4373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Ataxia with oculomotor apraxia type 1 (AOA1) is an autosomal recessive cerebellar ataxia due to mutations in the aprataxin gene (APTX) that is characterized by early-onset cerebellar ataxia, oculomotor apraxia, axonal motor neuropathy, and eventual decrease of albumin serum levels. Objectives To improve the clinical, biomarker, and molecular delineation of AOA1 and provide genotype-phenotype correlations. Design, Setting, and Participants This retrospective analysis included the clinical, biological (especially regarding biomarkers of the disease), electrophysiologic, imaging, and molecular data of all patients consecutively diagnosed with AOA1 in a single genetics laboratory from January 1, 2002, through December 31, 2014. Data were analyzed from January 1, 2015, through January 31, 2016. Main Outcomes and Measures The clinical, biological, and molecular spectrum of AOA1 and genotype-phenotype correlations. Results The diagnosis of AOA1 was confirmed in 80 patients (46 men [58%] and 34 women [42%]; mean [SD] age at onset, 7.7 [7.4] years) from 51 families, including 57 new (with 8 new mutations) and 23 previously described patients. Elevated levels of α-fetoprotein (AFP) were found in 33 patients (41%); hypoalbuminemia, in 50 (63%). Median AFP level was higher in patients with AOA1 (6.0 ng/mL; range, 1.1-17.0 ng/mL) than in patients without ataxia (3.4 ng/mL; range, 0.8-17.2 ng/mL; P < .01). Decreased albumin levels (ρ = -0.532) and elevated AFP levels (ρ = 0.637) were correlated with disease duration. The p.Trp279* mutation, initially reported as restricted to the Portuguese founder haplotype, was discovered in 53 patients with AOA1 (66%) with broad white racial origins. Oculomotor apraxia was found in 49 patients (61%); polyneuropathy, in 74 (93%); and cerebellar atrophy, in 78 (98%). Oculomotor apraxia correlated with the severity of ataxia and mutation type, being more frequent with deletion or truncating mutations (83%) than with presence of at least 1 missense variant (17%; P < .01). Mean (SD) age at onset was higher for patients with at least 1 missense mutation (17.7 [11.4] vs 5.2 [2.6] years; P < .001). Conclusions and Relevance The AFP level, slightly elevated in a substantial fraction of patients, may constitute a new biomarker for AOA1. Oculomotor apraxia may be an optional finding in AOA1 and correlates with more severe disease. The p.Trp279* mutation is the most frequent APTX mutation in the white population. APTX missense mutations may be associated with a milder phenotype.
Collapse
Affiliation(s)
- Mathilde Renaud
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Medicale (INSERM)-U964, Centre National de la Recherche Scientifique (CNRS)-Unité Mixte de Recherché (UMR) 7104, Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Maria-Céu Moreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Medicale (INSERM)-U964, Centre National de la Recherche Scientifique (CNRS)-Unité Mixte de Recherché (UMR) 7104, Université de Strasbourg, Illkirch, France
| | - Bondo Ben Monga
- Faculté de Médecine et Ecole de Santé Publique, Université de Lubumbashi, Lubumbashi, République Démocratique du Congo
| | - Diana Rodriguez
- Service de Neuropédiatrie, Hôpital d'Enfants Armand-Trousseau, Paris, France.,Centre de Référence de Neurogénétique, Hôpital Armand-Trousseau, Hôpitaux Universitaires Est Parisien, Assistance Publique-Hôpitaux de Paris, Paris, France.,Groupe de Recherch Clinique ConCer-LD, Sorbonne Universités, l'Université Pierre-et-Marie-Curie, Université Paris 06, Paris, France.,Neuroprotection du Cerveau en Développement, INSERM U1141, Paris, France
| | - Rabab Debs
- Département de Génétique, Hôpital de La Pitié-Salpétrière, Paris, France
| | - Perrine Charles
- Département de Génétique, Hôpital de La Pitié-Salpétrière, Paris, France
| | - Malika Chaouch
- Service de Neurologie, Etablissement Hospitalier Spécialisé, Algers, Algeria
| | - Farida Ferrat
- Service de Neurologie, Etablissement Hospitalier Spécialisé de Ben Aknoun, Algers, Algeria
| | - Chloé Laurencin
- Service de Neurologie C, Hopital Neurologique, Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,CNRS, Institut des Sciences Cognitives, UMR 5229, Bron, France
| | - Laurent Vercueil
- Exploration Fonctionnelle du Système Nerveux, Pôle de Psychiatrie, Neurologie et Rééducation Neurologique, Centre Hospitalier Universitaire (CHU) Grenoble, Grenoble, France.,INSERM U836, Grenoble Institut des Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, La Tronche, France
| | - Martial Mallaret
- Exploration Fonctionnelle du Système Nerveux, Pôle de Psychiatrie, Neurologie et Rééducation Neurologique, Centre Hospitalier Universitaire (CHU) Grenoble, Grenoble, France
| | | | | | - Meriem Tazir
- Service de Neurologie, CHU Mustapha, Algers, Algeria
| | - Caroline Tilikete
- Service de Neuro-ophtalmologie, Hôpital Neurologique, CHU Lyon, Bron, France
| | | | | | | | - Hans H Jung
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Jean-Marie Beis
- Institut Régional de Médecine Physique et de Réadaptation, Centre de Lay-Saint-Christophe, France
| | | | - Atbin Djamshidian
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Mattew Bower
- Department of Neurology, University of Minnesota Health, Minneapolis, Minnesota
| | - Armand Bottani
- Service de Génétique, Hôpitaux Universitaires de Genève, Genève, Suisse
| | - Richard Walsh
- Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland.,National Ataxia Clinic, Adelaide and Meath Hospital Dublin, National Children's Hospital, Dublin, Ireland
| | - Sinead Murphy
- National Ataxia Clinic, Adelaide and Meath Hospital Dublin, National Children's Hospital, Dublin, Ireland
| | - Thomas Reiley
- Department of Public Health and Environment, Greeley, Colorado
| | - Éric Bieth
- Service de Génétique Médicale, Hopital Purpan, Toulouse, France
| | | | - Bwee Tien Poll-The
- Pediatric Neurology, Emma Children's Hospital, University of Amsterdam, Amsterdam, the Netherlands
| | - Charles Marques Lourenço
- Neurogenetics Unit, School of Medicine of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Laura Bannach Jardim
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rachel Straussberg
- Neurogenetics Clinic, Department of Child Neurology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler School of Medicine Tel Aviv University, Ramat Aviv, Israel
| | - Pierre Landrieu
- Service de Neurologie Pédiatrique, Hôpital Bicêtre, Paris, France
| | - Emmanuel Roze
- Département de Génétique, Hôpital de La Pitié-Salpétrière, Paris, France
| | - Stéphane Thobois
- Service de Neurologie C, Hopital Neurologique, Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,CNRS, Institut des Sciences Cognitives, UMR 5229, Bron, France
| | - Jean Pouget
- Service de Neurologie, Hôpital de la Timone, Marseille, France
| | - Claire Guissart
- Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Cyril Goizet
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.,INSERM U1211, Laboratoire Maladies Rares Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Alexandra Dürr
- Département de Génétique, Hôpital de La Pitié-Salpétrière, Paris, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Medicale (INSERM)-U964, Centre National de la Recherche Scientifique (CNRS)-Unité Mixte de Recherché (UMR) 7104, Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Medicale (INSERM)-U964, Centre National de la Recherche Scientifique (CNRS)-Unité Mixte de Recherché (UMR) 7104, Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Scott P, Al Kindi A, Al Fahdi A, Al Yarubi N, Bruwer Z, Al Adawi S, Nandhagopal R. Spinocerebellar ataxia with axonal neuropathy type 1 revisited. J Clin Neurosci 2019; 67:139-144. [PMID: 31182267 DOI: 10.1016/j.jocn.2019.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 01/17/2023]
Abstract
Spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1; OMIM #607250), an exceedingly rare disorder having been documented in only a single family from Saudi Arabia, is the result of an unusual mutation in the tyrosyl DNA phosphodiesterase 1 gene (TDP1). We performed high-throughput sequencing (whole exome and ataxia gene panel) in two apparently unrelated Omani families segregating sensorimotor neuropathy and ataxia in an autosomal recessive fashion. Following validation by Sanger sequencing, all affected subjects (n = 4) were confirmed to carry the known SCAN1 pathogenic homozygous variant in the TDP1 gene, NM_001008744.1:c.1478A > G (p.His493Arg). In keeping with the initial description, our patients demonstrated progressive ataxia, cerebellar atrophy and disabling axonal sensori-motor neuropathy (n = 4), hypercholesterolemia (n = 2) and elevated serum alpha fetoprotein (n = 3). In addition, our patients also had mild cognitive deficits in multiple domains (n = 3), a feature not previously reported. Our findings independently revalidate the phenotype of TDP1 mutation and expand the clinical spectrum to include mild cognitive deficits. Haplotype sharing, as determined by DNA microarray (CytoScan HD), attests to a possible common founder mutation in the Arab population.
Collapse
Affiliation(s)
- Patrick Scott
- Molecular Genetics and Genomics Laboratory (PS, AAF, NAY), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Adila Al Kindi
- Department of Clinical Genetics (AAK, ZB), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Amira Al Fahdi
- Molecular Genetics and Genomics Laboratory (PS, AAF, NAY), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Naeema Al Yarubi
- Molecular Genetics and Genomics Laboratory (PS, AAF, NAY), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Zandre Bruwer
- Department of Clinical Genetics (AAK, ZB), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Samir Al Adawi
- Department of Behavioral Medicine (SAA), P.O. Box. 35, Sultan Qaboos University Hospital, Al-Khod, Zip 123, Muscat, Oman
| | - Ramachandiran Nandhagopal
- Neurology Unit, Department of Medicine (RN), P.O. Box. 35, Sultan Qaboos University, Al-Khod, Zip 123, Muscat, Oman. https://orcid.org/0000-0002-2379-0055
| |
Collapse
|
15
|
Barca E, Emmanuele V, DiMauro S, Toscano A, Quinzii CM. Anti-Oxidant Drugs: Novelties and Clinical Implications in Cerebellar Ataxias. Curr Neuropharmacol 2019; 17:21-32. [PMID: 29119930 PMCID: PMC6341493 DOI: 10.2174/1570159x15666171109125643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 01/01/1970] [Accepted: 11/07/2017] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND Hereditary cerebellar ataxias are a group of disorders characterized by heterogeneous clinical manifestations, progressive clinical course, and diverse genetic causes. No disease modifying treatments are yet available for many of these disorders. Oxidative stress has been recurrently identified in different progressive cerebellar diseases, and it represents a widely investigated target for treatment. OBJECTIVE To review the main aspects and new perspectives of antioxidant therapy in cerebellar ataxias ranging from bench to bedside. METHOD This article is a summary of the state-of-the-art on the use of antioxidant molecules in cerebellar ataxia treatments. It also briefly summarizes aspects of oxidative stress production and general characteristics of antioxidant compounds. RESULTS Antioxidants represent a vast category of compounds; old drugs have been extensively studied and modified in order to achieve better biological effects. Despite the vast body of literature present on the use of antioxidants in cerebellar ataxias, for the majority of these disorders conclusive results on the efficacy are still missing. CONCLUSION Antioxidant therapy in cerebellar ataxias is a promising field of investigations. To achieve the success in identifying the correct treatment more work needs to be done. In particular, a combined effort is needed by basic scientists in developing more efficient molecules, and by clinical researchers together with patients communities, to run clinical trials in order to identify conclusive treatments strategies.
Collapse
Affiliation(s)
- Emanuele Barca
- Address correspondence to this author at the Department of Neurology, Columbia University Medical Center, 630 W 168 Street, P&S 4-424/A, New York, NY 10032, USA; Tel: +1-212-305-1637; Fax: +1-212-305-3986; E-mail:
| | | | | | | | | |
Collapse
|
16
|
Tumbale P, Schellenberg MJ, Mueller GA, Fairweather E, Watson M, Little JN, Krahn J, Waddell I, London RE, Williams RS. Mechanism of APTX nicked DNA sensing and pleiotropic inactivation in neurodegenerative disease. EMBO J 2018; 37:embj.201798875. [PMID: 29934293 PMCID: PMC6043908 DOI: 10.15252/embj.201798875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/27/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023] Open
Abstract
The failure of DNA ligases to complete their catalytic reactions generates cytotoxic adenylated DNA strand breaks. The APTX RNA-DNA deadenylase protects genome integrity and corrects abortive DNA ligation arising during ribonucleotide excision repair and base excision DNA repair, and APTX human mutations cause the neurodegenerative disorder ataxia with oculomotor ataxia 1 (AOA1). How APTX senses cognate DNA nicks and is inactivated in AOA1 remains incompletely defined. Here, we report X-ray structures of APTX engaging nicked RNA-DNA substrates that provide direct evidence for a wedge-pivot-cut strategy for 5'-AMP resolution shared with the alternate 5'-AMP processing enzymes POLβ and FEN1. Our results uncover a DNA-induced fit mechanism regulating APTX active site loop conformations and assembly of a catalytically competent active center. Further, based on comprehensive biochemical, X-ray and solution NMR results, we define a complex hierarchy for the differential impacts of the AOA1 mutational spectrum on APTX structure and activity. Sixteen AOA1 variants impact APTX protein stability, one mutation directly alters deadenylation reaction chemistry, and a dominant AOA1 variant unexpectedly allosterically modulates APTX active site conformations.
Collapse
Affiliation(s)
- Percy Tumbale
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Matthew J Schellenberg
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Emma Fairweather
- Drug Discovery Group Cancer Research UK Manchester InstituteManchesterUK
| | - Mandy Watson
- Drug Discovery Group Cancer Research UK Manchester InstituteManchesterUK
| | - Jessica N Little
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Juno Krahn
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - Ian Waddell
- Drug Discovery Group Cancer Research UK Manchester InstituteManchesterUK
| | - Robert E London
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| | - R Scott Williams
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health Sciences, US National Institutes of HealthResearch Triangle ParkNCUSA
| |
Collapse
|
17
|
Yoon G, Caldecott KW. Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:105-115. [DOI: 10.1016/b978-0-444-64189-2.00007-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Abstract
The autosomal-recessive cerebellar ataxias comprise more than half of the known genetic forms of ataxia and represent an extensive group of clinically heterogeneous disorders that can occur at any age but whose onset is typically prior to adulthood. In addition to ataxia, patients often present with polyneuropathy and clinical symptoms outside the nervous system. The most common of these diseases is Friedreich ataxia, caused by mutation of the frataxin gene, but recent advances in genetic analysis have greatly broadened the ever-expanding number of causative genes to over 50. In this review, the clinical neurogenetics of the recessive cerebellar ataxias will be discussed, including updates on recently identified novel ataxia genes, advancements in unraveling disease-specific molecular pathogenesis leading to ataxia, potential treatments under development, technologic improvements in diagnostic testing such as clinical exome sequencing, and what the future holds for clinicians and geneticists.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Departments of Neurology and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
19
|
Inlora J, Sailani MR, Khodadadi H, Teymurinezhad A, Takahashi S, Bernstein JA, Garshasbi M, Snyder MP. Identification of a novel mutation in the APTX gene associated with ataxia-oculomotor apraxia. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a002014. [PMID: 28652255 PMCID: PMC5701303 DOI: 10.1101/mcs.a002014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/12/2017] [Indexed: 11/24/2022] Open
Abstract
Hereditary ataxias are a clinically and genetically heterogeneous family of disorders defined by the inability to control gait and muscle coordination. Given the nonspecific symptoms of many hereditary ataxias, precise diagnosis relies on molecular genetic testing. To this end, we conducted whole-exome sequencing (WES) on a large consanguineous Iranian family with hereditary ataxia and oculomotor apraxia. WES in five affected and six unaffected individuals resulted in the identification of a homozygous novel stop-gain mutation in the APTX gene (c.739A>T; p.Lys247*) that segregates with the phenotype. Mutations in the APTX (OMIM 606350) gene are associated with ataxia with oculomotor apraxia type 1 (OMIM 208920).
Collapse
Affiliation(s)
- Jingga Inlora
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - M Reza Sailani
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Hamidreza Khodadadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Ahmad Teymurinezhad
- Department of Medical Genetics, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shinichi Takahashi
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Medical Genetics, DeNA Laboratory, Tehran, Iran
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
20
|
Comparing ataxias with oculomotor apraxia: a multimodal study of AOA1, AOA2 and AT focusing on video-oculography and alpha-fetoprotein. Sci Rep 2017; 7:15284. [PMID: 29127364 PMCID: PMC5681651 DOI: 10.1038/s41598-017-15127-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/18/2017] [Indexed: 01/03/2023] Open
Abstract
Whether the recessive ataxias, Ataxia with oculomotor apraxia type 1 (AOA1) and 2 (AOA2) and Ataxia telangiectasia (AT), can be distinguished by video-oculography and alpha-fetoprotein level remains unknown. We compared 40 patients with AOA1, AOA2 and AT, consecutively referred between 2008 and 2015 with 17 healthy subjects. Video-oculography revealed constant impairments in patients such as cerebellar signs, altered fixation, impaired pursuit, hypometric saccades and abnormal antisaccades. Horizontal saccade latencies could be highly increased reflecting oculomotor apraxia in one third of patients. Specific distinctive alpha-fetoprotein thresholds were determined for AOA1 (7–15 µg/L), AOA2 (15–65 µg/L) and AT (>65 µg/L). Early age onset, severe walking disability, movement disorders, sensori-motor neuropathy and cerebellar atrophy were all shared. In conclusion, alpha-fetoprotein level seems to permit a distinction while video-oculography does not and therefore is not mandatory, even if an appropriate oculomotor examination remains crucial. Our findings are that AOA1, AOA2 and AT form a particular group characterized by ataxia with complex oculomotor disturbances and elevated AFP for which the final diagnosis is relying on genetic analysis. These findings could guide genetic analysis, assist reverse-phenotyping and provide background for the interpretation of the numerous variants of unknown significance provided by next-generation sequencing.
Collapse
|
21
|
Manzoor H, Bukhari I, Wajid M, Zhang Y, Zhang H, Brüggemann N, Klein C, Shi Q, Naz S. A Novel APTX Variant and Ataxia with Oculomotor Apraxia Type 1. J Clin Neurol 2017; 13:303-305. [PMID: 28516743 PMCID: PMC5532331 DOI: 10.3988/jcn.2017.13.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
- Humera Manzoor
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan
| | - Ihtisham Bukhari
- USTC-Shenyang Jinghua Hospital Joint Center of Human Reproduction and Genetics, School of Life Sciences, University of Science and Technology of China, Anhui, China
| | | | - Yuanwei Zhang
- USTC-Shenyang Jinghua Hospital Joint Center of Human Reproduction and Genetics, School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Huan Zhang
- USTC-Shenyang Jinghua Hospital Joint Center of Human Reproduction and Genetics, School of Life Sciences, University of Science and Technology of China, Anhui, China
| | | | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Qinghua Shi
- USTC-Shenyang Jinghua Hospital Joint Center of Human Reproduction and Genetics, School of Life Sciences, University of Science and Technology of China, Anhui, China.
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Pakistan.
| |
Collapse
|
22
|
Unexpectedly mild phenotype in an ataxic family with a two-base deletion in the APTX gene. J Neurol Sci 2017; 378:75-79. [PMID: 28566184 DOI: 10.1016/j.jns.2017.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Early onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH)/ataxia with oculomotor apraxia 1 (AOA1) is an autosomal recessive disorder caused by mutations in the APTX gene. In contrast to the recent progress on the molecular mechanism of aprataxin in DNA repair, the genotype and phenotype correlation has not been fully established. A previous study demonstrated that patients with truncation mutations had earlier onset of disease than those with missense mutations METHODS: Genomic DNA analysis was performed in a consanguineous family with relatively late-onset EAOH/AOA1. In addition, mRNA and protein analyses were performed. RESULTS The proband of the family had a homozygous two-base deletion in the middle of exon 3. Reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assays of mRNA revealed an aberrantly spliced mRNA with a cryptic splice site located four bases upstream of the deletion site. The newly identified mRNA retained a frameshift mutation and encoded a truncated protein. Immunoblot analysis did not detect the truncated protein in the patient's fibroblasts, possibly because it was unstable. CONCLUSIONS Although patients with truncation mutations had an earlier onset of disease, our findings suggest that patients with a truncation mutation resulting in an undetectable protein level can also have a later onset of disease.
Collapse
|
23
|
Wang H, Dharmalingam P, Vasquez V, Mitra J, Boldogh I, Rao KS, Kent TA, Mitra S, Hegde ML. Chronic oxidative damage together with genome repair deficiency in the neurons is a double whammy for neurodegeneration: Is damage response signaling a potential therapeutic target? Mech Ageing Dev 2016; 161:163-176. [PMID: 27663141 DOI: 10.1016/j.mad.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated aging and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama; Department of Biotechnology, Acharya Nagarjuna University, Guntur, AP, India; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City, Panama
| | - Thomas A Kent
- Department of Neurology, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA; Houston Methodist Neurological Institute, Houston, TX 77030, USA; Weill Medical College of Cornell University, New York, USA.
| |
Collapse
|
24
|
Jiang B, Glover JNM, Weinfeld M. Neurological disorders associated with DNA strand-break processing enzymes. Mech Ageing Dev 2016; 161:130-140. [PMID: 27470939 DOI: 10.1016/j.mad.2016.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
The termini of DNA strand breaks induced by reactive oxygen species or by abortive DNA metabolic intermediates require processing to enable subsequent gap filling and ligation to proceed. The three proteins, tyrosyl DNA-phosphodiesterase 1 (TDP1), aprataxin (APTX) and polynucleotide kinase/phosphatase (PNKP) each act on a discrete set of modified strand-break termini. Recently, a series of neurodegenerative and neurodevelopmental disorders have been associated with mutations in the genes coding for these proteins. Mutations in TDP1 and APTX have been linked to Spinocerebellar ataxia with axonal neuropathy (SCAN1) and Ataxia-ocular motor apraxia 1 (AOA1), respectively, while mutations in PNKP are considered to be responsible for Microcephaly with seizures (MCSZ) and Ataxia-ocular motor apraxia 4 (AOA4). Here we present an overview of the mechanisms of these proteins and how their impairment may give rise to their respective disorders.
Collapse
Affiliation(s)
- Bingcheng Jiang
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| | - J N Mark Glover
- Department of Biochemistry, Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada.
| |
Collapse
|
25
|
Pearson TS. More Than Ataxia: Hyperkinetic Movement Disorders in Childhood Autosomal Recessive Ataxia Syndromes. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2016; 6:368. [PMID: 27536460 PMCID: PMC4950223 DOI: 10.7916/d8h70fss] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Abstract
Background The autosomal recessive ataxias are a heterogeneous group of disorders that are characterized by complex neurological features in addition to progressive ataxia. Hyperkinetic movement disorders occur in a significant proportion of patients, and may sometimes be the presenting motor symptom. Presentations with involuntary movements rather than ataxia are diagnostically challenging, and are likely under-recognized. Methods A PubMed literature search was performed in October 2015 utilizing pairwise combinations of disease-related terms (autosomal recessive ataxia, ataxia–telangiectasia, ataxia with oculomotor apraxia type 1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2), Friedreich ataxia, ataxia with vitamin E deficiency), and symptom-related terms (movement disorder, dystonia, chorea, choreoathetosis, myoclonus). Results Involuntary movements occur in the majority of patients with ataxia–telangiectasia and AOA1, and less frequently in patients with AOA2, Friedreich ataxia, and ataxia with vitamin E deficiency. Clinical presentations with an isolated hyperkinetic movement disorder in the absence of ataxia include dystonia or dystonia with myoclonus with predominant upper limb and cervical involvement (ataxia–telangiectasia, ataxia with vitamin E deficiency), and generalized chorea (ataxia with oculomotor apraxia type 1, ataxia-telangiectasia). Discussion An awareness of atypical presentations facilitates early and accurate diagnosis in these challenging cases. Recognition of involuntary movements is important not only for diagnosis, but also because of the potential for effective targeted symptomatic treatment.
Collapse
Affiliation(s)
- Toni S Pearson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
van Minkelen R, Guitart M, Escofet C, Yoon G, Elfferich P, Bolman GM, van der Helm R, van de Graaf R, van den Ouweland AMW. Complete APTX deletion in a patient with ataxia with oculomotor apraxia type 1. BMC MEDICAL GENETICS 2015; 16:61. [PMID: 26285866 PMCID: PMC4593195 DOI: 10.1186/s12881-015-0213-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ataxia with oculomotor apraxia type 1 is an autosomal-recessive neurodegenerative disorder characterized by a childhood onset of slowly progressive cerebellar ataxia, followed by oculomotor apraxia and a severe primary motor peripheral axonal motor neuropathy. Ataxia with oculomotor apraxia type 1 is caused by bi-allelic mutations in APTX (chromosome 9p21.1). CASE PRESENTATION Our patient has a clinical presentation that is typical for ataxia with oculomotor apraxia type 1 with no particularly severe phenotype. Multiplex Ligation-dependent Probe Amplification analysis resulted in the identification of a homozygous deletion of all coding APTX exons (3 to 9). SNP array analysis using the Illumina Infinium CytoSNP-850 K microarray indicated that the deletion was about 62 kb. Based on the SNP array results, the breakpoints were found using direct sequence analysis: c.-5 + 1225_*44991del67512, p.0?. Both parents were heterozygous for the deletion. Homozygous complete APTX deletions have been described in literature for two other patients. We obtained a sample from one of these two patients and characterized the deletion (156 kb) as c.-23729_*115366del155489, p.0?, including the non-coding exons 1A and 2 of APTX. The more severe phenotype reported for this patient is not observed in our patient. It remains unclear whether the larger size of the deletion (156 kb vs 62 kb) plays a role in the phenotype (no extra genes are deleted). CONCLUSION Here we described an ataxia with oculomotor apraxia type 1 patient who has a homozygous deletion of the complete coding region of APTX. In contrast to the patient with the large deletion, our patient does not have a severe phenotype. More patients with deletions of APTX are required to investigate a genotype-phenotype effect.
Collapse
Affiliation(s)
- Rick van Minkelen
- Department of Clinical Genetics, Erasmus Medical Center, P.O. Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Miriam Guitart
- Genetic Laboratory, UDIAT-Centre Diagnòstic, Neuropediatrics Unity, Corporació Sanitària Universitària Parc Taulí, Sabadell, Spain.
| | - Conxita Escofet
- Genetic Laboratory, UDIAT-Centre Diagnòstic, Neuropediatrics Unity, Corporació Sanitària Universitària Parc Taulí, Sabadell, Spain.
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada.
| | - Peter Elfferich
- Department of Clinical Genetics, Erasmus Medical Center, P.O. Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Galhana M Bolman
- Department of Clinical Genetics, Erasmus Medical Center, P.O. Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Robert van der Helm
- Department of Clinical Genetics, Erasmus Medical Center, P.O. Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Raoul van de Graaf
- Department of Clinical Genetics, Erasmus Medical Center, P.O. Box 2040, Rotterdam, 3000 CA, The Netherlands.
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus Medical Center, P.O. Box 2040, Rotterdam, 3000 CA, The Netherlands.
| |
Collapse
|
27
|
Akbari M, Sykora P, Bohr VA. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells. Sci Rep 2015; 5:12876. [PMID: 26256098 PMCID: PMC4530458 DOI: 10.1038/srep12876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/09/2015] [Indexed: 12/22/2022] Open
Abstract
Aborted DNA ligation events in eukaryotic cells can generate 5'-adenylated (5'-AMP) DNA termini that can be removed from DNA by aprataxin (APTX). Mutations in APTX cause an inherited human disease syndrome characterized by early-onset progressive ataxia with ocular motor apraxia (AOA1). APTX is found in the nuclei and mitochondria of eukaryotic cells. Depletion of APTX causes mitochondrial dysfunction and renders the mitochondrial genome, but not the nuclear genome susceptible to damage. The biochemical processes that link APTX deficiency to mitochondrial dysfunction have not been well elucidated. Here, we monitored the repair of 5'-AMP DNA damage in nuclear and mitochondrial extracts from human APTX(+/+) and APTX(-/-) cells. The efficiency of repair of 5'-AMP DNA was much lower in mitochondrial than in nuclear protein extracts, and resulted in persistent DNA repair intermediates in APTX deficient cells. Moreover, the removal of 5'-AMP from DNA was significantly slower in the mitochondrial extracts from human cell lines and mouse tissues compared with their corresponding nuclear extracts. These results suggest that, contrary to nuclear DNA repair, mitochondrial DNA repair is not able to compensate for APTX deficiency resulting in the accumulation of mitochondrial DNA damage.
Collapse
Affiliation(s)
- Mansour Akbari
- Center for Healthy Aging, SUND, University of Copenhagen, Denmark
| | - Peter Sykora
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Baltimore, USA
| | - Vilhelm A Bohr
- 1] Center for Healthy Aging, SUND, University of Copenhagen, Denmark [2] Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Baltimore, USA
| |
Collapse
|
28
|
Hamza W, Ali Pacha L, Hamadouche T, Muller J, Drouot N, Ferrat F, Makri S, Chaouch M, Tazir M, Koenig M, Benhassine T. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia. BMC MEDICAL GENETICS 2015; 16:36. [PMID: 26068213 PMCID: PMC4630839 DOI: 10.1186/s12881-015-0180-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 05/29/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with great genetic and phenotypic heterogeneity, over 30 genes/loci have been associated with more than 20 different clinical forms of ARCA. Genetic heterogeneity combined with highly variable clinical expression of the cerebellar symptoms and overlapping features complicate furthermore the etiological diagnosis of ARCA. The determination of the most frequent mutations and corresponding ataxias, as well as particular features specific to a population, are mandatory to facilitate and speed up the diagnosis process, especially when an appropriate treatment is available. METHODS We explored 166 patients (115 families) refered to the neurology units of Algiers central hospitals (Algeria) with a cerebellar ataxia phenotype segregating as an autosomal recessive pattern of inheritance. Genomic DNA was extracted from peripheral blood samples and mutational screening was performed by PCR and direct sequencing or by targeted genomic capture and massive parallel sequencing of 57 genes associated with inherited cerebellar ataxia phenotypes. RESULTS In this work we report the clinical and molecular results obtained on a large cohort of Algerian patients (110 patients/76 families) with genetically determined autosomal recessive ataxia, representing 9 different types of ARCA and 23 different mutations, including 6 novel ones. The five most common ARCA in this cohort were Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia with oculomotor apraxia type 2, autosomal recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1. CONCLUSION We report here a large cohort of patients with genetically determined autosomal recessive ataxia and the first study of the genetic context of ARCA in Algeria. This study showed that in Algerian patients, the two most common types of ataxia (Friedreich ataxia and ataxia with isolated vitamin E deficiency) coexist with forms that may be less common or underdiagnosed. To refine the genotype/phenotype correlation in rare and heteregeneous diseases as autosomal recessive ataxias, more extensive epidemiological investigations and reports are necessary as well as more accurate and detailed clinical characterizations. The use of standardized clinical and molecular protocols would thus enable a better knowledge of the different forms of ARCA.
Collapse
Affiliation(s)
- Wahiba Hamza
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, USTHB, Alger, Algeria.
| | - Lamia Ali Pacha
- Service de Neurologie, CHU Mustapha Bacha, Alger, Algeria. .,Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria.
| | - Tarik Hamadouche
- Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria. .,Laboratoire de Biologie Moléculaire, Faculté des Sciences, UMBB, Boumerdes, Algeria.
| | - Jean Muller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg UMR7104, INSERM U964, Illkirch, France. .,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg UMR7104, INSERM U964, Illkirch, France.
| | - Farida Ferrat
- Service de Neurologie, CHU Ben Aknoun, Alger, Algeria.
| | - Samira Makri
- Service de Neurologie, EHS Ali Aït Idir, Alger, Algeria.
| | | | - Meriem Tazir
- Service de Neurologie, CHU Mustapha Bacha, Alger, Algeria. .,Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria.
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU de Montpellier, Montpellier, France.
| | - Traki Benhassine
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, USTHB, Alger, Algeria.
| |
Collapse
|
29
|
Garcia-Diaz B, Barca E, Balreira A, Lopez LC, Tadesse S, Krishna S, Naini A, Mariotti C, Castellotti B, Quinzii CM. Lack of aprataxin impairs mitochondrial functions via downregulation of the APE1/NRF1/NRF2 pathway. Hum Mol Genet 2015; 24:4516-29. [PMID: 25976310 DOI: 10.1093/hmg/ddv183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/12/2015] [Indexed: 11/13/2022] Open
Abstract
Ataxia oculomotor apraxia type 1 (AOA1) is an autosomal recessive disease caused by mutations in APTX, which encodes the DNA strand-break repair protein aprataxin (APTX). CoQ10 deficiency has been identified in fibroblasts and muscle of AOA1 patients carrying the common W279X mutation, and aprataxin has been localized to mitochondria in neuroblastoma cells, where it enhances preservation of mitochondrial function. In this study, we show that aprataxin deficiency impairs mitochondrial function, independent of its role in mitochondrial DNA repair. The bioenergetics defect in AOA1-mutant fibroblasts and APTX-depleted Hela cells is caused by decreased expression of SDHA and genes encoding CoQ biosynthetic enzymes, in association with reductions of APE1, NRF1 and NRF2. The biochemical and molecular abnormalities in APTX-depleted cells are recapitulated by knockdown of APE1 in Hela cells and are rescued by overexpression of NRF1/2. Importantly, pharmacological upregulation of NRF1 alone by 5-aminoimidazone-4-carboxamide ribonucleotide does not rescue the phenotype, which, in contrast, is reversed by the upregulation of NRF2 by rosiglitazone. Accordingly, we propose that the lack of aprataxin causes reduction of the pathway APE1/NRF1/NRF2 and their target genes. Our findings demonstrate a critical role of APTX in transcription regulation of mitochondrial function and the pathogenesis of AOA1 via a novel pathomechanistic pathway, which may be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Emanuele Barca
- Department of Neurology, UOC of Neurology and Neuromuscular Disorders, Department of Neuroscience, University of Messina, Messina 98100, Italy
| | | | - Luis C Lopez
- Department of Neurology, Institute of Biotechnology, Biomedical Research Center (CIBM), Health Science Technological Park (PTS), University of Granada, Armilla, Granada 18100, Spain and
| | | | - Sindhu Krishna
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ali Naini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Caterina Mariotti
- Unitâ di Genetica delle Malattie Neurodegenerative e Metaboliche, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan 20126, Italy
| | - Barbara Castellotti
- Unitâ di Genetica delle Malattie Neurodegenerative e Metaboliche, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan 20126, Italy
| | | |
Collapse
|
30
|
Schellenberg MJ, Tumbale PP, Williams RS. Molecular underpinnings of Aprataxin RNA/DNA deadenylase function and dysfunction in neurological disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:157-165. [PMID: 25637650 DOI: 10.1016/j.pbiomolbio.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/12/2015] [Accepted: 01/18/2015] [Indexed: 11/30/2022]
Abstract
Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions act as molecular checkpoint for DNA damage and create 5'-adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA single strand break repair (SSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase "proofreader" to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Percy P Tumbale
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
31
|
|
32
|
Quinzii CM, Emmanuele V, Hirano M. Clinical presentations of coenzyme q10 deficiency syndrome. Mol Syndromol 2014; 5:141-6. [PMID: 25126046 DOI: 10.1159/000360490] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Coenzyme Q10 (CoQ10) deficiency is a clinically and genetically heterogeneous syndrome which has been associated with 5 major clinical phenotypes: (1) encephalomyopathy, (2) severe infantile multisystemic disease, (3) nephropathy, (4) cerebellar ataxia, and (5) isolated myopathy. Of these phenotypes, cerebellar ataxia and syndromic or isolated nephrotic syndrome are the most common. CoQ10 deficiency predominantly presents in childhood. To date, causative mutations have been identified in a small proportion of patients, making it difficult to identify a phenotype-genotype correlation. Identification of CoQ10 deficiency is important because the disease, in particular muscle symptoms and nephropathy, frequently responds to CoQ10 supplementation.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| | - Valentina Emmanuele
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Clinical Research Center, Columbia University Medical Center, New York, N.Y., USA
| |
Collapse
|
33
|
Ozaltin F. Primary coenzyme Q10 (CoQ 10) deficiencies and related nephropathies. Pediatr Nephrol 2014; 29:961-9. [PMID: 23736673 DOI: 10.1007/s00467-013-2482-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is a metabolic pathway that uses energy released by the oxidation of nutrients to generate adenosine triphosphate (ATP). Coenzyme Q10 (CoQ10), also known as ubiquinone, plays an essential role in the human body not only by generating ATP in the mitochondrial respiratory chain but also by providing protection from reactive oxygen species (ROS) and functioning in the activation of many mitochondrial dehydrogenases and enzymes required in pyrimidine nucleoside biosynthesis. The presentations of primary CoQ10 deficiencies caused by genetic mutations are very heterogeneous. The phenotypes related to energy depletion or ROS production may depend on the content of CoQ10 in the cell, which is determined by the severity of the mutation. Primary CoQ10 deficiency is unique among mitochondrial disorders because early supplementation with CoQ10 can prevent the onset of neurological and renal manifestations. In this review I summarize primary CoQ10 deficiencies caused by various genetic abnormalities, emphasizing its nephropathic form.
Collapse
Affiliation(s)
- Fatih Ozaltin
- Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, 06100, Ankara, Turkey,
| |
Collapse
|
34
|
Votsi C, Christodoulou K. Molecular diagnosis of autosomal recessive cerebellar ataxia in the whole exome/genome sequencing era. World J Neurol 2013; 3:115-128. [DOI: 10.5316/wjn.v3.i4.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/30/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of rare neurodegenerative disorders characterized by autosomal recessive inheritance and an early age of onset. Progressive ataxia is usually the prominent symptom and is often associated with other neurological or additional features. ARCA classification still remains controversial even though different approaches have been proposed over the years. Furthermore, ARCA molecular diagnosis has been a challenge due to phenotypic overlap and increased genetic heterogeneity observed within this group of disorders. Friedreich’s ataxia and ataxia telangiectasia have been reported as the most frequent and well-studied forms of ARCA. Significant progress in understanding the genetic etiologies of the ARCA has been achieved during the last 15 years. The methodological revolution that has been observed in genetics over the last few years has contributed significantly to the molecular diagnosis of rare diseases including the ARCAs. Development of high throughput technologies has resulted in the identification of new ARCA genes and novel mutations in known ARCA genes. Therefore, an improvement in the molecular diagnosis of ARCA is expected. Moreover, based on the fact that many patients still remain undiagnosed, additional forms of ataxia are expected to be identified. We hereby review the current knowledge on the ARCAs, focused on the genetic findings of the most common forms that were molecularly characterized before the whole exome/genome era, as well as the most recently described forms that have been elucidated with the use of these novel technologies. The significant contribution of whole-exome sequencing or whole-genome sequencing in the molecular diagnosis of ARCAs is discussed.
Collapse
|
35
|
Nanetti L, Cavalieri S, Pensato V, Erbetta A, Pareyson D, Panzeri M, Zorzi G, Antozzi C, Moroni I, Gellera C, Brusco A, Mariotti C. SETX mutations are a frequent genetic cause of juvenile and adult onset cerebellar ataxia with neuropathy and elevated serum alpha-fetoprotein. Orphanet J Rare Dis 2013; 8:123. [PMID: 23941260 PMCID: PMC3751478 DOI: 10.1186/1750-1172-8-123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022] Open
Abstract
Objectives/background Ataxia with oculomotor apraxia defines a group of genetically distinct recessive ataxias including ataxia-telangectasia (A-T, ATM gene), ataxia with oculomotor apraxia type 1 (AOA1, APTX gene) and type 2 (AOA2, SETX gene). Although, a few unique clinical features differentiate each of these forms, the patients also share common clinical signs, such as the presence of cerebellar atrophy, sensorimotor axonal neuropathy, and elevated alpha-fetoprotein (AFP) serum level. Materials and methods We selected 22 Italian patients from 21 families, presenting progressive cerebellar ataxia, axonal neuropathy, and elevated serum AFP. We screened the coding regions of ATM, APTX and SETX genes for point mutations by direct sequencing or DHPLC, and searched genomic rearrangements in SETX by MLPA analysis. In selected cases, quantification of ATM and senataxin proteins was performed by Western blot. Clinical, neurophysiological, and neuroimaging data were collected. Results Thirteen patients (12 families) carried SETX mutations (AOA2, 57%), two were mutated in ATM (A-T), and three in APTX (AOA1). In three remaining patients, we could not find pathogenic mutations, and in one case we found, in homozygosis, the SETX p.K992R polymorphism (population frequency 1-2%). In AOA2 cases, we identified 14 novel and three reported SETX mutations. Signs at onset were gait ataxia and facial dyskinesia, and the age ranged between 11 and 18 years. None had obvious oculomotor apraxia at the latest examination (age 14–45 years). The patient carrying the p.K992R SETX polymorphism had a phenotype similar to that of the diagnosed AOA2 patients, while the other three undiagnosed subjects had a very late onset and a few distinguishing clinical features. Discussion and conclusions We describe a large series of 13 AOA2 Italian patients. The phenotype was consistent with previous descriptions of AOA2, except for a higher frequency of strabism, and for the absence of oculomotor apraxia. In our survey ~60% of juvenile-to-adult cases with cerebellar ataxia, sensorimotor neuropathy and increased AFP are due to mutations in the SETX gene, and a smaller percentage to APTX and ATM gene mutations.
Collapse
Affiliation(s)
- Lorenzo Nanetti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Reynolds JJ, Stewart GS. A single strand that links multiple neuropathologies in human disease. ACTA ACUST UNITED AC 2013; 136:14-27. [PMID: 23365091 DOI: 10.1093/brain/aws310] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The development of the human central nervous system is a complex process involving highly coordinated periods of neuronal proliferation, migration and differentiation. Disruptions in these neurodevelopmental processes can result in microcephaly, a neuropathological disorder characterized by a reduction in skull circumference and total brain volume, whereas a failure to maintain neuronal health in the adult brain can lead to progressive neurodegeneration. Defects in the cellular pathways that detect and repair DNA damage are a common cause of both these neuropathologies and are associated with a growing number of hereditary human disorders. In particular, defects in the repair of DNA single strand breaks, one of the most commonly occurring types of DNA lesion, have been associated with three neuropathological diseases: ataxia oculomotor apraxia 1, spinocerebellar ataxia with neuronal neuropathy 1 and microcephaly, early-onset, intractable seizures and developmental delay. A striking similarity between these three human diseases is that they are all caused by mutations in DNA end processing factors, suggesting that a particularly crucial stage of DNA single strand break repair is the repair of breaks with 'damaged' termini. Additionally all three disorders lack any extraneurological symptoms, such as immunodeficiency and cancer predisposition, which are typically found in other human diseases associated with defective DNA repair. However despite these similarities, two of these disorders present with progressive cerebellar degeneration, whereas the third presents with severe microcephaly. This review discusses the molecular defects behind these disorders and presents several hypotheses based on current literature on a number of important questions, in particular, how do mutations in different end processing factors within the same DNA repair pathway lead to such different neuropathologies?
Collapse
Affiliation(s)
- John J Reynolds
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
37
|
Emmanuele V, López LC, López L, Berardo A, Naini A, Tadesse S, Wen B, D'Agostino E, Solomon M, DiMauro S, Quinzii C, Hirano M. Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. ACTA ACUST UNITED AC 2012; 69:978-83. [PMID: 22490322 DOI: 10.1001/archneurol.2012.206] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coenzyme Q(10) (CoQ(10)) deficiency has been associated with 5 major clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. Primary CoQ(10) deficiency is due to defects in CoQ(10) biosynthesis, while secondary forms are due to other causes. A review of 149 cases, including our cohort of 76 patients, confirms that CoQ(10) deficiency is a clinically and genetically heterogeneous syndrome that mainly begins in childhood and predominantly manifests as cerebellar ataxia. Coenzyme Q(10) measurement in muscle is the gold standard for diagnosis. Identification of CoQ(10) deficiency is important because the condition frequently responds to treatment. Causative mutations have been identified in a small proportion of patients.
Collapse
Affiliation(s)
- Valentina Emmanuele
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|